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Abstract

We study a 2-country differential game with irreversible pollution. Irreversibil-

ity is of a hard type: above a certain threshold level of pollution, the self-cleaning

capacity of Nature drops to zero. Accordingly, the game includes a non-concave fea-

ture, and we characterize both the cooperative and non-cooperative versions with

this general non-LQ property. We deliver full analytical results for the existence

of Markov Perfect Equilibria. We first demonstrate that when pollution costs are

equal across players (symmetry), irreversible pollution regimes are more frequently

reached than under cooperation. Second, we study the implications of asymmetry

in the pollution cost. We find far nontrivial results on the reachability of the ir-

reversible regime. However, we unambiguously prove that, for the same total cost

of pollution, provided the irreversible regime is reached in both the symmetric and

asymmetric cases, long-term pollution is larger in the symmetric case, reflecting

more intensive free-riding under symmetry.
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1 Introduction

Pollution control is among the most targeted topics in several disciplines in the last five

decades. This is in particular true in economics and operational research (see an early

contribution due to Bawa, 1973). Key inherent conceptual and modelling aspects are the

transboundary nature of pollution and the induced spatial externality problem. In short,

emission of pollutants due to the action of a given individual in a given place also affects

other individuals in other neighboring places through different diffusion channels (wind,

currents,...) , often giving rise to substantial free-riding problems. The related literature

is still vivid on both the technical, conceptual and policy aspects around these problems.

See below for a brief account.

In this paper, we tackle an important problem at the core of the current debate: the issue

of irreversible pollution. Indeed, several researchers have already claimed that irreversible

climate regimes have already taken place. Indeed, there is now growing evidence that

oceans (the most important carbon sink) display a buffering capacity near saturation.

Accordingly, the assimilation capacity of terrestrial ecosystems is thought to peak by

mid-century and then decline to become a net source of carbon by the end of the century.

Finally, the potential collapse of the North Atlantic meridional overturning circulation is

drawing much of the attention, since it may happen for a 450 ppm CO2 concentration

while we have already reached 390 ppm (Yohe et al., 2006, and Boucekkine et al., 2013, for

a more comprehensive survey). While the importance of irreversibility is being reinforced

by the current global warming debate, it’s fair to recognize that it’s a quite old topic,

already outlined in ecology decades ago (for example, see Holling, 1973).

This paper’s core research question is: to which extent irreversibility of pollution shapes

the free-riding problems inherent in pollution (differential) games? Under which con-

ditions irreversible pollution may be reached at the result of Nash competition? Could

cooperation prevent this outcome? Does players’ (countries’) asymmetries trigger more or

less free-riding, hence, more or less irreversibility and/or long-term pollution with respect

to the symmetric case? We shall essentially differentiate between the players in terms of

pollution cost.

We shall build on the seminal contribution of Tahvonen and Withagen (1996), TW here-

after, to build our game-theoretic frame. In TW, there is a single player (say a country)
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which faces a standard pollution control problem with the additional complication that

pollution is irreversible: Nature’s self-cleaning capacity may decrease with the level of

pollution, and eventually drops to zero above a certain threshold level. This non-concave

feature leads to a sophisticated problem potentially yielding multiple steady state equi-

libria and discontinuities, among other non-standard properties. Despite this additional

difficulty, this model has been used in several non-game-theoretic contexts (see for exam-

ple, Prieur, 2009, and Boucekkine et al., 2013). We shall study a dynamic game extension

of TW: in particular, we investigate under which conditions Nash equilibria yield cross-

ing the threshold value leading to irreversible pollution, and whether cooperation can

always prevent this unpleasant outcome. Also we rigourously derive the implications of

asymmetry in pollution costs in terms of frequency of reaching irreversibility and long-

term pollution levels. Indeed, a key aspect already identified in the literature of pollution

games and international environmental agreements is heterogenity across players (see for

example Hoel, 1993, or Xepapadeas, 1995), we shall accurately study this aspect in the

presence of an irreversibility threshold.

We are able to extract several significant results. First of all, we show that cooperation

between players (implemented through the central planner counterpart of the game) does

not always prevent the emergence of irreversible pollution regimes. This is in particular

true when (perceived) pollution costs are low enough.1. Second, we demonstrate that

when pollution costs are equal across players, irreversible regime are more frequently

reached, in the sense that the range of parameters allowing for so is markedly larger than

under cooperation. This incidentally reflects the extent of free-riding under symmetry.

Third, we study the implications of asymmetry in the pollution cost for the reachability of

the irreversible pollution regime and long-term pollution under this regime. We found far

nontrivial results on the former but unambiguous ones for the latter: for the same total

cost of pollution (that’s summing unit pollution costs across countries), the irreversible

regime may be reached under symmetry but not under asymmetry, and vice versa, but

in all cases where the regime is reached in both, long-term pollution is larger in the

symmetric case. This reflects primarily the more intensive free-riding under symmetry.

1Of course, precise reachability conditions for irreversible regimes are derived depending on the main
parameters of the model, including the discounting rate, the value of the (physical) irreversibility thresh-
olds, the payoffs’ deep parameters and also those of the pollution decay function.
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Relation to the literature Irreversible pollution has been much more studied in the

ecological literature than in economics. Beside TW, a limited number of economic papers

has been written with (hard) irreversibility as in the ecological literature and TW.2 The

differential frameworks are very much scarcer. Among the very few contributions to

this line of research, one can mention Wagener and de Zeeuw (2021) and El Ouardighi

et el. (2020). The former is more anchored in the tipping games literature, and has

a very different and specific analytical setting, not speaking about the quite distinct

research questions. The latter does explore differential games with variable self-cleaning

capacity, but not in the sense of TW. By allowing the self-cleaning capacity to be directly

controlled to ultimately get rid of the non-concavity inherent in TW, they end up exploring

a different set of differential games with a softer irreversibility constraints compared to

TW. We take the TW framework as it is to a differential game setting, with all the

technical complications involved. 3 As to the role of asymmetry in pollution cost in the

reachability and long-term outcomes of irreversible pollution regimes, it’s to the best of

our knowledge unexplored in the literature so far.

On the methodological side, most of the ongoing progress in pollution games has con-

cerned the refinement of the inherent spatial modelling. New frameworks have been put

forward moving from the typical discrete space setting (in particular, the so-called two-

country modelling in economics, see Dockner and Van Long, 1993, Dutta and Radner,

2009, Boucekkine et al., 2011, or Bertinelli et al., 2015) to continuous space modelling

of diffusion through an intensive use of partial differential equations, typically diffusion-

advection equations (Camacho and Perez-Barahona, 2015, Augerau-Véron et al., 2017

and 2019, de Frutos and Martin-Herran, 2019, La Torre et al., 2021, and Boucekkine et

al., 2021, 2022b), inducing quite intriguing infinite-dimensional differential games (see de

Frutos et al., 2021, and Boucekkine et al., 2022a).

In this paper we stick to the traditional two-players framework. However, as we rely on

the TW specifications, and given the inherent non-concave feature, the characterization

2For example, El Ouardighi et al. (2014) deal with irreversible pollution in a non-game theoretic frame
but in a softer sense, along with the game-theoretic extension, El Ouardighi et al. (2020), cited above.

3Indeed, again full in line with TW, we do not consider only symmetric linear-quadratic games contrary
to El Ouardighi et al. (2020): while some linear-quadratic and symmetry assumptions are made either for
benchmarking or to ease the extraction of analytical results in the differential game setting, we stick to
the non-concave and general specification of the pollution decay function postulated in TW and we also
study departures from symmetry. Last but not least, all our results are analytical, we only use numerical
examples for illustration.
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of the games’ equilibria is quite challenging. Clearly full analytical approaches to deal

with the differential game extensions are far nontrivial. We characterize not only the

existence and properties around the long-run steady state and threshold with focusing

on the threshold is reachable or not, but also the total trajectories for any admissible

initial conditions. This is possible due to the analytical functional forms in the first

period of the game (or optimal control). Though some of our results rely largely on the

implicit function theorem, our analytical characterization of equilibria is complete, and

the parameter conditions are explicitly presented.

Generally, it is very difficult to solve explicitly the trajectory path of optimal control

and differential game problems with multi-period, even under linear-quadratic framework.

Most of the results in economic literature rely on numerical simulation (Dawid and Gezer,

2022; El Ouardighi et al. 2020, just to mention a few). The main reason is that the

transversality conditions at the switching point between different periods (or modes) make

it very difficult, if not impossible, to guess the functional form of Bellman value function

and thus the strategies. Even with linear-quadratic functions under autonomous settings,

the usually used linear-quadratic functions fail to satisfy the transversality condition. The

process we present in the current work on how to look for the analytical results makes

later applications, not only limited to simulation and calibration, becoming plausible for

multi-mode optimal control problems and differential games.

The paper is organized as follows. Section 2 presents the basic differential game extension

of TW. Section 3 solves the cooperative (central planner) case, which allows for a close

comparison with the one-country case studied in TW. Section 4 and 5 are devoted to non-

cooperative games under symmetric versus asymmetric pollution costs. Section 6 ranks

pollution outcomes across strategic settings (central planner, Nash symmetric and Nash

asymmetric) in the irreversible regime, and clarifies some aspects of free riding behavior

in this regime. Comparison of reachability conditions of the irreversible regime across

strategic settings is also provided. Section 7 concludes.

2 The model

We briefly present our game-theoretic extension of TW. In contrast to TW, there are two

players, named as player i = 1, 2, both produce final consumption goods with pollution
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as a by-product. Ignoring differences in production, we can use their pollution emission,

yi(t), to measure their output level, respectively. Player i’s objective is to maximize her

social welfare taking into account transboundary pollution:

max
y
Wi =

∫ +∞

0

(Ui(yi)−Di(z))e−rtdt, (1)

where r is time preference, Ui(yi) is the utility from enjoying final output generated with

pollution yi(t), Di(z) is the damage function from aggregate pollution stock z.

Pollution stock z(t) may decay at rate α(z) if the pollution level is below a threshold level

z. Along this regime, referred to as the reversible regime in TW, pollution accumulates

is following:

ż = y1 + y2 − α(z), z(0) = z0 given, (2)

where α(z) is the pollution decay function. It captures Nature’s self-cleaning capacity. If

the threshold is attained and crossed, the economy falls into the irreversible regime where

the pollution decay drops to zero. Following TW, we assume that the decay function

satisfies the following properties: α(0) = 0, α(z) > 0 when z ∈ [0, z), α(z) = 0, ∀z ≥ z,

and α′′(z) ≤ 0 when z ∈ [0, z).

Though TW do not assume that α(z) is decreasing in the reversible regime, they do work

with the affine specification α(z) = α−βz, with α and β positive in their numerical exam-

ple (though of course the specification is only valid locally due to positivity constraint).

We shall go the same way, only using the affine specification for numerical exercises or to

get some explicit results (while the positivity constraint fulfilled). Due to the differential

game frame, we however need to posit quadratic utility and damage functions along the

manuscript in order to bring out analytical results, for the existence of Markov Perfect

Equilibria in particular. Precisely, we pose: Ui(yi) = aiyi − y2
i , and Di(z) = ciz

2, with

all coefficients, ai, ci, being positive constants. Accordingly, player i’s optimal control

problems under the reversible and irreversible regimes, called period I and II hereafter,

read as follows:

Period I

max
yi

W I
i =

∫ T

0

(Ui(yi)−Di(z))e−rtdt =

∫ T

0

(aiyi − y2
i − ciz2)e−rtdt,
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subject to

ż = y1 + y2 − α(z), z(0) = z0,

and  z(T ) = z, if T < +∞,
lim
t→∞

z(t) ≤ z, if T = +∞.

Period II

max
yi

W II
i =

∫ +∞

T

(Ui(yi)−Di(z))e−rtdt =

∫ +∞

T

(aiyi − y2
i − ciz2)e−rtdt,

subject to

ż = y1 + y2, z(T ) = z.

We shall start with the benchmark cooperative game before exploring the equilibrium

properties of Nash games. Different symmetry assumptions will be assumed along the

way.

3 Cooperative equilibria: the central planner prob-

lem

We shall start with the cooperative game where a benevolent central planner (for example,

a credible international institution or a federal state’s government) enforces cooperation

between the two countries. We do that to compare our results with TW. In both cases,

there is a unique optimizing authority, potentially leading to similar outcomes. We shall

indeed refine in some way a few results obtained by TW.

We assume that the central planner maximizes the sum of the utilities of the two players,

namely:

max
y1,y2

W I
c =

∫ T

0

∑
i=1,2

(Ui(yi)−Di(z))e−rtdt =

∫ T

0

∑
i=1,2

(aiyi − y2
i − ciz2)e−rtdt,

subject to

ż = y1 + y2 − α(z), z(0) = z0,

7



and  z(T ) = z, if T < +∞,
lim
t→∞

z(t) ≤ z, if T = +∞.

Furthermore, if T <∞, the system enters the situation with no decay:

max
y1,y2

W II
c =

∫ ∞
T

∑
i=1,2

(Ui(yi)−Di(z))e−rtdt =

∫ ∞
T

∑
i=1,2

(aiyi − y2
i − ciz2)e−rtdt,

subject to

ż = y1 + y2, z(T ) = z.

The Hamiltonian for this optimal control problem is

H (z, p) = max
y1,y2≥0

{
a1y1 + a2y2 − y2

1 − y2
2 − 2cz2 + p [y1 + y2 − δ (z)]

}
,

where

δ(z) =

{
α(z), z ≤ z,

0, z > z.

In TW, α(z̄) = 0. Here, we don’t need to assume continuity of the decay function at z̄,

and consider a more general α(z̄) ≥ condition. We shall provide the analysis under this

condition while singling out the TW continuous case. The maximizers y1 and y2 satisfy

yi =
ai + p

2
for i = 1, 2.

Hence

H (z, p) =
1

4

[
(a1 + p)2 + (a2 + p)2]− 2cz2 − pδ (z)

=
1

2

[
2ap+ p2

]
+

1

4

(
a2

1 + a2
2

)
− 2cz2 − pδ (z) .

Hence, the HJB equation is

rVc =
1

2

[
2aV ′c + (V ′c )

2
]

+
1

4

(
a2

1 + a2
2

)
− 2cz2 − δ (z)V ′c (3)

where Vc (z) is the value function for the central planner. We now solve for the optimal
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solutions using a standard backward-looking model as in TW: we start with the char-

acterization of the irreversible regime (that’s for z > z), then we move to the reversible

regime (z < z), and we finally conclude as to possible crossing of the pollution threshold

z along with the optimal paths (or equilibrium paths in the Nash games later). Notice

that the irreversible regime is fully linear-quadratic as pollution decay is zero in this case,

which eases the computations in this regime.

3.1 Characterization of the irreversible regime (z > z)

Set δ (z) = 0. We assume that Vc (z) is a quadratic function of z in the form

Vc (z) = Ac +Bcz +
Cc

2
z2.

Substituting it into the equation leads to

r

[
Ac +Bcz +

Cc

2
z2

]
= a (Bc + Ccz) +

1

2

[
(Bc + Ccz)2]+

1

4

(
a2

1 + a2
2

)
− 2cz2.

By comparing coefficients of powers of z, we find

rAc = aBc +
B2

c

2
+

1

4

(
a2

1 + a2
2

)
,

rBc = aCc +BcCc.

r
Cc

2
=

1

2
C2

c − 2c.

Hence

Cc =
1

2

[
r −
√
r2 + 16c

]
, Bc =

aCc

r − Cc

,

Ac =
1

4r

[
a2

1 + a2
2

]
+
aBc

r
+
B2

c

2r
.

The state equation is

ż = y1 + y2 = a+ V ′c (z) = a+Bc + Ccz.
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We use fc to denote the function on the right-hand side. The equilibrium is

z∗c = −a+Bc

Cc

.

It can be shown that

z∗c =
ar

4c
. (4)

3.2 Characterization of the reversible regime (z < z) and thresh-

old crossing conditions

The value function satisfies HJB equation and the terminal condition

Vc (z̄) = Ac +Bcz̄ +
Cc

2
z̄2. (5)

HJB equation (3) takes the form

rVc =
1

4

[
(a1 + V ′c )

2
+ (a2 + V ′c )

2
]
− 2cz2 − V ′c δ (z) . (6)

Before looking for solution of the above HJB equation with terminal condition (5), we

must mention that in this period, though the optimization system is still autonomous

with free ending time, state equation and objective functions are still in the forms of

affine-quadratic, due to the transversality condition (5) between the two periods, the

linear-quadratic guess of value function as in the last subsection is no longer working.

That is the case for central planner’s optimal control problem as well for the differential

games in the following sections. Thus, a different method is needed to look for solution

to this kind of affine-quadratic optimal control problem with given terminal condition.

To find V ′c (z), we differentiate the two sides of (6) to obtain

rV ′c (z) =
1

2
[(a1 + V ′c (z)) + (a2 + V ′c (z))]V ′′c (z)− 4cz − V ′′c δ (z)− V ′c (z) δ′ (z) .

Let Pc (z) = V ′c (z). The above equation becomes

[Pc (z) + a− δ (z)]P ′c (z) = (r + δ′ (z))Pc (z) + 4cz. (7)
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In addition, Pc (z̄) satisfies the equation

4
[
rVc (z̄) + 2cz̄2

]
= (a1 + Pc (z̄))2 + (a2 + Pc (z̄))2 − 4δ (z̄)Pc (z̄) . (8)

Eq. (8) has two roots in general, which are

Pc (z̄) = − (a− δ (z̄))±
√

(a− δ (z̄))2 + ∆c

where

∆c = 2
(
rVc (z̄) + 2cz̄2

)
− a2

1 + a2
2

2
.

We choose the one so that Vc is most concave for z < z̄ and is near z̄. Substituting the

above solutions into (7) leads to

±
√

(a− δ (z̄))2 + ∆cP ′c (z̄) = (r + δ′ (z̄))

{
− (a− δ (z̄))±

√
(a− δ (z̄))2 + ∆c

}
+ 4cz̄,

where δ′ (z̄) = α′ (z̄) is the left-sided derivative. Hence,

P ′c (z̄) = r + δ′ (z̄) +
− (r + δ′ (z̄)) (a− δ (z̄)) + 4cz̄

±
√

(a− δ (z̄))2 + ∆c

.

The sign is positive if

− (r + δ′ (z̄)) (a− δ (z̄)) + 4cz̄√
(a− δ (z̄))2 + ∆c

<
− (r + δ′ (z̄)) (a− δ (z̄)) + 4cz̄

−
√

(a− δ (z̄))2 + ∆c

,

which is equivalent to

(r + δ′ (z̄)) (a− δ (z̄))− 4cz̄ > 0, (9)

and negative otherwise.

To illustrate how to solve the nonlinear differential equation (7), we consider linear decay

function δ(z) = α− βz with α, β positive constants. Denote fc (z) = Pc (z) + a− δ (z). It

follows that ∣∣∣∣fc (z)− u−c (z + ac/bc)

fc (z̄)− u−c (z̄ + ac/bc)

∣∣∣∣pc ∣∣∣∣fc (z)− u+
c (z + ac/bc)

fc (z̄)− u+
c (z̄ + ac/bc)

∣∣∣∣1−pc = 1,
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where

ac = (β − r) (a− α) , bc = β (β − r) + 4c,

u−c =
1

2

(
r −

√
r2 + 4bc

)
, u+

c =
1

2

(
r +

√
r2 + 4bc

)
, pc = − u−c

u+
c − u−c

.

Hence z′c satisfies the equation∣∣∣∣ u−c (z′ + ac/bc)

fc (z̄)− u−c (z̄ + ac/bc)

∣∣∣∣pc ∣∣∣∣ u+
c (z′ + ac/bc)

fc (z̄)− u+
c (z̄ + ac/bc)

∣∣∣∣1−pc = 1.

It follows that

z′c = −ac
bc

+

∣∣∣∣ u−c
fc (z̄)− u−c (z̄ + ac/bc)

∣∣∣∣−pc ∣∣∣∣ u+
c

fc (z̄)− u+
c (z̄ + ac/bc)

∣∣∣∣pc−1

The state dynamics is

ż = y1 + y2 − δ (z) = Pc (z) + a− δ (z) ≡ fc (z) .

The following proposition give conditions under which the threshold z̄ is or is not triggered.

Proposition 1 If (9) holds then z̄ is reached in finite time from some z0. Otherwise, if

the reversed inequality in (9) holds, then z̄ is never reached and

lim
t→∞

z (t) = z′c.

If in addition to (9), δ (z) = α− βz with positive α and β, and

4cz0 < (r − β) (a− δ (z0)) (10)

holds (in particular, if a ≥ α), then z̄ is reached in finite time for any 0 ≤ z0 ≤ z̄.

The proof is given in the Appendix A.1. As explained in the next sub-section, the economic

interpretation of the results is perfectly in line with the general analysis provided by TW.
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In particular, after rewriting condition (9) as

4cz̄ < (r + δ′ (z̄)) (a− δ (z̄)) ,

one can observe that the larger the pollution cost as captured by parameter c, the less

likely condition (9) will hold, and the more likely a permanent reversible regime will set

in. The reverse occurs with the utility parameter a. That is to say condition (9) simply

compares the cost of pollution and its welfare benefit.

Last but not least, it should be noted that if z̄ is reached in finite time, T̄ , depending on

whether z̄ < z∗c or z̄ ≥ z∗c the state has different behavior for t > T̄ . In the first case, the

state enters the irreversible regime and z (t)→ z∗c as t→∞. In the second case, z (t) = z̄

for all t > T̄ . Therefore, the process stops at T̄ .

3.3 Comparison with TW

Clearly, our cooperative setting need not be different from TW’s optimal control model.

However, our more specific LQ assumptions on the utility and damage functions do allow

to get more clearcut results (and there is no additional merit in that). While several

key results in TW are formulated as sufficient conditions, we can provide with a full and

global picture of optimal trajectories as depicted in our Proposition 1 above. This said,

it’s useful to relate our optimality and crossing conditions to theirs.

For example, let’s consider the sufficient condition for optimal reversible paths to arise

as specified in TW’s Proposition 1, page 1782, that is: D′(z̄) − rU ′(0) ≥ 0 with our

notations.4 To formulate accurately TW’s sufficient condition in our setting, let us set

a1 = a2 = a and c1 = c2 = c. Accordingly, functions U and D turn to U(y) = ay− (y2)/2

and D(z) = 2cz2. Thus TW’s sufficient condition D′(z̄) ≥ rU ′(0), translates into our

notations as 4cz̄ ≥ ra. In contrast, our condition for optimal reversible regime to hold,

4cz̄ ≥ (r+ δ′(z̄))(a− δ(z̄)) is necessary and sufficient. Of course, given that δ′(z̄) ≤ 0 and

δ(z̄) ≥ 0, (in TW, it is zero), our condition is weaker. But this improvement is entirely

due to the additional LQ assumptions made on the utility and damage functions.

4The discount rate r is denoted δ in TW. TW write the following about their condition : “Note that
the condition D′(z̄)− δU ′(0) ≥ 0 is sufficient only and reversible solutions may well be optimal when the
reverse holds. However, in such cases the choice between reversible and irreversible solutions will be less
obvious”, page 1783.
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Example 1 In Tahvonen and Withagen (1996), a numerical example is given for the

case of one player with

U (y) = ay − by2, D (z) = cz2, δ (z) = α− βz

and

ż = y − δ (z) for z < z̄

using the parameter values

a = 18, b = 0.5, c = 0.004, r = 0.2,

α = 20, β = 0.1.

Their model is equivalent to our central planner model with a1 = a2 = a, c1 = c2 = c/2,

and y1 = y2 = y/2. We use the values of parameters. The equivalent value of c in our

case is 0.004/2 = 0.002. In TW, z̄ = α/β = 200. At this value,

(r + δ′ (z̄)) (a− δ (z̄)) = (r − β) a = 1.8 > 1.6 = 4cz̄.

Hence, (9) holds, and therefore, z̄ = 200 is reached in finite time. In fact, for any

c1 = c2 ≥
a (r − β)

4z̄
= 0.00225

the reversed inequality in (9) is satisfied for z̄ = 200. Therefore, by Proposition 1 z̄ is not

reachable.

Returning to the case where c1 = c2 = 0.002, (9) is satisfied if

z̄ >
(r − β) (α− a)

β (r − β)− 4c
= 100.

Such values of z̄ are all reachable.
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4 Non-cooperative equilibria with symmetric pollu-

tion cost

We now move to non-cooperative (Nash) games. We first study the case where pollution

costs are identical across players. This is our benchmark strategic case, asymmetric

extensions are considered in Section 5. From now on, we focus on the characterization of

potential Markov perfect equilibria. For simplicity, let a = a1+a2
2

.

4.1 Characterization of the irreversible regime (z > z)

Denote Bellman value function of player i as Vi(z), ∀z. Then Vi must check the following

Hamilton-Jacobin-Bellman (HJB) equation:

rVi(z) = max
yi

[
aiyi − y2

i − cz2 + Vi,z (y1 + y2)
]
, (11)

where Vi,z = ∂Vi

∂z
is derivatives of Vi with respect to z. The right hand side’s first order

condition (which also check the second order condition) yields that the optimal choice of

player i is

yi =
ai + Vi,z

2
, i = 1, 2. (12)

Thus, the HJB equation (11) becomes

rVi(t, z) = ai
ai + Vi,z

2
− ai + Vi,z

2

2

− cz2 + Vi,z

[
a1 + V1,z

2
+
a2 + V2,z

2

]
, i = 1, 2. (13)

Given the linear-quadratic framework in the irreversible regime, we try the value function

as

Vi(z) = Am
i +Bm

i z +
Cm

i

2
z2,

with Am
i , B

m
i , C

m
i undetermined constants. It is easy to see

Vi,z(z) =
dVi
dz

= Bm
i + Cm

i z and yi(z) =
ai +Bm

i + Cm
i z

2
. (14)

Substituting (14) into the right hand side of (13), rearranging terms and equating coeffi-
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cients of like terms give, for i, j = 1, 2, i 6= j,
rAm

i =
(ai+Bm

i )2

4
+

Bm
i (aj+Bm

j )

2
,

rBm
i =

Cm
i (ai+Bm

i )

2
+ 1

2
[Bm

i C
m
j + Cm

i (aj +Bm
j )],

rCm
i

2
=

(Cm
i )2

4
+

Cm
i Cm

j

2
− ci.

(15)

In the case where c1 = c2 ≡ c, the last equation from the above system yields unique

symmetric negative root Cm
1 = Cm

2 = Cm, which is given by

Cm =
r −
√
r2 + 12c

3
(< 0). (16)

Accordingly, the other coefficients can be given by
Bm

i = Bm
2 ≡ Bm = (a1+a2)Cm

2r−3Cm (< 0),

Am
1 = (a1+Bm)2+2Bm(a2+Bm)

4r
,

Am
2 = (a2+Bm)2+2Bm(a1+Bm)

4r
.

(17)

Thus the optimal strategy of player i = 1, 2 is

ymi (z) =
ai +Bm + Cmz

2
.

The state equation

ż = ym1 + ym2 = a1 + a2 +Bm + Cmz, t ≥ T,

yields explicit solution

zm(t) = (z − z∗s)eC
m(t−T ) + z∗s , (18)

where z∗s is the asymptotically stable long-run steady state and given by

z∗s = −a1 + a2 + 2Bm

2Cm
=
a1 + a2

12c

(
5r +

√
r2 + 12c

)
. (19)
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It is straightforward that when z = z

Vi(z) = Am
i +Bmz +

Cm

2
z2 ≡ V i, (20)

which will be served as terminal condition for the first period under Markovian competi-

tion. In other words, this is the transversality condition between period I and II.

4.2 Characterization of the reversible regime and threshold cross-

ing conditions (z < z)

In period I, before the pollution threshold is triggered, the accumulation of pollution

checks

ż = y1 + y1 − δ(z) = y1 + y1 − δ(z), t ≤ T,

with initial condition z(0) = z0 given.

Similar to the above subsection 3.2, in the Appendix A.2, we demonstrate the following

existence of stationary Markovian subgame perfect Nash equilibrium in the first period.

Proposition 2 (Existence of stationary Markovian perfect Nash equilibrium)

Suppose c1 = c2 = c and following equation is solvable in term of Ps (z̄):

3Ps (z̄)2 + 4 (a− δ (z̄))Ps (z̄) + a2
i = 4

(
rV̄i + cz̄2

)
. (21)

Let Ps (z̄) be the root of (21) that is close to Bm + Cmz̄. Then, there exists stationary

Markovian perfect Nash equilibrium which are given by solutions of equation[
3

2
Ps(z) + a− δ (z)

]
P ′s(z) = (r + δ′ (z))Ps(z) + 2cz.

with terminal condition Ps (z̄) .

Furthermore, for special linear decay function δ(z) = α − βz and α, β are positive con-

stants, the stationary Markovian perfect Nash equilibrium can be more precisely presented

as:

yi (z) =
ai
2

+
1

3
[Qs (z)− a+ δ (z)] for z < z̄ i = 1, 2,
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where Qs (z) satisfies the following equation:∣∣∣∣Qs (z)− u−s (z + as/bs)

Qs (z̄)− u−s (z̄ + as/bs)

∣∣∣∣ps ∣∣∣∣Qs (z)− u+
s (z + as/bs)

Qs (z̄)− u+
s (z̄ + as/bs)

∣∣∣∣1−ps = 1,

in which

u−s =
1

2

[
r −

√
r2 + 4bs

]
, u+

s =
1

2

[
r +

√
r2 + 4bs

]
and

as = (β − r)(a− α), bs = β(β − r) + 3c.

The existence result does not depend on the explicit form of decay function δ(z), see more

detailed explanation in Appendix A.2 or following the same logic as in Section 3.2.

We now study the key issue of reachability of the irreversible regime. We shall generalize

to the game context the intuitive property that such an outcome depends on the position

of the steady state of the pollution dynamics induced by the Markovian equilibrium and

the irreversibility threshold, z̄.

To this end, we start by substituting the above Markovian optimal strategies into the

dynamic equation for z < z, it follows

ż = fs (z) ≡ Ps (z) + a− δ (z) =
1

3
[2Qs (z) + a− δ (z)]

with initial condition z (0) = z0 given.

Furthermore, the pollution accumulation is increasing or decreasing over time depending

on the sign of Qs (z): if Qs (z0) > 0 then the pollution accumulates until the first time

when Ps + a− δ = 0.Let z′s denote this root. At this point

Qs (z′s) =
1

2
(δ (z′s)− a) .

Hence, by (60), z′s satisfies

S

(
z′s,

1

2
(δ (z′s)− a)

)
= S (z̄, Qs (z̄)) . (22)

We conclude the above analysis in the following
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Proposition 3 Suppose c1 = c2 = c and Eq. (21) has a negative real root. Let z′s satisfy

(22). Then, under the Markovian perfect Nash equilibrium given by Proposition 2,

(a) if z̄ < z′s, the pollution decay threshold will be triggered in finite time T̄s, which is

given by

T̄s =

∫ z̄

z0

dz

Ps (z) + a− δ (z)
; (23)

(b) otherwise, if z̄ ≥ z′s, the pollution decay threshold will never be reached.

As announced above, Proposition 3 gives the counterpart of Proposition 1 (cooperative

case) to the game-theoretic context under Markovian strategies in the general non-concave

decay case. As in Proposition 1, the intuitions are clear but the characterization is much

more nontrivial to obtain. We shall get a step further here below and express the results

in terms of the deep economic parameters of the model.

4.3 Reachability of the threshold and asymptotes

We now uncover the concrete parametric implications of the proposition above to visualize

better the economic and ecological determinants of reaching the irreversible regime. We

also explore the resulting asymptotes. Particular attention is paid to the comparison

between the cooperative and non-cooperative setting in the reachability of the irreversible

regime, with concrete numerical examples to support the theoretical arguments. We start

with some general reachability conditions.

Proposition 4 The following are true.

1. If a ≤ δ (z̄) and

(r + δ′ (z̄)) (a− δ (z̄)) ≤ 3cz̄, (24)

then z̄ is never reached. Furthermore,

lim
t→∞

z (t) = z′s (25)

where z′s is given in Proposition 3.
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2. If a > δ (z̄) and z̄ is never reached if and only

cz̄2 ≥ a2
i − (a− δ (z̄))2

4
− rVi (z̄) . (26)

The more economically relevant case is case 2, as the decay is typically very low (and equal

to zero in TW) when we reach the irreversibility threshold. The intuition of condition (26)

is straightforward: the left hand side is the direct cost of pollution accumulation, defined

in the objective function, at the threshold z. The right hand side is the counterpart

gain at the threshold and it includes two parts: the first part is short-run net gain from

emission net of decay effects (the square forms come from the functional forms defined

in the objective function and optimal choices of strategies) while the second part is the

long-run consequences in term of optimal value function when the threshold is crossed

and the ecological system enters the second phase. The above condition provides the

rather straightforward information that when the accumulated cost at the threshold is

sufficiently high and dominates the gain, more efforts will be made by both players such

that the threshold actually never be reached. Otherwise, when the cost is not high enough,

the threshold will be crossed in finite time. Of course, this condition does not exclude

the situation that the natural self-regeneration capacity is sufficiently high, i.e., z is large

enough, such that the above inequality always holds. Of course, this is a rather ideal

situation.

In Proposition 1 for the cooperative case, a permanent reversible regime sets in if and

only if

4cz̄ ≥ (r + δ′ (z̄)) (a− δ (z̄)) .

Here, all the results are derived under the condition (24), which is similar to the benchmark

condition above. However the Nash game displays different outcomes even if we restrict

ourselves to the TW case discussed in item 2 of Proposition 4 (with δ(z̄) = 0). A second

condition is required, that is (26): in the TW continuous case, and provided condition

(24) holds, we get the permanent reversible case if and only if condition (26) holds. This

extra condition is due to the competition setting which is different from TW where there

is only one policy maker just as the above Proposition 1. We shall come back to this point

in the Subsection 6.1 when we collect all information of different kind of competitions.

Nevertheless, we shall study the implications of this intricate condition in the linear decay
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case below and complement with numerical exercises. Before, we display some additional

observations and properties.

Asymptotic behavior. If z̄ is reached in finite time, T̄ , depending on whether z̄ < z∗s

or z̄ ≥ z∗s the state has different behavior for t > T̄ . In the first case, the state enters

Period II and z (t)→ z∗s as t→∞. In the second case, z (t) = z̄ for all t > T̄ . Therefore,

the process stops at T̄ .

The following proposition complements Proposition 4, with in particular a clear-cut result

in the case of (locally) linear decay functions.

Proposition 5 (Reachability of z̄) Suppose

(r + δ′ (z̄)) (a− δ (z̄)) > 3cz̄. (27)

Then z̄ is reached in finite time for some z0 if either a > δ (z̄), or a ≤ δ (z̄) and

cz̄2 ≥ a2
i − (a− δ (z̄))2

4
− rVi (z̄) (28)

holds. If in addition, δ = α − βz with positive α and β, and a ≥ α, then z̄ is reached in

finite time for any 0 ≤ z0 ≤ z̄.

In the case where a > δ (z̄), the above two propositions lead to the following simple

necessary and sufficient condition, while the detail proof is given in Appendix A.5.

Corollary 1 Suppose a > δ (z̄). Let C̄ be the largest solution to the equation

4cz̄2 = a2
i − 4rVi (z̄; c)− (a− δ (z̄))2 . (29)

Then z̄ is reached in finite time for some z0 if and only if c < C̄. Furthermore,

C̄ >
ar

2z̄
. (30)

The case where a > δ (z̄) is quite interesting to get a sense of the implications of more or

less involved conditions displayed in Propositions 4 and 5. In this case, the irreversibility
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threshold is crossed if

c <
1

4z̄
(r + δ′ (z̄)) (a− δ (z̄))

in the cooperative game, while the Nash counterpart requires c < C̄. Since

C̄ >
1

4z̄
(r + δ′ (z̄)) (a− δ (z̄))

by (30), the condition for the emergence of the irreversible regime is easier to check in the

Nash case. This sounds intuitive: cooperation generally allows to reach lower pollution

levels in pollution games (see the survey of Van Long, 2010), and there is no particular

reason the picture changes with irreversibility thresholds: absence of cooperation will

lead more frequently to more polluting regimes (in this case: irreversibility). Numerical

illustrations follow.

Example 2 As explained in Example 1, the numerical example in TW is equivalent to

our central planner model with the same parameter values except c is changed to 0.002.

In the case of non-cooperative game with the same parameters as in Example 1,

(r − β) a− 3cz̄ = 0.6 > 0.

Hence, (27) is satisfied. Since a = 18 > 0 = δ (z̄), by Proposition 5, z̄ = 200 is reached

in finite time from some z0. By (19)

z∗s =
a

12c

(
5r +

√
r2 + 12c

)
≈ 939.74.

Thus, after z̄ is reached, the state enters Period II and z (t)→ z∗s as t→∞.

More generally, the above result is true for any

c ≤ (r − β) a

3z̄
= 0.003.

In contrast, if

c >
(r − β) a

4z̄
= 0.00225

the reversed inequality in (9) holds. By Proposition 1, z̄ = 200 is not reached under a

central planner. Therefore, for any c between 0.00225 and 0.003, the long-run pollution
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level under a central planner stays below z̄ = 200, but under competition with symmetric

costs, it exceeds z̄ and continue on to approach z∗s . This shows that competition leads to

higher level of pollution in the long run.

Returning to c = 0.002, for other values of z̄, inequality (24) is satisfied if

z̄ ≤ (r − β) (α− a)

β (r − β)− 3c
= 50

Since a ≤ δ (z̄) if

z̄ ≤ α− a
β

= 20,

by Part 1 of Proposition 4, such z̄ is never reached. On the other hand, it can be shown

that the quadratic function

4cz2 < a2
i − 4rVi (z)− (a− δ (z))2

for 0 ≤ z ≤ 180. By Part 2 of Proposition 4, any z̄ that satisfies 20 < z̄ ≤ 50 is reached

in finite time if z0 is sufficiently close to z̄. Furthermore, for

50 < z̄ ≤ 200

(27) is satisfied. Since a−δ (z̄) > 0 for z̄ > 20, by Proposition 5, z̄ is reached in finite time

for some z0 < z̄. In summary, any z̄ ≤ 20 is never reached, and any z̄ > 20 is reached

in finite time. In the latter case, after z̄ is reached, z (t) → z∗s as t → ∞, z (t) → z∗s as

t→∞.

5 Non-cooperative games with asymmetric pollution

costs

We now come to one of the most important contributions of this paper: the role of asym-

metries. We relax the assumption of identical pollution costs and study the implications

in terms of emergence of the irreversible regime compared to the benchmark case. We

first study the general case for any pair of pollution costs (c1, c2). While we are able to

characterize analytically existence of Markovian equilibria and conditions for emergence
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of the irreversible pollution regime, the latter are largely implicit. We then move to an

extreme asymmetry case to extract more explicit results.

5.1 The general case of asymmetric pollution costs

5.1.1 Characterization of the irreversible regime (z > z̄)

For z > z̄, δ (z) = 0. We seek the value functions in the quadratic form

Vi (z) = Ai +Biz +
Ci

2
z2, i = 1, 2.

Substituting the quadratic functions into (20), it follows that

r

[
Ai +Biz +

Ci

2
z2

]
=

1

4
(ai +Bi + Ciz)2 +

1

2
(Bi + Ciz) (aj +Bj + Cjz)− ciz2.

Comparing coefficients, we find

rAi =
1

4
(ai +Bi)

2 +
1

2
Bi (aj +Bj) ,

rBi =
1

2
Ci (ai +Bi) +

1

2
[BiCj + Ci (aj +Bj)] ,

r

2
Ci =

1

4
C2

i +
1

2
CiCj − ci.

We find a solution with negative C1 and C2. The last two equations lead to

r

2
Ci −

1

4
C2

i + ci =
1

2
C1C2. (31)

Let λ = C1C2/2. Then

Ci = r −
√
r2 + 4 (ci − λ) for i = 1, 2. (32)

This leads to the equation for λ as(
r −

√
r2 + 4 (c1 − λ)

)(
r −

√
r2 + 4 (c2 − λ)

)
= 2λ. (33)
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Since r −
√
r2 + 4 (ci − λ) is increasing and negative for 0 ≤ λ ≤ ci, the left-hand is

positive and decreasing for 0 ≤ λ ≤ min {c1, c2}. In addition, the left hand side is positive

for λ = 0 and is zero at λ = min {c1, c2}. In contrast, the right-hand side is increasing and

is zero at λ = 0. Hence Eq. (33) has a unique positive solution between 0 and min {c1, c2}.
By (32), one solves C1 and C2.

Note that the equations for B1 and B2 are linear with the coefficient matrix(
(C1 + C2) /2− r C1/2

C2/2 (C1 + C2) /2− r

)
.

The determinant of this matrix is

C2
1 + C1C2 + C2

2

4
− (C1 + C2) r + r2 > 0.

Hence, B1 and B2 are uniquely solved.

Finally, the equations for A1 and A2 are already in solved form. This completes the proof

of a unique solution with negative C1 and C2.

5.1.2 Characterization of the reversible regime (z < z̄) and threshold crossing

conditions

Let Pi (z) = V ′i (z). By differentiating the two sides of Eq. (20), we find

rPi =
1

2

{
P ′i [2a+ P1 + P2 − 2δ (z)] + Pi

[
P ′j − 2δ′ (z)

]}
− 2ciz. (34)

This is a linear system of differential equations for P1 and P2. Solving P ′1 and P ′2 from

the system, we can write

P ′i =
2 [2a+ P1 + P2 − 2δ (z)] [(r + δ′ (z))Pi + 2ciz]− 2Pi [(r − β)Pj + 2cjz]

[2a+ P1 + P2 − 2δ (z)]2 − P1P2

(35)

25



for i, j = 1, 2, j 6= i. The terminal value Pi (z) are obtained from solving (20) at z̄, which

takes the form

rV̄i =
1

4
(ai + Pi (z̄))2 +

1

2
Pi (z̄) [aj + Pj (z̄)− 2δ (z̄)]− ciz̄2 for i, j = 1, 2, j 6= i.

(36)

With the values Pi (z̄) solved, we can find

Pi (z) = Pi (z̄)−
∫ z̄

z

Fi (s, P1 (s) , P2 (s)) ds for z < z̄, i = 1, 2

where Fi (z, P1, P2) is the function on the right-hand side of (35). The value function

Vi (z) can then be recovered from (20) by

Vi (z) =
1

4r
(ai + Pi (z))2 +

1

2r
Pi (z) [aj + Pj (z)− 2δ (z)]− ci

r
z2.

To solve (36), we write the equations as

Pi (z̄)2 + 4 (a− δ (z̄))Pi (z̄) + 2P1 (z̄)P2 (z̄)−∆i = 0

where

∆i = 4
(
rV̄i + ciz̄

2
)
− a2

i .

Let µ = 2P1 (z̄)P2 (z̄). Then, the equation becomes

Pi (z̄)2 + 4 (a− δ (z̄))Pi (z̄) + µ−∆i = 0.

The solution is

Pi (z̄) = −2 (a− δ (z̄))±
√

4 (a− δ (z̄))2 + ∆i − µ for i = 1, 2.

We assume that Pi (z̄) ≤ 0. Then the sign in front of the square root is positive if a ≥ δ (z̄)

and µ ≥ ∆i, and it is negative if a ≥ δ (z̄) or if a < δ (z) and µ < ∆i.) Let σi = 1 if the

the sign is positive and σi = −1 if the sign is negative. We write

Pi (z̄) = −2 (a− δ (z̄)) + σi

√
4 (a− δ (z̄))2 + ∆i − µ (37)
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Then, µ is a solution to the equation

µ = 2
2∏

i=1

{
−2 (a− δ (z̄)) + σi

√
4 (a− δ (z̄))2 + ∆i − µ

}
. (38)

It follows that f (z̄) has the form

f (z̄) = − (a− δ (z̄)) +
1

2

2∑
i=1

σi

√
4 (a− δ (z̄))2 + ∆i − µ. (39)

We focus on the strategies with value functions that satisfy

V ′i (z̄) ≤ 0 for i = 1, 2. (40)

With the help of the above preparation, Appendix A.6 provides reachability conditions.

The fundamental idea is using the above analysis to show that the evaluation at z of the

dynamic system

ż = f(z)

is positive or non-positive.

Obviously, if f(z) > 0, the threshold z is still in the pollution accumulation process, thus

it would be reached in finite time given pollution in increasing over time. However, if

f(z) < 0, it means the dynamic system must already reach to its long-run steady state

ż = f(z) = 0 which is asymptotically stable. In other words, the threshold z such that

f(z) < 0 will never be reached. The detail calculation is presented in Appendix A.6.

Proposition 6 (Reachability condition) For the optimal strategies associated with the

value functions that satisfy (40), the following are true.

1. If a ≤ δ (z̄) then z̄ is never reached in finite time.

2. If a > δ (z̄) and

|∆1 −∆2| ≥ 6 (a− δ (z̄))2 (41)

then z̄ is never reached.
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3. If a > δ (z̄) and

|∆1 −∆2| < 2
(

2
√

3− 3
)

(a− δ (z̄))2 (42)

then z̄ is never reached if

max {∆1,∆2} > 0. (43)

and it is reached from some z0 if the reversed inequality in (43) holds.

Let’s make sense of the Proposition above by relating it more closely to the results obtained

in the symmetric case (Propositions 4 and 5). To ease the exposition, suppose asymmetry

lies only in the pollution costs (a1 = a2 = a). In such a case, one gets:

∆1 −∆2 = 4
(
r∆V̄ + ∆cz̄2

)
,

where ∆V̄ = V̄1− V̄2 and ∆c = c1− c2. Clearly, if additionally ∆c = 0, which corresponds

to the full symmetric case, then: ∆V̄ = 0, and therefore, ∆1 = ∆2. In such a case,

condition (40) of Proposition 6 is immediately checked and the permanent reversible

regime holds if ∆1 = ∆2 > 0. Let’s now compare Proposition 4 and Proposition 6

when ∆c goes to 0, that’s when we converge to the limit symmetric case described just

above. Consider a > δ(z̄) and compare item 2 of Proposition 4 (with a1 = a2) and item

3 of Proposition 6 in the limit case. Clearly, condition (26) for permanent reversible

regimes to hold in Proposition 4 is also checked by the counterpart condition (41) in

Proposition 6. While this observation makes clear the coherence of our results, it does not

say something accurate on the role of asymmetry in the emergence or not of irreversible

pollution regimes. We next study an extreme asymmetry case where some interesting

aspects could be grasped.5

5.2 Extreme asymmetric pollution cost: c1 = 0, c2 = 2c > 0

The complete solution of the counterpart game is given in the Appendix. We just state

here the main results in the next Proposition, followed by a numerical example.

Proposition 7 (Reachability of z̄) If the inequality

5One would be tempted to conclude when browsing conditions (39) and (40) and the fact that as writ-
ten above: ∆1−∆2 = 4

(
r∆V̄ + ∆cz̄2

)
. Unfortunately, as one can check, ∆V̄ also depends (nontrivially)

on the ci.
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(r + δ′ (z̄)) (a− δ (z̄)) > 2cz̄ (44)

holds then z̄ is reached from some z0. Otherwise, if the reversed inequality in (44) holds,

then z̄ is never reached and

lim
t→∞

z (z) = z′e.

If in addition to (44) δ is linear with positive α and β, and

2cz0 < (r − β) (a− δ (z0)) (45)

holds, (in particular, if a ≥ α), then z̄ is reached in finite time from any z0 that satisfies

0 ≤ z0 ≤ z̄.

The results are much neater in this extreme asymmetric case compared to the more general

asymmetric case considered before. And they sounds as more directly comparable with

those obtained on the emergence of the irreversible regime under alternative strategic

setting so far. Indeed, the comparison with Proposition 5 for the symmetric case is

very interesting: comparing condition (27) in Proposition 5 with condition (44) in the

Proposition just above gives the immediate outcome that reaching the irreversible regime

is easier under the extreme asymmetric case in the sense that the threshold z̄ can be

reached for a larger set of the pollution cost parameter, c. This is particularly apparent

from (30) in Corollary 1 and (44), which imply

C̄ >
1

2
(r + δ′ (z̄)) (a− δ (z̄)) ,

provided that a ≥ δ (z̄) and δ′ (z̄) ≤ 0. This might not look surprising as one of the two

players in the latter case does not dislike at all pollution. Unfortunately, the picture is

much more complicated. In the symmetric case, reachability also depends on conditions

of type (26)-(28), which may perfectly yield the opposite picture. The numerical example

below illustrates the different possible outcomes, and Section 6.1 clarifies this highly

nontrivial feature and gives the intuition behind.

Moreover, even though the extreme asymmetric setting allows to reach less frequently

the irreversible regime, this does not mean neither that for given c leading to crossing

the irreversibility threshold in both strategic settings, pollution will end up be larger
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in the extreme asymmetric case, in particular in the long-term. As we will see in the

next section 6.2, free-riding is such a powerful mechanism that we unambiguously get the

inverse ranking, that’s steady state pollution may be higher in the symmetric case under

the irreversible regime. We show it numerically in the TW case where pollution decay is

equal to zero.

Example 3 Using the same parameter values as in Example 1, for the extreme asym-

metric case with c1 = 0 and c2 = 2c = 0.004, we find

(r + δ′ (z̄)) (a− δ (z̄)) = 1.8 > 0.8 = 2cz̄.

Hence, (44) holds. By Proposition 7, z̄ = 200 is reached in finite time for some z0.

For non-extreme asymmetric case with c1 = 0.0015, c2 = 0.0025 and z̄ = 200, we find

that

∆1 = −203.95, ∆2 = −365.28, a− δ (z̄) = 18.

Hence,

|∆2 −∆1| = 116.34 < 2
(

2
√

3− 3
)

182.

Since max {∆1,∆2} < 0, by Proposition 6, z̄ is reachable from some z0.

If, on the other hand, c1 = 0.015, c2 = 0.025, then

∆1 = 373.75, ∆2 = 95.15.

It follows that

|∆1 −∆2| = 278.60 < 2
(

2
√

3− 3
)

(a− δ (z̄))2 .

Since max {∆1,∆2} ≥ 0, by Proposition 6, z̄ is never reached by optimal strategies with

value functions that satisfy V ′i (z̄) ≤ 0 for i = 1, 2. Indeed, there are three sets of such

value functions, with (V ′1 (z̄) , V ′2 (z̄)) having the values (−74.58,−1.21), (−19.31,−36.02),

and (−6.84,−59.91), respectively. The corresponding values of f (z̄) are −19.90, −9.67

and −15.38, respectively. Hence, z̄ is never reached by either strategy.

To compare asymmetric case with the symmetric one, we note that for

c ≥ (r − β) a

2z̄
= 0.0045,
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z̄ = 200 is not reachable in finite time in the extreme asymmetric case with c1 = 0 and

c2 = 2c. On the other hand, for the symmetric case with c1 = c2 = c, computation

shows that the largest solution of equation (29), C̄, is approximately 0.01. Therefore, for

0.0045 < c ≤ 0.01, z̄ is not reached in the extreme asymmetric case, but is reached in

the symmetric case. By continuity of solution on parameters, the same is true for cases

where one ci is far less than the other cj and where the two are close.

6 Reachability, irreversibility and institutional set-

tings

This section summarizes the above analysis and makes some comparison studies. The first

subsection focus on the reachability conditions of the threshold which presented in the

above Proposition 1, 4, 5 and 7. This part can be considered as short-run trajectory com-

parison. The second subsection focus on the irreversibility regime and the corresponding

long-run outcomes under different competition settings.

6.1 Reachability conditions under different competitions

Figure 1 summarizes the reachability conditions of threshold z in terms of the total cost

parameter c1 + c2 = c under the different settings, including symmetric, extreme asym-

metric and general asymmetric competitions.

Before further investigation, we must remark that in the last part of the Figure 1, the

position of C is not fixed above Cs, rather it depends on the combination of parameters:

all ranking are possible, see the middle part of the figure. Nevertheless, the ranking of

Cc, Cs and Ce are unambiguously presented in the last part of the figure.

It is straightforward that regardless the position of C (see Corollary 1), the z−unreachable

interval, that is [Cc,∞), is the largest. This is not surprising as central planning yields the

first best scenario. The ranking between symmetric and extreme asymmetric competition

is rather complicated as it depends on the location of C. In the case of the last part of

Figure 1, the unreachable cost interval is larger under extreme asymmetric competition

than under symmetric situation: [C,∞) ⊂ [Ce,∞). But it may happen that C < Ce,
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Figure 1: Comparison of reachability condition.
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given condition in Corollary 1, then the opposite conclusion is true.

The extra condition C, defined in Corollary 1, comes directly from the competition dif-

ferences and the intuition of this condition was explained after Proposition 4. Under the

case where there is only one decision maker who cares about the accumulated pollution

cost, either central planner or the player 2 in the extreme asymmetric competition who

suffers the most from the accumulation of pollution, the decision is made unambiguously

depending on the cost-gain benefit analysis (explained after Proposition 1), which yields

the conditions in terms of the threshold values Cc, Cs and Ce. However, between these

two polar cases, for example under the symmetric competition, both players’ efforts ad-

ditionally depend on conditions of type (26), that’s on the cost generated by pollution

accumulation at the threshold level compared with their respective net values.

6.2 Irreversibility, institutional settings and long-term pollution

outcomes

The last part of the last example in the previous section indicates that asymmetry results

in lower pollution. This is also the case if z̄ is reached in both cases. The next result gives

an order of steady-state pollution levels in the four strategic settings so far considered

in the irreversible regime (more precisely, with a zero decay of pollution as in TW).

Concretely, it shows that pollution is lower with cooperation (compared to the three non-

cooperative settings considered), and much more interestingly, asymmetric game cases

deliver less pollution among the symmetric. We dig into the intuitions and the economic

interpretations later.

Let the steady states of pollution without decay be denoted by z∗c , z∗s , z∗e and z∗a, for the

cases with a central planner and the game-theoretic with symmetric, extreme asymmetric,

and the general asymmetric pollution costs, respectively. The first three are given by (4),

(19) and (76), respectively, and it can be shown, similar to the derivation of z∗s , that

z∗a =
2a
(
λ+ r2 + r

√
r2 + 4 (2c− λ)

)
r (4c− λ) + (4c− 3λ)

√
r2 + 4 (2c− λ)

(46)
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with λ defined by(
r −

√
r2 + 4 (c1 − λ)

)(
r −

√
r2 + 4 (c2 − λ)

)
= 2λ. (47)

In Appendix A.7, we show the following ranking.

Proposition 8 For any nonnegative c1 and c2 the steady states of pollution without decay,

z∗a, z∗e , z∗s , and z∗c , are ordered as

z∗c < z∗e ≤ z∗a ≤ z∗s .

We first illustrate the finding with a numerical example.

Example 4 Using the same parameter values as in Example 1, TW shows the threshold

z = 200 is reached in finite time. We have shown in Examples 1–3 that the same z is

reached in all other cases for equivalent parameter values. In addition, the limit of z(t)

is z∗c = 450 in the central planner case (with c = 0.002), to z∗s = 939.74 in the symmetric

case (with c1 = c2 = 0.002), and to z∗e = 900 in the extreme asymmetric case (with c1 = 0

and c2 = 0.004). For the asymmetric case with c1 = 0.0015 and c2 = 0.0025, the limit is

z∗a = 937.14. Thus the ranking in the proposition is checked.

Intuition behind Proposition 8 is the following. The steady states are comparable only if

they lie within the same pollution regime, we focus on the irreversible regime with zero

decay, which is the more original exercise in this respect. Obviously, the central planer’s

optimal choice yields the first best outcome with the lowest pollution accumulation. The

other three cases are more intricate to compare at once but we can visualize better the

results if we compare first the symmetric and extreme asymmetric configurations as the

general asymmetric setting can be approached as an intermediate case between the two

latter.

Consider the pollution accumulation dynamics ż = y1 + y2 and the efforts of both play-

ers yi = ai
2

+ Bi+Ciz
2

and ymi = ai
2

+ Bm+Cmz
2

under extreme asymmetric and symmetric

competition respectively. Indeed given Bi ≤ 0, Bm < 0 and Ci < 0, Cm < 0, we can

interpret Bi+Ciz
2

and Bm+Cmz
2

as efforts made by players to reduce the pollution accumu-

lation in the two latter cases. Thus, it is straightforward to see that with c1 = 0 under
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extreme asymmetric competition, player 1 makes no efforts to help reducing pollution

(since C1 = 0, B1 = 0). In contrast, player 2, who bears the highest cost from the ac-

cumulation of pollution, will make a substantial effort to reduce pollution. It is easy to

show that
C2

2
< Cm < 0 and

B2

2
< Bm < 0.

Thus, for any z, it follows at the aggregate level,

B2 + C2z

2
< Bm + Cmz.

In other words, under the extreme asymmetric competition, player 2 with c2 = 2c makes

more efforts to clean-up the pollution than the sum of two players in the symmetric case

(c1 = c2 = c). Under symmetric case, the well-known free-riding mechanism is at work:

both players would wait for the other one to make more efforts and no one end up making

enough efforts. The general asymmetric case lies in between: the player who faces higher

accumulated pollution damage will make more efforts to reduce the pollution while the

one who is less sensitive to accumulated pollution would free ride on the other’s efforts.

But the global impact of free-riding is lower than under symmetry.

7 Conclusion

In this paper, we have developed an extension of the hard pollution irreversibility model

of TW to differential games. As we keep the original non-concavity originating precisely

in the specification of hard irreversibility, the induced mathematical setting is nontrivial.

However, we have been successful enough in providing with a full analytical handling of

the game outcomes in various institutional configurations. Beside the technical contri-

bution we have reached three meaningful results. First, we show that cooperation may

not prevent irreversible pollution regimes to occur. Second, we find that under symme-

try (in pollution costs), irreversible regime are more likely to emerge in the absence of

cooperation. Last but not least, when studying the implications of asymmetry, we find

nontrivial results on the reachability of irreversible pollution compared to the symmet-

ric game. However, we unambiguously prove that, for the same total cost of pollution,

provided where the irreversible regime is reached in both the symmetric and asymmet-
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ric cases, long-term pollution is larger in the symmetric case, reflecting more intensive

free-riding under symmetry.

Needless to say, our results are worth examining in richer settings. One quite interesting

extension would consider uncertainty either on the value of irreversibility thresholds (z̄) or

in the extent of irreversibility (that is, under random magnitude of the drop in pollution

decay for given threshold). Obviously, it’s not granted that we can keep the fully analytical

approach when dealing with these natural extensions.

A Appendix

A.1 Proof of Proposition 1

From (8) we derive

4
[
rVc (z̄) + 2cz̄2

]
=

(
fc (z̄) +

a2 − a1

2
+ δ (z̄)

)2

+

(
fc (z̄) +

a1 − a2

2
+ δ (z̄)

)2

− 4δ (z̄) (fc (z̄)− a+ δ (z̄)) .

The equation is simplified to

fc (z̄)2 = 2
[
rVc (z̄) + 2cz̄2

]
+ (a− δ (z̄))2 − a2

1 + a2
2

2
.

So

fc (z̄) =

√
(a− δ (z̄))2 + ∆c

if (9) holds, and

fc (z̄) = −
√

(a− δ (z̄))2 + ∆c

otherwise. In the former case, fc (z̄) > 0. In the latter case, fc (z̄) ≤ 0. Hence, the first

root of fc (z) is less than or equal to z̄. Therefore, z̄ is never reached.

Assuming that δ is linear with positive α and β and (9) and (10) both hold, we show that
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fc (z) > 0 for z ≤ z̄. Subsitituting Pc (z) = fc (z)− a+ δ (z) in (7), we find

fc (z) [f ′c (z)− β] = (r − β) [fc (z)− a+ δ (z)] + 4cz for z < z̄.

It can be written as

1

2

d

dz
[fc (z)]2 = rfc (z)− (r − β) (a− δ (z)) + 4cz.

If there is ẑ < z̄ such that fc (ẑ) = 0. Then, [fc (z)]2 has a local minimum at ẑ. Thus the

left-hand side of the above equation is zero. It follows that

− (r − β) (a− δ (ẑ)) + 4cẑ = 0. (48)

On the other hand by (9) and (10) (r − β) (a− δ (z)) > 4cz for z = z0, z̄. Since both

functions are linear, it follows that

(r − β) (a− δ (z)) > 4cz for z0 ≤ z ≤ z̄.

This contradicts (48). Hence, no such ẑ exists. This proves that z̄ is reached in finite

time.

The proof of the proposition is complete. �

A.2 Proof of Proposition 2

It is easy to check that the Bellman value function must check the following HJB equation:

rVi(z) = max
yi

[
aiyi − y2

i − cz2 + Vi,z (y1 + y2 − δ(z))
]
. (49)

The right hand side’s first order condition yields that player i’s optimal choice is

yi =
ai + Vi,z

2
, i = 1, 2. (50)
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Substituting into (49), it follows

rVi(z) = ai
ai + Vi,z

2
− ai + Vi,z

2

2

−cz2+Vi,z

[
a1 + V1,z

2
+
a2 + V2,z

2
− δ(z)

]
, i = 1, 2. (51)

For simplicity, denote Pi(z) = Vi(t, z) for i = 1, 2. Taking derivative of( 51) on both sides

with respect to state variable z, it follows

rPi =
1

2

{
P ′i [a1 + a2 + P1 + P2 − 2δ (z)] + Pi

[
P ′j − 2δ′(z)

]}
− 2cz. (52)

We notice that, in the second period, the difference between the value function of player

1 and 2 lies solely on the constant term, A1 and A2. Thus, we guess similar pattern is

true in the first period, thus, P1(z) = V ′1(z) = V ′2(z) = P2 = Ps(z). If so, equation (52)

can be simplified as the following:[
3

2
Ps(z) + a− δ (z)

]
P ′s(z) = (r + δ′ (z))Ps(z) + 2cz. (53)

The terminal condition at z̄ is determined by the HJB equation (20), which takes the

form

rV̄i =
1

4
(ai + Ps (z̄))2 +

1

2
Ps (z̄) [aj + Ps (z̄)− 2δ (z̄)]− cz̄2.

This is a quadratic equation in Ps (z̄), in the form6

3Ps (z̄)2 + 4 (a− δ (z̄))Ps (z̄) + a2
i = 4

(
rV̄i + cz̄2

)
. (54)

In general, there are two roots for Eq. (54),

Ps (z̄) =
1

3

{
−2 (a− δ (z̄))±

√
4 (a− δ (z̄))2 + 3∆i

}
(55)

where

∆i = 4
(
rVi (z̄) + cz̄2

)
− a2

i for i = 1, 2.

6Note that

4rV̄i − a2i = 4rAi − a2i + 4r

(
Bz̄ +

C

2
z̄2
)

= 4aB + 3B2 + 4r

(
Bz̄ +

C

2
z̄2
)

is independent of i. So Ps (z̄) does not depend on i.
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Each gives rise a value function. We choose the one that has the smaller P ′s (z̄) to ensure

that the value functions Vi (z) are most concave for z < z̄ and is near z̄. Substituting the

right-hand side of (55) into (53) evaluated at z̄, it follows that

P ′s (z̄) =
r + δ′ (z̄)

3
+
−2 (r + δ′ (z̄)) (a− δ (z̄)) + 6cz̄

±3
√

4 (a− δ (z̄))2 + 3∆i

.

So, the sign is positive if

−2 (r + δ′ (z̄)) (a− δ (z̄)) + 6cz̄

3
√

4 (a− δ (z̄))2 + 3∆i

≤ −2 (r + δ′ (z̄)) (a− δ (z̄)) + 6cz̄

−3
√

4 (a− δ (z̄))2 + 3∆i

,

which is equivalent to

(r + δ′ (z̄)) (a− δ (z̄))− 3cz̄ ≥ 0, (56)

and the sign is negative if the reversed inequality holds.

We can solve (53) in the case where δ is a linear function: δ(z) = α − βz with both α, β

positive. Multiplying the both sides by 3/2, we get[
3

2
Ps (z) + a− δ (z)

](
3

2
Ps (z)

)′
= (r − β)

(
3

2
Ps (z)

)
+ 3cz. (57)

Introducing

Qs (z) =
3

2
Ps (z) + a− δ (z) ,

the differential equation for Qs (z) is

Qs (z) [Qs (z)− a+ δ (z)]′ = (r − β) [Qs (z)− a+ δ (z)] + 3cz. (58)

It leads to

Q′s (z) = r +
as + bsz

Qs

where

as = (β − r) (a− α) , bs = β (β − r) + 3c.

We make the substitution x = z + as/bs in the equation, and regards Qs as a function of
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x. It follows that

Q′s (x) = r +
bsx

Qs (x)
.

This is a first order equation of homogeneous type. Let u = Qs/x. The equation becomes

x
du

dx
= r +

bs
u
− u = −u

2 − ru− bs
u

. (59)

In the case where r2 + 4bs > 0. We let

u−s =
1

2

[
r −

√
r2 + 4bs

]
, u+

s =
1

2

[
r +

√
r2 + 4bs

]
.

Then
u

u2 − ru− bs
=

ps
u− u−s

+
qs

u− u+
s

where

ps = − u−s
u+
s − u−s

, qs =
u+
s

u+
s − u−s

.

Note that u−s ≤ 0 < u+
s (if β ≥ r) and ps and qs are both nonnegative. In addition,

ps + qs = 1. So we substitute 1− ps for qs. Eq. (59) becomes[
ps

u− u−s
+

1− ps
u− u+

s

]
du = −dx

x
.

By integration, we have

ps ln
∣∣u− u−s ∣∣+ (1− ps) ln

∣∣u− u+
s

∣∣ = − ln |x|+ C.

Hence, substituting Qs for ux, we find

∣∣Qs (x)− u−s x
∣∣ps ∣∣Qs (x)− u+

s x
∣∣1−ps = C.

The value of C is determined by the value of Qs at x̄ ≡ z̄ + as/bs. That is,

C =
∣∣Qs (x̄)− u−s x̄

∣∣ps ∣∣Qs (x̄)− u+
s x̄
∣∣1−ps .
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Hence Qs (x) satisfies the equation∣∣∣∣Qs (x)− u−s x
Qs (x̄)− u−s x̄

∣∣∣∣ps ∣∣∣∣Qs (x)− u+
s x

Qs (x̄)− u+
s x̄

∣∣∣∣1−ps = 1.

Returning the variable z, the equation becomes∣∣∣∣Qs (z)− u−s (z + as/bs)

Qs (z̄)− u−s (z̄ + as/bs)

∣∣∣∣ps ∣∣∣∣Qs (z)− u+
s (z + as/bs)

Qs (z̄)− u+
s (z̄ + as/bs)

∣∣∣∣1−ps = 1. (60)

Finally,

Ps (z) =
2

3
[Qs (z)− a+ δ (z)] (61)

and the value function Vi (z) can be found by

Vi(z) = V̄i −
∫ z

z

Ps(s)ds for z < z, i = 1, 2. (62)

In the case where r2 + 4bs = 0,

u

u2 − ru− bs
=

u

(u− r/2)2 =
1

u− r/2
+

r/2

(u− r/2)2 .

Thus ∫ [
1

u− r/2
+

r/2

(u− r/2)2

]
du = ln

∣∣∣u− r

2

∣∣∣− r

2u− r
+ C.

So

ln |2Qs (x)− rx| − rx

2Qs (x)− x
= C

where

C = ln |2Qs (x̄)− rx̄| − rx̄

2Qs (x̄)− x̄
.

This leads to∣∣∣∣2Qs (z)− r (z + as/bs)

Qs (z̄)− r (z̄ + as/bs)

∣∣∣∣ exp

[
r (z̄ + as/bs)

2Qs (z̄)− r (z̄ + as/bs)
− r (z + as/bs)

2Qs (z)− r (z + as/bs)

]
= 1.
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Finally, in the case where r2 + 4bs < 0,

u

u2 − ru− bs
=

u

(u− r/2)2 − (r2/4 + bs)
.

Thus,∫
u

u2 − ru− bs
du = ln

∣∣(2u− r)− (r2/2 + 2bs
)∣∣− r

2
√
|r2 + 4bs|

tan
2u− r

2
√
|r2 + 4bs|

+ C.

In any case, there is a solution in implicit form

S (z,Qs (z)) = S (z̄, Qs (z̄))

for some function S.

The proof of the proposition is complete. �

A.3 Proof of Proposition 4

Part 1. We show that fs (z̄) ≡ Ps (z̄) + a− δ (z̄) ≤ 0. Substituting fs (z̄)− a + δ (z̄) for

Ps (z̄) in (54), we find

3 (fs (z̄)− a+ δ (z̄))2 + 4 (a− δ (z̄))
(
fs (z̄)− a+ δ

(
z̄−
))
−∆i = 0.

This is a quadratic equation in fs (z̄). It can be written as

3fs (z̄)2 − 2 (a− δ (z̄)) fs (z̄)−∆i − (a− δ (z̄))2 = 0. (63)

By (24), fs (z̄) is the smaller root. That is,

fs (z̄) =
1

3

{
a− δ (z̄)−

√
4 (a− δ (z̄))2 + 3∆i

}
. (64)

It is clear that fs (z̄) ≤ 0 if a ≤ δ (z̄). Therefore, the first root of fs (z), z′s, is less than or

equal to z̄. So z̄ is never reached, and (25) holds.

Part 2. Suppose (26) holds. We use the result in Corollary 1 (proof is given below) to

42



conclude
1

3z̄
(r + δ′ (z̄)) (a− δ (z̄)) <

ra

2z̄
< C̄ ≤ c.

Hence (24) holds. Therefore (64) holds. Since (26) holds, it follows that

∆i = 4
(
rVi (z̄) + cz̄2

)
− a2

i ≥ − (a− δ (z̄))2 .

Hence, √
4 (a− δ (z̄))2 + 3∆i ≥ a− δ (z̄) .

This leads to fs (z̄) ≤ 0. As a result, z̄ is never reached. If (26) does not hold, then√
4 (a− δ (z̄))2 + 3∆i < a− δ (z̄) .

Hence, by (64), fs (z̄) > 0. By continuity, fs (z) > 0 for z near z̄. Thus if z0 is within this

neighborhood, f (z) > 0 if z0 ≤ z ≤ z̄. This means z̄ is reachable in finite time from some

z0.

This completes the proof. �

A.4 Proof of Proposition 5

By (27), the sign in (55) is positive. Hence,

fs (z̄) =
1

3

{
a− δ (z̄) +

√
4 (a− δ (z̄))2 + 3∆i

}
> 0

if a > δ (z̄) or if a ≤ δ (z̄) and (28) holds. If z0 is sufficiently close to z̄, fs (z) > 0 for any

z between z0 and z̄.

To prove the second part, we derive a differential equation for fs by substituting Ps (z) =

fs (z)− a+ δ (z) in (53), we derive[
3

2
fs (z)− 1

2
(a− δ (z))

]
f ′s (z) =

(
r +

β

2

)
fs (z)−

(
r − β

2

)
(a− δ (z))+2cz for z < z̄.

(65)

Let

L1 =
1

3
(a− δ (z)) , L2 (z) =

2r − β
2r + β

(a− δ (z))− 4cz

2r + β
.
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Then (65) can be written as

3

2
[fs (z)− L1 (z)] f ′s (z) =

(
r +

β

2

)
[fs (z)− L (z)] . (66)

We show that L1 (z) < L2 (z) for z0 ≤ z ≤ z̄. In the case where a ≥ α, we observe that

L1 (0) =
1

3
(a− α) , L2 (0) =

2r − β
2r + β

(a− α) .

Note that since r > β,
2r − β
2r + β

= 1− 2β

2r + β
>

1

3
.

It follows that L1 (0) < L2 (0). Also, at z̄, by (27)

cz̄ <
1

3
(r − β) (a− δ (z̄)) .

Thus

L2 (z̄) >
2r − β
2r + β

(a− δ (z̄))− 4 (r − β)

3 (2r + β)
(a− δ (z̄)) =

1

3
(a− δ (z̄)) = L1 (z̄) .

Since L1 and and L2 are linear functions, it follows that L1 (z) < L2 (z) for z0 ≤ z ≤ z̄.

We next show that fs (z) > L1 (z) for z0 ≤ z ≤ z̄. Let Q (z) = fs (z) − L1 (z). Eq. (66)

can be written as

3

2
Q (z)Q′ (z) =

(
r +

β

2

)
[Q (z) + L1 (z)− L2 (z)]− β

2
Q (z) . (67)

At z̄ we have
3

2
[fs (z̄)− L1 (z̄)] =

1

2

√
4 (a− δ (z̄))2 + 3∆i > 0.

So fs (z̄) > L1 (z̄). If fs (ẑ) = L1 (ẑ) for some ẑ between z0 and z̄, then Q (z) has a local

minimum at ẑ. Therefore, the left-hand side of (67), being the same as 3
[
Q (z)2]′ /2, is

zero. Hence the right-hand side is also zero. Since Q (ẑ) = 0, it follows that L1 (ẑ) −
L2 (ẑ) = 0. This contradicts L1 (z) < L2 (z) for z0 ≤ z ≤ z̄.

We now show that fs (z) > 0 for z0 ≤ z ≤ z̄. There are two cases, either L′2 (z) > 0 or

L′2 (z) ≤ 0. We first consider the former case. Then, either fs (z̄) ≥ L2 (z̄) or 0 < fs (z̄) <
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L2 (z̄). If fs (z̄) ≥ L2 (z̄), by (66)

3

2
[fs (z̄)− L1 (z̄)] f ′s (z̄) =

(
r +

β

2

)
[fs (z̄)− L2 (z̄)] ≥ 0.

Since fs (z̄) > L1 (z̄), it follows that f ′s (z̄) ≥ 0. Note that fs (z) > L2 (z) for z < z̄

and is near z̄. This follows from continuity of fs (z) and L2 (z) if fs (z̄) > L2 (z̄). If

fs (z̄) = L2 (z̄), the above equation shows that f ′s (z̄) = 0. Since fs (z̄) = L2 (z̄) and

L′2 (z̄) > f ′s (z̄), we again find that fs (z) > L2 (z) for z < z̄ and is near z̄. If there is z1 < z̄

such that fs (z1) = L2 (z1), then f ′s (z1) ≥ L′2 (z1) > 0. However, by (66), f ′s (z1) = 0. This

is a contradiction. Therefore fs (z) ≥ L2 (z). As a result, fs (z) ≥ L2 (z) > L2 (0) > 0.

If 0 < fs (z̄) < L2 (z̄). By (66), f ′s (z̄) < 0. Hence fs (z) is decreasing. The derivative is

negative for all z such that fs (z) < L2 (z). Since L2 is increasing and fs is decreasing,

there is a z̃ such that fs (z̃) = L2 (z̃). For z < z̃, by a reasoning similar to the previous

paragraph, we find that fs (z) > L2 (z). Hence, again fs (z) > 0 for z0 ≤ z ≤ z̄. This

completes the proof in the case where L′2 (z) > 0.

Suppose L′2 (z) ≤ 0. If fs (z̄) > L2 (z̄), then f ′s (z) > 0 for all z ≤ z̄ such that fs (z) >

L2 (z). Hence fs is increasing. Since L2 is nonincreasing, there is ẑ such that fs (ẑ) =

L2 (ẑ). At this point, by (66), f ′s (ẑ) = 0. Since L′2 ≤ 0, fs (z) ≤ L2 (z). For any point z at

which fs (z) < L2 (z), f ′s (z) < 0. Hence fs is decreasing. This shows that fs (z) ≥ fs (ẑ)

for z ≤ ẑ. Therefore fs (z0) ≥ fs (ẑ) = L2 (ẑ) > 0.

If fs (z̄) ≤ L2 (z̄), the above proof shows that fs (z) is decreasing for all z such that

fs (z) < L2 (z). Hence, again, fs (z0) ≥ fs (ẑ) > 0.

This completes the proof of the proposition. �

A.5 Proof of Corollary 1

The proof is complete in two steps: step 1 shows the existences of threshold c and step 2

proves the statement of the corollary.

Step 1. The existence of c.
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Rewrite inequality condition (26) as

cz̄2 + rVi(z̄; c) ≥ a2
i − (a− δ (z̄))2

4
.

Define the left hand side as F (c) and right hand side as g(c), that is,

F (c) = cz̄2 + rVi(z̄; c), g(c) =
a2
i − (a− δ (z̄))2

4
.

Obviously g(c) is a constant in term of c.

Denote C is given by the root of equation (26) when it is equality, i.e.,

F (C) = g(C) = constant.

In the following, we shall prove that the existence of root C ∈ (0,∞) of the above equation,

such that, ∀c ≥ C,

F (c) ≥ g(c). (68)

If so, Corollary 1 is proved, that is, provided the other conditions hold in Corollary 1, if

c > c, z is unreachable while if c < c, z is reachable, where c is defined in Corollary 1:

c = max

{
1

3z̄
(r + δ′ (z̄)) (a− δ (z̄)) , C

}
.

To finish the proof, recall

Vi(z̄; c) = Am
i +Bmz +

Cm z2

2

with

Cm =
r −
√
r2 + 12c

3
(< 0), Bm =

(a1 + a2)Cm

2r − 3Cm
(< 0)

and

Am
1 =

(a1 +Bm)2 + 2Bm(a2 +Bm)

4r
, Am

2 =
(a2 +Bm)2 + 2Bm(a1 +Bm)

4r
.
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It is easy to see when c = 0,

Cm(c = 0) = 0, Bm(c = 0) = 0, Am
i (c = 0) =

a2
i

4r
.

So

F (0) = 0 + Vi(z; 0) = Am
i (c = 0) =

a2
i

4r
>
a2
i − (a− δ (z̄))2

4
= g(0).

By continuity, in the small neighborhood of c = 0, the above inequality (68) holds always.

Furthermore, when c is sufficiently large, we have

lim
c→∞

Cm = −∞,

lim
c→∞

Bm = lim
c→∞

(a1 + a2)Cm

2r − 3Cm
= lim

c→∞

(a1 + a2)∂C
m

∂c

−3∂Cm

∂c

= −a1 + a2

3

by l’Hospital’s rule, and

lim
c→∞

Am
i =

1

4r

[
a2
i −

(a1 + a2)2

3

]
.

So

lim
c→∞

F (c) = lim
c→∞

z2

(
c+

rCm

2

)
+ lim

c→∞
r(Bmz + Am

i )

where the last term is finite as shown above, while the first term is

lim
c→∞

[
c− r

2

r −
√
r2 + 12c

3

]
= lim

c→∞

√
c

[
√
c−

r
√
r2/c+ 12

6

]
+
r2

6
= +∞.

Thus,

lim
c→∞

F (c) = +∞. (69)

In other words, when c sufficiently large, inequality (68) holds as well. The remain is to

check c ∈ (0,∞).

It is easy to check

∂Cm

∂c
= − 2√

r2 + 12c
< 0,

∂Bm

∂c
=

(a1 + a2)2r

(2r − 3Cm)2

∂Cm

∂c
< 0
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and
∂Am

i

∂c
=

1

2r
(a1 + a2 + 3Bm)

∂Bm

∂c
=

a1 + a2

2r − 3Cm

∂Bm

∂c
< 0.

Thus,
∂Vi
∂c

=
∂Am

i

∂c
+ z

∂Bm

∂c
+
z2

2

∂Cm

∂c
< 0.

Furthermore,

dF (c)

dc
= z2 + r

∂Vi
∂c

= r

[
∂Am

i

∂c
+ z

∂Bm

∂c

]
+ z2

[
1− r√

r2 + 12c

]
where the first term is negative and the second term is positive ∀c > 0.

Additionally, evaluate the above differential at c = 0, it follows

dF (0)

dc
= r

[
∂Am

i

∂c
+ z

∂Bm

∂c

]
|c=0< 0.

Given (69), there must exist cmin ∈ (0,∞) such that,

dF (cmin)

dc
= 0

and
dF (c)

dc

{
< 0 if c < cmin,

> 0 if c > cmin.

In other words, F (c) is strictly convex in term of c with minimum value at cmin.

Two cases appear: (1) if at cmin, F (cmin) > g(cmin), then for any c ≥ 0, we have F (c) >

g(c). In this case, we define C = 0.

(2) if at cmin, F (cmin) < g(cmin), then there must exist cl and ch such that,

cl < cmin < ch, F (ci) = g(ci), i = l, h,

and

F (c) > g(c) if c ∈ [0, cl) ∪ (ch,∞) and F (c) < g(c) if c ∈ (cl, ch).

In this case, we define

C = ch.
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Then for any c > C, it follows

F (c) > g(c).

Step 2. Proof of the statement of Corollary 1. We first prove (30). Let

G (c) = a2
i − 4rVi (z̄)− (a− δ (z̄))2 − 4cz̄2.

By (20) and (17),

a2
i − 4rVi (z̄) = a2

i − 4r

(
Am

i +Bmz̄ +
Cm

2
z̄2

)
= −3 (Bm)2 − 4

[
Bm (a+ rz̄) +

Cm

2
rz̄2

]
.

Hence,

G (c) = −3 (Bm)2 − 4

[
Bm (a+ rz̄) +

Cm

2
rz̄2

]
− 4cz̄2 − (a− δ (z̄))2

= −3 (Bm)2 − 4Bm (a+ rz̄)− 2z̄2 (Cmr + 2c)− (a− δ (z̄))2 .

Observe from (16) that

Bm =
2aCm

2r − 3Cm
=

2a

3

r −
√
r2 + 12c

r +
√
r + 12c

= − 8ac(
r +
√
r2 + 12c

)2 ,

Cmr + 2c =
r

3

(
r −
√
r2 + 12c

)
+ 2c =

−4rc

r +
√
r2 + 12c

+ 2c

=
2c
(
−r +

√
r2 + 12c

)
r +
√
r2 + 12c

=
24c2(

r +
√
r2 + 12c

)2 = −3c

a
Bm.

Therefore,

G (c) = −Bm

[
3Bm + 4 (a+ rz̄)− 6c

a
z̄2

]
− (a− δ (z̄))2 . (70)

As shown above, G (c) < 0 for c > C̄. Thus, (30) follows if we can show

G
(ra

2z̄

)
> 0. (71)
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Substitute ĉ = ra/ (2z̄) for c in (70), we obtain

G
(ra

2z̄

)
= −Bm

(ra
2z̄

) [
3Bm

(ra
2z̄

)
+ 4a+ rz̄

]
− (a− δ (z̄))2

=
4a2r

z̄
(
r +
√
r2 + 12ĉ

)2

[
4a+ rz̄ − 12a2r

z̄
(
r +
√
r2 + 12ĉ

)2

]
− (a− δ (z̄))2 .

Let

U =
4ar

z̄
(
r +
√
r2 + 12ĉ

)2 , W = 4 +
rz̄

a
. (72)

Then

G
(ra

2z̄

)
= a2U [W − 3U ]− (a− δ (z̄))2 . (73)

We show that

U [W − 3U ] > 1.

This is equivalent to showing

3U2 − UW + 1 < 0.

The above inequality holds if and only if

W −
√
W 2 − 12 < 6U < W +

√
W 2 − 12. (74)

By (72) we find

6U =
12ar

z̄
[
r2 + r

√
r2 + 12ĉ+ 6ĉ

] =
12a

z̄r + z̄
√
r2 + 12ĉ+ 3a

< 4. (75)

On the other hand,

W +
√
W 2 − 12 = 4 +

rz̄

a
+

√
4 + 8

rz̄

a
+
(rz̄
a

)2

> 4.

The second inequality in (74) follows. Furthermore, by calculation,

W −
√
W 2 − 12 =

12

W +
√
W 2 − 12

=
12

4 + z̄r/a+
√

4 + 8rz̄/a+ (rz̄/a)2

=
12a

4a+ z̄r + z̄
√

4a2/z̄2 + 8ar/z̄ + r2
.
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Since 12ĉ = 6ar/z̄, it follows that

√
4a2/z̄2 + 8ar/z̄ + r2 >

√
12ĉ+ r2.

Hence

W −
√
W 2 − 12 <

12a

4a+ z̄r + z̄
√
r2 + 12ĉ

< 6U

This proves the first inequality in (74).

From (73) and (74) we find

G
(ra

2z̄

)
> a2 − (a− δ (z̄))2 ≥ 0.

Hence
ra

2z̄
< C̄.

Suppose c < C̄. Then, either

c <
1

3z̄
(r + δ′ (z̄)) (a− δ (z̄)) ,

or
1

3z̄
(r + δ′ (z̄)) (a− δ (z̄)) ≤ c <

1

4z̄2

[
a2
i − 4rVi (z̄)− (a− δ (z̄))2] .

In the former case, (27) holds. So z̄ is reached from some z0 by Proposition 5. In the latter

case, (24) and the reversed inequality in (26) both hold. The same conclusion follows from

Part 2 of Proposition 4.

Conversely, if c ≥ C̄, then (24) and (26) both hold. By Part 2 of Proposition 4, z̄ is never

reached.

That completes the proof of Corollary 1.
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A.6 Proof of Proposition 6

Part 1. Suppose a ≤ δ (z). By (37), σ1 = σ2 = −1 and µ ≤ ∆i. Hence, the right-hand

side of (39) is increasing in µ and is no more than its value at µ = min {∆1,∆2}. Hence,

f (z̄) ≤ − (a− δ (z̄))− 1

2

{
2 |a− δ (z)|+

√
4 (a− δ (z̄))2 + |∆1 −∆2|

}
≤ 0.

This proves that the first root of f (z) is less than or equal to z̄. Hence z̄ is never reached.

Part 2. Suppose a > δ (z̄) and (41) holds. We show that f (z̄) ≤ 0. If σi < 0 for either

i = 1 or 2, then

f (z̄) = − (a− δ (z̄)) +
σj
2

√
4 (a− δ (z̄))2 + ∆j − µ−

1

2

√
4 (a− δ (z̄))2 + ∆i − µ

=
1

2
Pj (z̄)− 1

2

√
4 (a− δ (z̄))2 + ∆i − µ ≤ 0.

Hence, f (z̄) > 0 can occur only if σ1 = σ2 = 1. Suppose by contradiction that f (z̄) > 0.

Then √
4 (a− δ (z̄))2 + ∆1 − µ+

√
4 (a− δ (z̄))2 + ∆2 − µ > 2 (a− δ (z̄)) .

By the concavity of the square root function,

√
4 (a− δ (z̄))2 + ∆1 − µ+

√
4 (a− δ (z̄))2 + ∆2 − µ < 2

√
4 (a− δ (z̄))2 +

∆1 + ∆2

2
− µ.

Hence √
4 (a− δ (z̄))2 +

∆1 + ∆2

2
− µ > a− δ (z̄) .

This leads to

µ < 3 (a− δ (z̄))2 +
∆1 + ∆2

2
.

On the other hand, since Pi ≤ 0, it follows that√
4 (a− δ (z̄))2 + ∆i − µ ≤ 2 (a− δ (z̄)) .

Hence µ ≥ ∆i for i = 1, 2. Therefore,

µ ≥ max {∆1,∆2} .
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Hence, if (41) holds, since

∆1 + ∆2

2
=

1

2
[max {∆1,∆2}+ min {∆1,∆2}] ,

it follows that

max {∆1,∆2} ≥ 6 (a− δ (z̄))2 + min {∆1,∆2}

= 6 (a− δ (z̄))2 + ∆1 + ∆2 −max {∆1,∆2} .

This leads to

max {∆1,∆2} ≥ 3 (a− δ (z̄))2 +
∆1 + ∆2

2
.

Hence, no such µ exists. Therefore, f (z̄) ≤ 0.

Part 3. We show that f (z̄) ≤ 0 if (43) holds. Suppose by contradiction that f (z̄) > 0.

As proven in Part 2, it is necessary that

max {∆1,∆2} ≤ µ ≤ 3 (a− δ (z̄))2 +
∆1 + ∆2

2
.

Consider the both sides of (38). At µ = max {∆1,∆2}, the right-hand side is zero, and

by (43), the left-hand side is

max {∆1,∆2} > 0.

At

µ = 3 (a− δ (z̄))2 +
∆1 + ∆2

2

the right-hand side is

2

{
2 (a− δ (z̄))−

√
(a− δ (z̄))2 +

∆1 −∆2

2

}{
2 (a− δ (z̄))−

√
(a− δ (z̄))2 +

∆2 −∆1

2

}

≤ 2 (a− δ (z̄))

[
2 (a− δ (z̄))−

√
(a− δ (z̄))2 − |∆1 −∆2|

2

]
< 2

(
2−

√
4− 2

√
3

)
(a− δ (z̄))2

= 2
(

3−
√

3
)

(a− δ (z̄))2 .
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On the other hand, the left-hand side is

3 (a− δ (z̄))2 +
∆1 + ∆2

2
≥ 3 (a− δ (z̄))2 + max {∆1,∆2} −

|∆1 −∆2|
2

≥ 2
(

3−
√

3
)

(a− δ (z̄))2

Furthermore, the right-hand side has the derivative with respect to µ as

2µ− 8 (a− δ (z̄))2 −∆1 −∆2∏2
i=1

√
4 (a− δ (z̄))2 + ∆i − µ

+
2∑

i=1

2 (a− δ (z̄))√
4 (a− δ (z̄))2 + ∆i − µ

which is increasing in µ. Hence, the left-hand side of (38) is strictly greater than the

right-hand side. Therefore, (38) has no solution. This proves that f (z̄) ≤ 0. So z̄ is never

reached.

In the case where max {∆1,∆2} ≤ 0, then the right-hand side of (38) at µ = 0 is

2
2∏

i=1

{
2 (a− δ (z̄))−

√
4 (a− δ (z̄))2 + ∆i

}
≥ 0.

and the left-hand side is zero. As shown above, the rigth-hand side of (38) is less than its

left-hand side. Therefore, there is a solution to (38). At this point f (z̄) > 0. Hence, z̄ is

reached from some z0.

This completes the proof. �

A.7 Proof of Proposition 7

We first solve the differential game.

Period II, z > z̄. Since 0 ≤ λ ≤ min {c1, c2} = 0, by (32)

C1 = 0, C2 = r −
√
r2 + 8c
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As a result,

B1 = 0, A1 =
a2

1

4r
, B2 =

2aC2

2r − C2

, A2 =
a2

2 +B2
2

4r
+
aB2

r
.

Also, the dynamics is governed by

ż =
a1

2
+

1

2
[a2 +B2 + C2z] = a+

1

2
(B2 + C2z) .

The equilibrium is

z∗e = −2a+B2

C2

= − 4ar

C2 (2r − C2)
=
ar

2c
. (76)

Period I, z < z̄. Let us still assume that V1 is the constant a2
1/ (4r). Then P1 = 0. By

(52), [
P2 (z)

2
+ a− δ (z)

]
P ′2 (z) = (r − β)P2 (z) + 4cz. (77)

In addition, P2 (z̄) satisfies (36) with i = 2, c2 = c/2, and P1 = 0. That is,

rV̄2 =
1

4
(a2 + P2 (z̄))2 +

1

2
P2 (z̄) [a1 − 2δ (z̄)]− 2cz̄2.

There are two roots,

P2 (z̄) = −2 (a− δ (z̄))±
√

4 (a− δ (z̄))2 + ∆e
2

where

∆e
2 = 4 (rV2 (z̄)) + 2cz̄2 − a2

2.

We choose the one so that P ′2 (z̄) is minimum. Substituting the above into (77), we get

±1

2

√
4 (a− δ (z̄))2 + ∆e

2P
′
2 (z̄)

= (r + δ′ (z̄))

{
−2 (a− δ (z̄))±

√
4 (a− δ (z̄))2 + ∆e

2

}
+ 4cz̄.

Hence,
1

2
P ′2 (z̄) = r + δ′ (z̄) +

−2 (a− δ (z̄)) (r + δ′ (z̄)) + 4cz̄

±
√

4 (a− δ (z̄))2 + ∆e
2

.
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The sign is positive if

−2 (a− δ (z̄)) (r + δ′ (z̄)) + 4cz̄√
4 (a− δ (z̄))2 + ∆e

2

<
−2 (a− δ (z̄)) (r + δ′ (z̄)) + 4cz̄

−
√

4 (a− δ (z̄))2 + ∆e
2

,

which is equivalent to

(r + δ′ (z̄)) (a− δ (z̄)) > 2cz̄,

which is condition 44 in Proposition 7.

We can finally solve the equation in the case where δ is linear. The equation is similar to

(57) below except the coefficient of z is 2c. Let Qe (z) = P2 (z) /2 + a− δ (z). Then∣∣∣∣Qe (z)− u−e (z + ae/be)

Qe (z̄)− u−e (z̄ + ae/be)

∣∣∣∣pe ∣∣∣∣Qe (z)− u+
e (z + ae/be)

Qe (z̄)− u+
e (z̄ + ae/be)

∣∣∣∣1−pe = 1,

where

ae = (β − r) (a− α) , be = β (β − r) + 2c,

u−e = r −
√
r2 + 4be, u+

e = r +
√
r2 + 4be, pe = − u−e

u+
e − u−e

,

Qe (z̄) = P2 (z̄) /2 + a− δ (z̄) .

Note that Qe (z) = fe (z). Hence z′e satisfies the equation∣∣∣∣ u−e (z′e + ae/be)

Qe (z̄)− u−e (z̄ + ae/be)

∣∣∣∣pe ∣∣∣∣ u+
e (z′ + ae/be)

Qc (z̄)− u+
e (z̄ + ae/be)

∣∣∣∣1−pe = 1.

It follows that

z′e = −ae
be

+

∣∣∣∣ u−e
Qe (z̄)− u−e (z̄ + ae/be)

∣∣∣∣−pe ∣∣∣∣ u+
e

Qc (z̄)− u+
e (z̄ + ae/be)

∣∣∣∣pe−1

.

We now prove the reachability results stated in the proposition. In view of P1 = 0 and

c2 = 2c, Eq. (36) with i = 2 has the form

rV2 (z̄) =
1

4
(a2 + P2 (z̄))2 +

1

2
P2 (z̄) [a1 − 2δ (z̄)]− 2cz̄2.
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Substituting fe (z̄) = P2 (z̄) /2 + a− δ (z̄−) into the above equation, we find

4
[
rV2 (z̄) + 2cz̄2

]
=
(
fe (z̄)− a+ δ +

a2

2

)2

+ (fe (z̄)− a+ δ (z̄)) (a1 − 2δ (z̄)) .

It is simplified to

fe (z̄)2 = 4
[
rV2 (z̄) + 2cz̄2

]
+ (a− δ (z̄))2 − a2

2

4
.

So

fe (z̄) = −
√

4 [rV2 (z̄) + 2cz̄2] + (a− δ (z̄))2 − a2
2

4

if (44) does not hold, and

fc (z̄) =

√
4 [rV2 (z̄) + 2cz̄2] + (a− δ (z̄))2 − a2

2

4

if (44) holds. In the former case, fe (z̄) ≤ 0. Hence, the first root of fe (z) is less than or

equal to z̄. Therefore, z̄ is never reached and z (t) converges to z′e as t→∞. In the latter

case, fe (z̄) > 0. It remains positive for some z < z̄ and near z̄ by continuity. Therefore

fe (z) > 0 for z0 ≤ z ≤ z̄ if z0 is sufficiently close to z̄.

We show that fe (z) > 0 for z ≤ z̄ if δ is linear and (44) and (45) both hold. Subsitituting

P2 (z) = 2 (fe (z)− a+ δ (z)) in (77), we find

2fe (z) [f ′e (z)− β] = 2 (r − β) [fe (z)− a+ δ (z)] + 4cz for z < z̄.

The equation can be written as

1

2

d

dz
[fe (z)]2 = rfe (z)− (r − β) (a− δ (z)) + 2cz.

If there is ẑ < z̄ such that fe (ẑ) = 0. Then, [fe (z)]2 has a local minimum at ẑ, Therefore,

the left-hand side of the above equation is zero. This leads to

(r − β) (a− δ (ẑ)) = 2cẑ.

However, since both (r − β) (a− δ (z)) and 2cz are linear functions of z, and by (44) and
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(45), the former is larger than the latter for z0 ≤ z ≤ z̄. Therefore

(r − β) (a− δ (ẑ)) > 2cẑ.

This is a contradiction. Hence fe (z) > 0 for any z between z0 and z̄.

This completes the proof. �

A.8 Proof of Proposition 8

Proof. It is clear from (4) and (76) that z∗c < z∗e . To show that z∗e ≤ z∗a, we observe

that since λ > 0, it follows that

r
[
r (4c− λ) + (4c− 3λ)

√
r2 + 4 (2c− λ)

]
< 4c

[
λ+ r2 + r

√
r2 + 4 (2c− λ)

]
.

Hence

z∗e =
ar

2c
<

2a
[
λ+ r2 + r

√
r2 + 4 (2c− λ)

]
r (4c− λ) + (4c− 3λ)

√
r2 + 4 (2c− λ)

= z∗.

It remains to show that z∗a ≤ z∗s .

We first show that z∗a is increasing in λ for 0 ≤ λ ≤ c. By differentiation, we find

dz∗a
dλ

=
4a
[
2r (r2 + 7c− 3λ)

√
r2 + 4 (2c− λ) + 2r4 + 2 (9c− 5λ) r2 + 16c2 − 4λc− 3λ2

]
√
r2 + 4 (2c− λ)

[
r (4c− λ) + (4c− 3λ)

√
r2 + 4 (2c− λ)

]2 .

Since λ ≤ min {c1, c2} ≤ c, it follows that

2r
(
r2 + 7c− 3λ

)√
r2 + 4 (2c− λ) ≥ 2r4 + 2r2c.

Thus, the quantity between brackets in the numerator is no less than

4r4 + 2 (11c− 5λ) r2 + 16c2 − 4λc− 3λ2 ≥ 13c2 > 0.

Hence, z∗a is increasing in λ for 0 ≤ λ ≤ c.

We next show the λ is decreasing in |c1 − c2|. Let µ = |c1 − c2| /2. Suppose ci ≤ cj. Then
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ci = c− µ and cj = c+ µ. By (33),

2λ =
(
r −

√
r2 + 4 (c− µ− λ)

)(
r −

√
r2 + 4 (c+ µ− λ)

)
.

Regarding λ as a function of µ and differentiating the two sides with respect to µ, we

obtain

λ′ (µ) = (1 + λ′ (u))
r −

√
r2 + 4 (c+ µ− λ)√

r2 + 4 (c− µ− λ)
− (1− λ′ (u))

r −
√
r2 + 4 (c− µ− λ)√

r2 + 4 (c+ µ− λ)
.

The equation can be written as

ξλ′ (µ) = η

where

ξ = 1−
r −

√
r2 + 4 (c+ µ− λ)√

r2 + 4 (c− µ− λ)
−
r −

√
r2 + 4 (c− µ− λ)√

r2 + 4 (c+ µ− λ)
,

η =
r −

√
r2 + 4 (c+ µ− λ)√

r2 + 4 (c− µ− λ)
−
r −

√
r2 + 4 (c− µ− λ)√

r2 + 4 (c+ µ− λ)
.

Note that

r −
√
r2 + 4 (c± µ− λ)√

r2 + 4 (c∓ µ− λ)
=

−4 (c± µ− λ)(
r +

√
r2 + 4 (c± µ− λ)

)√
r2 + 4 (c∓ µ− λ)

≤ 0,

for λ ≤ min {c1, c2}. Hence ξ > 0. On the other hand, since µ ≥ 0, it follows that

√
r2 + 4 (c+ µ− λ) ≥

√
r2 + 4 (c− µ− λ).

Therefore
r −

√
r2 + 4 (c+ µ− λ)√

r2 + 4 (c− µ− λ)
≤
r −

√
r2 + 4 (c− µ− λ)√

r2 + 4 (c+ µ− λ)
.

This implies that η ≤ 0. Hence,

λ′ (µ) = η/ξ ≤ 0.
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So, λ is decreasing in µ. As a result,

z∗a = z∗a (λ (µ)) ≤ z∗a (λ (0)) = z∗s .

This completes the proof. �
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