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Abstract. We propose a model, which nests a susceptible-infected-recovered-deceased (SIRD)

model of epidemic into a dynamic macroeconomic equilibrium framework with agents’ mobil-

ity. The latter affect both their income and their probability of infecting and being infected.

Strategic complementarities among individual mobility choices drive the evolution of aggregate

economic activity, while infection externalities caused by individual mobility affect disease dif-

fusion. The continuum of rational forward-looking agents coordinates on the Nash equilibrium

of a discrete time, finite-state, infinite-horizon Mean Field Game.

We prove the existence of an equilibrium and provide a recursive construction method for the

search of an equilibrium(a), which also guides our numerical investigations.

We calibrate the model by using Italian experience on COVID-19 epidemic and we discuss

policy implications.
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1. Introduction

We propose an integrated assessment model, denoted by ESIRD, encompassing a susceptible-

infected-recovered-deceased (SIRD) model of epidemic and a dynamic macroeconomic equilib-

rium model of economy, where mobility choices of forward-looking agents affect both income

(and consumption) and the spread of epidemic. A calibrated version of the model illustrates

the possibilities to use the model to design an efficient policy of state-of-epidemic-dependent

mobility restrictions.

Pandemic crisis has shown that sudden drops in individual mobility have a substantial neg-

ative consequence on aggregated income and consumption (OCDE, 2020). The decrease of

individual mobility along the COVID-19 crisis has been the joint outcome of individual deci-

sions, caused by the diffusion of infection, and of containment measures imposed by national

authorities (lockdown, curfew, etc.). In turn, a reduction in individual mobility brings down

individual income (Huang et al., 2020) as well as epidemic dynamics, being higher individual

mobility associated to a higher probability of infecting and being infected (Nouvellet et al.,

2020). Therefore, entangled externalities and “equilibrium” effects are at work; more precisely,

individual mobility decisions display i) strategic complementarities with mobility choice of other

agents, because the marginal impact on individual income of individual mobility is increasing

in the mobility (Bulow et al., 1985; Cooper and John, 1988); and, ii) negative externalities

on contagion dynamics, because of agents in their mobility choices internalize the risk of being

infected, but not the effect of infecting other people (Bethune and Korinek, 2020).1

In the model we focus on short-term mobility. Epidemic dynamics is driven by a generalized

version of the SIRD model, where the average number of contacts per person per time is

endogenous, as well as the transition rate (i.e., the flow of new infected), and depends on the

mobility choices of agents.

Agents maximize an inter-temporal discrete time utility function considering consumption

and mobility costs. Their choice of mobility for work (respectively for consumption) depends

on their state (susceptible, infectious, or recovered), the aggregate level of economic activity,

the current and future policies on mobility restrictions, and on their future utility, which, in

turn, depends on the probabilities of being infected in the future and on the future economic

dynamics. At each time, aggregate economic activity (consumption) depends on the state of

the epidemic and on the individual mobility choices.

We set the agent’s problem as a game with a continuum of players in a finite state space (the

four states of agents) and, in particular, the model can be seen as a discrete time, finite state,

infinite horizon Mean Field Game (MFG) (Lasry and Lions, 2007). The notion of equilibrium

used in the paper is basically borrowed – even if re-elaborated – from Jovanovic and Rosenthal,

1988 (Definition 5.2), which we show to be equivalent to the more common notion of Nash

equilibrium of our Mean Field Game (Proposition 5.3). We then provide the proof of the

existence of the equilibrium for our Mean Field Game (Theorem 5.4), and finally propose a

1Another possible source of externality, the healthcare congestion, is analyzed by Jones et al. (2021).
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recursive algorithm to identify and then numerically simulate such equilibrium (Section 5.2 and

Theorem 5.6).

MFG literature deals with the behavior of Nash equilibria in differential games as the number

of agents becomes large. There is extensive recent research activity on MFGs starting from

the pioneering works of Huang, Malhamé and Caines (?) and, independently, at the same

time by Lasry and Lions (Lasry and Lions, 2006a,b, 2007). In the large population limit, one

expects to obtain a game with a continuum of agents where, like in our case, the effects on the

decision of any agent from the actions of the other agents are experienced through the statistical

distribution of states. Since perturbations from the strategy of an agent does not influence the

statistical states’ distribution, the latter acts as a parameter in each agent’s control problem.

We calibrate the model by using Italian experience on COVID-19 epidemic in the period

February 2020-May 2021. Numerical explorations under different configurations of state-of-

epidemic-dependent mobility restrictions highlight the presence of a trade-off between economic

losses and fatalities due to the pandemic, that is, of a pandemic possibilities frontier as in Kaplan

et al. (2020) and Acemoglu et al. (2020). However, we argue that policy evaluation should take

into account two additional directions. The first is related to the share of susceptible at the end

of the period of evaluation, which can favor a new outbreak of epidemic in the future without an

efficient vaccine. The second is the social feasibility of prolonged mobility restrictions (Vollmer

et al., 2020).

Our paper makes four main contributions to literature. The first is to the epidemiological-

macroeconomic literature, which has recently boomed following the COVID-19 outbreak. Its

main goal is to produce integrated assessment models, where the economic dynamics comple-

ments epidemiological models. In particular, a strand of literature focuses on optimal policy

problem from a planner’s perspective without modeling individual behavior (see, e.g., Alvarez

et al., 2021; Piguillem et al., 2020; Moser and Yared, 2022; Atkeson, 2020), while another

one considers forward-looking agents and market determination of good and factor prices, as

in Eichenbaum et al. (2021), Toxvaerd (2020), Jones et al. (2021) and Kaplan et al. (2020).

With respect to these contributions, we explicitly consider agents’ (short-term) mobility. There

are several good reasons for this focus: (i) in the epidemiological literature, mobility is (not

surprisingly) identified as the key variable in containing an epidemic (Nouvellet et al., 2020);

(ii) mobility is an easily measurable variable and many datasets are freely available; and, (iii)

since mobility was/is the primary focus of several restrictive policies imposed by governments,

the proposed framework is a natural candidate to evaluate past and future policies on mobility

restrictions. As already argued, focusing on mobility implies taking into account non-market

interactions among individual choices: the presence of strategic complementarities in individ-

ual decisions is another element of novelty in our epidemiological-macroeconomic model. This

introduces substantial difficulties in the mathematical study of the model, which arise e.g. from

proving the existence of a Nash equilibrium.
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An advantage of our analysis is to consider individuals with a long (infinite) time horizon.

This is crucial for understanding the interaction between the change in death risk (whose effects

should be evaluated over years), and the epidemic dynamics (whose effects should be measured

over days). For example, in a two (or three)-period model (as for instance ? or ?), a strategy to

reduce mobility (and consumption) in the short run so that to decrease the death risk and wait

for the end of the epidemics cannot be correctly evaluated. Similar situation applies for the

non-linear dynamics of the epidemics and bringing the model to empirical data, which would

also be problematic.

The second contribution is on methodology. We have discussed above that our model belongs

to the class of discounted infinite horizon, discrete time, finite state space MFG. To the best

of our knowledge, this does not fall into the classes already studied in the literature, among

which Gomes et al. (2010), Doncel et al. (2019), Hadikhanloo and Silva (2019), and Bonnans

et al. (2021); Wiecek (2020). Hadikhanloo and Silva (2019) and Bonnans et al. (2021) consider

only finite horizon problems, while Gomes et al. (2010) (and similarly Wiecek, 2020) consider

infinite horizon problems of ergodic type or with entropy penalization, where the dependence

of the agents’ utility from the choices of the other agents is more regular than in our model.

Doncel et al. (2019) consider an infinite horizon MFG, but where agents’ cost does not depend

on the strategies of the other agents, which instead happens in our model for the presence

of strategic complementarities. Hence, our theorems of existence of an equilibrium and the

recursive construction of an equilibrium are to be considered a novelty.

We also contribute to the literature focusing on the endogenous determination of the infection

rate and the reproduction rate of an epidemic (Avery et al., 2020). Infection rate depends on

many aggregate factors (climate, geography, health system, etc.), but also crucially revolves

around individual choices. Several approaches have been proposed to endogenize infection

rates, among which a purely epidemiological approach as Fenichel (2013), and a behavioral

approach as, for example, in Engle et al. (2020) and Bisin and Moro (2021). Farboodi et al.

(2021), Toxvaerd (2020), and Eichenbaum et al. (2021) are instead more in line with our

approach, developing settings where forward-looking individuals chose their actions facing an

epidemic-economic trade-off. However, no paper directly models mobility choices of individuals

while considering strategic complementarities and negative externalities in an infinite horizon

equilibrium setting as a way to explain the dynamics of infection rate during the pandemic.

The advantage of our approach is evident in the interpretation of results, allowing to directly

correlate mobility and infection rates, and in the possibility to bring the model to data.

The final contribution is to the literature on the effect of epidemics diffusion on mobility

(see, e.g., Goolsbee and Syverson, 2021 and Meloni et al., 2011 and Nouvellet et al., 2020 for

an epidemiological perspective). Our contribution provides a theoretical framework to evaluate

restrictive policies going beyond the simple trade-off economic losses/fatalities as prospected

in Kaplan et al. (2020), Acemoglu et al. (2020), and Gollier (2020). It makes it possible, for

instance, to take into account other key dimensions regarding the social feasibility of policies
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in the evaluation, such as the fragility of post-lockdown situations with a high risk of new

outbreaks, and the sustainability of health systems (see, in particular, Sections 6 and 7).

The paper is organized as follows: Section 2 presents the model, Section 3 focuses on the

agent’s optimization problem while Section 5 provides a recursive construction method for the

search of an equilibrium(a). Section 6 calibrates the model to Italian data; Section 7 uses the

model to investigate the effects of policies aiming at mitigating epidemics and their effects on

economic activity; Section 8 concludes.

2. The epidemiologic-economic dynamic model

We consider an infinite horizon discrete time (t = 0, 1, 2...) world with a continuum set of

agents, whose individual mass is equal to zero so that the actions of a single agent do not

modify the evolution of the global epidemic state and of the aggregate economic variables.

As in the classical SIRD framework (Chowell et al., 2016), at each time, the health status k

of an agent can be: susceptible (k = S); infected (k = I); recovered (k = R); and deceased

(k = D). We then denote the set of possible health status by K, i.e.

K := {S, I, R,D} .

We denote by µ(t, k) the share of the population in the health status k at time t and by µ(t) the

four-dimensional vector µ(t) = (µ(t, S), µ(t, I), µ(t, R), µ(t,D)) representing the health status

distribution of the population.2

2.1. The agents’ utility. Each agent chooses at each time t their mobility rates (whose

maximal value is w.l.o.g. normalized to 1) for production, ϑp(t), and for consumption, ϑc(t).

The instantaneous utility at time t of the agent in the health state k(t) ∈ K, undertaking

the actions ϑ(t) := (ϑp(t), ϑc(t)) ∈ [0, 1]2 is equal to 0 if k(t) = D, otherwise,

u(t, c(t), k(t),ϑ(t)) := ln c(t)− γp (t, k(t),µ(t))ϑp(t)− γc (t, k(t),µ(t))ϑc(t)−M.

In the above expression, c(t) is the individual consumption, M ∈ R is the (exogenous) constant

utility of state deceased, which “normalizes the utility of nonsurvival to zero” (Rosen, 1988, p.

2), and γp (t, k(t),µ(t)) and γc (t, k(t),µ(t)) are, respectively, the marginal utility cost to move

into the labour market (and in general for the movements related to the productive activities of

the agent) and to move into the consumption market (or, in general, for the movements related

to the individual consumption).

The functions γp and γc will be used to model public policies for mobility restriction. For

this reason, they may depend explicitly on time t (in the case of policies that intervene at

exogenously fixed times) or on the state of the epidemic (for example, in the case of policies that

change endogenously depending on the severity of the epidemiological situation). The mobility

cost structure is known by agents who will incorporate, in their inter-temporal choices, future

2The sum of the components of µ(t) is always equal to 1; hence, µ(t) is can be seen as a probability measure

on K.
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policy changes (both exogenous and endogenous). We make the following assumptions on the

marginal utility cost of mobility:

γp(t, R,µ) ≤ γp(t, S,µ) ≤ γp(t, I,µ) and γc(t, R,µ) ≤ γc(t, S,µ) ≤ γc(t, I,µ),

for any µ and t.

As described in detail in Subsections 2.4, at each time any susceptible individual has a certain

probability of becoming infected, and each infected individual has a certain probability of dying

and of recovering; hence, the evolution of the individual health status k(t) is represented by

a discrete stochastic process. The goal of each agent will be to maximize their total expected

inter-temporal utility given by:

(1) E

[
∞∑
t=0

(1− ρ)tu(t, c(t), k(t),ϑ(t))

]
,

where (1− ρ) ∈ (0, 1) is the exogenous discount factor.

2.2. Consumption and mobility. We suppose that the opportunity to move into the con-

sumption market produces a benefit for agents. Moving can indeed allow access to a greater

number of goods and services and to a wider variety, satisfying more precisely the needs of the

agent or finding equivalent goods with inferior prices. Alternatively, we can suppose that the

effective consumption is affected by the mobility/time dedicated to the consumption activity

(?).

To formalize this idea as simply as possible, we suppose that the (real) price faced by the

agent for the consumption good depends on their (consumption-related) mobility choice ϑc(t)

and it is given by:

P (ϑc(t)) =
1

P0 + P1ϑc(t)
,

where

P0, P1 ≥ 0

are exogenous constants.

In the model, we do not consider the saving (and therefore the dynamics of accumulation of

capital) and therefore we impose, at every time, that the individual income is entirely destined

to consumption. We have then

y(t) = P (ϑc(t))c(t),

where we denoted by y(t) the individual income at time t. This implies that:

(2) c(t) = (P0 + P1ϑc(t)) y(t),

i.e. the consumption is decided by the level of income, but also by the mobility for consumption.
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2.3. Income and mobility. As for the need of mobility for consumption, we assume that

mobility affects agent’s income, in particular a greater mobility positively contributes to income.

The idea here is intuitive: some jobs/activities require the presence of the worker and can, or

cannot, only be partially carried out by remote work. We also suppose that income is affected

by health conditions of agents (obviously, sick people are less productive than healthy ones), and

that productivity, and therefore, agent’s income also depends on the macroeconomic conditions,

so that a greater macroeconomic activity, ceteris paribus, will lead to higher agent income. In

the model, Z(t) will denote the level of macroeconomic activity at time t and its dependence

on agents’ choices will be discussed shortly. All in all, we suppose that the individual income

has the following form:

(3) y(t) = Z(t)
(
Ak

0 + Ak
1ϑp(t)

)
,

where Ak
0 and e Ak

1 are the positive exogenous constants depending on the health status k of

the agent. We will suppose that AS
1 = AR

1 so we will denote this value by ASR
1 , and we will

suppose that

0 < AI
0 ≤ ASR

0 and 0 ≤ AI
1 ≤ ASR

1 ,

where the second inequalities reflect the fact that healthy (susceptible or recovered) agents are

more productive than infected.

From (2), the consumption of the agent in the health state k, when the epidemic is in the

state µ(t) and they undertake the production-consumption choices ϑ(t) = (ϑc(t), ϑc(t)), is then

given by

(4) c(t) = Z(t)
(
Ak

0 + Ak
1ϑp(t)

)
(P0 + P1ϑc(t)) .

The level of macroeconomic economic activity Z(t) depends on the choices of all agents on

their mobility for the participation in the productive activities, and thus it presents strategic

complementarities. More precisely, we will suppose that it has the following shape:

Z(t) := ϕ

(
µ(t, S)ϑ̄p(t, S), µ(t, I)ϑ̄p(t, I), µ(t, R)ϑ̄p(t, R)

)
,(5)

where ϕ : [0, 1]3 → (0,∞) is non-decreasing in all the components and such that ϕ(0, 0, 0) >

0 and ϑ̄p(t, S) (respectively ϑ̄p(t, I) and ϑ̄p(t, R)) is the average productive-mobility choice

of susceptible (respectively infected, recovered) agents. In the following, we will focus on

symmetric equilibria where all individuals of the same health status behave in the same way;

hence, along the equilibrium, ϑ̄p(t, S), ϑ̄p(t, I) and ϑ̄p(t, R) will also be the (optimal) choice of

any single agent.

2.4. Agents mobility and epidemic dynamics. We model the evolution of the size of health

classes, that is, the shares of population with different health status, following a standard SIRD

model without vital dynamics (newborns are not considered and people die only because of the

virus) adjusted for the mobility choices of the agents.
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To make the point clearer, we recall that in the standard SIRD model the number of new

infected agents is given by

(6) β
I(t)S(t)

N(t)
,

where I(t) (respectively S(t), N(t)) is the number of infected agents (respectively susceptible

agents, total number of agents) at time t and β is an exogenous factor representing the average

number of contacts per agent per time.

In the standard SIRD model, β is constant and is exogenous with respect to the state of

epidemics and agents’ choices. The idea behind this formulation is that people meet by chance

independently of their epidemiological status; hence, the probability of a susceptible agent

meeting an infected agent and getting infected at time t is

β
I(t)

N(t)
= βµ(t, I).

As a result, in the standard SIRD model, the share of the new infected individuals at time t is

β
I(t)

N(t)

S(t)

N(t)
= βµ(t, I)µ(t, S).

Based on the idea that the number of contacts depends on the mobility of agents, we enrich

this formulation adjusting the parameter β for the agents’ mobility choices. In particular, we

observe that it is natural to suppose that the number of contacts is proportional to the distance

covered by agents; for example, an agent walking 200 meters in a street would meet twice as

many other agents than if they walked 100 meters. For the same reason, the number of contacts

is proportional to the average distance covered by other agents given the mobility of the agent.

Therefore, since the maximal mobility is normalized to one and distinguishing the mobil-

ity for production and for consumption, the probability of a susceptible agent with mobility

(ϑp(t), ϑp(t)) meeting an infected agent and getting infected is modeled as

(7) τ(t) =
(
βpϑ̄p(t, I)ϑp(t) + βcϑ̄c(t, I)ϑp(t)

)
µ(t, I),

where βp, βc > 0 are given constants that we assume to satisfy the condition βp + βc < 1.

Taking the average over the population of susceptibles, and multiplying by the portion of

susceptibles among the population, we find the share of the new infected agents; the latter

represent the (negative) variation in the share of the susceptible population, that is3

(8) µ(t+ 1, S) = µ(t, S)− β(t)µ(t, S)µ(t, I),

where

(9) β(t) := βpϑ̄p(t, I)ϑ̄p(t, S) + βcϑ̄c(t, I)ϑ̄c(t, S).

Therefore, in our ESIRD (economic SIRD) model, β(t) of (9) is the counterpart of β in the

SIRD model of (6).

3The assumptions of zero mortality for reasons different from the virus and of the zero natality are implicit

in (8).
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Apart for the role of mobility in β(t), we will stick to the classic structure of the SIRD

model, and we suppose that πD (respectively πR) is the probability of an infected agent to die

(respectively to recover) at each time. At the aggregate level, this means that a portion πD

(respectively πR) of infected agents die (respectively recover) at each time. Hence, the evolution

of the health status distribution of population in our model is as follows:

(10) µ(t+ 1) = Q(t)µ(t),

where

Q(t) :=


1− β(t)µ(t, I) 0 0 0

β(t)µ(t, I) 1− πR − πD 0 0

0 πR 1 0

0 πD 0 1

 .

From (9) we observe that the dependence of β(t) on agents’ mobility is proportional to the

product of individual mobilities, which generates strategic complementarities in the mobility

choices with aggregate negative effects. In particular, infected agents do not internalize the

effect of their mobility choice on the infection rate of susceptible agents, and both susceptible

and infected agents do not internalize the effect of the increased spread of the pandemic on the

level of macroeconomic activity Z(t). Therefore, in the decentralized equilibrium, the agents’

mobility is too high with respect to the optimal social mobility.

3. The agent’s optimization problem

We now look at the optimization problem of a single agent. As previously discussed, the

zero-mass agent assumption implies that the individual choices of any specific agent do not

modify the macro variables and, in particular, the evolution of the epidemic according to (10).

The latter only depends on the average choices of each group defined by agents’ health status.

This means that agents take the average strategies ϑ̄(t) and the dynamics of µ(t) as given when

they make their decisions, that is, we are considering a Mean Field Game (Lasry and Lions,

2007). At the equilibrium, we will impose that optimal individual decisions coincide with the

average decisions of the corresponding group defined by agents’ health status.

The epidemic dynamics µ(t) does not depend on the choices of the single agent; however,

the evolution of their epidemic status does. In particular, as we have already discussed in

Section 2, the probability of a susceptible agent getting infected is given by the endogenous

probability τ(t) defined in (7), while the probabilities of an infected agent dying and recovering

are exogenous and equal to πD and πR, respectively. Hence, the state of the agent k(t) is

represented by a controlled Markov Chains, whose transition kernel at each time t is given by:

q(t) =


pSS(t) pIS(t) pRR(t) pDS(t)

pSI(t) pII(t) pRI(t) pDI(t)

pSR(t) pIR(t) pRR(t) pD(t)

pSD(t) pID(t) pRD(t) pDD(t)

 =


1− τ(t) 0 0 0

τ(t) 1− πR − πD 0 0

0 πR 1 0

0 πD 0 1

 ,
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where pk1k2(t) is the probability to switch from the status k1 at time t to the status k2 at time

t+ 1. Even if not emphasized in the notation, q depends on the individual decisions ϑ(t) and

on the average decisions of other agents ϑ̄(t).

Since we rely on dynamic programming, we let the initial time and state vary. Hence, we

assume that the agent starts at time t0 ∈ N in the state k(t0) ∈ K, where (t0, k(t0)) ∈ N×K,

and that they choose their strategies in the set:

A(t0) :=
{
ϑ = (ϑp, ϑc) : {t0, t0 + 1, ...} ×K → [0, 1]2 s.t. ϑ(·, D) = (0, 0)

}
.

In general, the set of admissible strategies depends on the time t0 and we should denote the set

of strategies byA(t0). At each time, the strategy ϑ can be chosen from all pairs (ϑp, ϑc) ∈ [0, 1]2,

so with a slight abuse of notation (making abstraction of the translation, for which the strategy

at time t0 is defined only for t ≥ t0) we will denote A as the set of admissible strategies. In the

set of strategies, each agent includes a complete plan of action for: i) the initial health states

different from the actual one of the same agent; and, ii) all possible future health statuses,

even though some of these are not attainable; for example, recovered agents cannot become

susceptible or infected in the future.

The counterpart of the target (1) starting from (t0, k(t0)) depending on the initial health

status distribution µ(t0) and on the average strategies ϑ̄(t, k) specified for all t ≥ t0 and k ∈ K
is

J(t0, k(t0),µ(t0), ϑ̄(·, ·);ϑ(·, ·)) := E

[
∞∑

t=t0

(1− ρ)t−t0u(t, c(t), k(t),ϑ(t, k(t)))

]
,

where c(t) is just an abbreviation.4

The value function of the agent is defined as

V (t0, k(t0),µ(t0), ϑ̄(·, ·)) := sup
ϑ(·,·)∈A

J(t0, k(t0),µ(t0), ϑ̄(·, ·);ϑ(·, ·)).

According to the dynamic programming principle, the value function is a solution (possibly not

unique) to the Bellman equation (with unknown v)

v(t0, k(t0)) = sup
ϑ∈[0,1]2

∑
k∈K

pk(t0)k(t0)
[
u(t0, c(t0), k(t0),ϑ) + (1− ρ)v(t0 + 1, k)

]
.(11)

4. The limits of our modelling strategies

In our model formulation, we adopt some shortcuts that need more detailed discussion. The

positive relationship between utility and individual mobility is to be considered a reduced form

of the result of solving the equilibrium of an economy populated by firms producing heteroge-

neous goods and services in different locations and by consumers with heterogeneous preferences

incurring moving costs in their search for the best consumption basket. In equilibrium, the re-

duced mobility should determine higher prices as the result of lower competition among firms;

additionally, the same quantity of consumption should also lead to a lower utility for the possi-

ble mismatch between the consumers’ heterogeneous preference and the specific local supply of

4In particular, from (4), c(t) = Z(t)
(
Ak

0 +Ak
1ϑp(t)

)
(P0 + P1ϑc(t)) and Z(t) is given by (5). Hence, c(t) does

depend on ϑ̄ and µ.
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goods and services. A complementary explanation of the positive effect of mobility on individ-

ual utility is that reduced mobility constrains the capacity of expenditure of individuals, which

turns out as forced saving. In our framework, where saving is absent, the reduced mobility,

therefore, corresponds to an increasing gap between income and consumption, that is, between

the latter and utility. Also, the relationship between mobility and individual income is to be

taken as a reduced form of the equilibrium of an economy, where the place of residence and

place of work differ (i.e., there exists commuting); where the production activity needs some

mobility, for example, the need to transport commodities among different plants; and where the

place of production and the place of sale differ, which is the most common case. As a result, in

equilibrium, reduced mobility leads to a decrease in economic activity. Overall, considering all

these phenomena would add considerable complexity to our analysis, but no significant insight

given our focus on short-run dynamics.

5. Equilibrium: existence and recursive construction

In this section, first we provide the definition of an interteporal equilibrium for our economy,

which poses particular hidden difficulties (see Section 5.1) and then provide a theorem of the

existence of an equilibrium. Finally, we discuss a recursive construction of equilibrium (see

Section 5.2), which is the basis for our numerical simulations.

5.1. The definition and existence of equilibrium. First, we give the definition of a sym-

metric Nash equilibrium for our Mean Field Game. Let P(K) be the set of probability distri-

butions on K, that is µ(t) ∈ P(K) for every t ≥ 0.

Definition 5.1 (Symmetric Nash equilibrium of the Mean Field Game) Let µ(0) ∈ P(K) be

the health status distribution of a population at t = 0. A Nash equilibrium for the Mean Field

Game is a strategy ϑ̄(·, ·) ∈ A such that,

(12) V (0, k(0),µ(0), ϑ̄(·, ·)) = J(0, k(0),µ(0), ϑ̄(·, ·); ϑ̄(·, ·)) ∀k ∈ K.

Definition 5.1 states that, at equilibrium, the optimal mobility choice of an agent, when the

average mobility choice of the other agents is ϑ̄(·, ·), is exactly ϑ̄, that is, the equilibrium is

symmetric for all agents belonging to the same health status. Focusing on symmetric Nash

equilibria among all possible Nash equilibria is very common in the Mean Field literature (see,

e.g., Carmona and Delarue, 2018, Sec. 6.1.1.).

From another perspective, our Mean Field Game can be viewed as an ”anonymous sequential

game with a continuum of players, in which agent players affect their opponents in ways that

are insignificant at the individual level but significant when aggregated, and in which factors

that are stochastic at the individual level become deterministic when aggregated” (Jovanovic

and Rosenthal, 1988). In particular, the following notion of equilibrium can be formulated:

Definition 5.2 (Equilibrium of the anonymous sequential game) An equilibrium starting from

µ(0) ∈ P(K) is a couple (v(·, ·), ϑ̂(·, ·)), with v : N×K → R and ϑ̂(·, ·) ∈ A, such that, along

the trajectory of the health status distribution starting at µ(0) as a result of the average strategy

ϑ̂(·, ·), one has that:
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(i) v is bounded and satisfies5 the Bellman equation (11) for every (t0, k(t0)) ∈ N×K;

(ii) ϑ̂(t0, k(t0)) is an optimizer of the right hand side of (11) for every (t0, k(t0)) ∈ N×K
when ϑ̄(t0, k(t0)) = ϑ̂(t0, k(t0)).

According to Definition 5.2, the notion of equilibrium requires that for each t0 > 0, each

agent optimizes their objective functional given its health status k(t0) and the health status

distribution µ(t0) (Point (ii) in Definition 5.2) and that such optimization is sequentially con-

sistent; that is, k(t0 + 1) and µ(t0 + 1) are the outcome of the optimizing behavior at time t0;

then, k(t0 + 2) and µ(t0 + 2) are the outcome of the optimizing behavior at time t0 + 1; etc.

(Point (i) in Definition 5.2).

The importance of Definition 5.2 of equilibrium will be clarified further in Section 5.2, where

we will deal with the recursive construction of the equilibrium, the basis of our numerical

investigation of the properties of equilibrium. Notably, the use of Definition 5.2 in the rest of

the analysis is legitimated by its equivalence with Definition 5.1, as proven in Proposition 5.3.

Proposition 5.3 Definitions 5.1 and 5.2 are equivalent.

Proof. See Appendix A. □

Proposition 5.3 states that Definitions 5.1 and 5.2 identify the same equilibria, i.e. when

our Mean Field Game is viewed as an anonymous sequential game, its equilibrium is a Nash

equilibrium and vice versa.

We conclude the section with a result of existence of an equilibrium given in Theorem 5.4.

Theorem 5.4 Given the Definition 5.2 of the equilibrium of our Mean Field Game, such

equilibrium exists for each µ(0) ∈ P(K).

Proof. See Appendix A. □

The proof of existence is based on the Tikhonov’s fixed point Theorem (see Theorem A.1 in

Appendix A), which however does not guarantee the uniqueness of equilibrium. This is not

surprising given the very weak definition of equilibrium used in Theorem 5.4.

5.2. The recursive construction of the equilibrium. In Algorithm 5.5, we illustrate a

recursive algorithm, inspired by Definition 5.2, which allows to compute an equilibrium of our

Mean Field Game. The importance of Algorithm 5.5 is shown by Theorem 5.6, which states

the conditions for the computed equilibrium to be both a Nash equilibrium and an anonymous

sequential game equilibrium, that is, to satisfy Definitions 5.1 and 5.2.

Algorithm 5.5 (The algorithm for the computation of an equilibrium) .

1. At time 0, set µ̂(0) = µ(0), v̂(0, D) = 0, and arbitrarily assign v̂(0, k) for k ∈ {S, I, R}.

5The trajectory of health status distribution starting at µ(0) enters into (11) by the sequence of pk(t0)k, in

turn depending on τ(t0) of (7), that is, the probabilities to change individual health status pk(t0)k depend on

the share of infected agents on population µI .
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2. At time t ≥ 0, given µ̂(t) and v̂(t, ·), according to the corresponding optimization in the

Bellman equation (cf. (20)-(21)), we set, for k ∈ {R, I}6,

(13) ϑ̂(t, k) :=

(((
1

γp(t, k, µ̂(t))
− Ak

0

Ak
1

)
∨ 0

)
∧ 1,

((
1

γc(t, k, µ̂(t))
− P0

P1

)
∨ 0

)
∧ 1

)
.

3. Then, to perform the optimization in the Bellman equation for k = S (cf. (22)), we set

â(t) := µ̂(t, I)ϑ̂p(t, I), b̂(t) := µ̂(t, I)ϑ̂c(t, I).

and, fixing the difference ξ := v(t0 + 1, S)− v(t0 + 1, I) as a parameter, we set

ϑ̂ξ(t, S) = (ϑ̂ξ
p(t, S), ϑ̂

ξ
c(t, S)),

where

ϑξ
p(t, S) =

1

γp(t, S, µ̂(t)) + (1− ρ)â(t)ξ
− AS

0

AS
1

,

ϑξ
c(t, S) =

1

γc(t, S, µ̂(t)) + (1− ρ)b̂(t)ξ
− P0

P1

.

Then, (22) can be rewritten in terms of ξ leading to the algebraic equation

(14) v̂(t, S) = (1− ρ)v̂ξ(t+ 1, I) + (1− ρ)ξ + f(t, ξ),

where:

(15) f(t, ξ) = u(t, ĉξ(t, S), S, ϑ̂ξ(t, S))− (1− ρ)
(
βpâ(t)ϑ̂

ξ
p(t, S) + βcb̂(t)ϑ̂

ξ
c(t, S)

)
ξ,

4. Given the parametric value ξ := v(t0+1, S)−v(t0+1, I), we set the value of the corresponding

variables:

Ẑξ(t) = ϕ

(
µ̂(t, S)ϑ̂ξ

p(t, S), µ̂(t, I)ϑ̂p(t, I), µ̂(t, R)ϑ̂p(t, R)

)
;

ĉξ(t, k) = Ẑξ(t)
(
Ak

0 + Ak
1ϑ̂p(t, k)

)(
P0 + P1ϑ̂c(t, k)

)
, for k = R, I;

ĉξ(t, S) = Ẑξ(t)
(
Ak

0 + Ak
1ϑ̂

ξ
p(t, S)

)(
P0 + P1ϑ̂

ξ
c(t, S)

)
;

v̂ξ(t+ 1, R) =
1

1− ρ

(
v̂(t, R)− u(t, ĉξ(t, R), R, ϑ̂(t, R)

)
;

v̂ξ(t+ 1, I) =
1

1− πR − πD

[
v̂(t, I)− u(t, ĉξ(t, I), I, ϑ̂(t, I))

1− ρ
− πR v̂ξ(t+ 1, R)

]
;

v̂ξ(t+ 1, S) = ξ + v̂ξ(t+ 1, I).

5. Assuming that (14) admits a unique solution ξ̂, we set

(16) ϑ̂(t, S) = ϑ̂ξ̂(t, S),

6Hereafter, given a, b ∈ R, we denote a ∨ b = max{a, b}, a ∧ b = min{a, b}.



14 G. FABBRI, S. FEDERICO, D. FIASCHI, AND F. GOZZI

and the values of the variables at time t+ 1 as

(17)



v̂(t+ 1, R) = v̂ξ̂(t+ 1, R),

v̂(t+ 1, I) = v̂ξ̂(t+ 1, I),

v̂(t+ 1, S) = v̂ξ̂(t+ 1, S),

v̂(t+ 1, D) = 0,

and

µ̂(t+ 1) = Q̂(t)µ̂(t),

where

Q̂(t) :=


1− β̂(t)µ̂(t, I) 0 0 0

β̂(t)µ̂(t, I) 1− πR − πD 0 0

0 πR 1 0

0 πD 0 1

 ,

where

β̂(t) := βpϑ̂p(t, I)ϑ̂p(t, S) + βcϑ̂c(t, I)ϑ̂c(t, S).

6. We repeat steps 2-4 with the updated µ̂(t+ 1) and v̂(t+ 1, ·).

Theorem 5.6 Let µ(0) is the initial health status distribution and let v̂(0, ·) be assigned with

v̂(0, D) = 0. Consider Algorithm 5.5 and assume that ξ̂ is well defined for every t ∈ N and that

v̂ is bounded. Then the couple (v̂, ϑ̂) is an equilibrium starting at µ(0) according to Definition

5.2.

Proof. See Appendix A. □

The logic behind the use of Algorithm 5.5 together with Theorem 5.6 is that the search

for the equilibrium of our Mean Field Game can be traced back to the search for the initial

value v(0, ·) such that the implied dynamics of v(t, ·), starting from the initial health status

distribution µ(0), is consistent with the optimal conditions and v(t, ·) is both non negative

(we have normalized v(t,D) = 0 for each t by an appropriate choice of M) and bounded from

above.

6. Calibration of the model

In the calibration of the model, we focus on the recent Italian experience with COVID-19.

Italy was unfortunately the first Western country severely hit by COVID-19; the epidemic shock

was sudden and unexpected as well as the deep impact on Italian mobility and production (see

Figure 1 below). At the same time, Italy was also the first Western country to adopt strict

restrictions in mobility in March 2020. Overall, this makes the Italian case particularly well-

adapted to calibrate/estimate the relationship between mobility, production and dynamics of

epidemic.7

7Data and codes are available at https://people.unipi.it/davide_fiaschi/ricerca/.

https://people.unipi.it/davide_fiaschi/ricerca/


MOBILITY DECISIONS, ECONOMIC DYNAMICS AND EPIDEMIC 15

The first step in the numerical calibration of the model is to specify the Z(t) in (3). To mini-

mize the number of model’s parameters, we consider the following one-parameter specification:

(18) Z(t) ≡ 1− exp
(
−g
[
ϑ̄p(t, S)µ(t, S) + ϑ̄p(t, I)µ(t, I) + ϑ̄p(t, R)µ(t, R)

])
,

where g measures the sensitivity of individual income to aggregate mobility, i.e. the comple-

mentarities between individual and aggregate mobility in determining the level of individual

income. In this respect, we expect that g is greater than 0. Taking (18) into account, overall

we have to set 19 parameters, which are listed in Table 1. Below, we provide more details on

the method used to set their values.

6.1. Calibration of the epidemiological parameters. The calibration of the epidemiolog-

ical parameters focuses on daily dynamics as standard in epidemiology (Ferguson et al., 2020).

Several studies provide basic information on COVID-19 main epidemiological characteristics.

In particular, Voinsky et al. (2020) report that the average number of days for recovering from

COVID-19 is 14, which implies πR = 0.07142. Flaxman et al. (2020), instead, document an

overall probability to die once infected of 0.94% in Italy and an average number of days from

infection to death of 18, which implies πD = 0.00052.

Finally, for setting βp and βc we assume that they are equal, so that observed infection

rate is the product between βp (βc) and the average mobility of infected agents once mobility

of susceptible is normalized to one in an economy without infected, that is, ϑ̄(0, S) = (1, 1)

(see System of (10)). Day (2020) report that the prevalence rate of symptoms of COVID-19

in infected people is about 30%, i.e. 70% of infected people are asymptomatic. Assuming

that the latter maintain the same mobility, we set average mobility of an infected agent 30%

less than the one of a susceptible, that is, ϑ̄(0, I) = (0.7, 0.7). Since the observed infection

rate at time 0 can be expressed as β(0) = (πD + πR)R0, then β(0) = βpϑ̄p(0, S)ϑ̄p(0, I) +

βcϑ̄c(0, S)ϑ̄c(0, I) = (πD + πR)R0, therefore 2βpϑ̄p(0, I) = (πD + πR)R0, and, finally, βp =

βc = (1/1.4) (πD + πR)R0 = 0.14902, given a basic reproduction rate R0 of COVID-19 equal

to 2.9 for Italy.8

6.2. Calibration of the economic part. The calibration of parameters governing the rela-

tionship between income and mobility are based on the Italian experience in the period February

15, 2020 - May 31, 2021 reported in Figure 1.

Italian economic activity as estimated by OECD Weekly Tracker of GDP growth9 appears

very correlated with mobility for workplaces as reported by the Google Mobility Trend. 10 The

strong drop in mobility in the period between February 23, 2020 and March 8, 2020 (almost

- 10%) well before the first introduction of mobility restrictions at national level in the week

of March 8, 2020, supports our idea of an endogenous response of agent to epidemic evolution,

which burst in Italy at the end of February 2020. The severe restrictions on mobility imposed

in two steps in March 2020 led to a drop in mobility and economic activity of about 70% and

8https://en.wikipedia.org/wiki/Basic_reproduction_number.
9https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/.
10https://www.google.com/covid19/mobility/).

https://en.wikipedia.org/wiki/Basic_reproduction_number
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/
https://www.google.com/covid19/mobility/
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Parameter Meaning Value Method used to set the value

πR Daily probability of recovering

when infected

0.07143 Taken from literature on COVID-19 (Voinsky

et al., 2020)

πD Daily probability of death when in-

fected

0.00052 Taken from literature on COVID-19 (Flaxman

et al., 2020)

βp The impact of mobility for produc-

tion on infection

0.14902 Calculated based on an R0 equal to 2.9 for

Italy (https://en.wikipedia.org/wiki/Basic_

reproduction_number) and on the fact that mo-

bility of infected is on average 30% less as a result

of prevalent rate of symptoms of COVID-19 in in-

fected people (Day, 2020)

βc The impact of mobility for con-

sumption on infection

0.14606 Calculated based on an R0 equal to 2.9 for

Italy (https://en.wikipedia.org/wiki/Basic_

reproduction_number) and on the fact that mo-

bility of infected is on average 30% less as a result

of prevalent rate of symptoms of COVID-19 in in-

fected people (Day, 2020)

ρ Discount rate of utilities 0.000296 Taken from Laibson et al. (2018)

γp(S), γp(I),

and γp(R)

Cost of mobility for production for

different types of agents in baseline

scenario

0.29795, 0.42564, and

0.29795

Calibrated in order to have mobility and produc-

tion equal to 1 in a free-epidemic economy for sus-

ceptibles and recovered and mobility equal to 0.7

for infected

γc(S), γc(I),

and γc(R)

Cost of mobility for consumption

for different types of agents in base-

line scenario

0.21375, 0.22840, and

0.21375

Calibrated in order to have mobility and produc-

tion equal to 1 in a free-epidemic economy for sus-

ceptibles and recovered and mobility equal to 0.7

for infected

ASR
0 and AI

0 Sensibility of individual income

to aggregate mobility independent

from individual mobility

0.70229 and 0.49160 For susceptible and recovered estimated from the

relation between mobility and production in Italy

in the period February 2020 - May 2021 (see Fig-

ure 1). For infected people calibrated at 70% of

other agents based on the prevalence of symptoms.

ASR
1 and AI

1 Sensibility of individual income to

individual mobility

0.29805 and 0.29805 Estimated from the relation between mobility and

production in Italy in the period February 2020 -

May 2021 setting mobility and production equal

to 1 in a pre-epidemic economy (see Figure 1)

P0 and P1 Sensibility of individual consump-

tion to individual mobility

0.47187 and 0.12828 Estimated from the relation between average

propensity to consume and mobility for retail and

recreation in Italy in the period February 2020 -

May 2021

g Sensibility of individual income to

aggregate mobility

7.741615 Estimated from the relation betweem mobility

and production in Italy in the period February

2020 - May 2021 (see Figure 1)

M Utility to be deceased -1.30 Calibrated to avoid negative lifetime utility for

each survival agent

µ(0, S),

µ(0, I), and

µ(0, R)

Initial state of epidemic 1 − 1/60.000.000,

1/60.000.000, and 0

Calibrate on an economy of 60 million agents as

in Italy in 2020

Table 1. List of model’s parameters, their values and notes on how they are calcu-

lated/calibrated/estimated.

https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
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Figure 1. The relationship between weakly mobility for workplace and weakly economic activity in

the period February 15, 2020 - May 31, 2021 (Italian holiday weeks are not reported). Dashed lines

indicate weeks of new imposed mobility restrictions at national level (March 9, 2020, March 22, 2020,

October 8, 2020 and October 24, 2020) and of a relaxation in mobility restrictions (May 4, 2020,

May 18, 2020, and November 24, 2020). Source: Google Mobility Trend (https://www.google.com/

covid19/mobility/) and OECD Weekly Tracker of GDP growth (https://www.oecd.org/economy/

weekly-tracker-of-gdp-growth/)

25% with respect to reference period, respectively. The relaxed restrictions in May 2020 led to

a bounce back in both variables, but recovery was not complete. In the autumn of 2020, as

a result of the second pandemic wave, Italy again experienced new mobility restrictions, with

associated reduction in economic activity.

Normalizing economic activity and mobility to 1 in an economy with only susceptible, and

taking (3) and (18) to formulate a (nonlinear) relationship between mobility and economic

activity, a nonlinear estimation procedure produces an estimate of g, ASR
0 and ASR

1 of 0.70229,

0.29805 and 7.74162, respectively. AI
0 and AI

1 are set to 0.49160 and 0.29805 to accommodate

the assumption that mobility of an infected agent is 70% of the susceptible one.

As regards to P0 and P1, they are set to indicate that, according to (3) and (4), average

propensity to consume can be expressed as a function of consumption mobility, P0, and P1.

Taking the mobility for retail and recreation from Google Mobility Trend11 as a proxy for

consumption mobility, and the quarterly average propensity to consume from Italian national

accounts, we estimate P0 = 0.47187 and P1 = 0.12828. Finally, the utility of state deceased

M is set equal to −1.3 to avoid that, independent of state of epidemic and economic activity,

lifetime utility of survival agents can be negative.

11https://www.google.com/covid19/mobility/.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/
https://www.google.com/covid19/mobility/
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Table 2. SIRD versus economic SIRD (ESIRD) model with endogenous mobility. Numerical experi-

ments based on the parameters reported in Table 1.

Model Peak

preva-

lence

Cumulative

deaths

Minimum

of pro-

duction

Minimum

of mo-

bility

Economic

loss

Mobility

loss

µ(425, S) µ(425, I) µ(425, R) µ(425, D)

(death

rate)

SIRD 17, 784, 284 408, 678 0.87 0.79 −0.011 −0.019 0.062 0.000 0.932 0.007

ESIRD 5, 858, 062 297, 577 0.883 0.693 −0.032 −0.082 0.314 0.003 0.678 0.005

6.3. SIRD versus economic SIRD (ESIRD) model. Table 2 and Figure 2 highlight the

importance of considering endogenous mobility choice in the analysis. In particular, the com-

parison between the ”dumb” SIRD (where mobility of susceptible, infected and recovered is

maintained constant for the whole period of simulation and equal to their initial baseline val-

ues), and the ESIRD model (where individual mobility is decided in an optimizing framework

without any imposed restriction), points out the 30% more cumulative deaths of dumb SIR as

opposed to a lower drop in mobility and production (both as peak and as cumulative impact).

After 425 days from its outbreak, the epidemic is substantially ended in both models, that is,

µ(I) is almost zero, but the optimized mobility of an agent in ESIRD has led to a non-negligible

mass of susceptibles equal to 31.4% in day 425 and substantially lower death rate (0.5% versus

0.7%).
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(a) Dynamics of epidemic, economic activity and

mobility with ”dumb” agents
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(b) Dynamics of epidemic, economic activity and

mobility with agents optimizing their mobility choices.

Figure 2. Comparison between ”dumb” SIRD model versus SIRD model with endogenous mobility.

Numerical experiments based on the parameters reported in Table 1.
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7. Questioning the ESIRD

In this section, we discuss how our framework could be used to evaluate alternative policies

of mobility restriction. The high peak prevalence reported for ESIRD in Table 2 explains

why several countries imposed strong mobility restrictions in 2020. A peak of infected of

5,858,062 agents would correspond to a need of about 398,749 beds in hospitals, taking 6.8%

the proportion of infected individuals hospitalised (Verity et al., 2020). For example, Italy in

February 2020 had about 190,000 available beds in hospital, making ”laissez faire” approach to

COVID-19 not practical (not considering the advantage to take time in waiting for a vaccine).

In the following, we therefore study some mitigation strategies as defined in Ferguson et al.

(2020) (page 3), that is, ”to use NPIs (non-pharmaceutical intervention) not to interrupt trans-

mission completely, but to reduce the health impact of an epidemic” in the hope (as it effectively

happened) of a rapid development of a vaccine. We will focus on policies that, by increasing

mobility costs (γs), reduce individual mobility and therefore the infection rate and the peak

prevalence. In this regard, Nouvellet et al. (2020) provides strong evidence that reducing mo-

bility is the key factor for bringing down COVID-19 transmission, while Vollmer et al. (2020)

present scenario analysis based on different mobility in Italy.

At the same time, reducing mobility negatively impacts production, putting policy makers

before a trade-off between economic losses and fatalities due to COVID-19, that is, it is possible

to point out a pandemic possibilities frontier as in Kaplan et al. (2020) and Acemoglu et al.

(2020). However, we add two dimensions in the discussion. The first is related to the share of

remaining susceptible at the end of the period of analysis, which could facilitate a new outbreak

of epidemic in the future. The second related to the social feasibility of some policies based on

a long reduction of individual mobility.

Table 3 reports the effect of different policies increasing (in the same percentage) the cost of

mobility for production and consumption with respect to the baseline model when the share

of infected individuals exceeds 3% and to maintain this increase until the share of infected

individuals gets down to 0.5% or to 0.1% in the more severe scenario (mrs).

Peak prevalence decreases up to a rise of 30% in mobility cost and then it is almost rigid to

further increment (see Table 3). Peak prevalence of 1,275,206 individuals would amount to a

need of 86,801 beds in hospitals. Non-reported numerical investigations show that to decrease

this peak prevalence would require to start mobility restrictions with a lower share of infected

individuals than 3%.

However, increasing mobility costs have also a growing negative impact both on economic

activity and on the death rate. This trade-off is represented in Figure 3a, which corresponds to

the pandemic possibilities frontier discussed in Kaplan et al. (2020) and Acemoglu et al. (2020),

but calculated in a very different theoretical framework. We can appreciate from Figure 3a how

a scenario with 30% of additional costs and an exit threshold of 0.1% from mobility restriction

Pareto dominates the scenarios both with 40% and 50% of additional costs and an exit threshold

of 0.5%.
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Table 3. Alternative scenarios of restriction of mobility (severity of lockdown) and exit from these

restrictions (mrs adopts a more strict threshold for relaxing the restrictions). Numerical experiments

based on the parameters reported in Table 1.

Scenario Peak

preva-

lence

Cumulative

deaths

Minimum

of pro-

duction

Minimum

of mo-

bility

Economic

loss

Mobility

loss

µ(425, S) µ(425, I) µ(425, R) µ(425, D)

(death

rate)

Baseline ESIRD 5, 858, 062 297, 577 0.883 0.693 −0.032 −0.082 0.314 0.003 0.678 0.005

Cost +10% 3, 594, 938 248, 258 0.877 0.651 −0.056 −0.165 0.424 0.006 0.566 0.004

Cost +20% 1, 633, 960 160, 311 0.867 0.603 −0.083 −0.254 0.626 0.005 0.365 0.003

Cost +30% 1, 275, 206 107, 837 0.837 0.518 −0.092 −0.280 0.732 0.020 0.246 0.002

Cost +40% 1, 258, 593 113, 914 0.800 0.439 −0.103 −0.299 0.729 0.010 0.260 0.002

Cost +50% 1, 249, 959 111, 359 0.753 0.357 −0.113 −0.310 0.733 0.011 0.254 0.002

Cost +30% (mrs) 1, 241, 037 75, 794 0.835 0.515 −0.100 −0.307 0.824 0.002 0.173 0.001

Cost +50% (mrs) 1, 256, 080 67, 485 0.747 0.348 −0.122 −0.335 0.841 0.004 0.154 0.001
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Figure 3. Trade-offs in alternative scenarios of mobility restrictions and exit from these restrictions.

Numerical experiments based on the parameters reported in Table 1.

However, the former scenario presents two additional non-favorable characteristics with re-

spect to the latter. First, as reported in Figure 3b, the share of susceptibles after 425 days

from the outbreak of the epidemics is substantially higher (82.4% versus 73.3%); moreover, as

highlighted by Figures 4e and 5e, it requires a prolonged period of mobility restrictions (almost

one year!). In this respect, scenarios with 30% of additional cost and an exit threshold of 0.5%

or with 50% of additional costs and an exit threshold of 0.1% endogenously present a succession

of periods with and without mobility restrictions, making this scenario more socially feasible.
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(b) Infection rate when lockdown

implies an increase of 20% of cost

of mobility
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(c) Infection rate when lockdown

implies an increase of 30% of cost

of mobility
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(d) Infection rate when lockdown

implies an increase of 50% of cost

of mobility
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(e) Infection rate when lockdown

implies an increase of 30% of cost

of mobility and more restrictive

conditions for the exit of lockdown
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(f) Infection rate when lockdown

implies an increase of 50% of cost

of mobility and more restrictive

conditions for the exit of lockdown

Figure 4. Dynamics of infection rate in different scenarios of mobility restriction (severity of lockdown)

and exit from these restrictions (threshold for relaxing the restrictions). Numerical experiments based

on the parameters reported in Table 1.

We conclude by observing that, even though individuals are perfectly informed of restriction

policy and of the behavior of the pandemic, several scenarios include waves of infections, as a

result of the endogenous switching between a regime with mobility restrictions and one without

any restrictions (see, e.g., Figures 5c-5f).

8. Concluding remarks

We provided a dynamic macroeconomic equilibrium model with pandemic, denoted ESIRD,

where perfect-foresight forward looking agents’ (short-term) mobility positively affects their

income (and consumption), but also contributes to the spread of the pandemic in an extended

SIRD model. Dynamics of economy and pandemic is jointly driven by strategic complemen-

taries in production and negative externalities on infection rates of individual mobilities. We

therefore addressed one of the main economic-driven leverages of compartmental epidemiolog-

ical models, that is, the endogenization of reproduction rate of epidemic (Avery et al., 2020).
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implies an increase of 20% of costs

of mobility
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(c) Dynamics when lockdown

implies an increase of 30% of costs

of mobility
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(d) Dynamics when lockdown

implies an increase of 50% of costs

of mobility
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(e) Dynamics when lockdown

implies an increase of 30% of cost

of mobility and more restrictive

conditions for the exit of lockdown
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Figure 5. Dynamics of epidemics and of main economic variables in alternative scenarios of mobility

restrictions and exit from these restrictions. Numerical experiments based on the parameters reported

in Table 1.

After having proven the existence of a Nash equilibrium and studied the recursive construction

of equilibrium(a), we conducted some numerical investigations on the forward-backward sys-

tem resulting from individual optimizing behavior, calibrating model’s parameters on Italian

experience on COVID-19 in 2020-2021.

In our ESIRD model, the forward-looking behavior of agents tended to smooth the peak

prevalence of pandemic compared to the simplest SIRD model with ”dumb” agents, but in our

numerical explorations peak prevalence appeared to be still too high to be sustainable for the

Italian health system (e.g., in relation to the number of available beds in hospitals). Once we

established that self-regulation of individual mobility decisions was not sufficient to manage
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the pandemic12, we evaluated different regimes of mobility restrictions, which could be easily

accommodate within our theoretical framework.

In particular, we argued that regimes compatible with the saturation of the healthcare system

must be evaluated in terms of a trade-off between economic losses and fatalities as proposes,

e.g., by Kaplan et al. (2020); Acemoglu et al. (2020), but also for their social feasibility of

maintaining prolonged periods of mobility restrictions and for leaving higher shares of suscepti-

ble at the end of the period, which makes new outbreak of epidemic more likely. In this respect,

we pointed out that successive small waves of epidemic can be the result of an efficient regime

of mobility restrictions.

Our analysis raises a series of issues for future research.

We ignore heterogeneity of population in terms of ”risk groups” (typically, in case of COVID-

19, age cohorts, see Salje et al., 2020 and Acemoglu et al., 2020), and therefore we cannot eval-

uate any policy conditioned to individual characteristics, as, for instance, done by Brotherhood

et al. (2020) or Gollier (2020). We also focus on a world before the vaccine, that is standard in

this kind of models (Boppart et al., 2020) and consistent with the period used to calibrate the

model. However, in a world with vaccine, or with an expected date of its availability, different

questions arise for the timing, targets and costs of vaccination (Hung and Poland, 2021) as well

as for the timing of mobility restrictions. Finally, we did not include other non-pharmaceutical

interventions, and in particular we do not model testing policies, as, for instance, in Eichenbaum

et al. (2022).

Some extensions of empirical analysis appear very promising. Firstly, this is the possibility to

study scenarios where mobility restrictions are (mostly) focused on mobility for production or

on mobility for consumption. For example, in Europe the second waves of restrictive measures

in the period Oct 2020 - May 2021, largely revolved around mobility for consumption.13 A

second extension concerns the more precise estimation of the relationship between individual

mobility, aggregate mobility and production in the presence of strategic complementarities,

which poses non trivial issue of identification (Manski, 2000).

We also neglect the possibility of introducing masking and using alternative protective equip-

ment against the epidemic. In case their use is mandatory, it should be equivalent to an ex-

ogenous reduction of βp and βc in Eq. (7) that, by reducing the infection rate, would lead to

an increase in the individuals’ mobility. Much more complicated is the case in which their use

is an individual choice, and their use involves a cost. We should consider a possible free-riding

12The model allows to give an answer to the provocative question posed, among others, by Cochrane (2020)

on the viability of a containment policy based only on self-confinement of individuals free of any governmental

restrictions on mobility. At least for the Italian experience in 2020, our model suggested that a policy only

based on self-confinement would have resulted in a peak prevalence of nearly six million infected people (see

Section 7), which corresponds to a need of about four hundred thousand beds in hospitals. This would have been

unsustainable for a country having, in February 2020, about 190,000 beds in hospitals, most of them already

occupied by patients with COVID-19 independent pathologies.
13See for instance, for France, JORF 0080, 3 April 2021, Text 28, https://www.legifrance.gouv.fr/jorf/

id/JORFTEXT000043327303.

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043327303
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000043327303
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problem because the net benefits of using a mask are decreasing if other individuals are already

using a mask.

From the theoretical point of view, we leave open the question of the uniqueness of equilibrium

and to obtain stronger properties of the equilibria. A possible answer is to look at the Master

Equation associated to our model, as suggested in Section 1.4 in Cardaliaguet and Porretta

(2020).
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Appendix A. Proofs

Proof of Proposition 5.3. (a) Let µ(0) ∈ P(K), let (v, ϑ̂) be an equilibrium in the sense of Definition 5.2, and

let k(0) ∈ K. By standard verification arguments in optimal control, it is clear that, since v is bounded, it

coincides with the value function (of the agent) and that the control ϑ̂ ∈ A is optimal (for the agent) when

ϑ = ϑ̂. Hence, (12) is verified showing that ϑ̂ is a Nash equilibrium in the sense of Definition 5.1.

(b) Let µ(0) ∈ P(K) and let ϑ̂ be a Nash equilibrium in the sense of Definition 5.1. Set, for each t0 ≥ 0,

v(t0, k(t0)) := V (t0, k(t0),µ(t0),ϑ) with ϑ = ϑ̂ and consider the couple (v, ϑ̂). By the dynamic programming

principle, v(t0, k(t0)) satisfies (11) at each t0 ≥ 0, so part (i) of Definition 5.2 is satisfied. Part (ii) of the same

definition is satisfied by (12). □

Theorem A.1 (Tikhonov’s fixed point Theorem) Let V be a locally convex topological vector space, let Q ⊆ V
be a nonempty compact convex set, and let F : Q → Q be a continuous function. Then F has a fixed point.

Proof. See, e.g., Theorem (1.10), p. 147 of Granas and Dugundji (2003). □

Proof of Theorem 5.4. Fix µ(0) ∈ P(K) and k(0) ∈ K. Consider the space of sequences

V :=

{
q = (qR, qI , qS , qD) : N → R8

}
endowed with the topology of pointwise convergence. The latter is a locally convex topological vector space,

since the topology is induced by the family of seminorms

pt(q) = |q(t)|R8 , t ∈ N,

where q(t) is the t−th component of q. Then, consider

Q :=

{
q = (qR, qI , qS , qD) : N → [0, 1]2 × [0, 1]2 × [0, 1]2 × {(0, 0)}

}
⊂ V.

Q is convex and, by Tikhonov’s compactness Theorem, it is compact in V. We consider the one-to-one corre-

spondence M : Q → A defined by

(Mq)(t, k) ≡ qk(t), (t, k) ∈ N×K.

Let µq be the solution to (10) associated to ϑ = M(q) and let

F : Q → Q, F (q)(t, k) := (ϑ̂p(t, k; q), ϑ̂c(t, k; q)), (t, k) ∈ N×K.

where ϑ̂(t, k; q) = (ϑ̂p(t, k; q), ϑ̂c(t, k; q)) is the unique the maximizer over [0, 1]2 of

ϑ 7→
∑
k′∈K

pkk′(t)
[
u(t, c(t), k,ϑ(t)) + (1− ρ)V (t+ 1, k′,µq(t+ 1), (Mq)(t+ 1, k′))

]
.

Clearly, if q∗ is a fixed point of F , then (V (·, ·,µ(0),M(q∗)),M(q∗)) is an equilibrium according to Definition

5.2. Given a sequence (qn) ⊂ Q converging to q ∈ Q, we have

V (t, k,µqn(t),M(qn)) → V (t, k,µq(t),M(q))

for each t ≥ 0. Consequently, by strict concavity and regularity of ϑ 7→ u(t, c(t), k,ϑ), we also have the

convergence ϑ̂(t, k; qn) → ϑ̂(t, k; q). This shows that F is continuous. We conclude by Theorem A.1. □
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Proof of Theorem 5.6. We show that (i) and (ii) of Definition 5.2 hold for the couple (v̂, ϑ̂), which is assumed

to be well defined by induction (as ξ̂ is so at each step).

We preliminarily notice that, given (t0, k(t0)) ∈ N× {S, I,R}, the function

[0, 1]2 → R, ϑ = (ϑp, ϑc) 7→ u(t0, c(t0), k(t0),ϑ)

is strictly concave, since

Dϑu(t0, c(t0), k(t0),ϑ) =

(
A

k(t0)
1

A
k(t0)
0 +A

k(t0)
1 ϑp

− γp(t0, k(t0), µ(t0)),
P1

P0 + P1ϑc
− γc(t0,k(t0), µ(t0))

)
,

and

D2
ϑu(t0, c(t0), k(t0),ϑ) =


− (A

k(t0)
1 )2

(A
k(t0)
0 +A

k(t0)
1 ϑp)2

0

0 − P 2
1

(P0 + P1ϑc)2

 .

Now we fix t0 ∈ N and show that v̂(t0, ·) solves the dynamic programming equation on the various occurrences

of k(t0) ∈ K and that ϑ̂(t0, ·) defined as in the algorithm are the maximizers of the right hand side of (11) .

• Case k(t0) = D. In this case the unique admissible control is ϑ(t0, D) := (0, 0) and the Bellman

equation reduces to

v(t0, D) = u(t0, 0, D, (0, 0)) + (1− ρ)v(t0 + 1, D) = (1− ρ)v(t0 + 1, D).(19)

It is clear that the above constructed v̂ is always zero on D and hence satisfies the above equation.

The maximizer ϑ̂(t0, D) is the unique admissible control, i.e. ϑ̂(t0, D) = (0, 0).

• Case k(t0) = R. In this case the Bellman equation reduces to

v(t0, R) = sup
ϑ∈[0,1]2

(
u(t0, c(t), R,ϑ) + (1− ρ)v(t0 + 1, R)

)
= (1− ρ)v(t0 + 1, R) + sup

ϑ∈[0,1]2
u(t0, c(t), R,ϑ).(20)

The optimization above leads to the unique maximum point

ϑ̂ = (ϑ̂p, ϑ̂c) =
(
(ϑ̃p ∧ 1) ∨ 0, (ϑ̃c ∧ 1) ∨ 0

)
,

where 
ϑ̃p =

AR
1 − γp(t0, I,µ(t0))A

R
0

γp(t0, R,µ(t0))AR
1

=
1

γp(t0, R,µ(t0))
− AR

0

AR
1

,

ϑ̃c =
P1 − γc(t0, R,µ(t0))P0

γc(t0, R,µ(t0))P1
=

1

γc(t0, R,µ(t0))
− P0

P1
.

We therefore get

v(t0 + 1, R) =
v(t0, R)− u(t0, c(t0), R, ϑ̂)

1− ρ
.

Hence v̂(t0, ·) defined as in (17) satisfies by construction the Bellman equation (11) with maximizer

ϑ̂(t0, R) given by (13).

• Case k(t0) = I. In this case the dynamic programming equation reduces to

v(t0, I) = sup
ϑ∈[0,1]2

(
u(t0, c(t0), I,ϑ) + (1− ρ) ((1− πR − πD)v(t0 + 1, I) + πRv(t0 + 1, R))

)
= (1− ρ) ((1− πR − πD)v(t0 + 1, I) + πRv(t0 + 1, R)) + sup

ϑ∈[0,1]2
u(t0, c(t0), I,ϑ).(21)

The optimization above leads to the unique maximum point

(ϑ̂p, ϑ̂c) =
(
(ϑ̃p ∧ 1) ∨ 0, (ϑ̃c ∧ 1) ∨ 0

)
,
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where 
ϑ̃p =

AI
1 − γp(t0, I, µ̂(t0))A

I
0

γp(t0, I, µ̂(t0))AI
1

=
1

γp(t0, I, µ̂(t0))
− AI

0

AI
1

,

ϑ̃c =
P1 − γc(t0, I, µ̂(t0))P0

γc(t0, I, µ̂(t0))P1
=

1

γc(t0, I, µ̂(t0))
− P0

P1
.

We therefore get

v(t0 + 1, I) =
1

1− πR − πD

[
v(t0, I)− u(t0, c(t0), I, ϑ̂)

1− ρ
− πRv(t0 + 1, R)

]
.

Hence v̂(t0, ·) defined as in (17) satisfies by construction the Bellman equation (11) with maximizer

ϑ̂(t0, I) given by (13).

• Case k(t0) = S. In this case the Bellman equation reduces to

v(t0, S) = sup
ϑ∈[0,1]2

(
u(t0, c(t0), S,ϑ) + (1− ρ) ((1− τ(t0))v(t0 + 1, S) + τ(t0)v(t0 + 1, I))

)
,(22)

which can be rewritten as

v(t0, S) = (1− ρ)v(t0 + 1, I) + (1− ρ)(v(t0 + 1, S)− v(t0 + 1, I))(23)

+ sup
ϑ∈[0,1]2

(
u(t0, c(t0), S,ϑ)− (1− ρ)τ(t0)(v(t0 + 1, S)− v(t0 + 1, I))

)
,(24)

Set ξ := v(t0 + 1, S)− v(t0 + 1, I) and consider the optimization above in terms of the parameter ξ ∈ R+. The

maximization leads to the unique maximum point

ϑ̂ξ = (ϑ̂ξ
p, ϑ̂

ξ
c) =

(
(ϑ̃ξ

p ∧ 1) ∨ 0, (ϑ̃ξ
c ∧ 1) ∨ 0

)
,

where

ϑ̃ξ
p =

1

γp(t0, S, µ̂(t0)) + (1− ρ)â(t0)ξ
− AS

0

AS
1

, ϑ̃ξ
c =

1

γc(t0, S, µ̂(t0)) + (1− ρ)b̂(t0)ξ
− P0

P1
,

where

â(t0) = µ̂(t0, I)ϑ̂p(t0, I), b̂(t0) = µ̂(t0, I)ϑ̂c(t0, I).

Recalling the definition of f given in (15), the Bellman equation reduces to the algebraic equation in the variable

ξ ∈ R+

v(t0, S) = (1− ρ)v(t0 + 1, I) + (1− ρ)ξ + f(t, ξ).

By assumption this equation has a unique solution ξ̂. Hence v̂(t0, ·) defined as in (17) satisfies by construction

the Bellman equation (11) with maximizer ϑ̂(t0, S) given by (16). □
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Appendix B. Procedure of simulation

NOTE: In this appendix the notation is lightened from that used in the body of the article to avoid making

the formulas too heavy thinking and difficult to read.

(A) The maximum in the lifetime utilities. As t goes to infinitum the number of infected agents converges

to zero, i.e. limt→∞ µ (t, I) = 0 and limt→∞ µ (t, R) ≫ 0 and the lifetime utilities is maximum in this state

of no pandemic. Then:

U(S)max = lim
t→∞

U(t, S) = lim
t→∞

κ(t, µ(t, I), SR) + ln(1 + Z(t))

ρ
=

=
κ(∞, 0, SR) + ln

(
1 + 1/γp(∞, 0, SR)−ASR

0 /ASR
1

)
ρ

;

U(R)max = lim
t→∞

U(t, R) = lim
t→∞

κ(t, µ(t, I), SR) + ln(1 + Z(t))

ρ
=

=
κ(∞, 0, SR) + ln

(
1 + 1/γp(∞, 0, SR)−ASR

0 /ASR
1

)
ρ

;

U(I)max = lim
t→∞

U(t, I) =
ρκ(∞, 0, I) + (1− ρ)πRκ(∞, 0, SR)

ρ [1− (1− ρ) (1− πR − πD)]
+

+
[1− (1− ρ) (1− πR)] ln

(
1 + 1/γp(∞, 0, SR)−ASR

0 /ASR
1

)
ρ [1− (1− ρ) (1− πR − πD)]

.

where:

κ(t, µI , SR) := ln

(
ASR

1

γp(t, µI , SR)

)
+ γp(t, µI , SR)

ASR
0

ASR
1

+ ln

(
P1

γc(t, µI , SR)

)
+ γc(t, µI , SR)

P0

P1
− 2;

and

κ(t, µI , I) := ln

(
AI

1

γp(t, µI , I)

)
+ γp(t, µI , I)

AI
0

AI
1

+ ln

(
P1

γc(t, µI , I)

)
+ γc(t, µI , I)

P0

P1
− 2.

(B) The feasible set of individual lifetime utilities. From Point (A), together with the appropriate choice

of M in order to make U(t, k) ≥ 0 for t ≥ 0 and ∀k ∈ K, the feasible set of individual lifetime utilities is

defined as follows:

T := {(x, y, z) ∈ (0, U(R)max)× (0, U(I)max)× (0, U(R)max) : y ≤ x ≤ z} .(25)

This gives a bound for the lifetime utilities in the spirit of Theorem 5.6.

(C) Set the health status distribution of population at time 0 as:

µ(0, S) = 1− ϵ;

µ(0, I) = ϵ;

µ(0, R) = 0;

µ(0, D) = 0,

with ϵ very small.

(D) Set the initial value of utilities in the three states in the feasible set T by choosing δI , δS , δR ≥ 0.

U(0, R) = U(R)max(1− δR);

U(0, S) = U(0, R)(1− δS);

U(0, I) = U(0, S)(1− δI)

(E) Calculate a(0) and b(0):

a(0) = βp × µ(0, I)× ϑp(0, µ(0, I), I)

b(0) = βc × µ(0, I)× ϑc(0, µ(0, I), I),
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where

ϑp(0, µ(0, I), I) =
1

γp(0, µ(0, I), I)
− AI

0

AI
1

and

ϑc(0, µ(0, I), I) =
1

γc(0, µ(0, I), I)
− P0

P1
.

(F) Find ∆U(1, S, I) := U(1, S)− U(1, I) by solving the following implicit equation

0 = −(1− ρ) (1− πR − πD)∆U(1, S, I) + (1− πR − πD)U(0, S)− U(0, I) + πRU(0, R)+

− πRκ(1, µ(0, I), R) + κ(1, µ(0, I), I)− (1− πR − πD)χ (∆U(1, S, I)) + πD ln (1 + Z (∆U(1, S, I))) ,

where

χ (∆U(1, S, I)) :=

ln

(
ASR

1

γp(1, µ(0, I), S) + (1− ρ)a(0)∆U(1, S, I)

)
+

+
ASR

0

ASR
1

{γp(1, µ(0, I), S) + (1− ρ)a(0)∆U(1, S, I)}+

+ ln

(
P1

γc(1, µ(0, I), S) + (1− ρ)b(0)∆U(1, S, I)

)
+

+
P0

P1
{γc(1, µ(0, I), S) + (1− ρ)b(0)∆U(1, S, I)} − 2

and

Z(0) = Z (∆U(1, S, I)) = µ(0, S)×
[

1

γp(1, µ(0, I), S) + (1− ρ)a(0)∆U(1, S, I)
− aSR

0

aSR
1

]
+

+ µ(0, I)× θp(0, µ(0, I), I) + µ(0, R)× θp(0, µ(0, I), R).

where

θp(0, µ(0, I), R) =
1

γp(0, µ(0, I), R)
− aSR

0

aSR
1

and

θc(0, µ(0, I), R) =
1

γc(0, µ(0, I), R)
− P0

P1
,

where we set µ(1, k) ≈ µ(0, k) ∀k ∈ K, to simplify the calculations. This approximation is more and more

accurate as time scale of simulation is smaller, in the limit of continuos time is exact.

(G) Calculate the movement of susceptible

ϑp(0, µ(0, I), S) =
1

γp(0, µ(0, I), S) + (1− ρ)a(0)∆U(1, S, I)
− ASR

0

ASR
1

;

ϑc(0, µ(0, I), S) =
1

γc(0, µ(0, I), S) + (1− ρ)b(0)∆U(1, S, I)
− P0

P1
.

(H) Calculate the level of lifetime utilities at time 1

U(1, R) =
U(0, R)− ln (1 + Z (0))− κ(0, µ(0, I), R)

1− ρ
;

U(1, I) =
U(0, I)− πRU(0, R) + πRκ(0, µ(0, I), R)− κ(0, µ(0, I), I)− (1− πR) ln (1 + Z (0))

(1− ρ) (1− πR − πD)
;

U(1, S) = ∆U(1, S, I) + U(1, I);
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(I) Upgrade the health status distribution of population at time 1

µ(1, S) = µ(0, S)
[
1− a(0)ϑp(0, µ(0, I), S)− b(0)ϑc(0, µ(0, I), S)

]
,

µ(1, I) = µ(0, S)
[
a(0)ϑp(0, µ(0, I), S) + b(0)ϑc(0, µ(0, I), S)

]
+ µ(0, I)(1− πR − πD),

µ(1, R) = µ(0, I)πR + µ(0, R),

µ(1, D) = µ(0, D) + µ(0, I)πD.

(J) Check if Condition (25) is satisfied. If not start with a new set of δs at point D. If Condition

(25) is satisfied and the number of periods is lower of a given threshold repeat points E-I by

taking the new level of µs at point I.
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