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Abstract

In the fiscal theory of the price level, inflation and debt dynamics are determined jointly.
We derive optimal monetary policy rules that can approximate the Ramsey outcome in this
environment. When the government issues a portfolio of bonds of different maturities and buys
it back every period the optimal interest rate response to inflation is a simple, transparent
function of the average debt maturity. This policy exploits the maturity structure to minimize
the intertemporal variability of inflation in response to fiscal shocks. We then turn to the
more realistic scenario of no buyback assuming that the government does not repurchase and
reissue debt in every period. In the case where debt is only long term, the optimal policy
equilibrium features oscillations in inflation and simple inflation targeting rules may lead to
explosive inflation dynamics. Issuing both short and long bonds rules out oscillations and
allows simple rules to approximate the Ramsey outcome closely.

Underlying these results is the ability of the optimizing policy authority to smooth distortions
stemming from inflation across periods. When debt is short term or it is bought back in every
period, the planner can spread evenly the distortions over time. Under no repurchases, this
ability is lost.
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1 Introduction

A considerable literature has analyzed optimal monetary policy in environments where inflation is
used to stabilize government debt dynamics. Chari and Kehoe (1999) first considered this in the
context of Ramsey optimal policy assuming an economy with flexible prices where debt is issued in
a short term bond. Their approach has been subsequently extended to sticky price models (Schmitt-
Grohé and Uribe, 2004 and Siu, 2004) and to models in which debt can be both short and long term
(e.g. Lustig et al., 2008; Faraglia et al., 2013; Sims, 2013; Leeper and Zhou, 2021 among others).

In these models optimal policy is the solution to the first order conditions of the Ramsey program,
which involves the Lagrange multipliers of current and past consolidated budget constraints, the
objects that define the dynamics of debt. These multipliers are state variables; they summarize the
impact of shocks that have hit the economy and thus also impacted debt. In the optimal policy
equilibrium macroeconomic variables (such as inflation and output) as well as the nominal interest
rate become functions of the multipliers.

This approach to optimal policy has thus the limitation that it yields a path of the nominal
rate, the main instrument of monetary policy, defined on the basis of variables that are not observed
in practice. Even though Lagrange multipliers in these models can be expressed as functions of
the histories of economic shocks, a policy instrument that depends explicitly on shocks is also not
practical, in that it involves the non trivial task of identifying current and past shocks.

Practically relevant policy rules specify the path of the nominal rate as a function of macroeco-
nomic variables (inflation, output, etc). These are the types of rules that we estimate in medium
scale DSGE models and have also been considered by a large number of papers studying optimal
policy in the context of the baseline New Keynesian model (where inflation does not respond to the
debt aggregate).1 We would like to know whether in a model where inflation and debt dynamics
are determined jointly (in the fiscal theory of the price level framework) such rules can approximate
the optimal policy and if so, what is the appropriate coefficient on inflation (or on other relevant
macroeconomic variables) in the interest rate rule.

Our baseline model is a simplistic Fisherian - New Keynesian framework, which allows us to
characterize optimal policy analytically, experimenting with various modelling assumptions regarding
the structure of debt. The model is augmented with the consolidated budget constraint and moreover,
to isolate our focus on the role of inflation in stabilizing debt, we assume that taxes are constant,
assuming also that the government’s surplus fluctuates according to an exogenous shock to spending.
Our framework is thus broadly similar to that of Cochrane (2001).2

In Section 2 we begin by laying out our theoretical model. Following the optimal policy literature
cited above, we model long term bonds with full buybacks, that is assuming that debt is repurchased
one period after issuance. We revisit Ramsey optimal policy in this framework since this is the
benchmark by which the optimality of the interest rate rules that we will consider will be measured,
and explaining the key forces that determine the path of inflation under Ramsey is important. The
simplicity of our framework enables us to characterize the Ramsey solution analytically, under any
maturity structure of debt.

Section 3 then turns to the analysis of optimal interest rate rules. Our substantive finding is that
commitment to a rule that sets the nominal interest rate only as a function of inflation is sufficient
to approximate the Ramsey outcome very well and, under specific debt maturity structures, it even
delivers effectively the same outcome as Ramsey policy. One does not need to include many lags
of inflation (or other macroeconomic variables) in the policy rule, a property that seems surprising
given the dependency of Ramsey policy on the history of Lagrange multipliers and shocks.

1See for example Giannoni and Woodford (2003a,b); Giannoni (2014), among numerous others.
2See also Sims (2013); Bouakez et al. (2018); Bianchi and Melosi (2019); Aiyagari et al. (2002); Davig and Leeper

(2006), for analogous Fisherian models in various policy contexts.
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Moreover, over the broad range of alternative maturity structures of debt that we consider in
our Fisherian model, the optimal inflation coefficient is given by a simple formula of the average
debt maturity. The coefficient is 1− 1

Maturity
. A higher maturity leads to a stronger reaction of the

nominal interest rate to inflation.
To understand this result, note first that, as in any other fiscal theory model, the inflation

coefficient must be between 0 and 1 in order to have a unique stable equilibrium. This is obviously
the case here. As is well known, in this type of environment, inflation becomes a backward looking
process and raising the nominal rate will not accomplish a lower inflation rate, rather it will make
inflation increase persistently. This is desirable when the average maturity of debt is long, since
it enables to spread inflation over more periods and stabilize debt. In contrast, in the case where
debt is short, making inflation respond over the longer term to fiscal shocks is wasteful, because it is
only short term price growth that can contribute towards debt stability. Under the optimal policy,
therefore, the inflation coefficient is zero when debt is only short term and it is strictly positive when
both short and long bonds are issued. In the case of a flat maturity structure (equivalently debt is
issued in a consol that pays fixed coupons) the coefficient becomes equal to one.

These findings turn out to hold independently of the types of shocks that hit the economy and
their stochastic processes. The key driver of optimal inflation dynamics in our model is the average
debt maturity, not the source of fluctuations in the economy.

In Section 4 we turn towards a modelling assumption for long term bonds that departs significantly
from the canonical modelling found in the literature. All papers mentioned previously assume that
the entire stock of long bonds is repurchased one period after issuance. This assumption is made
for tractability (keeping track of many lags of debt in the state vector is not easy) however it is not
in line with observed practices in the US and elsewhere. Faraglia et al. (2019) provide extensive
evidence that the US Treasury does not buy back their debt prior to maturity. The Quantitative
easing program run by the Federal reserve since the 2008-9 recession can be seen as a partial buyback
of long term government bonds.

When we consider no buy back as the modelling assumption for long term debt we find strikingly
different implications for optimal policy. Under no debt repurchases and when debt is a zero coupon
bond of maturity N , optimal inflation features oscillations of periodicity N which persist forever.
Simple policy rules that specify the nominal rate as a function of current inflation will not work;
these types of rules do not lead to stable equilibria, even when the inflation coefficients are between
0 and 1.

To flex out the intuition behind the first result (that oscillations occur in this model) we provide
a simple analytical example assuming N = 2. A negative shock to the surplus in period t will need
to be compensated with higher inflation to reduce the real payout of debt that matures in t, that is
debt that has been issued in t− 2. However, higher period t inflation will also impact the real value
of debt that has not matured, debt issued in t − 1. This impact will destabilize the intertemporal
debt constraint in period t+1 (when this debt has to be redeemed) and for the constraint to hold, it
must be that inflation drops in t+ 1. These effects persist indefinitely, even though the government
continues to issue new debt in every period.

A simple inflation targeting rule cannot mitigate the N cycle as it does not pin down a unique
stable equilibrium path. Instability is a worse outcome; arbitrary inflation oscillations may occur
and their magnitude can grow over time. In the no buyback model, a unique stable equilibrium can
be reached when the policy rule pins down the growth of the price level between t − N and t, in
other words when it determines the sum of inflation rates π̂t + π̂t−1 + ... + π̂t−N+1 (in terms of the
notation in our log linear model). The interest rate rules that can deliver this are highly impractical,
featuring N − 1 lags and leads of inflation to determine the sum.

The key element that lies behind the strikingly different results we get out of the buyback and no
buyback models is the optimal policy’s ability to spread the distortions of inflation across time. When

2



we assume that all debt is repurchased one period after being issued, the distortions can be evenly
spread across periods. Under no repurchases this is not so, and simple interest rate rules cannot
approximate optimal policy. We frame this result using the Lagrange multiplier on the consolidated
budget, which measures the distortions under optimal policy. Under buyback this multiplier follows a
random walk, implying evenly spread distortions. Under no buyback, it follows a cycle of periodicity
N implying uneven distortions.3

Our final experiments in Section 4 explore whether the above results carry over to cases where
the government issues any maturity structure of debt, not only a zero coupon bond of maturity N
under no buyback. It turns out that key to enable to evenly spread distortions across periods, is to
issue positive amounts of short term bonds. When the maturity of some of the debt issued, coincides
with the periodicity of the model (1 quarter) then simple inflation targeting rules work. When this
condition does not hold, oscillations become unavoidable.

Section 5 considers several extensions of the baseline model. First, we depart from the baseline
where we assumed that the policy objective is to minimize the volatility of fiscal inflation, to consider
the case where output stabilization also becomes a goal of optimal policy. Also in this case we can
obtain analytically policy rules with inflation coefficients that are simple functions of debt maturity
and approximately deliver the Ramsey outcome. Second, we argue that our findings do not only
concern the Fisherian economy that we have employed for analytical convenience, but also carry
over to the canonical New Keynesian model, where the real interest rate is endogenously affected by
aggregate output and spending. We derive a simple formula for the optimal inflation coefficient, as a
function of the average maturity of debt, and other parameters of the model that measure the effect
of output on the real interest rates and the intertemporal solvency of debt. The key result of this
paper, that the Ramsey outcome can be approximated through a simple inflation targeting rule thus
also holds in the canonical model. Moreover, our results concerning the no buyback also continue to
hold. Lastly, we show that our results would also hold if we had assumed that taxes are not constant
through time, an assumption that we made for analytical tractability. A final section concludes the
paper.

Our paper is related to a vast literature of optimal policy models. First, numerous papers have
studied optimal policy under commitment to an interest rate rule in the context of the baseline New
Keynesian model, to identify simple rules that can approximate Ramsey outcomes. See Giannoni
and Woodford (2003a,b); Giannoni (2014) among others. We apply the arguments of these papers
to optimal policy in the fiscal theory of the price level framework.

Second, many papers have studied policy assuming that an optimizing government chooses taxes
to finance debt in the context of real models (e.g. Lucas and Stokey, 1983; Aiyagari et al., 2002;
Marcet and Scott, 2009; Faraglia et al., 2016 and others). Lucas and Stokey (1983) assume that the
government can issue debt in state contingent instruments, whereas Aiyagari et al. (2002); Marcet
and Scott (2009); Faraglia et al. (2016) assume ‘incomplete markets’ letting debt be issued only in
a single bond, long or short term. Our optimal Ramsey policy framework also assumes incomplete
markets, and thus our approach is methodologically similar to Aiyagari et al. (2002); Marcet and
Scott (2009); Faraglia et al. (2016); however, we allow debt to be issued in multiple assets of different
maturity. Importantly, Faraglia et al. (2016) consider a distinction between buyback and no buyback
in a real economy showing that under no buyback the Ramsey solution features tax oscillations. Our
result in Section 4 that inflation oscillations are unavoidable when repurchases of long term nominal
bonds are ruled out, is rooted into their analysis.

Relatedly, a literature on public debt management using real models with distortionary taxes
has explored how debt portfolios can be designed to ensure the intertemporal solvency of debt,

3Importantly, as we argue, this result extends to cases where debt is callable, it can be repurchased a few periods
after being issued, or the central bank can repurchase long bonds that have been issued some time ago, or even in the
presence of multiple long bonds and no buyback. In all these cases the multiplier follows a cycle of periodicity > 1.
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absorbing shocks that hit the government budget. Angeletos (2002) and Buera and Nicolini (2004)
both assuming that debt is repurchased, reach the conclusion that when governments focus on issuing
long term debt, then taxes will not need to adjust to shocks to government spending.4 Faraglia et al.
(2019) show that this will not hold in a model where debt repurchases are ruled out. Under no
buyback it becomes optimal to issue a mix of both short term and long term bonds. Our result that
issuing positive amounts of short bonds removes inflation oscillations and restores the optimality of
simple interest rate rules is inspired by their finding.

Moreover, ours is a paper on the fiscal theory and so the considerable literature studying the
interactions between monetary and fiscal policies in macroeconomic models is related to our work (e.g.
Sargent et al., 1981; Leeper, 1991; Sims, 1994; Woodford, 1994, 1995, 2001; Cochrane, 1998, 2001;
Schmitt-Grohé and Uribe, 2000; Bassetto, 2002; Eggertsson, 2008; Canzoneri et al., 2010; Del Negro
and Sims, 2015; Reis, 2016; Bianchi and Melosi, 2017; Bianchi and Ilut, 2017; Bianchi and Melosi,
2019; Davig and Leeper, 2007; Jarociński and Maćkowiak, 2018; Benigno and Woodford, 2007; Chen
et al., 2022; Bi and Kumhof, 2011; Kumhof et al., 2010 among others). See also Leeper and Leith,
2016 for a very comprehensive survey. Within this context, papers that study optimal policy using
the linear quadratic framework (for example Cochrane (2001), Leeper et al. (2021), Benigno and
Woodford (2007)) are particularly relevant. Cochrane (2001) explores the optimal debt management
policy under various modelling assumptions for long bonds, to investigate how alternative bond
issuance strategies affect the path inflation in a Fisherian model with flexible prices. Benigno and
Woodford (2007) study the optimal paths of inflation under various fiscal policy regimes (including
the case where taxes are held constant). Most of their results are built on the assumption that
debt is short term, though the authors also consider the case where debt maturity becomes a shock
absorber, as in Angeletos (2002) and Buera and Nicolini (2004). Leeper and Zhou (2021) solve
a Ramsey problem assuming that debt is issued in a perpetuity and make progress with deriving
analytical results. Our baseline is a simpler (Fisherian) setup which allows us to experiment with
alternative assumptions regarding the debt structure, including the no buyback assumption whose
implications we explore in Section 4. Our analytical formulae complement those of Leeper and Zhou
(2021) and Benigno and Woodford (2007).

Lastly, Chafwehé et al. (2022) derive optimal interest rate rules from the Ramsey policy assuming
that taxes follow an exogenous rule, distinguishing between passive and active tax policies. Some of
the results we show in Section 5 are based on that paper. However, Chafwehé et al. (2022) focus
only on the case where debt is issued in a perpetuity bond that pays decaying coupons. We consider
a wider set of assumptions regarding the maturity structure of debt, and emphasize the importance
of modelling long bonds with buybacks or with no buyback, which Chafwehé et al. (2022) do not
consider.

2 Theoretical Framework and Optimal Ramsey Policy

Our baseline model is a Fisherian economy featuring sticky prices and a fiscal block, the consolidated
budget constraint and taxes which can either be lump sum or distortionary (levied on labour income).
For simplicity, we will derive analytical results assuming that taxes are constant through time.5 We

4In the context of models of optimal inflation (e.g. Lustig et al., 2008; Sims, 2013; Leeper and Zhou, 2021) a similar
prediction obtains, long term enables to reduce inflation’s reaction to shocks.

5Note that constant taxes is a common assumption in the context of the fiscal theory literature, (e.g. Bianchi and
Melosi, 2017; Bianchi and Ilut, 2017; Cochrane, 2001 among others). As discussed previously this assumption is not
restrictive. We can derive the key results shown below, assuming that taxes (mildly) adjust to the deviation of debt
from a target value (so that the solvency of debt is not fully ensured by taxes as is standard in the context of the fiscal
theory) or that taxes are set optimally along with inflation as is common in many papers in the Ramsey literature.
We will briefly consider the second alternative in Section 5.
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will further assume that the surplus of the government fluctuates over time due to exogenous shocks
to the spending level. Since taxes are constant, spending shocks can only be financed through
changes in the inflation rate that adjust the real market value of government debt. The model is
thus a standard laboratory of the fiscal theory, as in e.g. Cochrane (2001).

Since this is a well known setup, for brevity, we will define here the competitive equilibrium
equations in log-linear form. In the appendix we describe the background non-linear model and derive
the equations from the optimality conditions of the households’ and firms’ optimization problems.6

We let x̂ denote the log deviation of variable x from its steady state value, x. The system of the
competitive equilibrium equations is the following:

π̂t = κ1Ŷt + βEtπ̂t+1, (1)

where κ1 ≡ − (1+η)Y
θ

γh > 0.

∞∑
k=1

pkbk(b̂t,k + p̂t,k) = −SŜt + b1(b̂t−1,1 − π̂t) +
∞∑
k=2

pkbk(b̂t−1,k + p̂t,k−1 − π̂t) (2)

where

SŜt = −GĜt +R(1 + γh)Ŷt

−p̂t,1 = ît = Etπ̂t+1 (3)

pkp̂t,k = −βk
k∑
l=1

Etπ̂t+l (4)

(1) is the Phillips curve at the heart of our model. π̂t represents inflation and Ŷt is the output
gap. Parameters η < 0 and θ > 0 govern the elasticity of substitution across the differentiated
(monopolistically competitive) goods produced in the economy and the degree of price stickiness
respectively.7 Parameter γh is the inverse of the Frisch elasticity of labor supply.

(2) is the consolidated budget constraint. The LHS of this equation represents the value of debt
issued in period t. We assume that debt can be issued in bonds of maturities k where k = 1, 2, ...
and which pay zero coupons. bk denotes the (steady state) quantity of the k bond. The price of the
bond is denoted p̂t,k (pk in steady state).

The first term on the RHS of (2) is the government’s surplus (SŜt). Ĝt is the spending of the
government and R denotes the (steady state) revenue due to distortionary taxation. When all revenue
derives from distortionary taxation we have S = R − G. In contrast, if taxes are 100 percent lump
sum then R = 0. Notice also that since taxes are assumed constant, changes in revenue can only
derive from fluctuations in output Ŷt, as long as R > 0.

The second term on the RHS of (2) is the real value of debt that was issued in t−1 and repurchased
in t. pkbk(b̂t−1,k + p̂t,k−1 − π̂t) denotes the value of debt of maturity k issued in t − 1. This debt is
priced in t as k − 1 maturity debt and the corresponding price is p̂t,k−1.

6It is perhaps useful to mention that the Fisherian economy is a standard New Keynesian model in which household
preferences a quasilinear (linear in consumption). This setup is not uncommon in the literature. Besides Cochrane
(2001) see also Aiyagari et al. (2002); Faraglia et al. (2013); Sims (2013); Bouakez et al. (2018); Davig and Leeper
(2006) and others.

7θ is the parameter that governs the magnitude of price adjustment costs in the standard quadratic cost function
of Rotemberg (1982). When θ equals zero prices are fully flexible.
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Equations (3) and (4) define the prices of k bonds. (3) is the log-linear IS-Euler equation. Since
our setup is Fisherian, the real rate is exogenous and constant. The (log of the) short term nominal
interest rate, ît, thus equals −p̂1,t. (4) defines the formula that determines the price of debt of any
k in period t. A long term bond issued in t promises one unit of income in t + k. The price is the
real value of this claim of income, adjusted according to expected inflation between periods t+ 1 to
t+ k. The steady state price satisfies pk = βk where β < 1 denotes the standard household discount
factor.

2.1 Ramsey Optimal Policies

We first consider the Ramsey policy equilibrium. We assume that a benevolent planner chooses

sequences

{
π̂t, Ŷt, ît, b̂t,k, p̂t,k

}
t≥0

subject to the competitive equilibrium equations to maximize the

following objective:8

−1

2
E0

∑
t≥0

βtπ̂2
t (5)

To simplify this problem, we take the standard approach of dispensing with prices and equations.
Substituting (4) into (2) we obtain the following expression for the consolidated budget constraint

∞∑
k=1

βkbk(b̂t,k −
k∑
l=1

Etπ̂t+l) = −SŜt + b1(b̂t−1,1 − π̂t) +
∞∑
k=2

βk−1bk(b̂t−1,k −
k−1∑
l=0

Etπ̂t+l) (6)

which is independent of bond prices. Moreover, noting that, given the optimal path of inflation, ît
can be set to satisfy (3) and p̂t,k set to satisfy (4), we can drop these equations from the constraint
set.

Finally, we can further simplify, noticing that the portfolio b̂t,k will not be uniquely defined in

this program. Letting dd̂t ≡=
∑∞

k=1 β
k−1bkb̂t,k be the value of debt issued in t and bought back in

t+ 1, evaluated at steady state prices, we let the planner choose d̂t to maximize (5).
The optimal policy solves:

max
{π̂t,Ŷt,d̂t}t≥0

−E0
1

2

∑
t≥0

βtπ̂2
t

subject to (1) and

βdd̂t −
∞∑
k=1

βkbk

k∑
l=1

π̂t+l +R

(
γh + 1

)
Ŷt −GĜt = dd̂t−1 −

∞∑
k=1

βk−1bk

k−1∑
l=0

π̂t+l (7)

8As in Cochrane (2001), our baseline model assumes that the planner focuses on minimizing the variability of
inflation. Notice that in the Fisherian model considered here this may be seen as an appropriate criterion, since in
the background non-linear model, household preferences are quasilinear. In the appendix we derive a second order
approximation of the household’s utility and show that, for certain parameterizations of the model, we do obtain (5).
Notice, however, that our analysis will not be constrained by the household’s preferences to derive the objective

function of the monetary authority. We consider that the planner’s loss function need not coincide with a welfare
based objective. In Section 5 we will experiment with alternative specifications of the loss function, while maintaining
the Fisherian setup. We will also study optimal policy in the canonical New Keynesian model assuming an inflation
stabilization objective.
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2.1.1 Optimality

As it is standard, we solve for the optimal policies using a Lagrangian.9 Attach a multiplier ψπ,t to
the Phillips curve and ψgov,t to the consolidated budget. The first order conditions of the Ramsey
program are:

−π̂t +∆ψπ,t +
∞∑
k=1

bk

k∑
l=1

βk−l∆ψgov,t−l+1 = 0 (8)

−ψπ,tκ1 +R(1 + γh)ψgov,t = 0 (9)

ψgov,t − Etψgov,t+1 = 0 (10)

where (8), (9) and (10) are the FONC with respect to π̂t, Ŷt and d̂t respectively.
To inspect these optimality conditions, combine (8) and (9) to substitute out ψπ,t and obtain the

following expression for π̂t

π̂t = R
(1 + γh)

κ1
∆ψgov,t +

∞∑
k=1

bk

k∑
l=1

βk−l∆ψgov,t−l+1 (11)

According to (11), under optimal policy, inflation becomes a weighted average of current and lagged
values of the growth of the multiplier ψgov. From (10), the latter object evolves according to a random
walk.

Note that these are standard outcomes of optimal Ramsey policy (e.g. Aiyagari et al. (2002);
Schmitt-Grohé and Uribe (2004); Lustig et al. (2008); Faraglia et al. (2013, 2016), among others).
Debt and deficit fluctuations in our model can only be financed through distortionary inflation and
the multiplier ψgov, which measures the burden of the distortions, follows a random walk because the
planner desires to spread the burden evenly across periods.

Moreover, to clarify the dependence of inflation on the current and lagged values of ψgov let us
iterate forward on constraint (7) to obtain the intertemporal consolidated budget constraint as:

Et

∞∑
j=0

βjSŜt+j = dd̂t−1 −
∞∑
k=1

βk−1bk

k−1∑
l=0

Etπ̂t+l (12)

(12) links the present discounted value of the fiscal surplus (LHS) to the real value of debt outstanding
in t (RHS). It is equivalent to (7) in terms of the Ramsey policy.10 Consider a spending shock which
lowers the LHS of (12) relative to the RHS. In response to such a shock the constraint tightens, and
the value of the multiplier ψgov increases. To satisfy the constraint the planner needs to engineer a
drop in the real payout of debt, the last term of the RHS of (12). This requires to increase current
inflation and also promise to increase future inflation, the latter in the case where long term debt
has been issued. The lagged terms ∆ψgov,t−l+1 in (11) capture the promises made by the planner to
adjust inflation in response to past shocks.

Finally, using (3) and (11) we can obtain the following expression for the nominal rate under
Ramsey policy:

ît = Etπ̂t+1 =
∞∑
k=2

bk

k∑
l=2

βk−l∆ψgov,t+2−l (13)

which reveals that the nominal rate also is a function of the state variables ∆ψgov,t−l+1.

9Following numerous papers, we assume a timeless perspective. As is well known, solving for optimal policies under
this assumption, requires to introduce additional constraints on the initial allocation (e.g Woodford, 2003), or the
program can be stated in terms of an objective function that accounts explicitly for the lagged Lagrange multipliers
at the beginning of the planning horizon (e.g Faraglia et al. (2016)). To avoid introducing explicitly all these elements
we do not state the Lagrangian here.

10See for example Aiyagari et al. (2002).
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2.2 Optimal Inflation

With the optimality conditions we can go very far towards characterizing analytically key features
of optimal policy. We now study the properties of inflation under alternative maturity structures bk.
To simplify the algebra, we will assume that spending Ĝt follows an i.i.d process. This will prove to
be without any loss of generality for the results that follow.

2.2.1 One Maturity

We first consider the case where debt is being issued in one maturity only. Specifically, let us assume
that all debt is issued in maturity N zero coupon bonds, or bN > 0 and bk = 0 for k ̸= N . Focusing
first on this simple scenario enables to transparently characterize the forces that drive inflation under
optimal policy but it is also rather common in the literature. For example Schmitt-Grohé and Uribe
(2004) set N = 1 (assuming that all government debt is short term) whereas Faraglia et al. (2013)
consider the case of long term debt, N > 1. Moreover, Lustig et al. (2008) solve a non-linear model, in
which a Ramsey planner can choose a portfolio of multiple assets (maturities 1 to N , say) along with
inflation.11 In their model it becomes optimal to issue debt only in the longest maturity available,
the quantities of shorter maturity bonds are optimally zero. Thus the N zero coupon bond we focus
on here could be seen as an approximation of the optimal policy of Lustig et al. (2008).

The following proposition characterizes the path of optimal inflation in this model:

Proposition 1. Assume that the government issues debt in a single N period bond. Optimal
inflation under Ramsey is given by:

π̂t =
N−1∑
j=0

η−jĜt−j (14)

where

η−j =



f̃ G[
f̃2+(βN−1bN )2

(
1− 1

βN

1− 1
β

−1

)] for j = 0

βN−j−1bNG[
f̃2+(βN−1bN )2

(
1− 1

βN

1− 1
β

−1

)] for j = 1, 2, ..., N − 1

(15)

f̃ =

(
R
κ1
(1 + γh) + βN−1bN

)
> 0

Proof : See appendix.

According to Proposition 1, inflation is a weighted average of the current and past (N − 1 lags)
shocks to spending. Since coefficients η−j are positive, following a positive spending shock in t
inflation will rise on impact and will remain above zero until period t + N − 1. The optimal path
of inflation may be frontloaded in the sense that if R > 0 (taxes are distortionary) then f̃ exceeds
βN−j−1bN and the impact of the shock on inflation in t is larger than in other periods. Otherwise,
since β is plausibly close to 1, the rate of inflation will be roughly constant through time.

Turning to the effect of maturity, N , note first that the term βN−1bN is such that in steady state
the value of debt equals the present value of the surplus. Therefore, βN−1bN = S

1−β is independent of

11More precisely, Lustig et al. (2008) also assume that bond quantities cannot be negative, ruling out that the
government can purchase private short-term assets. A similar solution to this optimal portfolio problem was obtained
by Nosbusch (2008).
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N . Debt maturity N affects the coefficients η−j through the term

(
1− 1

βN

1− 1
β

− 1

)
in the denominator.

Longer maturity increases this term, thus lowering the coefficients η−j, however, the response of

inflation to the shock is now spread over more periods. When N = 1 we have η0 = G

f̃
and all of

the response of inflation is concentrated in t. As N grows towards infinity, we obtain η−j ≈ 0 and
inflation will permanently increase in response to the shock.

To understand the above properties, notice first that when debt is of maturityN , setting a positive
inflation rate after t+N −1 will not contribute towards satisfying the intertemporal constraint (12),
it would be wasteful from the point of view of fiscal solvency. This explains why only the first N − 1
lags of spending shocks matter for inflation. Moreover, higher N reduces the coefficients η−j because
following a positive spending shock that lowers the intertemporal surplus, satisfaction of (12) can be
achieved through a smaller adjustment in inflation in any given period, when inflation adjusts over
more periods.12

Furthermore, to see why inflation may be frontloaded and coefficient η0 is larger when taxes
are distortionary, notice that when R > 0 the government’s surplus is a function of output. Then
inflation has a direct impact on the LHS of the intertemporal constraint (12). In particular, we have:

Et

∞∑
j=0

βjSŜt+j = Et

∞∑
j=0

βj
(
R(1 + γh)Ŷt+j −GĜt+j

)

From the Phillips curve Ŷt+j =
1
κ1

(
π̂t+j − βEt+jπ̂t+j+1

)
and we can write:

Et
∑
j≥0

βjR(γh + 1)Ŷt+j =
R

κ1
(γh + 1)π̂t

which reveals that higher inflation in t will increase the present value of revenues from distortionary
taxation.

Through making inflation higher in t, the planner enables a smaller drop in the intertemporal
surplus, following a positive spending shock, which in turn reduces the increase in inflation in periods
t+ 1, t+ 2, t+ 3, ..., t+N − 1 required to satisfy (12), assuming that debt is long term.13

Impulse responses. Figure 1 plots the response of inflation to a positive spending shock under
different values of N . Table 1 reports the numerical values of the model’s parameters assumed to
construct the figure and the notes of the table briefly explain our calibration targets.

The top panel of Figure 1 assumes that taxes are distortionary. Notice that even though prices
are quite sticky in the model, the incentive to frontload inflation is not particularly strong. Moreover,
the longer is the maturity, the less felt is the initial ‘blip’ in inflation. When N = 10 the resulting
path of inflation is basically the same as the analogous object in the top panel of Figure 1 in which
taxes are lump sum and the incentive to frontload inflation is not present.

12See e.g. Lustig et al. (2008); Faraglia et al. (2013); Sims (2013); Leeper and Zhou (2021).
13Besides R > 0 a further condition that needs to be satisfied for this channel to be important, is that prices are

sticky, the slope of the Phillips curve coefficient, κ1, should not be large. If prices are quite flexible, then frontloading
inflation will not impact output and the government’s revenue. In contrast, under sticky prices, a change in inflation
can impinge a significant effect on output. Note that this is the only channel through which the degree of price
stickiness can exert an influence on the path of inflation. In contrast to the Ramsey literature (e.g. Schmitt-Grohé
and Uribe (2004); Faraglia et al. (2013); Lustig et al. (2008); Leeper and Zhou (2021) and others) where it is typically
assumed that the planner can finance debt either through inflation or through taxes and a small slope coefficient κ1
shifts the optimal policy mix towards more taxation, here the planner only has one instrument. Stickier prices will
not reduce inflation volatility, rather they will increase the volatility when R > 0 and frontloading inflation becomes
optimal.
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Table 1: Calibration

Parameter Value Label

β 0.995 Discount factor
θ 17.5 Price Stickiness
η -6.88 Elasticity of Demand
γh 1 Inverse of Frisch Elasticity
Y 1 Steady State Output
G 0.1 Steady State Spending

Notes: The table reports the values of model parameters. The model period is one quarter. β denotes the discount

factor chosen to target a steady state annual real interest rate of 2 percent. Parameter η is calibrated to target markups

of 17 percent in steady state. θ determines the cost of adjusting prices and is calibrated as in Schmitt-Grohé and Uribe

(2004). Coefficient γh, the inverse of the Frisch elasticity of labour supply, equals 1, a standard value assumed in the

macro literature. Finally, the steady state level of debt is assumed equal to 60 percent of GDP (at annual horizon, 240

percent at the quarterly horizon assumed here), and the level of public spending is 10 percent of aggregate output,

which is normalized to unity in steady state.

Figure 1: Responses to a spending shock: Optimal Ramsey policy.
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Notes: The figure plots the path of optimal inflation in response to a shock that increases
spending by 20% ( from 10% of GDP to 12% of GDP). The top panel shows the case of distor-
tionary taxes and the bottom panel assumes lump sum taxation. Each response corresponds
to a different debt maturity. See legend of the Figure.
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2.2.2 Multiple Maturities

Let us now consider the general case where instead of assuming only one maturity, all maturities bk
can be issued. In the appendix we derive the following formula for optimal inflation in this model:

Proposition 2. Assume that the government issues maturities {bk}k≥1. Optimal inflation
under Ramsey is given by:

π̂t =
t∑

j=0

η−jĜt−j

where

η−j =



f̃ G[
f̃2+

∑∞
k=2 β

k−1λ2k

] for j = 0

λjG[
f̃2+

∑∞
k=2 β

k−1λ2k

] for j ≥ 1

(16)

λj =
1

β
(λj−1 − bj−1) and λ1 =

∞∑
k=1

βk−1bk (17)

f̃ =

(
R

κ1
(1 + γh) +

∞∑
k=1

βk−1bk

)
Proof : See appendix.

The recursive formula in Proposition 2 enables to easily calculate the optimal inflation path for
any maturity structure of debt. To inspect the formula, consider first coefficient η0. The numerator
term f̃ is determined by two forces. First, R

κ1
(1 + γh) again measures the impact of inflation on

the present value of the surplus when taxes are distortionary, and second, the term
∑∞

k=1 β
k−1bk

measures the effect of period t inflation on the real payout of total government debt, long and short
bonds outstanding. Coefficients η−j are then determined by objects λj. According to (17) λj will be
positive insofar as not all debt is of maturity less than or equal to j and be 0 otherwise.

A standard modelling assumption found in the literature (e.g Angeletos, 2002; Buera and Nicolini,
2004 and Faraglia et al., 2019) is to assume that the government issues debt in two assets, one short
bond of 1 period maturity and one long term asset of maturity N . We then have b1, bN ̸= 0 and
bk = 0 for k ̸= 1, N and the path of the λs is given by:

λj =
1

βj−1
βN−1bN , j = 2, ..., N − 1

λN =
1

β
(λN−1 − bN) = 0

and λN+1 = λN+2 = ... = 0.
We can then compute the second term in the denominator of η−j as:

∞∑
j=2

βj−1λ2j =
N−1∑
j=2

1

βj−1
(β(N−1)bN)

2 = (
S

1− β
− b1)

2 1

1− β
(

1

βN−1
− 1)

11



where the last equality derives from the steady state intertemporal constraint, S
1−β = b1 + βN−1bN .

The above condition suggests that
∑∞

j=2 β
j−1λ2j will be higher the more tilted is the portfolio

towards long term debt (the smaller b1 is, the larger S
1−β − b1 will be). Then the coefficients η−j

become smaller in magnitude and the inflation response to a spending shock weakens. In fact, when
the government can issue a very large amount of the long term asset, financing its position through
negative debt (savings) in the short term bond, we can have that η−j ≈ 0.

This result resembles the finding of Angeletos (2002); Buera and Nicolini (2004) that issuing long
term bonds enables to absorb fiscal shocks by exploiting the variability of long bond prices. Whereas
in Angeletos (2002) and Buera and Nicolini (2004) this happens because real long bond prices drop
following a spending shock, here the planner can leverage on the persistent increase in inflation which
yields a drop in the nominal long bond price after the shock.

Another interesting case, and one to which we will later turn when we study optimized interest
rate rules, is when the government issues a portfolio in which the shares of bk bonds decay at constant
rate δ, i.e. bk = δk−1b. Equivalently, debt is a perpetuity that pays decaying coupons (e.g. Cochrane,
2001; Leeper and Zhou, 2021). The formula in Proposition 2 then gives us:

η0 =
f̃ G[

f̃ 2 + b
2
δβδ

2

(1−βδ2)(1−βδ)2

]
η−j =

b
1−βδδ

jG[
f̃ 2 + b

2
δβδ

2

(1−βδ2)(1−βδ)2

] , j = 1, 2, ..

which illustrates that the coefficients η−j, j ≥ 1, that capture the response of inflation to past
spending shocks, decrease at rate δ. Moreover, it is easy to show that a higher value of δ, reduces
the magnitude of these coefficients.

Finally, we will also consider the case where the portfolio shares are given by bk = be−λ̃ λ̃k−1

(k−1)!
for

k = 1, 2, .... We can then show that

λj = e−λ̃b
(λ̃)j−1

(j − 1)!

suggesting that the coefficients η−j, j ≥ 1 vary according to (λ̃)j−1

(j−1)!
and thus may not decay mono-

tonically, for high values of λ̃.

3 Rules rather than Ramsey

Ramsey policies give rise to the best outcome given the competitive equilibrium conditions of the
model. However, from a practical standpoint, a Ramsey policy may be difficult to implement, when
it leads to a path of interest rates that depends on the Lagrange multipliers (i.e. the one derived in
equation (13)) and which is not directly related to macroeconomic variables such as inflation, output,
or lagged values of interest rates. In practice, policies implemented by central banks are informed by
macroeconomic conditions as they are summarized by these macro variables, and a large literature
has been devoted to studying how to design interest rate rules which are simple functions of inflation,
output, etc, in the baseline New Keynesian model.

We now consider a model where monetary policy sets the nominal interest rate as a function of
macroeconomic variables only. We begin assuming a simple inflation targeting rule:

ît = ϕππ̂t. (18)
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where the coefficient ϕπ will be set optimally to maximize objective (5). Such exercises (assuming
commitment to a rule and optimizing over parameters) have been considered many times in the
context of the standard New Keynesian model. We carry out this exercise in the context of the fiscal
theory.

Our key finding in this section is that the optimal Ramsey policy can be very closely approximated,
even by simple rules of the form (18). Committing to a rule that sets the nominal interest rate only
as a function of current inflation is sufficient, and we do not need to include many lags of inflation (or
other variables) in the policy rule, a property that seems surprising given the dependency of Ramsey
policy on the history of Lagrange multipliers.

Moreover, for the Fisherian model we consider here, we find that the optimal inflation coefficient
in rule (18) is given by:

ϕ∗
π ≈ 1− 1

maturity

Our results reveal a simple and transparent relation between the optimal coefficient and the maturity
of debt which will prove to hold across a wide range of alternative maturity structures.

3.1 Optimal policy with a simple policy rule

To solve for the optimal policy rule we proceed in two steps. We first characterize the equilibrium
under a generic value for parameter ϕπ, then we compute the optimal coefficient ϕπ as a function of
the debt maturity.

3.1.1 One Maturity

Consider first the case where debt is issued in a single maturity N . Under (18) the equilibrium is a
solution to the following system of equations:

βNbN(b̂t,N −
N∑
l=1

Etπ̂t+l) = −SŜt +
∞∑
k=2

βN−1bN(b̂t−1,N −
N−1∑
l=0

Etπ̂t+l)

ϕππ̂t = Etπ̂t+1

π̂t = κ1Ŷt + βEtπ̂t+1

Consider the second equation which is obtained by substituting out the nominal rate from the Euler
equation using (18). When ϕπ > 1 this equation has an unstable root and can be solved forward to
give us a unique solution π̂t = 0, for all t. From the Phillips curve it also holds that Ŷt = 0. Then,
inflation will not satisfy the consolidated budget constraint and intertemporal solvency will fail.

In the case where 0 ≤ ϕπ ≤ 1 the model has a unique equilibrium where inflation is not zero.
The intertemporal budget constraint will pin down inflation.

These are standard results of course. Monetary policy needs to be ‘passive’ (e.g. Leeper, 1991)
for the equilibrium to be unique in a model where taxes do not adjust to ensure the solvency of the
government’s budget. Allowing for a richer maturity structure will not change this property.

Solving the above system of equations, it is easy to show that equilibrium inflation is given by:

π̂t =
t∑

j=0

ϕj−1
π G

ξ
Ĝt−j (19)

where ξ = R 1+γh
κ1

+ βN−1bN
1−ϕNπ
1−ϕπ .
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Note that there are two ways in which ϕπ influences this solution. First, (19) states that inflation
will display persistence ϕπ, a higher inflation coefficient will translate into a more persistent process of
inflation. This follows easily from ϕππ̂t = Etπ̂t+1, which defines a backward looking process. Second,
ϕπ also influences the denominator of (19). When N > 1 a higher ϕπ implies higher ξ. When N = 1,
ξ does not depend on ϕπ.

Why is this so? With long term debt, inflation can contribute towards stabilizing debt up to
period t + N − 1. A higher ϕπ will make inflation more persistent in response to the spending
shock, and a smaller increase in inflation is needed (in each period) to satisfy the intertemporal debt
solvency condition. This explains why the denominator of (19) increases in ϕπ. When debt is short
term, however, then only inflation in t can absorb the shock, and the persistence of inflation will not
matter for debt solvency.

This finding hints at how the optimal inflation coefficient will be influenced by debt maturity in
this model. In the case where N = 1 optimal policy should set a constant interest rate, as letting
ϕπ > 0 will lead inflation to persistently deviate from target, without contributing anything towards
debt sustainability. Conversely, if N > 1, then persistence of inflation will be desirable, as it will
spread the burden of inflation over more periods reducing overall losses.14

Formally, the optimal policy solves:15

max
ϕπ

−1

2
E0

∑
t≥0

βtπ̂2
t = max

ϕπ
−1

2

G
2
σ2
G

ξ2
1

1− βϕ2
π

The first order condition is:

−1

2

G
2
σ2
G

ξ2
1

1− βϕ2
π

[
βϕπ

1− βϕ2
π

− βN−1bN
1

ξ(1− ϕπ)2

(
1 + (N − 1)ϕNπ −NϕN−1

π

)]
= 0 (20)

Let us focus on the case where R = 0 assuming for simplicity (but also consistently with the
calibration reported in Table 1) that β ≈ 1. Then, the optimal coefficient ϕ∗

π solves:

ϕπ(1− ϕNπ )

1 + ϕπ
=

(
1 + (N − 1)ϕNπ −NϕN−1

π

)
(21)

When N = 1 the optimum is ϕ∗
π = 0. When N = 2 we have ϕ∗

π = 1
2
. For higher N the LHS of (21)

defines a concave function which equals 0 when ϕπ is either 0 or 1. The RHS of (21) defines a strictly
downward sloping function, which is equal to 1 at ϕπ = 0 and 0 at ϕπ = 1. The LHS is equal to the
RHS at a unique ϕπ ∈ (0, 1) which defines the optimum.16

The solution cannot be characterized analytically for general N . It holds however that ϕ∗
π ≈ 1− 1

N
.

One way to show this is by comparing the implied paths of inflation in response to a shock to spending.
This is done in the top panels of Figure 2. We plot the responses of inflation for different N , when
the inflation coefficient is equal to ϕ∗

π (crossed / black lines) and when it is equal to 1− 1
N

(dashed /
red lines). The left panel in the figure sets N = 4. In the middle we assume N = 20 corresponding to
an average maturity of 5 years. Finally, on the right panel we let N = 28 (7 year average maturity).17

14See Leeper and Leith (2016) for a numerical experiment with ad hoc rules of the form (18) where this result
emerges.

15We denoted σ2
G the variance of Ĝt.

16It can also be easily seen that in the case where N = ∞ (21) gives a unique solution ϕ∗π = 1.
17We chose these three values for the following reasons: First, as was made evident from the previous derivations

in the case where N = 1 the Ramsey outcome coincides with the outcome under rule ît = 1 − 1
N = 0. Thus, in this

case we get coincidence (trivially so, since there are no dynamics in inflation, its response is only contemporaneous to
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As it is evident, the responses are very similar. Effectively, ϕπ = 1 − 1
N

is a very good approxi-
mation of optimal policy.18

3.1.2 A comparison with Ramsey and Ramsey implied rules.

For this model, the Ramsey policy first order conditions can be rearranged to yield an interest rate
rule that targets current inflation. Using the Euler equation and (11), assuming one bond of maturity
N, we get:

ît = Etπ̂t+1 =
1

β
bN

N−1∑
l=1

βN−l∆ψgov,t−l+1

and then using (11) to replace the weighted sum of the multipliers, we obtain:

ît =
1

β

(
π̂t − f̃∆ψgov,t − bN∆ψgov,t−N+1

)
(22)

According to (22), the nominal rate is a function of inflation (with coefficient 1
β
) and of the stochastic

intercept terms ∆ψgov,t and ∆ψgov,t−N+1. Moreover, since making interest rate policy contingent on
the multipliers ψgov,t does not seem practically relevant, we could express the multipliers as a function

of Ĝ. Under Ramsey policy it holds that :

∆ψgov,t =
G[

f̃ 2 + (βN−1bN)2
(

1− 1

βN

1− 1
β

− 1

)]Ĝt

and so it follows that (22) expresses the nominal rate as a function of inflation and of spending in t
and t−N + 1.

It thus seems that a system of equations comprising the Phillips curve, the Euler equation, the
consolidated budget and assuming that monetary policy follows (22) (when ∆ψgov is substituted out
of the system) will reproduce the Ramsey policy outcome. However, this is not so. The problem is
that policy rule (22) will lead to an explosive solution. Since the inflation coefficient exceeds unity,
(22) defines an ‘active’ monetary policy (Leeper, 1991).19 In contrast, a simple rule of the form (18)
leads to a unique stable solution.

the spending shock and pinned down by the intertemporal budget) and so we utilize as our short term debt scenario a
value N where the Ramsey and rule based outcomes are not equivalent in terms of the responses of inflation. Setting
N = 4 makes debt maturity equal to 1 year, however, letting N = 2, 3 or N = 5, 6... does not change our results.
Moreover, N = 20 means that maturity is of five years and this is a commonly assumed value for average maturity

in the US economy. Lastly, N = 28 (7 year maturity) is the long term asset considered in Lustig et al. (2008). The
reader should also note that for any maturity longer than that, the Ramsey outcomes can get arbitrarily close to the
rule based outcome in terms of the losses from inflation volatility (see our analysis below), the principle being that very
long maturities entail a (nearly) permanent deviation of inflation from target and indeed this can be accomplished by
rule based policy when ϕ∗π ≈ 1.

18In the appendix, we repeat this exercise assuming distortionary taxes. We then recover ϕ∗π as a solution to (20).
Again we find that 1− 1

N is very close to ϕ∗π.
19Intuitively, when we substitute out from the model ∆ψgov,t we also lose the random walk condition Et∆ψgov,t+1 =

0. Then, the dynamic system has too many unstable roots. Otherwise, it would be possible to solve for a unique
equilibrium using (22) without substituting out the multiplier and without dropping the martingale condition.
Note also that the claim here is not that (22) is a unique interest rate policy that can implement the Ramsey

outcome. Given the model structure it is plausible that there are policy rules that make the nominal rate a function
of (many) lags of inflation and possibly deliver a unique equilibrium. Non-uniqueness of robustly optimal rules is a
standard feature of the New-Keynesian model (see Giannoni and Woodford, 2003a).
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Figure 2: Outcomes under Ramsey and Inflation Targeting Rules.
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Notes: The top panels plots the path of inflation in response to a shock under Ramsey and inflation
targeting rules. Debt is a zero coupon bond of maturity N . The solid blue line is the Ramsey inflation
response. The dashed red line sets ϕπ = 1− 1

N . In the crossed black line coefficient ϕπ solves (20).
The bottom panels show the loss function under Ramsey (dashed-dotted green line) and under rule based
policy for a range of values of ϕπ (solid blue line).
We assumed N = 4, 20, 28 in the left, middle and right graphs, respectively.
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The top panels of Figure 2 plot the responses of inflation under Ramsey together with the rule
based policy we previously studied.20 Clearly, the inflation paths do not coincide for N = 4, 20, 28
considered in the Figure. The rule based policy prescribes a monotonic path for inflation whereas
under Ramsey, inflation is roughly flat for N periods and then abruptly becomes 0. The rule based
outcome would coincide with Ramsey policy outcome only when N = 1 or when N → ∞.

Given this result, it may seem that an alternative inflation targeting rule, one that could set
inflation to respond to the shock for N − 1 periods, and subsequently change drastically the nominal
rate so that inflation returns to target (or close to target), will provide a better approximation of the
Ramsey policy than the simple rule that sets ϕπ = 1− 1

N
. In this sense, the Ramsey implied policy

(22) can serve as a useful benchmark. For example, since β ≈ 1 we can perhaps set policy according
to

ît = π̂t −
1

β
f̃

G[
f̃ 2 + (βN−1bN)2

(
1− 1

βN

1− 1
β

− 1

)]Ĝt −
1

β
bN

G[
f̃ 2 + (βN−1bN)2

(
1− 1

βN

1− 1
β

− 1

)]Ĝt−N+1 (23)

i.e. set the inflation coefficient to 1 instead of 1
β
to obtain a stable equilibrium.

Ultimately, whether or not it is worthwhile devising a more elaborate interest rate policy based on
the Ramsey outcome requires to evaluate the loss function (5) under the Ramsey policy equilibrium
and under the rule based policy (18). If the differences are small then there is little margin to improve
on the outcome of the rule based policy.

In the bottom panels of Figure 2 we plot the loss function under the policy rule (18) for ϕπ ∈ [0, 1].
The Ramsey outcome is represented with the dashed-dotted /green line. Note that when ϕπ = 1− 1

N

the differences are minuscule. Thus, even though the inflation paths of the two models differ, this
does not translate to a significant loss under rule based policy. We obtain a similar finding for many
other calibrations of N . Finally, we have computed the loss function under the interest rate rule
(23). The losses were several orders of magnitude larger than Ramsey.

The results we showed in this section continue to hold when we assume distortionary taxes instead
of lump sum taxation. For brevity we study this case in the appendix.

3.1.3 Multiple maturities: decaying payment profiles

Let us now turn to the case where more than one maturity can be issued. The optimal coefficient
ϕπ solves:[

βϕπ
1− βϕ2

π

(
R
1 + γh
κ1

+
∞∑
k=1

βk−1bk
1− ϕkπ
1− ϕπ

)
−

∞∑
k=1

βk−1bk
1

(1− ϕπ)2

(
1 + (k − 1)ϕkπ − kϕk−1

π

)]
= 0

(24)

To derive an analytical solution let us first assume that debt is a perpetuity that pays decaying
coupons, bk = δk−1b. The following Proposition gives the optimal policy rule:

Proposition 3: Assume that bk = δk−1b and R = 0. The optimal interest rate rule is

ît = δπ̂t (25)

Proof : See appendix.

20The solid blue lines in the top panels, which show the Ramsey outcome are essentially the responses shown in
Figure 1 but here we focus on different N
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Under the assumed maturity structure, the average maturity (of the face value of debt) is 1
1−δ .

Thus Proposition 3 confirms the principle that the optimal policy rule sets the inflation coefficient
equal to 1 − 1

Maturity
. To understand why this is optimal here, note again that when ϕπ = δ then

inflation displays first order autocorrelation equal to δ. Thus, following a positive spending shock
inflation will rise and gradually revert back towards 0 at this rate. Assume that the planner had set
ϕπ > δ thus making inflation a more persistent process. Then, inflation would be high even when the
coupon payments on debt outstanding in t have become low, which implies a higher cost of inflation
without bringing any significant benefit in terms of stabilizing debt. Conversely, in the case where
ϕπ < δ inflation becomes too frontloaded. A higher persistence would then enable to spread the costs
more efficiently. Making inflation decay at the same rate as the coupons is the optimal policy.21

How does this rule based policy fare against the Ramsey outcome? In the appendix we show that
the optimal Ramsey plan admits the following solution for the equilibrium interest rate:

ît = δπ̂t − δR
(1 + γh)

κ1
∆ψgov,t (26)

Clearly, in the case R = 0 as we assumed in Proposition 3, the nominal interest rate under Ramsey
policy is simply equal to δπ̂t. In other words, this is the robustly optimal rule that we can recover
from solving the Ramsey first order conditions (e.g. Giannoni and Woodford, 2003a).

When R (1+γh)
κ1

is not zero (i.e. when revenues derive from distortionary taxes), (26) defines a
response of the nominal rate to a positive spending shock which has a lower intercept in t. As
discussed previously, this accomplishes to make inflation slightly higher in t and increase output to
raise the surplus. Afterwards, inflation will decay monotonically at rate δ. However, this effect is
not significant. It turns out that even in this case ϕ∗

π ≈ δ for the calibration assumed in Table 1.
We thus conclude that under the maturity structure assumed in this paragraph, a simple inflation

targeting rule approximately delivers the Ramsey outcome.

3.1.4 Alternative maturity structures with multiple assets.

Assuming a debt structure of the form bk = δk−1b provides a good approximation of outstanding
payments on US government debt. However, this need not be the case in other advanced economies,
and it is worthwhile exploring whether the result that simple inflation targeting rules can get close
to the Ramsey outcome, generalizes to other scenarios with multiple assets.22 Of course, this would
be infeasible to show for any arbitrary (hypothetical) maturity structure. We thus focus on a couple
of alternatives that preserve tractability.

We firstly assume bk = be−λ̃ λk−1

(k−1)!
, for k = 1, 2, .... Notice that under this assumption bk will not

generally decay monotonically in k, and for high values of parameter λ̃, the maturity distributions
are (approximately) centered around the average debt maturity, λ̃ + 1. This is a useful setup to
study, in particular for maturity structures more tilted towards long term debt and featuring less
short bonds than in the US where, as discussed previously, monotonically decaying payments are a
good approximation.

21This also applies in the case where long bonds are consols (δ = 1). Then ϕ∗π = 1 and inflation becomes a random
walk. The formula ϕ∗π = 1− 1

Maturity continues to hold since in this case the maturity of debt is infinite.
22Indeed Euro area governments tend to issue much less short term debt than the US does. For example, in Germany

the share of short term debt (defined empirically as all debt that is of maturity less than one year, and including short
term payments of long term bonds) over total debt varies between 10 and 20 percent whereas longer maturities have
higher shares in the government portfolio (see Equiza-Goni et al., 2023). In the US, the average share of short term
debt exceeds 40 percent (see Faraglia et al., 2019). The decaying coupon assumption may thus be suitable for US data
but not for German data.
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Under the ‘Poisson’ debt structure, and further assuming lump sum taxes and β ≈ 1, (24) can
be written as:

ϕπ
1 + ϕπ

(
1− e−λ̃(1−ϕπ)

)
= 1 + λ̃ϕ2

πe
−λ̃(1−ϕπ) − λ̃ϕπe

−λ̃(1−ϕπ) − e−λ̃(1−ϕπ)

(see appendix). It is simple to show using this equation that the optimal inflation coefficient is equal

to 0 when λ̃ = 0 (short debt only) and becomes 1 when λ̃ tends to infinity. Otherwise, even with this
simple debt structure, it is not possible to solve the above equation explicitly and find the inflation
coefficient as a function of λ̃.

The solid blue line in the top panel of Figure 3 shows the numerical solution. Compare this to
the green dotted line that plots the usual formula 1− 1

1+λ̃
. As is evident from the graph the optimal

inflation coefficients are approximately 1− 1

1+λ̃
.

The dashed red and black crossed lines in the figure, set the value of β as in our baseline calibra-
tion. The red line continues to assume lump sum taxation, whereas the black line corresponds to the
case where taxes are distortionary. Note that again the difference in terms of the optimal inflation
coefficients are small. We thus continue to find that the formula 1− 1

maturity
is a close approximation

of optimal inflation targeting policy.
More importantly, the simple inflation targeting rule, again provides a very close approximation

of the Ramsey outcome in terms of the loss from inflation volatility. To conserve space we show
this with a graph in the appendix, considering maturities of 1, 5 and 7 years as we did in Figure 2.
Though the responses of inflation under Ramsey are different than under the rule based policy, these
differences do not exert a significant impact in terms of the policy objective.23

Next, we consider the case where the debt portfolio comprises of a mixture of perpetuities that
have different discount factors δ. Barrett et al. (2021) argue that modelling debt payment profiles
in this way, allowing for two (or three) decaying coupon bonds of different maturities, enables to
explain the bulk of the time variation of payments of US government debt. Let us assume that:

bk = b
M∑
i=1

ωiδ
k−1
i

so that payments of maturity k are the coupons of M bonds and where ωi represents the weight
attached to the bond with profile δi in the government’s portfolio. According to Barrett et al. (2021)
even setting M = 2 can fit the US data very well and to simplify we adopt this value.

Even so, deriving an analytical formula is not easy and once again we solve (24) numerically. The
bottom panel of Figure 3 sets δ1 = 0.75, an average maturity of 4 quarters for the first bond, and
δ2 = 0.975 which gives an average maturity of 10 years for the long term asset.24 On the horizontal
axis we have plotted the weight ω, the share of the long bond in the portfolio. The solid blue is
the optimal coefficients in the model with lump sum taxes and the red line assumes distortionary
taxation. The green dotted line again plots 1− 1

Maturity
.25 Finally, the arrow points to the value of ω

23Intuitively, the Poisson model compiles the forces of both the zero coupon and the decaying coupon models. For
example assuming λ̃ + 1 = 20 (5 year average maturity) implies only a small amount debt outstanding at the short
end of the maturity structure and most of debt is concentrated around the mean. Then, the Ramsey planner will find
optimal to initially set inflation as in the zero coupon model (a response that is roughly flat over time) and when
the bulk of debt is close to redemption (i.e. after 15 quarters or so) then inflation will start to monotonically decay
towards 0.
Given our previous findings, the result that a simple rule approximates this Ramsey outcome, is therefore not

surprising.
24This provides a good approximation of the data since a large share of the outstanding debt in the US is concentrated

at maturities between 1 month and 1 year, but also long bonds of maturity equal to 10 years (or more) are being
issued.

25See the notes of the table for how we have calculated average maturity in this model.
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that gives an average maturity of 5 years, the US data calibration. Evidently, the optimal coefficients
continue being close to 1− 1

Maturity
.

To close this paragraph we note that the simple inflation targeting rule continues providing a
very good approximation of the Ramsey outcome in terms of the policy objective also in this model.
To conserve space we prove this claim in the appendix.

3.2 Alternative Rules

The previous subsections showed that a simple inflation targeting rule can deliver effectively the same
outcome as Ramsey policy when the policy objective focuses on minimizing the variability of fiscal
inflation. When the debt payment profiles decay at constant rate δ (an assumption that fits well the
US data) we obtained an equivalence of the two types of policies. Under alternative debt structures
a rule based policy can approximate closely the Ramsey outcome in terms of the loss function.

We now briefly investigate whether assuming a different interest rate rule (drawing from the set
of commonly used rules in the literature) can alter these findings. In particular, we consider rules in
which the nominal rate can respond to both inflation and output and inertial rules, when the interest
rate tracks the first order lag. Would assuming these alternative policies enable us to better match
the Ramsey responses of inflation?

In the context of our simple Fisherian model, it turns out, that these alternative rules will basically
lead to exactly the same outcome as the simple inflation targeting rule. To see this, consider first
the case where the policy rule is of the form:

ît = ϕππ̂t + ϕY Ŷt (27)

Combining this rule with the Euler equation and the Phillips curve, we can show that inflation
dynamics evolve according to:

Etπ̂t+1 =
ϕπ +

ϕY
κ1

1 + β ϕY
κ1

π̂t

It is obvious that the sufficient condition to have an equilibrium in this model is ϕπ +
ϕY
κ1
(1−β) ≤ 1,

the standard configuration of the parameters for which monetary policy is passive. Moreover, solving
the optimal policy program, finding coefficients ϕπ, ϕY to minimize the variability of inflation can be
trivially shown to yield:

ϕπ +
ϕY
κ1

1 + β ϕY
κ1

≈ 1− 1

Maturity

and showing that including an explicit output target will not yield any improvement relative to the
simple inflation targeting rule is also trivial.

Next, we consider a rule with interest rate inertia

ît = ρ̂it−1 + (1− ρ)ϕππ̂t

Following the same logic as above, it is simple to show that now it is optimal to set

(ρ+ (1− ρ)ϕπ) ≈ 1− 1

Maturity

(which defines a positive inflation coefficient in the case where ρ < 1− 1
Maturity

). Then, inflation will
display exactly the same dynamics as under our baseline policy rule, independent of ρ. We thus once
again obtain the previous outcome.
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Figure 3: Optimal Inflation Coefficients: Alternative Maturity Structures with Multiple
assets
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Notes: The top panel plots the optimal inflation coefficients under a Poisson payment structure of government debt.
The solid blue line assumes that taxes are lump sum and sets β = 1. The dashed red line sets β = 0.995 as in the
baseline calibration of the model. The crossed black line corresponds to the case of distortionary taxes and finally, the
green dotted line is the benchmark 1− 1

maturity .
The bottom panel of the Figure plots optimal inflation coefficients in the case where debt is issued in two decaying
coupon bonds with coefficients δ1, δ2 respectively. ω is the weight of type 2 debt in the government’s portfolio. The
figure plots the optimal inflation coefficients that solve equation (24) as a function of the weight ω. The solid blue line
assumes lump sum taxes whereas the red dashed line, distortionary taxation. The green line is again the benchmark

1− 1
Maturity . The average maturity has been computed using the formula

(1−ω) 1
(1−δ1)2

+ω 1
(1−δ2)2

(1−ω) 1
1−δ1

+ω 1
1−δ2

.
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3.3 Alternative Shock Structures

We have for simplicity considered a model where government spending shocks drive all fluctuations
in the surplus assuming further that shocks to government spending are i.i.d. It is however, simple
to extend our analysis, assuming persistent shocks in spending or other shocks driving fluctuations.

The case of persistent spending is simple to analyze. Since in our Fisherian model, the spending
shock is only filtered through the government budget constraint (it does not influence the Phillips
curve or the Euler equation) persistence will only matter through the ultimate effect of the shock on
the present value of the surplus. A more persistent shock may have a larger impact, but the optimal
path of inflation will not change either under Ramsey or under an optimized rule based policy. Only
the magnitude of the response of inflation will change. Thus, all the formulae derived previously will
continue to hold.

Next, consider the case of a shock to demand, assuming a disturbance that changes the real
interest rate (up to now we have assumed the latter to be constant).26 Such a shock will influence
both the government budget constraint and the Euler equation.

In this setting we can show that an optimized rule will be of the form:

ît = r̂t + ϕππ̂t

(where rt denotes the real rate and can be assumed a persistent process) setting also ϕπ ≈ 1− 1
Maturity

.27

The principle behind this policy is the following: Tracking the real interest rate, enables to eliminate
the shock from the Euler equation, and then using the systematic response to inflation, optimize
along the maturity structure of debt.

Lastly, assuming other sources of fluctuations, for example introducing random government trans-
fers to the model (another commonly made assumption in the context of the fiscal theory) will not
affect at all the formulae we derived previously. In our simplistic Fisherian model, shocks to spending
and transfers deliver effectively the same effects.

The key driver of optimal inflation dynamics in our model is the maturity structure of debt, and
thus far we showed that simple interest rate rules can bring us very close to the best equilibrium out-
come, the Ramsey policy. We next consider an alternative modelling setup for long term government
bonds, in which this result may not hold.

4 No buy back

Thus far we modelled long bonds following the bulk of the literature and assuming repurchases of
long debt one period after it has been issued. Though this assumption is commonly made as a
simplification it is obvious that it is at odds with the observed practices of both governments and
central banks. The stock of long term debt is not repurchased continuously, to be replaced by new
long debt.

Abandoning this assumption of full buybacks, requires to identify an alternative setup for the
modelling of long term debt. This might entail allowing for partial buybacks of long bonds prior
to maturity (e.g. Quantitative Easing) or even ruling out repurchases altogether and assuming that
debt is redeemed at maturity.

26In standard fashion, such a demand disturbance can be introduced in the model through a discount factor /pref-
erence shock in the background non-linear model.

27In the appendix we prove this explicitly in the case of decaying payment profiles. We obtain:

ît = r̂t + δπ̂t
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Both of these assumptions fit US policy in the post WWII era. Faraglia et al. (2019) provide
evidence that buybacks by the US Treasury have been very rare during this period, the Treasury
typically redeemed long term debt at maturity.28 On the other hand, the Federal reserve bought
considerable amounts of long term bonds as part of the Quantitative easing program launched in
the decade following the 2008-9 crisis and also intervened in secondary bond markets to buy long
term assets during the so called Operation Twist in the early 1960s. Since ours is a monetary model
featuring the consolidated budget constraint, it is appropriate to think of these episodes as partial
buybacks of long bonds.

Our analysis in this section adopts the first alternative and thus we rule out buybacks from the
outset and assume that the long bonds are always redeemed at maturity. We do so for simplicity
(modeling partial buybacks involves much more notation), but also because having covered the cases
of full buybacks in sections 2 and 3 and no buyback in this section, it becomes possible to think of
the intermediate scenario of partial buybacks.

Our results in this section demonstrate that no buyback can become an important friction for
optimal monetary policy under the fiscal theory. When we assume that debt is only long term (a
zero coupon bond) optimal Ramsey policy gives rise to oscillations in inflation that persist forever.
Simple inflation targeting interest rate rules lead to explosive inflation dynamics and thus cannot
approximate the Ramsey policy equilibrium.

The key element of the model that lies behind these strikingly different implications of the no
buyback model, relative to the full repurchase model we studied in the previous sections, is that
without buybacks the optimal policy’s ability to spread the distortions of inflation across time is
impaired. Whereas as we saw, under full repurchases the Ramsey planner issues debt to spread the
distortions evenly across periods (the Lagrange multiplier ψgov follows a random walk), under no
buyback and in the case of zero coupon long bonds, this is not a feasible outcome. The multiplier
follows instead a cycle of periodicity N implying uneven distortions for N > 1.

We then turn to evaluate whether this result applies to any maturity structure of debt, not only
to zero coupon long term bonds. Our key finding is that a necessary condition to avoid oscillations
under no buyback is that the government focuses not only on issuing long term debt, but issues
positive amounts of both short and long term bonds. Under this condition, it is possible to spread
distortions evenly across periods even when repurchases are ruled out.

4.1 Optimal Ramsey policy without repurchases

We begin by characterizing optimal policy under no buyback. The only equation of the model that
needs to be modified to rule out repurchases is the consolidated budget constraint. We now have

∞∑
k=1

βkbk(b̂t,k −
k∑
l=1

Etπ̂t+l) + SŜt = b1(b̂t−1,1 − π̂t) +
∞∑
k=2

bk(b̂t−k,k −
k−1∑
l=0

π̂t−l) (28)

Note that (28) differs from the constraint under buy back (equation (6)) only with respect to the
last term on the RHS. This term now measures the real value of debt that has reached maturity and
is redeemed in t. Thus, b̂t−k,k denotes debt that was of maturity k in period t− k. The real payout
of this debt in t depends on the realized inflation between periods t− k + 1 and t.

Notice also that the RHS of (28) does not represent the entire market value of debt that has
been issued by the government. Since debt is not redeemed prior to maturity, there are bonds that

28A noteworthy exception is the 2001 buyback program. Moreover, until the 1980s a sizable fraction of long term
debt outstanding was in callable bonds. This type of debt can be bought back prior to maturity, within a certain call
window which however starts long after the bond has been issued. For example, a callable 15 year bond can be bought
back 2 years before it matures. Callable bonds are thus approximately redeemed at maturity, their payment profiles
are similar to those of non-callable bonds (see Faraglia et al. (2019)).
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haven’t yet matured in the government’s portfolio. These objects will show up in future consolidated
constraints and also show up in the intertemporal budget constraint which equates the value of debt
to the present value of surpluses. The latter object can be written as:

Et

∞∑
j=1

βjSŜt+j = b1(b̂t−1,1 − π̂t) +
∞∑
k=2

bk

( k∑
i=1

βk−i(b̂t−i,k − Et

k∑
l=1

π̂t−i+l)

)
(29)

4.1.1 Optimal policy with one N bond.

For simplicity, let us first consider the Ramsey program under the assumption that the government
issues only one N period bond. The optimal policy solves:

max
{π̂t,Ŷt,b̂t,N}t≥0

−E0
1

2

∑
t≥0

βtπ̂2
t

subject to (1) and

βN
(
b̂t,N − Et

N∑
l=1

π̂t+l

)
+R(γh + 1)Ŷt −GĜt = bN

(
b̂t−N,N −

k−1∑
l=0

π̂t−l

)
(30)

The first order conditions are:

−π̂t +∆ψπ,t + bN

N∑
l=1

βN−l(ψgov,t+N−l − ψgov,t−l) = 0 (31)

−ψπ,tκ1 +R(1 + γh)ψgov,t = 0 (32)

ψgov,t − Etψgov,t+N = 0 (33)

and with appropriate substitutions we get the following expression for optimal inflation:

π̂t = R
1 + γh
κ1

∆ψgov,t + bN

N∑
l=1

βN−l∆NEtψgov,t+N−l (34)

where ∆Nψgov,t+N = ψgov,t+N − ψgov,t
There are several noteworthy features. First, note that the multiplier ψgov,t no longer follows a

random walk. As equation (33) shows, ψgov,t is equated to the expected value of the period t + N
multiplier, which gives us the standard martingale condition only when N = 1 (debt is short term).
Second, according to (34) inflation is no longer only a function of the current and lagged values of
the multiplier; also future multipliers exert an influence on the path of inflation.

To explain these properties we assume for simplicity N = 2. Iterating forward equation (30)
gives:

Et

∞∑
j=0

β2jSŜt+2j = b2(b̂t−2,2 − π̂t − π̂t−1) (35)

In (35) the market value of debt outstanding in t compensates for the surplus in t, t + 2, t + 4, ....
Consider an i.i.d shock Ĝt that lowers the LHS of (35). Then, since π̂t−1 is predetermined, only π̂t
can adjust to reduce the real value of maturing debt and ensure satisfaction of the constraint.
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Future inflation (in particular inflation in t+1 when we assume a two period asset) does not help
with making the debt solvent in t. The analogue of (35) in t+ 1 is:

Et+1

∞∑
j=0

β2jSŜt+1+2j = b2

(
b̂t−1,2 − π̂t+1 − π̂t

)
(36)

Evidently, the shock Ĝt has no impact on this intertemporal constraint. π̂t+1 will respond to the
(expected) surplus sequence Ŝt+1, Ŝt+3, Ŝt+5, ... and not to Ŝt, Ŝt+2, Ŝt+4, ....

Generically, since following a positive shock to spending (35) will tighten, but not necessarily
(36), these constraints will affect the solution differently and so the associated Lagrange multipliers
will differ. The fact that ψgov follows a cycle of 2 periods in the model can be understood in terms of
this property. To show how it affects the optimal path of inflation, we consider the impulse response
with respect to a shock occurring in period t and assuming no shock will hit the economy thereafter.
Conditional expectations can then be dropped and we can derive analytically the path of inflation.
We have:

Proposition 4: Assume N = 2 and consider a spending shock in period t assuming no further
shock thereafter. Optimal inflation in the Ramsey program under no buyback is:

π̂t+t =


R
κ1
(1 + γh)ψ + b2(ψ + βψ) t = 0

R
κ1
(1 + γh)ψ + b2ψ t = 1

R
κ1
(1 + γh)(ψ − ψ)It=even +

R
κ1
(1 + γh)(ψ − ψ)It=odd t > 1

(37)

where ψ ̸= ψ denote the values of the Lagrange multipliers, ψgov,t+j = ψ for j = 0, 2, 4, ... and
ψgov,t+j = ψ for j = 1, 3, 5, ....

Proof: See appendix.

The appendix provides an analytical formula for ψ, ψ.
There are two key messages in Proposition 4 that are worth highlighting: First, inflation in t+ 1

will generally not equal zero. Second, inflation will persist from period t + 2 onwards and follow a
2 period cycle. Generically, ψ < ψ and so inflation will be positive when t is even (i.e. in periods

t + 2, t + 4, .. etc) and negative when t is odd (periods t + 3, t + 5, .. etc). From equations (35) and
(36) it is clear why this is so. π̂t will adjust to satisfy (35), however, since π̂t > 0 when a positive
shock has hit, π̂t+1 must turn negative to satisfy (36). Then, π̂t+2 will be positive again to satisfy the
intertemporal constraint in t+2 and subsequently, π̂t+3 will have to compensate for this, in order to
satisfy the constraint in t+ 3. This process goes on indefinitely.

4.1.2 The effect of maturity.

In Figure 4 we use our baseline calibration to solve the optimal policy equilibrium under different
values of N .29 Consider first the cases where debt is long term, i.e. N ≥ 2. As is evident from
the Figure, optimal inflation follows a N period cycle which starts N periods after the shock hits.
The pattern highlighted in Proposition 4 thus holds more generally, across all N ≥ 2 considered in
the Figure. Moreover, the Figure shows that the longer the maturity is, the larger is the volatility

29Period t is period 1 in the graph.
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Figure 4: Responses to the spending shock under no buyback.

0 5 10 15 20 25 30 35 40
−1

0

1

2

3

4

5

6

7
x 10

−3

Period

In
fla

tio
n

N=1
N=2
N=3
N=10

Notes: The figure plots the path of optimal inflation in response to a shock that increases spending by 20% ( from
10% of GDP to 12% of GDP) under various maturity structures and assuming no debt repurchases.
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displayed by inflation. Thus, issuing long term debt under no buyback does not enable to spread the
burden of inflation through time. In the buyback model of Section 2, the opposite property held.

Finally, consider the case where N = 1 (solid blue line). Debt is short term and so repurchasing
is coincident to redeeming debt at maturity; the dynamics of inflation are effectively the same as the
analogous dynamics in the model of Section 2.

4.2 Interest Rate Rules under No Buy Back

We have seen that when long term bonds are redeemed at maturity, the optimal policy gives rise to
oscillations in inflation that persist indefinitely. The longer is the maturity of debt the larger are the
fluctuations in inflation after period N .

These features emerge from the Ramsey solution and so clearly they represent the best possible
competitive equilibrium outcome given the set of constraints that define the equilibrium and the
assumptions that we made in the model. Nonetheless, an equilibrium outcome in which inflation
fluctuates periodically may not be desirable from a practical standpoint. First, because the interest
rate rule that can implement this outcome will likely be a complicated function of macroeconomic
conditions and debt dynamics, and thus not conform with the principle that a policy rule should be
a simple, transparent function of macroeconomic variables. Second, foreseeable inflation oscillations
may be disruptive in various contexts, including in financial markets or in terms of firms’ pricing
decisions. Third, oscillations may imply that the nominal interest rate will periodically be at its
effective lower bound.

Our purpose here is not to acknowledge these issues explicitly; we want to investigate whether
alternative outcomes in which inflation does not feature considerable oscillations are available when
a policy rule of the form (18) is implemented by the monetary authority.

We reach a very negative result: In a model where debt repurchases are ruled out and government
debt is long term, a policy rule (18) does not yield a unique non-explosive solution. The appendix
proves the following Proposition:

Proposition 5. Consider the no buyback model where monetary policy follows (18), the con-
solidated budget constraint is given by (30), together with the Phillips curve and the Euler equation.
The dynamic system has N + 1 eigenvalues outside the unit circle for N forward looking variables
for all ϕπ ∈ [0, 1]. Thus, there is no non-explosive solution.

Proof: See appendix.

This result will also hold for ϕπ /∈ [0, 1]. We focus on the usual region where monetary policy is
passive, however, assuming (say) ϕπ > 1 will only add another unstable root to the system. Given
that the dynamic system is unstable, it is evident that inflation is an explosive process, a far worse
outcome than the stable oscillations we had previously. An equilibrium in which inflation does not
feature oscillations and monetary policy follows a simple rule as in (18) is not available.

The result in Proposition 5 suggests that in the presence of long term debt and no buyback, the
usual property that a unique stable equilibrium obtains in the fiscal theory when the Taylor principle
is violated (i.e. ϕπ < 1) will not hold. This will also apply if interest rates are set contingently on
current output or lagged interest rates. For example, a policy rule (27) will not deliver a non-explosive
solution even when ϕπ +

ϕY
κ1
(1− β) ≤ 1. This finding should be of interest.

4.2.1 Stability through odd rules

Key to the above result is that policy rule (18) does not pin down the lagged inflation terms on the
RHS of (30), π̂t, π̂t−1, ..., π̂t−N+1.
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It turns out that to obtain a stable equilibrium in this model, policy has to be specified in such
way so that ztt−N+1 ≡ π̂t + π̂t−1 + ... + π̂t−N+1 solves a stable difference equation. Thus, a rule that
gives

zt+Nt+1 = ϵztt−N+1 + Forcing Terms

will work provided that ϵ lies within the unit circle.
For simplicity, let us focus on the case N = 2. A policy rule that can work is of the form:

ît = ϕπ(π̂t + π̂t−1)− Etπ̂t+2 (38)

which determines z as the non-explosive solution to

Et(π̂t+2 + π̂t+1) = ϕπ(π̂t + π̂t−1)

This solution will not avoid oscillations in inflation. The higher is ϕπ, the larger will be the
oscillations in inflation, and the more persistent z will be. This is shown in Figure 5 which plots
the responses of inflation to a spending shock under various values of parameter ϕπ along with the
optimal Ramsey policy. Notice that no matter the size of the coefficient ϕπ, the initial response of
inflation is the same (close to 0.1 in the graph). Future expected inflation oscillations do not add
anything in terms of making debt more sustainable when the shock hits, but also do not worsen
the equilibrium outcome. Debt issuance will adjust to ensure satisfaction of future intertemporal
constraints. These properties suggest that in this model it should be optimal to set ϕπ ≈ 0. This
would also be (partially) consistent with Proposition 4, which showed that z becomes zero, three
periods after the shock in the Ramsey policy.

4.3 Is the result general (and the role of short term bonds)?

Policies of the form (38) produce a unique stable equilibrium (albeit one featuring oscillations) but
we cannot claim that they are obviously practically relevant. Not necessarily because they prescribe
targeting future inflation; rather the issue is that at long debt maturity N , a stable equilibrium path
is attained when the nominal interest rate tracks N − 1 leads and N lags of inflation, to pin down
z. A high N makes the number of variables that interest rates must respond to, very large. Such a
policy would be in practice difficult to implement as well as to interpret.

Rather than insisting on finding a simpler rule, one that relies on fewer variables to deliver a non-
explosive solution, we now take a different perspective and consider the role of the debt maturity
structure in determining the policy rule. In particular, we ask: Are there maturity structures such
that a simple rule of the form (18) gives us a stable equilibrium under no buyback? Under such
debt structures what is the optimal inflation coefficient and does the optimal policy provide a good
approximation of the Ramsey outcome?

Note that in answering these questions we will also be investigating the generality of the result
of the previous paragraph, that under no repurchases optimal policy cannot spread the distortions
of inflation evenly, to alternative assumptions about the maturity structure. The previous example
focused on a single zero coupon N bond, to develop analytical insights into how no buyback affects
feasible allocations, but this assumption can be seen as too restrictive.

It turns out that Propositions 4 and 5 can be extended in several meaningful ways, considering
richer maturity structures than a single N bond. For example, we can consider cases where the
government issues positive amounts of debt in long term bonds of maturities {k, k + 1, ..., N} and
still show that optimal Ramsey policy will feature oscillations, in this case a cycle of periodicity
k > 1. Moreover, we can allow the government to repurchase part or all of the stock of long term
debt, a few periods after it has been issued and still get oscillations in equilibrium. For example,

28



Figure 5: Responses to the spending shock under no buyback.
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Notes: The figure plots the path of inflation in response to a shock that increases spending by 20% ( from 10% of
GDP to 12% of GDP). We assume N = 2 and no debt repurchases. ϕπ = 0, 0.2, 0.5 are the assumed values of the
coefficient in (38). ‘Ramsey’ stands for the optimal Ramsey policy outcome.
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consider a long-term bond of maturity N assuming it can be repurchased periods j after issuance.
Let also 1 < j < N so that the bond is not repurchased right after issuance (in the next period)
and it is also not redeemed at maturity. In this model optimal policy will feature fluctuations of
periodicity j.30

Given these observations as well as our previous analytical results, it becomes evident that if there
is any chance to obtain an equilibrium without oscillations under no buyback, then the portfolio of
the government should not only feature long term bonds but also positive amounts of short term
debt. With short bonds, no buyback is coincident with buyback and the optimal policy will again
be able to spread the distortions of inflation evenly across periods. We now illustrate this property
formally and also show that simple interest rate rules approximately give us the Ramsey outcome.

Let us first go back to Ramsey policy equilibrium and consider that b1, b2, ..., bN > 0. To simplify
our derivations we fix the portfolio shares assuming that b̂t,1 = b̂t,2 = ... = b̂t. We also assume the

following debt structure: b1 = b2, ..., bN−1 = b ≤ bN = b̃.

The last assumption imposes that the bond quantities are b for maturities 1 to N − 1 and then b̃

for maturity N . This nests the case of a flat maturity structure when b = b̃, which becomes a consol

bond when N → ∞. In the case where b < b̃ the government issues debt in a long bond that pays
constant coupons equal to b

b̃
and the principal can be normalized to 1. In all these cases some short

maturity debt is being issued.
Under these assumptions the budget constraint is:

b̂t

(
b
N−1∑
j=1

βj + βN b̃

)
− b

N−1∑
j=1

βj
j∑
l=1

Etπ̂t+l − b̃βN
N∑
l=1

Etπ̂t+l + SŜt

= b
N−1∑
j=1

(
b̂t−j −

j−1∑
l=0

π̂t−l

)
+ βN b̃

(
b̂t−N −

N−1∑
l=0

π̂t−l

)

The first order condition of the Ramsey program with respect to b̂t is given by:

ψgov,t

(
b
N−1∑
j=1

βj + βN b̃

)
−
[
b

(N−1∑
j=1

βjEtψgov,t+j

)
+ b̃βNEtψgov,t+N

]
= 0 (39)

which implies non-trivial dynamics linking the current value of the multiplier with the expected
future values up to period t+N .

To analyze these dynamics let us revisit the previous example where a shock hits the economy in
t and no further shock is expected thereafter. We can then derive the following Nth order difference
equation that determines ψgov,t :

ψgov,t+N +
b

b̃

(
1

β
ψgov,t+N−1 +

1

β2
ψgov,t+N−2 + ...+

1

βN−1
ψgov,t+1

)
−
(
b

b̃

1− 1
βN

1− 1
β

+ 1

)
ψgov,t = 0 (40)

The above equation has one root that is equal to 1. In the case where N = 2 there is another real

30Under this modelling assumption debt is issued in a callable bond with a call option (starting) at j. In practice
callable bonds can be bought back at different dates, within a call window that typically starts close to maturity.
(For example, ten year callable debt can be repurchased within 2 years before it matures.) However, the US Treasury
always bought back this debt at the start of the call window (see Faraglia et al., 2019). Thus assuming that debt can
only be bought in period j is not restrictive.
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root, equal to −(1 + b

b̃

1
β
) < −1. Let us focus on this case for simplicity.31 We then have that

ψgov,t+2(1− L)

(
1 + (1 +

b

b̃

1

β
)L

)
= 0

where L denotes the lag operator. Notice that when b = 0 this gives

∆ψgov,t+2(1− L) = 0 → ψgov,t+2 = ψgov,t

and as before we obtain a 2 period cycle. However, in the case where b > 0 we can write

− 1

(1 + b

b̃

1
β
)
∆ψgov,t+2 = ∆ψgov,t+1

Assuming a bounded process, or limj→∞(−(1 + b

b̃

1
β
))j∆ψgov,t+j = 0, delivers the following:

∆ψgov,t+1 = 0

The random walk property of the multiplier is restored.

This is an important property. Recall that in the Ramsey model with a single long bond, inflation
oscillations under no buyback resulted from the fact that inflation in period t would compensate for
changes in the value of the surplus in periods t, t + 2, t + 4, .. but not for the surplus in periods
t+1, t+3, .... Then, π̂t would absorb the shock Ĝt, and this would ensure satisfaction of (35), but it
would also perturb (36) so that π̂t+1 needs to adjust to satisfy the constraint. The effect carried over
to other periods. In terms of the Ramsey program, this then meant that (35) and (36) impact the
solution differently, or generically ψgov,t ̸= ψgov,t+1. Proposition 4 showed that inflation oscillations
can be described in terms of these multipliers.

The fact that ψgov,t = ψgov,t+1 when short debt is issued implies that inflation oscillations will not

occur. We can show that following a shock in Ĝt inflation will evolve according to:

π̂t+t =


R
κ1
(1 + γh)ψ + bψ + b̃ψ(1 + β) t = 0

b̃ψ t = 1

0 t > 1


where ψ now denotes the difference of the Lagrange multiplier between the pre shock value and the
value after the shock.

Quite evidently, the response of inflation to the shock resembles the analogous object in the
buyback model of Section 2.

4.3.1 Why are short term bonds so important?

Another way of saying that (35) and (36) influence differently the Ramsey solution under no buyback
and only long term debt, is to say that we cannot add up these constraints in the Ramsey program.
If the Lagrange multipliers were equal then solving the Ramsey program using the intertemporal
constraint

Et

∞∑
j=0

βjSŜt+j = b2

(
b̂t−2,2 − π̂t − π̂t−1

)
+ b2β

(
b̂t−1,2 − Etπ̂t+1 − π̂t

)
(41)

31Otherwise for N > 2 some of the roots of the characteristic equation are complex and moreover it is difficult to
factor the characteristic polynomial.
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would suffice. Generally, equation (41) is not sufficient for an optimal policy equilibrium under
no buyback (see Faraglia et al., 2016). Instead (35) and (36) are both important implementability
conditions, along with the Philips curve.

When short term debt is issued however, the intertemporal constraint (the analogue of equation
(41))

Et

∞∑
j=0

βjSŜt+j = b2

(
b̂t−2,2 − π̂t − π̂t−1

)
+ b2β

(
b̂t−1,2 − Etπ̂t+1 − π̂t

)
+ b1

(
b̂t−1,1 − π̂t

)
(42)

becomes sufficient. The intuition is that the short bond issuance can adjust to satisfy (42) in t + 1
(and all future periods) given a smooth path of inflation following the shock in spending. Thus,
under no buyback, the planner can use short term debt to smooth inflation over time, and satisfy
the standard intertemporal solvency condition (42).

These results stand out as particularly relevant for the literature studying optimal fiscal inflation
policy under a Ramsey planner. A well known feature of these models is that when debt is long
term, inflation can more effectively absorb shocks to spending, enabling the planner to minimize
distortions by committing to inflate away public debt over a long horizon (e.g. Lustig et al., 2008;
Sims, 2013; Leeper and Zhou, 2021 among others).32 Issuing debt in the longest maturity available,
enables to fully exploit this channel (e.g. Lustig et al., 2008).

However, these predictions do not carry over to the no buyback model. As we showed, when only
long term bonds are issued, then inflation features excess volatility and oscillations that increase in
N (e.g. Figure 4). Focusing on long term debt does not enable to smooth inflation over time.

Finally, note that our findings in this paragraph are similar to Faraglia et al. (2019) who show,
in a Ramsey model of optimal taxation, that no buyback generates the incentive to issue short term
debt. Their non-linear model predicts an optimal debt structure in which short bonds make up for
roughly half of the total market value of debt issued. Here, we used a simpler (linear) model, which
does not pin down an optimal portfolio. We leave this to explore in future research.

4.3.2 Inflation targeting rules under no buyback.

Issuing short term debt brings us back to our previous findings regarding the optimality of simple
interest rate rules. We can show that (18) once again leads to a unique non-explosive solution, and
delivers a close approximation of the Ramsey policy. Instead of working through all previous model
versions, let us focus here on the case where the maturity structure is flat and N → ∞. Then (39)
becomes:

1

1− β
ψgov,t =

∞∑
j=1

βjEtψgov,t+j = (1− β)βEt
1

1− βL−1
ψgov,t+1

which again gives the random walk. The following Proposition defines the optimal interest rate policy
in this model:

Proposition 6. Assume no buyback and long bonds are consols. The optimal path of ît under
Ramsey is given by:

ît = π̂t −
R

κ1
(1 + γh)∆ψgov,t

which is the same optimal monetary policy as in the buyback model.

32This prediction was confirmed in our buyback model. Consider again Proposition 1. Coefficients η−j become 0 as
N → ∞.
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Proof: See appendix.

Clearly, in the case where R = 0 the optimal policy is a rule (18) where the inflation coefficient is
1− 1

Maturity
in this case where the average maturity is infinite. The coefficient will be approximately

one when R > 0.
Finally, note that Proposition 6 can be extended to the case of decaying coupon payments. The

proof that we provide in the appendix begins from this assumption and shows the more general
result.

5 Extensions: Output Stabilization, the Canonical Model

and Optimal Fiscal Policy

The main takeaway from the previous sections is that optimal policies can be implemented through
simple inflation targeting rules. We utilized a simplistic setup, assuming that the central bank seeks
to stabilize inflation and considering a Fisherian model in which the real interest rate is exogenous
and not a function of output.

We now show that our results carry over to alternative setups of policy, when the central bank
pursues a dual objective of stabilizing inflation and the output gap and when the real rate is a
function of output as in the canonical New Keynesian model. Finally, we also briefly consider a
jointly optimal monetary/fiscal policy program, and show that our results continue to hold in this
case where taxes are not constant.

Our results in this section focus, for simplicity, on zero coupon N bonds, and on decaying coupon
δ bonds.

5.1 Output stabilization.

Consider first the case where the objective of policy is to stabilize both inflation and the output
gap and let us maintain the assumption that the real interest rate is exogenous as in our baseline
Fisherian model. The objective of the planner is given by:

−1

2
E0

∑
t≥0

βt(π̂2
t + λY Ŷt) (43)

where λY is the relative weight attached to stabilizing output around its target steady state level.
It is simple to show that optimal policy (when taxes are lump sum) will set:

π̂t +
λY
κ1

∆Ŷt =
∞∑
k=1

bk

k∑
l=1

βk−l∆ψgov,t−l+1 =


bN
∑N−1

l=0 βN−l−1∆ψgov,t−l

b
1−βδ

∑∞
l=0∆ψgov,t−l

(44)

where the last equality states the formulae for the N and the δ bonds separately.
As is evident from (44) optimal inflation is now a function of output growth ∆Ŷ as well as the

multipliers ∆ψgov. Using the Phillips curve we can obtain:

∆Ŷt =
1

κ1

(
π̂t(1 + β)− βEtπ̂t+1 − π̂t−1

)
− ζt

where ζt ≡ β
κ1
(π̂t −Et−1π̂t) can be written as a function of the spending shock under optimal policy.

Using this result, we can arrive to the following second order difference equation governing the
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dynamics of inflation in this model:

Etπ̂t+1 − (1 +
1

β
+ κ̃)π̂t +

1

β
π̂t−1 = µt (45)

where the forcing term µt is a function of ζt and the Lagrange multipliers (see appendix).
The two roots of (45) are:

ν1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1 +

1

β
+ κ̃)− 4

β

)
(46)

and it is easy to show that one root is (say ν1) is stable, and one root is unstable.

Let us now turn to the optimal interest rate rule. Note that the above conditions seem to suggest
that a simple rule that can implement the Ramsey outcome is:33

ı̂t = (ν1 + ν2)π̂t − ν1ν2π̂t−1 + µt

However, repeating the arguments we made in subsection 3.1.2, we can show that the fact that
ν2 lies outside the unit circle, implies that no stable equilibrium can be reached in this model.

We thus again need to turn to an inflation targeting rule of the form (18) and find the optimal
coefficient ϕπ, or even, for this model in which Ramsey inflation evolves according to a second order
difference equation, a rule in which both current and lagged inflation exert an influence on the
nominal rate provides a better approximation of optimal policy.

We focus on the second scenario and consider rules of the form

ît = (ν1 + ϕπ)π̂t − ν1ϕππ̂t−1 (47)

setting the coefficient ϕπ to maximize the objective (43).
Consider first the single bond model. Equilibrium inflation is given by

π̂t =
t∑

j=0

ϕj+1
π − νj+1

1

βN−1bN
∑N−1

l=0 (ϕl+1
π − νl+1

1 )
GĜt−j

(see appendix). Using the Phillips curve it is then easy to obtain an analogous closed form solution
for output.

In the appendix we derive the objective (43), and the first order condition defining the optimal
coefficient ϕπ. The formulae are cumbersome and they do not always admit an analytical solution,
and so we will not show them here, however, one analytical result that is worth highlighting, concerns
the optimal coefficient under short term debt. When N = 1 we get ϕ∗

π = 0 which essentially means
that ît = ν1π̂t is the optimal interest rate rule.

Recall that when the planner stabilizes inflation only, the optimal interest rate rule features no
systematic reaction to inflation. Here, in contrast, it is optimal for ît to respond to inflation and
setting the inflation coefficient to be equal to ν1 > 0.

What explains this difference? When output smoothing becomes an objective, a policy that fea-
tures no persistence in inflation, under short term debt, is not optimal because concentrating inflation
in the period the shock hits results in high output volatility. In contrast, making inflation persistent,
enables to smooth output across time, and delivers a better outcome in terms of the objective (43),
in spite of the fact that inflation persistence does not contribute anything towards stabilizing debt.
A higher weight λY increases persistence, and in the limit when λY → ∞ (equivalently when the

33This follows easily from (45) and the Euler equation.
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planner only targets output) we have ν1 → 1. Inflation will then permanently rise in response to a
positive spending shock.

These properties carry over to the case N > 1. When maturity is long however, making inflation
a persistent process is desirable also from the point of view of reducing inflation variability. Thus
the goals of smoothing inflation and output line up.

A simple inflation targeting rule of the form (47) can approximate the Ramsey solution closely also
in this model. Rather than showing these results here, we leave them for the appendix and instead
turn to the more realistic case where debt payments decay at rate δ. The following Proposition shows
the optimal interest rate rule for this model.

Proposition 7: Assume bk = bδk−1 and Ramsey policy maximizes objective (43). Then, the
optimal interest rate rule that implements the Ramsey outcome is:

ît = (ν1 + δ)π̂t − ν1δπ̂t−1 + Stochastic Intercept (48)

Proof: See Chafwehé et al. (2022).

Analogously to our previous findings in the decaying payment profiles model, a rule based policy
is an optimal policy in the sense of Ramsey and sets ϕ∗

π = δ. The ‘stochastic intercept term’ in (48) is
once again a function of ∆ψgov,t (and can be written as a function of the spending shock). In the full
blown Ramsey solution this term captures the incentive of the planner to hold the nominal rate at a
slightly lower level, contemporaneously with a positive spending shock. The effect concerns only the
period that the shock occurs and one can show that it does not matter much for the resulting optimal
paths of inflation and output. Therefore, omitting this term and focusing on a simple rule setting
the nominal interest rate as a function of current and lagged inflation, is sufficient to approximate
the Ramsey outcome very well. For brevity we relegate these derivations and numerical results to
the appendix.

5.2 The canonical New Keynesian model

Our results in the previous sections were derived assuming a simplistic Fisherian setup in which
the real interest rate is exogenous. This enabled us to derive transparent interest rate rules under
various maturity structures, including to investigate the effects of debt buybacks on optimal policy.
Naturally the reader will be wondering whether the main result of this paper, that simple interest rate
rules can approximate the Ramsey outcome (under no buyback when short bonds are being issued)
will continue to hold in the canonical New Keynesian model when the real interest rate becomes a
function of output growth and spending. We argue that it will.

Obviously, investigating the canonical model in detail, repeating the previous derivations, requires
a lot more space than this robustness subsection provides; it requires a separate paper! Chafwehé
et al. (2022) have taken up the task of characterizing optimal rules in this model, focusing on the
decaying payment profile structure and assuming as is common in the literature, debt buybacks. We
will summarize in a few lines their findings here, and also provide additional numerical results in the
appendix to show optimal policies in the case of N bonds under buyback and no buyback.

A crucial difference between our Fisherian setup and the canonical model is that in the latter,
output fluctuations contribute towards making debt sustainable whereas in the former this is not
so. Consider again the intertemporal budget constraint in the Fisherian model, equation (12). The
RHS of this equation features only inflation. The LHS will depend on output when we assume
distortionary taxes, but as we explained previously, this does not have a significant effect on optimal
policy.
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In the canonical model, the analogue of equation (12) is:

Et

∞∑
j=0

βjSŜt+j =
b

1− βδ
b̂t−1 + b

∞∑
j=0

(βδ)jEt

[
−σ(Y

C
Ŷt+j −

G

C
Ĝt+j)−

j∑
l=0

π̂t+l

]
(49)

where we assume a decaying debt profile structure. Parameter σ denotes the inverse of the in-
tertemporal elasticity of substitution. C, Y are the steady state levels of consumption and output
respectively.

The RHS of the constraint is a function of output. When a spending shock hits, changing the
present value of the surplus on the LHS, then both changes in output and inflation can absorb the
shock and ensure satisfaction of (49).

In the presence of this additional output channel, the optimal policy will not only target inflation
to make debt sustainable, but also target output, accounting simultaneously for the indirect effect
of inflation on output, through the Phillips curve.34

It is however possible to derive a simple inflation targeting rule in this model which expresses the
nominal interest rate as a function current inflation. In particular, we have

ît = rnt +

(
δ +

σ

κ1

Y

C
(1− δ)(βδ − 1)

)
π̂t + Stochastic Intercept

A couple of lines are needed to explain this formula. First, notice that the leading term rnt is
the natural rate of interest, the real rate obtained under flexible prices. This can be expressed as a
function of the spending shock and it holds that rnt = σG

C
(1− σ

γh+σ
Y
C

)Ĝt
35. Basically, through tracking

the real rate, the optimal policy accomplishes to eliminate the shock from the Euler equation. Then,
the spending shock can only affect the economy through the debt constraint and the Phillips curve.

Second, the optimal inflation coefficient is now not simply equal to δ: there is an additional term
that depends on parameters δ, β, κ1, σ. This term measures the indirect effect of inflation (through
output) on the consolidated budget constraint. A positive spending shock leads to an increase in
inflation that transmits to output through the Phillips curve. Higher output will increase the real
interest rates, leading to a drop in bond prices. This also contributes towards stabilizing government
debt, through lowering the RHS of (49). Clearly, assuming σ = 0 brings us back to the Fisherian
setup we considered previously.

Our purpose here is not to evaluate this model in detail, only to show that optimal policy can
be approximated by simple inflation targeting rules in the canonical model. We refer the reader to
Chafwehé et al. (2022) for a further analysis of optimal policy when σ > 0. In the appendix, we
present numerical results from this model as well as for the case where the government issues one N
bond.36 We continue to find that inflation targeting rules effectively deliver the Ramsey outcome.
Finally, we revisit our results in Section 4 showing that N bonds under no buyback induce instability
under the optimal policy equilibrium.

34Note that output will also influence the LHS in (49) since the real interest rates influences the present value of
government surpluses. Optimal policy will also internalize this effect, see Leeper and Zhou, 2021 and Chafwehé et al.
(2022) among others for this additional discounting channel.

35For a persistent shock the expression is modified to rnt = σG
C
(1− σ

γh+σ Y
C

)Ĝt(1− ρG), where ρG is the first order

autocorrelation coefficient.
36It is interesting to note that in the case of N bonds the optimal inflation coefficient becomes (approximately)(
1− 1

N + σ
κ1

Y
C

1
N (β(1− 1

N )− 1)

)
, that is analogous to the optimal coefficient we derived for δ bonds.
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5.3 Optimal Taxation and Inflation

Before concluding the paper in the next paragraph we briefly discuss an additional set of results
derived in the appendix.

Throughout the paper we have assumed, for analytical tractability, that taxes are constant
through time. Though this is a standard assumption in the context of the fiscal theory (see for
example Bianchi and Ilut, 2017; Bianchi and Melosi, 2017), assuming that taxes respond to shocks
will not affect our results. We make this point in the appendix, using the model of Sections 2 and 3
but letting the Ramsey planner optimally sets distortionary taxation along with inflation and output
as in Siu (2004); Schmitt-Grohé and Uribe (2004); Faraglia et al. (2013); Sims (2013); Leeper and
Zhou (2021).37

Following Sims (2013) we assume the following objective function for the policy maker:

−1

2
E0

∑
t≥0

βt
(
π̂2
t + λτ τ̂

2
t

)
(50)

The optimal policy sets taxes according to:

λτ τ̂t = ψgov,t
c̃

λτ

for c̃ a function of model parameters, which for brevity defined is in the appendix. Optimal taxes thus
respond only to the multiplier ψgov,t following a random walk (a standard property of optimal policy
models) for 0 < λτ <∞. The first order conditions for inflation, output and government debt do not
change and so we can repeat previous steps and derive optimal interest rate rules in this model.38

The only way in which the availability of taxes as an additional policy instrument affect our previous
results, is through impacting the magnitude of the response of inflation to the shocks. When the
welfare costs of tax distortions are less than the costs due to inflation (that is when λτ is low and the
degree of price stickiness θ is high), the planner will opt for using taxes to adjust the intertemporal
surplus (e.g. Siu, 2004; Schmitt-Grohé and Uribe, 2004; Faraglia et al., 2013). When the opposite
holds, relying more on inflation to finance debt becomes optimal (e.g. Sims, 2013; Leeper and Zhou,
2021). The time-path of inflation will not change.

6 Conclusion

We studied optimized interest rate rules in the context of the fiscal theory of the price level. Our
key result is that simple inflation targeting rules can approximate closely the Ramsey outcome. The
optimal inflation coefficient depends on the average debt maturity. We derive simple formulae show-
ing this dependence. We also investigate how departing from the canonical modelling of long bonds
found in the literature, that is by making the empirically grounded assumption of no repurchases
of long term debt, affects our results. Under no buyback, simple inflation targeting rules work only
when the government issues a portfolio with positive amounts of both short and long term bonds.
Otherwise, the optimal policy equilibrium features excess volatility of inflation, which takes the form
of persistent oscillations. Contrarily to previous studies that ignore the no buy-back constraint, we
conclude that short-term debt has an important role to play in the stabilization of inflation.

37Obviously, with lump sum taxation the optimal policy can completely insulate inflation from fiscal shocks by
making the consolidated budget constraint slack.

38This may seem more involved here, because fiscal policy is set jointly with inflation, but we can solve for the tax
schedule under Ramsey analytically as a function of spending and use this as a tax policy in the rule based model.
Alternatively, proving that the optimal rules deliver effectively the same outcome as Ramsey can be done by adding the
interest rate rule as a constraint to the Ramsey program and comparing the policy objective with the unconstrained
Ramsey solution. Such exercises are not uncommon in the literature (see Leeper and Leith (2016) among others).
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Appendices

Appendix A Proofs of propositions

A.1 Proof of proposition 1

Optimal inflation is given by:

π̂t = R
(1 + γh)

κ1
∆ψgov,t + bN

(
βN−1∆ψgov,t + βN−2∆ψgov,t−1 + ...+∆ψgov,t−N+1

)
(51)

We can write the intertemporal consolidated budget constraint ((12) in text) as

R

κ1
(1 + γh)π̂t −GĜt = bN b̂t−1,N − βN−1bNEt

(
π̂t + π̂t+1 + ...+ π̂t+N−1

)

Letting ω ≡ R
κ1
(1 + γh), replacing (51) into the constraint and using the random walk property of

the multiplier we get:

ω

[
ω∆ψgov,t + bN

(
βN−1∆ψgov,t + βN−2∆ψgov,t−1 + ...+∆ψgov,t−N+1

)]
−GĜt =

bN b̂t−1,N − βN−1bN

[
ω∆ψgov,t + bN

(
βN−1∆ψgov,t + βN−2∆ψgov,t−1 + ...+∆ψgov,t−N+1

)
︸ ︷︷ ︸

π̂t

+ bN

(
βN−2∆ψgov,t + ...+∆ψgov,t−N+2

)
︸ ︷︷ ︸

Etπ̂t+1

+...+ bN∆ψgov,t︸ ︷︷ ︸
Etπ̂t+N−1

]

Noting that in the absence of any shock in t the lagged terms on the LHS and RHS of the above

equation must cancel out for the intertemporal constraint to hold, we have:

ω

[
ω∆ψgov,t + bNβ

N−1∆ψgov,t

]
−GĜt = −βN−1bN

[
ω∆ψgov,t + bN∆ψgov,t

(
1 + β + ...+ βN−1

)]
Thus:

[(
ω + bNβ

N−1

)2

+ (βN−1bN)
2

( 1
βN − 1
1
β
− 1

)]
∆ψgov,t = GĜt

Using this result in (51) delivers the expression in Proposition 1. ■

A.2 Proof of proposition 2

The proof is analogous to that of Proposition 1. We can write the intertemporal constraint (12) as
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R

κ1
(1 + γh)π̂t −GĜt = dd̂t−1 −

∞∑
k=1

βk−1bkπ̂t −
∞∑
k=2

βk−1bk

k−1∑
l=1

Etπ̂t+l (52)

Using the random walk property of the multiplier we have

Etπ̂t+l =
∞∑
k=l

bk

k∑
i=l+1

βk−i∆ψgov,t+l−i+1 (53)

Noting that all lagged terms t− 1, t− 2, ... will cancel out in the intertemporal constraint, we get the

following expression that pins down ∆ψgov,t.

∆ψgov,t(
R

κ1
(1 + γh) +

∞∑
k=1

βk−1bk)
2 +∆ψgov,t

∞∑
k=2

βk−1bk

k−1∑
l=1

∞∑
i=l+1

biβ
i−(l+1) = GĜt (54)

Moreover we have:

∞∑
k=2

βk−1bk

k−1∑
l=1

∞∑
i=l+1

biβ
i−(l+1) =

∞∑
k=2

βk−1bk

k∑
l=2

∞∑
i=l

biβ
i−l =

∞∑
k=2

βk−1bk

∞∑
l=2

Il≤k
∞∑
i=l

biβ
i−l

=
∞∑
l=2

βl−1

( ∞∑
k=l

βk−lbk

)
︸ ︷︷ ︸

λl

( ∞∑
i=l

biβ
i−l
)

︸ ︷︷ ︸
λl

=
∞∑
l=2

βl−1λ2l

To see the last equality, that
∑∞

k=l β
k−lbk ≡ λl use the definition of λ in text. We stated that:

λ1 =
∑
j=1

βj−1bj =
S

1− β

λ2 =
1

β

(
λ1 − b1

)
=

1

β

(∑
j≥1

βj−1bj − b1

)
=
∑
j≥2

βj−2bj

λ3 =
1

β

(
λ2 − b2

)
=

1

β

(∑
j≥2

βj−2bj − b2

)
=
∑
j≥3

βj−3bj

and so on. With these formulae, (52) becomes

∆ψgov,t

(
f̃ 2 +

∞∑
l=2

βl−1λ2l

)
= GĜt

The coefficients η−j follow easily from the above. ■
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A.3 Proof of Proposition 3

With the assumptions of Proposition 3 the first order condition can be written as:[
βϕπ

1− βϕ2
π

( ∞∑
k=1

βk−1δk−11− ϕkπ
1− ϕπ

)
−

∞∑
k=1

βk−1δk−1 1

(1− ϕπ)2

(
1 + (k − 1)ϕkπ − kϕk−1

π

)]
= 0 (55)

Expanding the sums and using the geometric formula we get

βϕπ
1− βϕ2

π

1

1− ϕπ

(
1

1− βδ
− ϕπ

1− ϕπβδ

)
=

1

(1− ϕπ)2

[
1

1− βδ
+

ϕ2
πβδ − 1

(1− βδϕπ)2

]
This reduces to

ϕπ
1− βϕ2

π

=
δ

(1− βδϕπ)

It is obvious that ϕπ = δ is the solution. ■

A.4 Proof of proposition 4

Assume that the economy is hit by a shock in t and after there are no more shocks. To simplify,

assume initial conditions ψgov,t−1 = ψgov,t−2 = ... = 0 and b̂t−1,2, b̂t−2,2 = 0. Assume further that

π̂t−1 = 0. Optimal Ramsey inflation satisfies:

π̂t+t = R
(1 + γh)

κ1
∆ψgov,t+t + b2

(
β(ψgov,t+1+t − ψgov,t−1+t) + (ψgov,t+t − ψgov,t−2+t)

)
(56)

From ψgov,t+t = ψgov,t+t+2 we define:

ψ = ψgov,t = ψgov,t+2 = ψgov,t+4 = ...

ψ = ψgov,t+1 = ψgov,t+3 = ψgov,t+5 = ...

We then have the following path for inflation:

π̂t = R
(1 + γh)

κ1
ψ + b2

(
ψ + βψ

)
π̂t+1 = R

(1 + γh)

κ1
(ψ − ψ) + b2

(
ψ + βψ)

)
π̂t+2 = π̂t+4 = ... = R

(1 + γh)

κ1
(ψ − ψ) + b2(1− β)

(
ψ − ψ

)
π̂t+3 = π̂t+5 = ... = −R(1 + γh)

κ1
(ψ − ψ)− b2(1− β)

(
ψ − ψ

)
To verify that indeed ψ ̸= ψ use the intertemporal budget constraints. The following two objects
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are sufficient for an equilibrium:

−b2π̂t =
∑
j≥0

β2jR(1 + γh)Ŷt+2j − Ĝt (57)

−b2(π̂t + π̂t+1) =
∑
j≥0

β2jR(1 + γh)Ŷt+2j+1 (58)

Using the Phillips curve we can write the first condition as:

−b2π̂t = −b2
[
R

κ1
(1 + γh)ψ + b2

(
ψ + βψ

)]
=
R(1 + γh)

κ1

[
(π̂t − βπ̂t+1) + β2(π̂t+2 − βπ̂t+3) + ...

]
− Ĝt

Letting ω = R(1+γh)
κ1

, we can simplify this equation:

−b2
[
ωψ + b2

(
ψ + βψ

)]
= ω

[
(ω + b2)ψ + b2βψ − β(ω + b2)ψ

]
+

β2

1− β
ω2(ψ − ψ)− Ĝt

Rearranging we get

−
[
(ω + b2)

2 +
β2

1− β
ω2

]
︸ ︷︷ ︸

ϵ1

ψ − β

[
b
2

2 −
ω2

1− β

]
︸ ︷︷ ︸

ϵ2

ψ = −Ĝt

Moreover, rather than using the second intertemporal constraint, we use the sum of the two

constraints. This gives us:

−b2π̂t − b2β(π̂t + π̂t+1) = ωπ̂t − Ĝt

or

− (b2(1 + β) + ω)

[
(ω + b2)

]
︸ ︷︷ ︸

ϵ3

ψ − b2β

[
2ω + b2(2 + β)

]
︸ ︷︷ ︸

ϵ3

ψ = −Ĝt

Solving the two equations gives:

ψ =
ϵ4 − ϵ2

ϵ4ϵ1 − ϵ2ϵ3
, ψ =

ϵ1 − ϵ3
β(ϵ4ϵ1 − ϵ2ϵ3)

Generically ψ ̸= ψ. ■

A.5 Proof of Proposition 5

For simplicity, we prove the Proposition for N = 2. The proof is analogous in the case N > 2.

Assume that monetary policy sets ît = ϕππ̂t. We will show that for all ϕπ the equilibrium is

explosive.
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The model equations are the following:

π̂t = κ1Ŷt + βEtπ̂t+1

b2β
2

(
b̂t,2 − Et(π̂t+1 + π̂t+2)

)
+R

(
γh + 1

)
Ŷt −GĜt = b2

(
b̂t−2,2 − π̂t − π̂t−1

)
(59)

ϕππ̂t = Et ˆπt+1

Substituting out the Phillips curve and using the last equation to substitute out expectations we

have:

b2β
2

(
b̂t,2 − ϕπ(1 + ϕπ)π̂t

)
+R

(
γh + 1

)
κ1

π̂t(1− βϕπ)−GĜt = b2

(
b̂t−2,2 − π̂t − π̂t−1

)
ϕππ̂t = Et ˆπt+1

In matrix form this system can be written as:
1 0 0 0

0 1 0 0

0 0 β2b2 0

0 0 0 1


︸ ︷︷ ︸

A


Etπ̂t+1

π̂t

b̂t,2

b̂t−1,2

 =


ϕπ 0 0 0

1 0 0 0

β2b2ϕπ(1 + ϕπ)−Rγh+1
κ1

(1− βϕπ) −b2 0 b2

0 0 1 0


︸ ︷︷ ︸

B


π̂t

π̂t−1

b̂t−1,2

b̂t−2,2

+


0

0

G

0

 Ĝt

Stability and determinacy of the equilibrium can be studied by computing the eigenvalues of A−1B.

We have

A−1B =


1 0 0 0

0 1 0 0

0 0 1
β2b2

0

0 0 0 1




ϕπ 0 0 0

1 0 0 0

β2b2ϕπ(1 + ϕπ)−Rγh+1
κ1

(1− βϕπ) −b2 0 b2

0 0 1 0

 =


ϕπ 0 0 0

1 0 0 0

ϕπ(1 + ϕπ)−Rγh+1
κ1

(1−βϕπ)
β2b2

− 1
β2 0 1

β2

0 0 1 0


Thus

det

(
A−1B − λI4×4

)
= (ϕπ − λ)(−λ)(λ2 − 1

β2
)

There are 4 eigenvalues: ϕπ, 0,± 1
β
. Thus when 0 ≤ ϕπ ≤ 1, two eigenvalues are in absolute value

greater than 1 and we have 1 forward looking variable. There is thus no stable equilibrium in this

model.
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Finally, note that it is obvious that system (59) which features 2 forward looking variables (Etπ̂t+1

and Etπ̂t+2) has 3 unstable roots. ■

A.6 Proof of Proposition 6

Consider a model where the government does not buyback debt and debt is structured so that cash

flows are 1, δ, δ2, ....

We can write the budget constraint as:

bβ

∞∑
k=1

βk−1δk−1

(
b̂t −

k∑
l=1

Etπ̂t+l

)
= −SŜt + b

∞∑
k=1

δk−1

(
b̂t−k −

k−1∑
l=0

π̂t−l

)

The first order conditions of the Ramsey program are now:

−π̂t +∆ψπ,t +
b

1− δ

∞∑
k=0

(βδ)kEtψgov,t+k −
b

1− βδ

∞∑
k=1

δk−1ψgov,t−k = 0 (60)

−ψπ,tκ1 +R

(
1 + γh

)
ψgov,t = 0 (61)

bβ
∞∑
k=1

(βδ)k−1

(
Etψgov,t+k − ψgov,t

)
= 0 (62)

Consider the last of equation. This can be written as:

ψgov,t = (1− βδ)Et
ψgov,t+1

1− βδL−1
→ ψgov,t = Etψgov,t+1

From this result we can combine (60) and (61) into:

−π̂t +
R

κ1

(
1 + γh

)
∆ψgov,t +

b

1− δ
ψgov,t

∞∑
k=0

(βδ)k − b

1− βδ

∞∑
k=1

δk−1ψgov,t−k = 0

The final two terms can be written as:

b

1− δ
ψgov,t

∞∑
k=0

(βδ)k − b

1− βδ

∞∑
k=1

δk−1ψgov,t−k =
b

1− βδ

∞∑
k=0

δk(ψgov,t − ψgov,t−k−1)

=
b

1− βδ

∞∑
k=0

δk(∆ψgov,t +∆ψgov,t−1 + ...+∆ψgov,t−k+1) =

and therefore

−π̂t +
R

κ1

(
1 + γh

)
∆ψgov,t +

1

1− βδ

b

1− δ

∞∑
k=0

δk∆ψgov,t−k = 0 (63)

Note that essentially the above condition is the same as in the buyback model. To see this note

first that the quantity b is not the same under buyback and no buyback. In particular from the
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steady state budget constraints we have we have:

βb
BB

1− βδ
+ S =

b
BB

1− βδ
→ b

BB

1− βδ
=

S

1− β

and

βb
NBB

1− βδ
+ S =

b
NBB

1− δ
→ b

NBB

(1− βδ)(1− δ)
=

S

1− β

where superscripts BB,NBB denote the buyback and nobuyback cases respectively. Therefore
b
NBB

(1−δ) = b
BB

and so (63) can be written as

−π̂t +
R

κ1

(
1 + γh

)
∆ψgov,t +

b
BB

1− βδ

∞∑
k=0

δk∆ψgov,t−k = 0 (64)

which proves the equivalence with the buyback model. It is now easy to show the equivalence of the

optimal interest rate policy with the buyback model. ■
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Figure 6: Outcomes under Ramsey and Inflation Targeting Rules – distortionary taxes.
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Notes: The top panels plots the path of inflation in response to a shock under Ramsey and inflation
targeting rules, when taxes are distortionary. Debt is a zero coupon bond of maturity N . The solid blue
line is the Ramsey inflation response. The dashed red line sets ϕπ = 1 − 1

N . In the crossed black line
coefficient ϕπ is the one minimizing the planner’s loss function.
The bottom panels show the loss function under Ramsey (dashed-dotted green line) and under rule based
policy for a range of values of ϕπ (solid blue line).
We assumed N = 4, 20, 28 in the left, middle and right graphs, respectively.

Appendix B Nonlinear model and Additional Results

B.1 Distortionary taxes

We complete the analysis of subsection 3.1.2 by showing results from the model with distortionary

taxes. Figure 6 is analogous to Figure 2 shown in text but assumes tax taxes are distortionary. The

top panels show the responses of inflation under Ramsey and rule based policies. The blue line is the

Ramsey policy whereas the dashed red line sets the inflation coefficient to 1− 1
N
and the crossed black

line corresponds to the optimal inflation coefficient. Note that the red and black lines essentially

overlap proving that 1− 1
N

is a good approximation of the optimal rule based policy.

The bottom panels in the Figure show the loss function under Ramsey (green horizontal line)

and rule based policy (blue line) as a function of the inflation coefficient. The gain from switching

to Ramsey policy from an optimized inflation targeting rule is negligible.
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B.2 A model with real interest rate fluctuations

We now consider a model where that real rate fluctuates according to an exogenous stochastic process.

We show that the optimal Ramsey policy under decaying coupons admits an interest rate rule with

an inflation coefficient equal to δ.

Let r̂t denote the real interest rate. We assume that fluctuations in r̂t occur due to demand shocks

. Let ξ̂t denote the demand shock. Standard modelling of the Euler/Fisher equation gives:

ît = r̂t︸︷︷︸
ξ̂t−Etξ̂t+1

+Etπ̂t+1

The consolidated budget constraint (6 in text) is

∞∑
k=1

βkbk

(
b̂t,k + Et(ξ̂t+k − ξ̂t)−

k∑
l=1

Etπ̂t+l

)
= −SŜt + b1(b̂t−1,1 − π̂t)

+
∞∑
k=2

βk−1bk

(
b̂t−1,k + Et(ξ̂t+k−1 − ξ̂t)−

k−1∑
l=0

π̂t+l

)

It is simple to show that the Ramsey policy leads to the same FONC for inflation and output and

debt as in the baseline model of Section 2 (equations (8) to (10)). The optimal inflation rate is given

again by (11). When the debt structure is bk = δk−1b we get

π̂t = R
(1 + γh)

κ1
∆ψgov,t +

b

1− βδ

∞∑
l=0

δl∆ψgov,t−l

Combining the Fisher equation and the random walk property of ψgov,t we have:

ît − r̂t = Etπ̂t+1 =
b

1− βδ

∞∑
l=0

δlEt∆ψgov,t−l+1 = δ
b

1− βδ

∞∑
l=0

δl∆ψgov,t−l = δ

(
π̂t −R

(1 + γh)

κ1
∆ψgov,t

)

In the case where R (1+γh)
κ1

≈ 0 the nominal rate is set according to

ît = r̂t + δπ̂t

as was claimed in text.

B.3 Multiple Maturities Optimal Inflation coefficients: Further Results

We now go back to the model of Section 3 and use equation (24) to derive further analytical results

under alternative debt maturity structures. Consider first the case where bk = be−λ̃ λ̃k−1

(k−1)!
, k = 1, 2, ....

In other words, the debt payment profiles are assumed to follow a Poisson distribution and the average

maturity is λ̃+ 1.
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Assuming that taxes are lump sum and exploiting the fact that β ≈ 1, (24) becomes:[
ϕπ

1 + ϕπ

( ∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!
(1− ϕkπ)

)
−

∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!

(
1 + (k − 1)ϕkπ − kϕk−1

π

)]
= 0

The LHS is:

ϕπ
1 + ϕπ

( ∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!
(1− ϕkπ)

)
=

ϕπ
1 + ϕπ

(
1−

∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!
ϕkπ

)
=

ϕπ
1 + ϕπ

(
1− e−λ̃eλ̃ϕπϕπ

)

where the last equality uses the fact that
∑∞

k=1 e
−λ̃ϕπ (λ̃ϕπ)k−1

(k−1)!
= 1 as the sum of the pdf of a Poisson

distribution with parameter λ̃ϕπ.

The RHS can be written as:

∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!

(
1 + (k − 1)ϕkπ − kϕk−1

π

)
= 1 +

∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!
(k − 1)ϕkπ

−
∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!
(k − 1)ϕk−1

π −
∞∑
k=1

e−λ̃
λ̃k−1

(k − 1)!
ϕk−1
π = 1 + λ̃ϕ2

πe
−λ̃eλ̃ϕπ − λ̃ϕπ − e−λ̃eλ̃ϕπ

The optimal inflation coefficient thus solves:

ϕπ
1 + ϕπ

(
1− e−λ̃eλ̃ϕπϕπ

)
= 1 + λ̃ϕ2

πe
−λ̃eλ̃ϕπ − λ̃ϕπe

−λ̃eλ̃ϕπ − e−λ̃eλ̃ϕπ (65)

It is easy to verify that the solution in the case where debt is short term, λ̃ = 0 is ϕπ = 1.

Figure 7 shows the responses of inflation under Ramsey and rule based policies (top panels). The

solid blue lines are the Ramsey policy. The dashed lines is a rule setting ϕπ = 1− 1

1+λ̃
and the crossed

black line is the optimal rule. Clearly the red and black IRFS almost completely overlap suggesting

that the optimal inflation coefficient is approximately 1− 1

1+λ̃
. Moreover, as noted in the main text,

it is easy to notice that the Ramsey policy in the Poisson model compiles the forces of both the zero

coupon and the decaying coupon models. The Ramsey planner finds optimal to initially set inflation

as in the zero coupon model (a response that is roughly flat over time) and when the bulk of debt is

close to redemption then inflation will start to monotonically decay towards 0.

The bottom panels show the loss function outcomes. As in both the zero coupon and the decaying

coupon models the gains of switching from an optimized rule policy to the full Ramsey policy are

minuscule.
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Figure 7: Outcomes under Ramsey and Inflation Targeting Rules – Poisson maturity
structure.
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Notes: The top panels plots the path of inflation in response to a shock under Ramsey and inflation
targeting rules, when taxes are distortionary. The debt maturity profile is assumed to follow a Poisson
distribution. In the left panels, we set the average maturity to one-year (λ̃ = 3), the middle panels assume

an average maturity of 5 years (λ̃ = 19), and the right panel 7 years (λ̃ = 27). The solid blue line is the
Ramsey inflation response. The dashed red line sets ϕπ = 1− 1

1+λ̃
. In the crossed black line coefficient ϕπ

is the one minimizing the planner’s loss function.
The bottom panels show the loss function under Ramsey (dashed-dotted green line) and under rule based
policy for a range of values of ϕπ (solid blue line).
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B.4 Closing the output gap objective

B.4.1 Decaying coupon bonds

Assume now that the objective of the planner is

−1

2
E
∑
t≥0

βt
(
π̂2
t + λY Ŷ

2
t

)

Also assume first that debt pays decaying coupons. We can easily show that the FONC from the

Ramsey program will yield the following condition for inflation.

−π̂t −
λY
κ1

∆Ŷt +
R

κ1
(1 + γh)∆ψgov,t +

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Using the Phillips curve, we obtain the following

−π̂t −
λY
κ21

(π̂t − βEtπ̂t+1) +
λY
κ21

(π̂t−1 − βEt−1π̂t) +
R

κ1
(1 + γh)∆ψgov,t +

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

Define:

χt = (π̂t − Et−1π̂t) +
κ1R

βλY
(1 + γh)∆ψgov,t +

κ21
βλY

b

1− βδ

∞∑
k=0

δk∆ψgov,t−l = 0

where the term π̂t − Et−1π̂t will be a linear function of Ĝt. Then

Etπ̂t+1 − (1 +
1

β
+

κ21
λY β

)π̂t +
1

β
π̂t−1 = −χt (66)

We will now resolve the above difference equation. Letting κ̃ =
κ21
λY β

) the characteristic polynomial

is ν2 − (1 + 1
β
+ κ̃)ν + 1

β
.

Skipping a few steps, the two roots are:

ν1,2 =
1

2

(
(1 +

1

β
+ κ̃)±

√
(1− 1

β
− κ̃)2 + 4

κ̃

β

)
It is simple to show that one root is stable and one unstable. Let ν1 denote the stable root. (66) can

be written as:

π̂t =
1

ν2
Etπ̂t+1 +

1

ν2

1

1− ν1L
χt =

1

ν2

1

1− ν1L

∑
j≥0

1

νj2
Etχt+j (67)

(for the usual boundary condition that inflation does not explode).
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Let us compute the term

∑
j≥0

1

νj2
Etχt+j =

∑
j≥0

1

νj2
Et

[
ϵĜt+j + κ̃

R

κ1
(1 + γh)∆ψgov,t+j + κ̃

b

1− βδ

∞∑
k=0

δk∆ψgov,t+j−k

]

The final term on the RHS is

κ̃
b

1− βδ

∑
j≥0

1

νj2
Et

[ ∞∑
k=0

δk∆ψgov,t+j−k

]
= κ̃

b

1− βδ

1

1− δ
ν2

1

1− δL
∆ψgov,t

(this follows from the random walk property of the multiplier). Also it is simple to show that

∑
j≥0

1

νj2
Et

[
ϵĜt+j + κ̃

R

κ1
(1 + γh)∆ψgov,t+j

]
= ϵĜt + κ̃

R

κ1
(1 + γh)∆ψgov,t

Putting everything together we get

π̂t = ν1π̂t−1 +
1

ν2

(
ϵĜt + κ̃

R

κ1
(1 + γh)∆ψgov,t + κ̃

b

1− βδ

1

1− δ
ν2

1

1− δL
∆ψgov,t

)
To derive the interest rate rule we can compute

Etπ̂t+1 = ν1π̂t +
1

ν2

(
ϵEtĜt+1︸ ︷︷ ︸

=0

+κ̃
R

κ1
(1 + γh)Et∆ψgov,t+1︸ ︷︷ ︸

=0

+κ̃
b

1− βδ

1

1− δ
ν2

Et
1

1− δL
∆ψgov,t︸ ︷︷ ︸

= δ
1−δL

∆ψgov,t

)

which gives us:

ît = Etπ̂t+1 = ν1π̂t + δ

(
π̂t − ν1π̂t−1 −

ϵ

ν2
Ĝt − κ̃

R

κ1

(1 + γh)

ν2
∆ψgov,t

)
The term labeled Stochastic Intercept in Proposition 7 corresponds to −ϵĜt

B.4.2 Zero coupon bonds

For the case of zero coupon N bonds our approximate rule is (47) and we now solve for the optimal

coefficient ϕπ. Combining the rule and the Euler equation and assuming further to simplify that only

one shock can hit the economy in t we can write:

π̂t+j − ν1π̂t+j−1 ≡ ˜̂πt+j = ϕπ ˜̂πt+j−1 = ... = ϕjπ
˜̂πt → π̂t+j =

j∑
k=0

νk1ϕ
j−k
π
˜̂πt = ϕj+1

π − νj+1
1

ϕπ − ν1
˜̂πt

53



Using this formula we can characterize the impulse response of inflation to a one off shock though

solving the intertemporal constraint:

GĜt = bNβ
N−1

N−1∑
j=0

π̂t+j = bNβ
N−1

N−1∑
j=0

ϕj+1
π − νj+1

1

ϕπ − ν1
˜̂πt

where we assumed lump sum taxes. Noting that to characterize the impulse response we can also

set ˜̂πt = π̂t (i.e. lagged inflation can be set to 0) we get:

π̂t =
GĜt

bNβN−1
∑N−1

j=0
ϕj+1
π −νj+1

1

ϕπ−ν1

Taking this result into account we get

Consider first the single bond model. Equilibrium inflation is given by

π̂t = (ν1 + ϕπ)π̂t−1 − ν1ϕππ̂t−2 +
GĜt

bNβN−1
∑N−1

j=0
ϕj+1
π −νj+1

1

ϕπ−ν1

This can be easily be resolved to yield

π̂t =
t∑

k=0

ϕk+1
π − νk+1

1

βN−1bN
∑N−1

j=0 (ϕ
j+1
π − νj+1

1 )
GĜt−k

the expression shown in text.

Given this result aggregate output can be found using the Phillips curve as:

Ŷt =
1

κ1

[ t∑
k=0

ϕk+1
π − νk+1

1

βN−1bN
∑N−1

j=0 (ϕ
j+1
π − νj+1

1 )
− β

t∑
k=0

ϕk+2
π − νk+2

1

βN−1bN
∑N−1

j=0 (ϕ
j+1
π − νj+1

1 )

]
GĜt−k =

1

κ1

[ t∑
k=0

ϕk+1
π (1− βϕπ)− νk+1

1 (1− βν1)

βN−1bN
∑N−1

j=0 (ϕ
j+1
π − νj+1

1 )

]
GĜt−k

We can now write the policy objective as:

−1

2
G

2
σ2
G

{∑
t≥0

βt
[ t∑
k=0

Ωk+1︷ ︸︸ ︷
(ϕk+1

π − νk+1
1 )2 +

λY
κ21

(ϕk+1
π (1− βϕπ)− νk+1

1 (1− βν1))
2(

βN−1bN
∑N−1

j=0 (ϕ
j+1
π − νj+1

1 )

)2

]}
=

= −1

2

G
2
σ2
G(

βN−1bN
∑N−1

j=0 (ϕ
j+1
π − νj+1

1 )

)2

∑
k≥0

βk

1− β
Ωk+1

Notice that it is possible to expand the squares in this formula and take first order conditions
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to find the optimum. The resulting expression will be cumbersome and for simplicity we show the

numerical solution. This is done in Figure 8 where we plot the usual IRFS (top panel) and the loss

function bottom panel for N = 4, 20, 28. It is worthwhile briefly discussing our findings. Consider

the middle panel which plots a 5 year maturity. The optimal response of inflation can be divided in

two regions. First from impact to around quarter 17 we see that inflation follows a standard process

is nearly flat. This is essentially the same property as the one we had in the zero coupon model

without output smoothing. Subsequently, inflation starts to gradually adjust towards to zero. (In

contrast without output smoothing inflation suddenly would drop to zero in period 20). This is the

output smoothing objective exerting an influence on the optimal policy. If inflation fell suddenly to

zero when the debt matured, then output would spike one period before maturity.39 To avoid the

sudden increase of output, the planner tolerates a gradual decrease in inflation.

The dashed red line shows the outcome under the rule based policy. It is clear, that a simple

rule cannot track the Ramsey path of inflation (this is not surprising a the 0 coupon bond) but it

is clear that the principles behind Ramsey policy are also present here. The differences in terms of

the planners objective between the Ramsey policy and the rule based policy are however small as is

indicated by the bottom panels.

B.5 The canonical New Keynesian model

Most of our analytical results in the main text were derived in a Fisherian model assuming that

the real interest rate is exogenous. We now turn to the canonical New Keynesian model, assuming

that the real rate is a function of output and spending. In this paragraph we state the first order

conditions of the Ramsey program under buyback and no-buyback. We also present the numerical

results we referred to in text. Finally note that we will not derive here analytically the interest rate

rules shown in text since these derivations can be found in Chafwehé et al. (2022).

Let σ ≥ 0 denote the inverse of the intertemporal elasticity of substitution. The Fisherian model

considered in text corresponds to the case where σ = 0.

The New Keynesian Phillips curve under σ > 0 is given by:

π̂t = κ1Ŷt − κ2Ĝt + βEtπ̂t+1

where κ1 = −(1 + η)Y
θ
(γh + σ Y

C
), κ2 = −(1 + η)Y

θ
σG
C
and we assumed that taxes are constant.

Zero Coupons. Consider the case of one zero coupon bond of maturity N. The government

budget constraint under buyback now is:

βNbN

(
b̂t,N − σEt(

Y

C
Ŷt+N − G

C
Ĝt+N)− Et

N∑
i=1

π̂t+i

)
+R(1 + γh)Ŷt −GĜt − σ(T −G)(

Y

C
Ŷt −

G

C
Ĝt)

= βN−1bN

(
b̂t−1,N − σEt(

Y

C
Ŷt+N−1 −

G

C
Ĝt+N−1)− Et

N−1∑
i=0

π̂t+i

)
39For the initial 17 quarters output would not change since the path of inflation is increasing at 1

β .
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Figure 8: Outcomes under Ramsey and Inflation Targeting Rules – Output smoothing.
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Notes: The top panels plots the path of inflation in response to a shock under Ramsey and inflation
targeting rules, when the planner wants to stabilize both inflation and the output gap (λY > 0) . Debt
is a zero coupon bond of maturity N . The solid blue line is the Ramsey inflation response. The dashed
red line sets ϕπ = 1− 1

N . In the crossed black line coefficient ϕπ is the one minimizing the planner’s loss
function. The bottom panels show the loss function under Ramsey (dashed-dotted green line) and under
rule based policy for a range of values of ϕπ (solid blue line). We assumed N = 4, 20, 28 in the left, middle
and right graphs, respectively.
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where again R denotes the revenue from distortionary taxes and T is the lump sum tax in steady

state.40

Under no buyback the constraint becomes:

βNbN

(
b̂t,N − σEt(

Y

C
Ŷt+N − G

C
Ĝt+N)− Et

N∑
i=1

π̂t+i

)
+R(1 + γh)Ŷt −GĜt − σ(T −G)(

Y

C
Ŷt −

G

C
Ĝt)

= bN

(
b̂t−N,N − σ(

Y

C
Ŷt −

G

C
Ĝt)−

N−1∑
i=0

π̂t−i

)

We can now derive the optimality conditions from the planner’s program. In the buyback model

we have the following conditions:

−π̂t +∆ψπ,t + bN

N∑
l=1

βN−l∆ψgov,t−l+1 = 0

−λY Ŷt − ψπ,tκ1 +

[
R

(
1 + γh

)
− σ(T −G)

Y

C

]
ψgov,t − σ

Y

C
bN(ψgov,t−N − ψgov,t−N+1) = 0

ψgov,t − Etψgov,t+1 = 0

and in the case of no buyback we have:

−π̂t +∆ψπ,t + bNEt

N∑
l=1

βN−l
(
ψgov,t+N−l − ψgov,t−l

)
= 0

−λY Ŷt − ψπ,tκ1 +

[
R

(
1 + γh

)
− σ(T −G)

Y

C

]
ψgov,t − σ

Y

C
bN(ψgov,t−N − ψgov,t) = 0(

ψgov,t − Etψgov,t+N

)
= 0

Optimized interest rate rule.

We revisit the derivations of the model of Section 3. We consider an interest rate rule of the form:

ît = rnt + ϕππ̂t (68)

where rnt denotes the natural interest rate, consistent with flexible prices. (The expression is given

in the main text).

Combining the Euler equation with the interest rate rule and using the Phillips curve to substitute

out aggregate output we get:

rnt + ϕππ̂t =
σ

κ1

Y

C
Et(π̂t+1 − βπ̂t+2)−

σ

κ1

Y

C
Et(π̂t − βπ̂t+1) + Etπ̂t+1 + σ(

G

C
− κ2
κ1

Y

C
)︸ ︷︷ ︸

rnt

Ĝt (69)

40To derive the above equation we scaled the budget constraint by the marginal utility of consumption and then we
divided the RHS and LHS by the steady state marginal utility.
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Thus inflation solves the following homogeneous difference equation.

(
σ

κ1

Y

C
+ ϕπ)π̂t − (1 +

σ

κ1

Y

C
(1 + β))Etπ̂t+1 + β

σ

κ1

Y

C
Etπ̂t+2 = 0 (70)

or

(
1

β
+
κ1
σβ

C

Y
ϕπ)π̂t − (

κ1
σβ

C

Y
+ 1 +

1

β
)Etπ̂t+1 + Etπ̂t+2 = 0 (71)

The two eigenvalues are:

λ1,2 =
1

2

(
κ1
σβ

C

Y
+ 1 +

1

β
±

√
(
κ1
σβ

C

Y
+ 1 +

1

β
)2 − 4(

1

β
+
κ1
σβ

C

Y
ϕπ)

)
(72)

A unique stable equilibrium requires that ϕπ < 1 so that one root is stable. Letting λ1 be the stable

root, equilibrium inflation satisfies

Etπ̂t+1(1− λ1L)(
1

λ2
L−1 − 1) = 0

and we thus have:

Etπ̂t+1 = λ1π̂t

Consider now the intertemporal government budget constraint under buyback. Letting b̂t−1,N = 0

to characterize the IRF we have:

Et
∑
j≥0

βj
(
R(1 + γh)Ŷt+j −GĜt+j − σ(T −G)(

Y

C
Ŷt+j −

G

C
Ĝt+j)

)
=

[
R

κ1
(1 + γh)−

σ

κ1
(T −G)

Y

C

]
π̂t −

(
G+ σ(T −G)(

κ2
κ1

Y

C
− G

C
)−R(1 + γh)

κ2
κ1

)
Ĝt

= −βN−1bN

(
σEt(

Y

C
Ŷt+N−1 −

G

C
Ĝt+N−1) + Et

N−1∑
i=0

π̂t+i

)
= −βN−1bN

(
σ
Y

C

1

κ1
(1− βλ1)λ

N−1
1 +

1− λN1
1− λ1

)
π̂t

when N > 1.

Focusing for simplicity on the case of lump sum taxation we have:[
βN−1bN

(
σ
Y

C

1

κ1
(1− βλ1)λ

N−1
1 +

1− λN1
1− λ1

)
− σ

κ1
(T −G)

Y

C

]
︸ ︷︷ ︸

ω(λ1)

π̂t = χ̃Ĝt

It is thus evident that inflation in t can be written as: π̂t =
∑t

j=0 λ
j
1

χ̃
ω(λ1)

Ĝt−j. From this we can

derive:
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Figure 9: Optimal Inflation Coefficients in the Canonical Model: One zero coupon bond.
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Notes: The figure plots the optimal inflation coefficients that solve (73) as a function of maturity N
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−1

2
E
∑
t≥0

βt(
t∑

j=0

λj1
χ̃

ω(λ1)
Ĝt−j)

2 = − 1

2(1− β)
(

χ̃

ω(λ1)
)2σ2

G

1

1− βλ21

Optimal policy sets the inflation coefficient to minimize the above objective function.

The first order conditions give:

−β
2
(

χ̃

ω(λ1)
)2σ2

G

1

1− βλ21

[
2βλ1

1− βλ21
− 2

ω(λ1)

dω(λ1)

dλ1

]
= 0

[
βλ1

1− βλ21
− 1

ω(λ1)
βN−1bN

(
σ
Y

C

1

κ1
((N − 1)λN−2

1 − βNλN−1
1 ) +

1 + (N − 1)λN1 −NλN−1
1

(1− λ1)2

)]
= 0

(73)

Note that in the case σ = 0 the above gives us equation (20) in text. (We then have λ1 = ϕπ).

Figure 9 plots the optimal inflation coefficients we obtain from solving (73) as a function of

maturity N . The dashed red line in the Figure plots the function ’1 − 1
N
+ σ

κ1
Y
C

1
N
(β(1 − 1

N
) − 1)′.

This is essentially the same inflation coefficient as in the decaying coupon bond model (i.e. when

1− 1
N

= δ.) As can be seen from the Figure this formula fits very well the solution to (73).
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Figure 10: Impulse responses and loss function outcomes in the canonical New-Keynesian
model: Zero coupon bonds.

0 20 40

Period

-1

0

1

2

3

In
fl
a

ti
o

n

10
-3 1-year

0 0.5 1

Inflation Coefficient

-0.025

-0.02

-0.015

-0.01

-0.005

0

L
o

s
s
 F

u
n

c
ti
o

n

0 20 40

Period

-5

0

5

10

In
fl
a

ti
o

n

10
-4 5-year

0 0.5 1

Inflation Coefficient

-2.5

-2

-1.5

-1

-0.5

0

L
o

s
s
 F

u
n

c
ti
o

n

10
-3

0 20 40

Period

-4

-2

0

2

4

6

In
fl
a

ti
o

n

10
-4 7-year

0 0.5 1

Inflation Coefficient

-2.5

-2

-1.5

-1

-0.5

0

L
o

s
s
 F

u
n

c
ti
o

n

10
-3

Notes: The figure plots the paths of inflation under Ramsey (solid blue lines) under the optimal inflation

targeting rule (crossed-black lines) and the inflation targeting rule with the coefficient 1− 1
N + σ

κ1

Y
C

1
N (β(1−

1
N )− 1) (dashed/red line). The bottom panel shows the difference between the Ramsey policy (horizontal
line) and the rule based policy, in terms of the loss function.
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Figure 10 shows the usual comparison of outcomes between rule based policy and Ramsey policy

in the N bond model. As is evident from the Figure, the optimal responses of inflation between the

two models do not overlap, however, the loss from switching to an optimized rule based policy is

small (bottom panel). Moreover, the optimal Ramsey policy has the following noteworthy feature:

Inflation is roughly constant until period N −2 , then in the period N −1 it jumps and subsequently

becomes negative for one period. These properties of inflation is matched with analogous responses

of aggregate output. In particular since in this model output affects the solvency of debt, the planner

will promise higher output in period N − 1 to reduce the real payout of long term debt outstanding.

This is a standard interest rate twisting channel of optimal policy (see e.g. Faraglia et al. (2013,

2016); Leeper et al. (2021)). Since output increases in N − 1 so does inflation, according to the

Phillips curve. In addition, in period N when neither inflation nor output matter (any more) for

fiscal solvency, the planner will promise lower inflation. This is again due to the Phillips curve.

Decreasing inflation in N enables a larger increase in output in N − 1 so that output relative to

inflation, bears a larger part of the fiscal adjustment. This is optimal because stabilizing output is

not an objective of the planner.

When we assume a dual objective, we indeed find that the responses of inflation are smoother.

Importantly, we once again obtain that a simple inflation targeting rule approximates the Ramsey

outcome. For brevity we do not show these simulations here.41

Decaying coupons. The case where coupons decay at rate δ and the optimal policy rules are

studied in Chafwehé et al. (2022). For brevity we refer the reader to that paper for the derivations of

the formulae shown in text. The impulse responses obtained in this case are depicted in Figure 11.

No buyback. We can confirm all of our results for the no buyback model, assuming σ > 0. First,

Figure 12 shows the responses of inflation under Ramsey policy in the zero coupon bond model and

assuming lump sum taxes. As is evident from the Figure in this optimal policy equilibrium, inflation

displays a cycle of periodicity N. Second, it is simple to show (the proof is omitted for brevity) that

simple inflation targeting rules produce an explosive solution. Third we can show that under no

buyback, issuing short term debt brings us back to the buyback case.

We prove this explicitly. The budget constraint under no buyback and decaying coupons is:

bβ
∞∑
k=1

βk−1δk−1

(
b̂t − σ(

Y

C
Ŷt+k −

G

C
Ĝt+k)−

k∑
l=1

Etπ̂t+l

)
+R(1 + γh)Ŷt −GĜt − σ(T −G)(

Y

C
Ŷt −

G

C
Ĝt)

= b
∞∑
k=1

δk−1

(
b̂t−k − σ(

Y

C
Ŷt −

G

C
Ĝt)−

k−1∑
l=0

π̂t−l

)
41See Chafwehé et al. (2022) for this scenario.
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Figure 11: Impulse responses and loss function outcomes in the canonical New-Keynesian
model: Decaying coupon bonds.
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Notes: The figure plots the paths of inflation under Ramsey (solid blue lines) under the optimal inflation

targeting rule (crossed-black lines) and the inflation targeting rule with the coefficient δ+ σ
κ1

Y
C
(1−δ)(βδ−1)

(dashed/red line). The bottom panel shows the difference between the Ramsey policy (horizontal line)
and the rule based policy, in terms of the loss function.
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Figure 12: Responses to the spending shock under no buyback in the New-Keynesian
model.
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Notes: The figure plots the path of optimal inflation in response to a shock that increases
spending by 20% ( from 10% of GDP to 12% of GDP) under various maturity structures and
assuming no debt repurchases, in the canonical New-Keynesian model assuming σ = 1.
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The first order conditions of the Ramsey program are now:

−π̂t +∆ψπ,t +
b

1− δ

∞∑
k=0

(βδ)kEtψgov,t+k −
b

1− βδ

∞∑
k=1

δk−1ψgov,t−k = 0

−λY Ŷt − ψπ,tκ1 +

[
R

(
1 + γh

)
− σ(T −G)

]
ψgov,t − bσ

Y

C
(

∞∑
k=1

δk−1ψgov,t−k −
∞∑
k=1

δk−1ψgov,t) = 0

bβ

∞∑
k=1

(βδ)k−1

(
Etψgov,t+k − ψgov,t

)
= 0

Once again the last equation can be written as:

ψgov,t = (1− βδ)Et
ψgov,t+1

1− βδL−1
→ ψgov,t = Etψgov,t+1

Given that the random walk property holds in this model we can write:

b

1− δ

∞∑
k=0

(βδ)kEtψgov,t+k −
b

1− βδ

∞∑
k=1

δk−1ψgov,t−k =
b

1− βδ

∞∑
k=0

(δ)kψgov,t −
b

1− βδ

∞∑
k=0

δkψgov,t−k−1

=
b

(1− βδ)(1− δ)

∞∑
k=0

δk∆ψgov,t−k

bσ
Y

C
(

∞∑
k=1

δk−1ψgov,t−k −
∞∑
k=1

δk−1ψgov,t) = −bσY
C

∞∑
k=1

δk−1(ψgov,t − ψgov,t−k) =

= −bσY
C

∞∑
k=1

δk−1(∆ψgov,t +∆ψgov,t−1 +∆ψgov,t−k+1) = − b

1− δ
σ
Y

C

∞∑
k=0

δk∆ψgov,t−k

We can therefore write the FONC as follows:

−π̂t +∆ψπ,t +
b

(1− βδ)(1− δ)

∞∑
k=0

δk∆ψgov,t−k = 0

−λY Ŷt − ψπ,tκ1 +

[
R

(
1 + γh

)
− σ(T −G)

]
ψgov,t +

b

1− δ
σ
Y

C

∞∑
k=0

δk∆ψgov,t−k = 0

These optimality conditions are indeed equivalent to those of the buyback model. Once again the

steady state debt level is different across the two models and it holds that b
BB

= b
NBB

1−δ . The optimal

policy rule we showed in text for the buyback model, fully applies to the no buyback case.

B.6 Non-linear model equations

In this section we derive the log-linear equations describing the model economy presented in Section 2,

starting from the non-linear equations representing its competitive equilibrium. As mentioned in

the main text, we consider a standard New-Keynesian model with quasi-linear preferences, that is
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augmented with a fiscal block.

Households Households maximize

E0

∞∑
t=0

βt

(
Ct − χ

h1+γht

1 + γh

)

subject to

PtCt +
∞∑
k=1

Pt,kBt,k ⩽ (1− τ)Wtht − T + PtDt +Bt−1,1 +
∞∑
k=2

Pt,k−1Bt−1,k

where Ct denotes consumption and ht denotes hours worked. Dt represents firms’ profits redis-

tributed to households, and Pt denotes the aggregate price level. Bt,k denotes government bonds of

maturity k = 1, 2, ... issued at time t. These bonds are risk-free and deliver one unit of the (nominal)

consumption good in period t+k. They are traded at price Pt,k. τ is the distortionary tax on labour,

and T the lump-sum tax imposed on households. As mentioned in the main text, both are assumed

to be constant in our fiscally-led economy.

The first order conditions of the household’s problem are:

Pt,1 = βEt
1

πt+1

(74)

Pt,k = βEt
1

πt+1

Pt+1,k−1 (75)

hγht = (1− τt)
Wt

Pt
(76)

where πt ≡ Pt

Pt−1
is the gross inflation rate.

Firms Production takes place in monopolistically competitive firms which operate technologies

with labour as the sole input. The final good is a CES aggregate of the intermediate goods Yt(j):

Yt =
(∫ 1

0

Yt(j)
1+η
η dj

) η
1+η

(77)

where η governs the elasticity of substitution between differentiated goods. Firms set prices to

maximize profits subject to the demand curve

Yt(j) =
(Pt(j)

Pt

)η
Yt (78)
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and given price adjustment costs, modelled as in Rotemberg (1982). The dynamic profit maximiza-

tion program is:

max
Pt(j)

Et

∞∑
s=0

Qt,t+s

(Pt+s(j)
Pt+s

Yt+s(j)−
Wt+s(j)

Pt+s
Yt+s(j)− ACt+s(j)

)
s.t. Yt+s(j) =

(Pt+s(j)
Pt+s

)η
Yt+s (79)

ACt+s(j) =
θ

2

( Pt+s(j)

Pt+s−1(j)
− π

)2
Yt+s (80)

where Qt,t+s ≡ βs is the discount factor of households and Wt+s is the wage rate, that is equal to the

marginal cost of production. (80) is the quadratic adjustment costs incurred by firms when resetting

their price.

Focusing on a symmetric equilibrium the first order condition from the firm’s dynamic program

gives the following non-linear Phillips Curve:

θ(πt − π)πt = 1 + η(1− Wt

Pt
) + βθEt

Yt+1

Yt
(πt+1 − π)πt+1 (81)

The firms’ technology is linear in labour and thus Yt(j) = ht(j) where j ∈ [0, 1] denotes the

generic firm.

Fiscal policy The flow government budget constraint can be written as:

∞∑
k=1

Pt,kbt,k =
bt
πt

+
∞∑
k=2

Pt,k−1
bt−1,k

πt
+Gt − τhtwt − T (82)

where bt,k ≡ Bt,k

Pt
denotes the real value in t of government bonds with matuirty k, τ is the distor-

tionary tax on labour, and T the lump-sum tax imposed on households. As mentioned above, both

of these instrument are assumed to stay constant under the assumptions described in the main text.

Gt denotes government spending, which is exogenous and is assumed to follow an i.i.d process.

Log-linear model Making use of the labor supply condition hγht = (1 − τ)Wt

Pt
, as well as the

resource constraint ht = Yt = Ct + Gt to dispense with Wt, Ct and ht, we get the following linear

New Keynesian Phillips Curve:

π̂t = κ1Ŷt + βEtπ̂t+1 (83)

where κ1 is defined in text.

Defining it ≡ − logPt,1, log-linearizing the Euler equation for short bonds we get the Fisher
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equation described in text:

ît = Etπ̂t+1 (84)

Log-linearizing the Euler equation (75) for bonds with maturity k > 1, we get:

p̂t,k = Et(p̂t+1,k−1 − π̂t+1) (85)

Iterating forward we get the equation displayed in text.

Log-linearizing equation (82) and using the primary surplus expression St = τwtht + T −Gt, we

get the intertemporal budget constraint (2).

B.7 Optimal policy problem

In the optimal policy problem we solve in Section 2, the Ramsey planner minimizes its loss function

subject to the constraints defining the competitive equilibrium of the economy, as derived in the

previous section. The Lagrangian associated to this problem is:

L = E0

∞∑
t=0

βt
{
− 1

2
π̂2t + ψπ,t

(
π̂t − κ1Ŷt − βπ̂t+1

)
(86)

+ ψgov,t

(
βdd̂t −

∞∑
k=1

βkbk

k∑
l=1

π̂t+l) +R

(
γh + 1

)
Ŷt −GĜt − dd̂t−1 +

∞∑
k=1

βk−1bk

k−1∑
l=0

π̂t+l

)}
The first order conditions of this problem are provided in the main text.

B.8 Social loss function for a specific case

Assume that the setady state is efficient. This can be guaranteed by introducing a constant em-

ployment subsidy that cancels out distortions from labor taxes and monopolistic competition at the

steady state (see eg Leith and Wren-Lewis, 2013). This subsidy would modify some steady state

quantities such as R̄ and κ1 but would be without loss of generality regarding our qualitative results.

A second-order approximation of the representative households’ utility around that efficient steady

state gives

U(Ct, Yt) ≈ C̄ĉt +
1

2
C̄ĉt

2 − χȲ 1+γh ŷt −
1

2
χ(1 + γh)Ȳ

1+γh ŷ2t

At the efficient steady state, we have χ = Ȳ −γh and thus we can write

U(Ct, Yt) ≈ C̄ĉt +
1

2
C̄ĉt

2 − Ȳ ŷt −
1

2
(1 + γh)Ȳ ŷ

2
t
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Next, a second-order approximation of the resource constraint Ct +Gt = Yt

(
1− θ

2
(πt − 1)2

)
gives

RC(Ct, Gt, πt, Yt) ≈ C̄ĉt +
1

2
C̄ĉt

2 + ḠĜt +
1

2
ḠĜt

2
+

1

2
θȲ π̄2π̂2

t = Ȳ ŷt +
1

2
Ȳ ŷt

2

Solving for C̄ĉt +
1
2
C̄ĉt

2, substituting in the approximated utility and using π̄ = 1, we find

U(Ct, Yt) ≈ −1

2

(
π̂2
t + λY ŷt

2
)
+ tip

with λY ≡ γh
θ
. Hence, when the cost of price adjustment, θ, goes to infinity, social welfare is a

quadratic measure of inflation only. Otherwise, both inflation and output enter in the objective

(Leeper and Zhou (2021) find a similar result in their online appendix when considering a distorted

steady state).
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