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Abstract

We introduce adaptive learning – a parsimonious, convenient way
to model uncertainty – in a dynamic general equilibrium model of
the U.S. Great Depression. We show that even the smallest departure
from rational expectations increases significantly the data mimicking
ability of the model, in particular for what concerns the lack of recov-
ery in detrended GDP after 1933. We conclude that in the case of big,
traumatic events like the Great Depression, uncertainty is particularly
unfavourable to the recovery phase.
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1 Introduction

This research introduces a light form of bounded rationality in a dynamic
general equilibrium (DGE) model to explore the role of uncertainty in
accounting for the Great Depression of the 1930s in the United States.
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Since the pioneering work by Cole and Ohanian (1999), DGE macroeco-
nomics has been used to study the Great Depression, a phenomenon once
considered beyond the grasp of equilibrium business cycle theory.1 The
list of contributors is long, and models range from the real-business-cycle
(RBC) to the New-Keynesian (NK) variant.2

Most of the DGE literature on the Great Depression uses models with
rational expectations. While this improves the analytical and numerical
tractability of the model, allowing for an easier comparison with the data,
it also has some drawback. In particular, rational expectations build on
the assumption that the explanandum is one occurrence of a regular phe-
nomenon. This is well explained by Lucas:

‘Insofar as business cycles can be viewed as repeated instances
of essentially similar events, it will be reasonable to treat all
agents as reacting to cyclical changes as “risk”, or to assume
their expectations are rational, that they have fairly stable ar-
rangements for collecting and processing information, and that
they utilize this information in forecasting the future in a sta-
ble way, free of systematic and easily correctable bias.’ Lucas
(1977), p. 224.

If instead the phenomenon at hand is somewhat irregular, that is if it is
new or to some extent perceived as unprecedented, then the use of rational
expectations is more questionable on theoretical grounds.

Historical accounts suggest the Great Depression is the epitome of an
irregular, unexpected event. Romer (1990) provides convincing evidence
that uncertainty was radical and pervasive at the onset of the Great De-
pression. Lucas himself cautions against tackling the Great Depression as
an ordinary business cycle, for, he suggests, the Great Depression was a
somewhat unique event:3

‘The Great Depression, however, remains a formidable barrier
to a completely unbending application of the view that business
cycles are all alike.’ Lucas (1980), p. 697.

These considerations call for enriching the DGE analysis of the Great
Depression with bounded rationality. In this paper, we introduce adaptive

1See De Vroey and Pensieroso (2006).
2See Kehoe and Prescott (2007) and the references therein, Bordo et al. (2000), Christiano

et al. (2003), Weder (2006), among others. For a survey and an assessment of this literature
see Pensieroso (2007), and the debate between Temin (2008) and Kehoe and Prescott (2008).

3On Lucas’s qualms about equilibrium models of the the Great Depression, see De
Vroey and Pensieroso (2006)
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learning in the spirit of Evans and Honkapohja (2001), i.e. a light form of
bounded rationality, in an otherwise standard RBC model of the Great De-
pression in the United States. Our model features calibrated shocks to total
factor productivity (TFP), taxes on labour and capital and public expendi-
tures. Simulations show that while the model with adaptive learning does
slightly better than its rational-expectations counterpart in accounting for
the onset of the Great Depression, it clearly outperforms the latter in ac-
counting for its depth and long duration. This suggests that, in the case of
big, traumatic events like the Great Depression, uncertainty is particularly
unfavourable to the recovery phase, a trait by and large overlooked by the
literature so far.

The protracted character of the Great Depression has long been consid-
ered a puzzling aspect, particularly difficult to account for in a quantitative
macroeconomic model. The typical solution to this difficulty has been to
complexify the model, by adding an additional set of policy-driven shocks
and/or more frictions, on the basis of historical evidence. The most notable
contribution in this spirit is Cole and Ohanian (2004), who maintain that the
cartelisation and wage policy of the New Deal are major responsables for
the delayed recovery from the Depression. Our paper complements their
explanation, suggesting that on top of policy shocks, uncertainty might
have delayed the recovery significantly.

While to our knowledge we are the first to tackle the issue of the Great
Depression by means of a DGE model with adaptive learning, we certainly
are not the first to suggest a role for expectations in explaining the Great
Depression.4 Limiting to the DGE literature, Eggertsson (2008) argues that
Roosevelt’s New Deal policies produced a favourable shift in expectations,
which explains the acceleration in the growth rate of (undetrended) GDP
after 1933; while Harrison and Weder (2006) suggest that sunsposts, i.e.
self-fullfilling prophecies unrelated to fundamentals can explain the entire
Depression period. Our paper differs from these works in that we i)
only assume shocks to the fundamentals and ii) do not model Markov-
switching policy regimes, nor do we assume that, absent a policy change,
the economy would have slided into the abyss. We introduce, instead, a
small deviation from rational expectations and explore the consequences
of adaptive beliefs in accounting for the Great Depression. In this sense,
our work is more akin in method to the literature originated by Cole and
Ohanian (1999), Kehoe and Prescott (2002) and Prescott (1999), while at the
same time stressing the role of uncertainty.

4The first explanation of the Great Depression based on expectations is obviously
Keynes’s General Theory, with his insistence on animal spirits. See Keynes (1936).
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The literature on adaptive learning was pionereed by Bray and Savin
(1986), Marcet and Sargent (1989) and Evans and Honkapohja (2001). Its
gist is to relax the strong assumptions underpinning rational expectations,
by relying on the less demanding “cognitive consistency principle”: eco-
nomic agents in the model should be as knowledgeable about the model
economy as the economists are about the actual economy. In other words,
agents in the model do not necessarily know the full structure of the econ-
omy and use forecasting rules to form their expectations. In this sense, they
behave as econometricians who attempt to learn the true correlations in the
aggregate economy using simple models, whose coefficients are updated
every period with the arrival of new information.

In models with adaptive learning, the functional form of the forecasting
model of the agents – what is known as their ‘perceived law of motion’
(PLM) – may be specified in different ways. A first way is to assume
that the PLM has the functional form of the rational expectations law of
motion – i.e. the functional form of the minimal state variable solution
to the model. Since we view this as the minimum departure from ratio-
nal expectations, this is our benchmark model, in the spirit of Evans and
Honkapohja (2001).5 In our model, hence, agents know the general form of
the minimal state variable solution to the model, but are unable to compute
the coefficients associated to it via the method of undetermined coefficient.
Therefore, instead of plugging in the rational-expectations solution, they
estimate the minimal state variable representation on actual data, and use
an algorithm to update every period the estimated coefficients as a function
of the forecasting error. The forecasting model converges to the rational
expectation solution, or ot a distribution centred around it, depending
on the updating algorithm. An alternative way would be to assume that
agents ignore the minimal state variable solution to the model, and for-
mulate ad hoc forecasting rules based on information restricted to certain
endogenous variables only. This is also known as the ‘Euler’ approach – as
it typically uses variables appearing in the Euler equation. It is the mod-
ellisation of choice when introducing adaptive learning in medium-scale
New-Keynesian model, like for instance in Aguilar and Vázquez (2019,
2021), Milani (2011), or Slobodyan and Wouters (2012a,b). It represents
a larger deviation from the rational expectations hypothesis, since it in-
troduces an additional degree of freedom in the choice of the variables to
be included in the formation of expectations. Accordingly, in this type of

5This type of learning is further explored in Eusepi and Preston (2011) and Preston
(2005). Milani (2007, 2008) study the implications of adaptive learning in medium-scale
New Keynesian models.
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models the PLM is no longer restricted to be consistent with the rational
expectations decision rule. In an extension to our benchmark, we build
a model of the U.S. Great Depression with a Euler-type adaptive learn-
ing. Results show that the further we move from rational expectations, the
more the sluggish character of the recovery from the Depression is accen-
tuated. This confirms our contention that expectations must have played
a significant role in delaying the recovery out of the Great Depression of
the 1930s.

The rest of the paper is organised as follows. In Section 2, we present
the analytical model, discuss its rational expectations solution and propose
our adaptive learning algorithm. In Section 3 we calibrate the model on
U.S. data, while simulations are presented and discussed in Section 4.
We present an alternative learning algorithm in Section 5 and discuss its
implications for the fitting of the model. Finally, Section 6 concludes.

2 The model

2.1 The model economy

The model economy is populated by P representative households and a
Government. Population is constant. Each household owns one repre-
sentative firm that uses labour, n, and capital, k, to produce in perfect
competition the same indifferentiated good, y, according to:

yt = exp(zt)kαt−1 (xtnt)
1−α , (1)

where all variables are expressed in per-capita terms, x is the labour-
augmenting technical progress, and z is the stochastic component of total
factor productivity (TFP). The former grows at a constant rate, thereby
determining the balanced-growth path of the model:

xt = (1 + γ)xt−1. (2)

The stochastic component of TFP is assumed to follow an AR(1) process:

zt = ρzzt−1 + εt. (3)

The representative firm maximises its profits, which delivers the de-
mand for labour and capital

wt = exp(zt)(1 − α)kαt−1 (xtnt)
−α , (4)
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rt = exp(zt)αkα−1
t−1 (xtnt)

1−α , (5)

where w is the wage rate and r the rental price of capital.
The household cares for consumption, c, and leisure, l ≡ (1−n). Like in

Christiano and Eichenbaum (1992), we assume that consumption is made
of services that are related to private and public consumption – cp and g,
respectively – according to

ct = cp
t + ηgt. (6)

Though we assume that public expenditures are perceived as exogenous by
the household, the Government funds them out of proportional taxation
on revenues from labour, τw, and capital, τr. Both public expenditures
and taxes are subject to an AR(1) shock. A lump sum transfer, tr, also
perceived as exogenous by the household, ensures that the Government’s
budget is balanced in every period. Accordingly, the (balanced) budget of
the Government reads

gt + trt = τw
t wtnt + τr

trtkt−1, (7)

and the shocks linked to the public sector are:

gt = ρggt−1 + vt; (8)
τr

t = ρrτ
r
t−1 + ut; (9)

τw
t = ρwτ

w
t−1 + st. (10)

The household finances consumption and investments, i, out of (net)
revenue from labour and capital. Her budget constraint reads

cp
t + it = (1 − τw

t )wtnt + (1 − τr
t)rtkt−1 + trt. (11)

Capital accumulates according to

kt = (1 − δ)kt−1 + it. (12)

For the sake of analytical tractability, we assume a log-additive utility
function:

Ut = ln ct + ϕ ln (1 − nt) (13)

Given the intertemporal discount factor, β, the representative house-
hold chooses (private) consumption, leisure and investment so as to max-
imise

E0

∞∑
t=0

βtUt, (14)
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subject to Equations (4), (5), (6), (11), (12) and (13)
The first order conditions of the problem delivers the Euler equation,

disciplining the consumption-saving choice,

1
c̃t

=
β

1 + γ
Et

 1
c̃t+1

((
1 − τr

t+1

)
(α exp(zt+1)k̃α−1

t n1−α
t+1 ) + 1 − δ

) , (15)

and the equation determining the equilibrium on the labour market,

ϕ

1 − nt
= (1 − τw

t )
(1 − α) exp(zt)k̃αt−1n1−α

t

c̃t
, (16)

where c̃t (k̃t) stands for detrended ct (kt), that is ct/xt (kt/xt).

2.2 Expectations

Modelling expectations explicitely requires to start from the analytical
solution of the model. To obtain it, we first linearise the model around the
steady-state. Then, we solve the linear system, to get the reduced-form
expression of the model. As shown in the Appendix, this delivers

k̂t = a1Etk̂t+1 + a2k̂t−1 + b1ẑt + b2 ĝt + b3τ̂
r
t + b4τ̂

w
t , (17a)

ẑt = ρzẑt−1 + εt, (17b)
ĝt = ρg ĝt−1 + vt, (17c)
τ̂r

t = ρrτ̂
r
t−1 + ut, (17d)

τ̂w
t = ρwτ̂

w
t−1 + st, (17e)

q̂t = ψq
1k̂t + ψq

2k̂t−1 + ψq
3ẑt + ψq

4 ĝt + ψq
5τ̂

r
t + ψq

6τ̂
w
t , (17f)

with q̂ = ŷ, ĉ, n̂, t̂r, and ŷ meaning y in log-deviations from steady state.
Hence, given the shocks, the dynamics of capital is the driving force of
the system, for the other endogenous variables are known once capital
is known. Since the initial conditions are given and known, the model
is actually solved once the form of Etk̂t+1 is known. It is at this stage of
the argument that the difference between rational expectations and the
simplest form of adaptive learning materialises.

2.2.1 Rational expectations

Models with rational expectations are solved using the method of unde-
termined coefficients (Uhlig (1999)). We first conjecture the solution for
capital:

k̂t = χkk̂t−1 + χzẑt + χg ĝt + χrτ̂
r
t + χwτ̂

w
t , (18)
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where χi are the supposed elasticities between capital and the different
state variables. The conjecture is simply that capital must depend on its
past value and on the shocks. Using Equations (17b), (17c), (17d) and (17e),
the conjecture becomes:

k̂t = φkk̂t−1 + φzẑt−1 + φg ĝt−1 + φrτ̂
r
t−1 + φwτ̂

w
t−1 + µt + ςt + κt + θt, (19)

where

φk = χk; φz = χzρz; φg = χgρg;

φr = χrρr; φw = χwρw; µt =
φzεt

ρz
;

ςt =
φgvt

ρg
; κt =

φrut

ρr
; θt =

φwst

ρw
.

Rolling over Equation (19), and noticing that by construction Et
(
µt+1

)
= 0,

Et (ςt+1) = 0, Et (κt+1) = 0 and Et (θt+1) = 0, we obtain:

Etk̂t+1 = φkk̂t + φzẑt + φg ĝt + φrτ̂
r
t + φwτ̂

w
t . (20)

This expression may be plugged in Equation (17a). Then, using Equa-
tions (17b), (17c), (17d) and (17e), and rearranging terms one gets:

k̂t =
a2

1 − a1φk
k̂t−1

+
(a1φz + b1)ρz

1 − a1φk
ẑt−1 +

(a1φg + b2)ρg

1 − a1φk
ĝt−1 +

(a1φr + b3)ρr

1 − a1φk
τ̂r

t−1 +
(a1φw + b4)ρw

1 − a1φk
τ̂w

t−1

+
(a1φz + b1)

1 − a1φk
εt +

(a1φg + b2)

1 − a1φk
vt +

(a1φr + b3)

1 − a1φk
ut +

(a1φw + b4)

1 − a1φk
st.

(21)

Finally, since agents have rational expectations, they know their conjec-
ture is true. Accordingly, the coefficients in Equations (21) must coincide
with those in Equation (19). Hence, we shall have the following system of
equations in φi:

φk =
a2

1 − a1φk
, φz =

(a1φz + b1)ρz

1 − a1φk
,

φg =
(a1φg + b2)ρg

1 − a1φk
, φr =

(a1φr + b3)ρr

1 − a1φk
,

φw =
(a1φw + b4)ρw

1 − a1φk
,
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Plugging the solutions of this system into Equation (21), the linear system
formed by the latter and Equations (17b), (17c), (17d), (17e) and (17f) gives
the rational expectations solution to the reduced-form model.6

2.2.2 Adaptive learning

Introducing adaptive learning instead of rational expectations is relatively
straightforward in this class of models. Following Evans and Honkapohja
(2001), we start from Equation (20) and simply assume that agents cannot
know if, and to what extent, their conjecture is true. Therefore, they cannot
equate Equations (21) and Equation (19) and solve for the φi coefficients.
Instead, they have to estimate them on actual data, like an econometri-
cian would do. Hence, the φi coefficients will now be time-dependent:
period-by-period, agents will update their estimations, taking the estima-
tion error into account, thereby generating a process of dynamic adaptive
learning. Accordingly, the conjecture under adaptive learning, also known
as ‘perceived law of motion’ (PLM) will be

Etk̂t+1 = φk,t−1k̂t + φz,t−1ẑt + φg,t−1 ĝt + φr,t−1τ̂
r
t + φw,t−1τ̂

w
t . (22)

This is basically Equation(20) with the expectation coefficients φi now
indexed at t− 1. The reason for this indexation is that i) the coefficients are
time-dependent and ii) they are updated after every realization of k, which
is the driving force of the system. Since k is a state variable, this means
that the coefficients estimated in t are conditional to the information set in
t − 1.

Following the same procedure as in the rational expectatons case, con-
jecture (22) may be plugged in Equation (17a). Then, using Equations
(17b), (17c), (17d) and (17e), and rearranging terms one gets the so-called
‘actual law of motion’ (ALM):

k̂t =
a2

1 − a1φk,t−1
k̂t−1 +

(a1φz,t−1 + b1)ρz

1 − a1φk,t−1
ẑt−1

+
(a1φg,t−1 + b2)ρg

1 − a1φk,t−1
ĝt−1 +

(a1φr,t−1 + b3)ρr

1 − a1φk,t−1
τ̂r

t−1 +
(a1φw,t−1 + b4)ρw

1 − a1φk,t−1
τ̂w

t−1

+
(a1φz,t−1 + b1)

1 − a1φk,t−1
εt +

(a1φg,t−1 + b2)

1 − a1φk,t−1
vt +

(a1φr,t−1 + b3)

1 − a1φk,t−1
ut +

(a1φw,t−1 + b4)

1 − a1φk,t−1
st

(23)

The linear system formed by the ALM – Equation (23) – and Equations
(17b), (17c), (17d), (17e) and (17f) gives the adaptive learning solution to

6The system admits a unique stationary solution if and only if |a1φk +a2| < 1 (see Evans
and Honkapohja (2001)).
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the reduced-form model. Like in the case of rational expectations, this
system has a unique stationary solution if and only if |a1φk,t−1 + a2| < 1 (see
Evans and Honkapohja (2001)).

To complete the adaptive learning model, it remains now to specify the
updating algorithm for the expectation coefficients φi. Following Evans
and Honkapohja (2001) and Marcet and Sargent (1989), we assume:

Φt =Φt−1 + ζtR−1
t−1xt−1(k̂t − x′t−1Φt−1), (24)

Rt = Rt−1 + ζt
(
xt−1x′t−1 − Rt−1

)
, (25)

where xt is the (column) vector of the state variables (k̂t, ẑt, ĝt, τ̂r
t , τ̂

w
t ), Rt is

the matrix (of order 5) of the variances and covariances of the state vari-
ables andΦt is the (column) vector of the expectation coefficients (φk, φz,
φg, φr, φw). The scalar ζt stands for the speed of learning. It may be fixed,
i.e. ζt = ζ for any t, in which case the algorithm is known as ‘constant gain’
(CG) learning; or it may be time-dependent, i.e. ζt = 1/t, in which case
the algorithm is known as ‘recursive least squares’ (RLS) learning. The
main difference between these two algorithms regards the speed of up-
dating (gain) and the asymptotic properties.7 The RLS algorithm updates
according to a decreasing sequence, and it can be shown to converge to the
rational expectations solution, provided the latter is unique and stationary.
The CG algorithm updates according to a constant sequence, and converge
to a distribution centred around the rational expectations solution. This
introduces perpetual learning in the model. As the system indicates, every
period the set of coefficients is updated according to the forecast error,
(k̂t − x′t−1Φt−1), corrected by the variance of the state variables, R−1

t−1xt−1,
and the speed of learning, ζt. The variance-covariance matrix (Rt) is also
updated every period taking into account the variation of the volatility
and cross-correlation of the state variables, corrected again by the speed of
learning, ζt.8

7See Carceles-Poveda and Giannitsarou (2007) and Evans and Honkapohja (2001), for
an in depth analysis of the convergence properties of the two algorithms.

8To help the reader understanding the updating algorithm, consider the case in which
public expenditures and taxes were costantly equal to zero. In this case the system
(24)–(25) would take the following form:(

φk,t
φz,t

)
=

(
φk,t−1
φz,t−1

)
+ ζt

(
σ2

k,t−1 σkz,t−1

σzk,t−1 σ2
z,t−1

)−1 [
k̂t −

(
k̂t−1 ẑt−1

) ( φk,t−1
φz,t−1

)]
(
σ2

k,t σkz,t

σzk,t σ2
z,t

)
=

(
σ2

k,t−1 σkz,t−1

σzk,t−1 σ2
z,t−1

)
+ ζt

[(
k̂t−1
ẑt−1

) (
k̂t−1 ẑt−1

)
−

(
σ2

k,t−1 σkz,t−1

σzk,t−1 σ2
z,t−1

)]
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3 Calibration

The model’s structural parameters are calibrated as shown in Table 1. The
unit period is the year. As customary in the literature, we assume that 1929
in the data corresponds to the steady state in the model. The depreciation
rate of capital, δ, the labour share in the production funcion, α, the average
growth rate of the U.S. GDP per capita, γ, and the intertemporal discount
factor, β, are fixed as in Cole and Ohanian (1999). The implied steady-state
real interest rate, net of taxes and the depreciation rate, is equal to 6.8%.
The preference for leisure, ϕ, is calibrated so that in equilibrium hours
worked are 1/3 of the household’s time endowment, which is normalized
to 1. We calibrate the initial value of public expenditure so that the ratio of
public expenditure over GDP in steady-state matches the 1929 value, i.e.
13%. This is not far from the average g/y observed in the period 1919-1929,
which is 11% according to data from Cole and Ohanian (1999). The steady-
state values for the tax on wages and capital are fixed to the 1929 actual
value reported by Joines (1981), i.e., 3.3% and 20% respectively. We assume
that public expenditures are perfect substitute for private consumption in
the utility function, by setting η = 1. We have checked that results do not
change appreciably if we set η = 0 instead.

Table 1. Calibrated parameters

Parameters Value Parameters Value

γ 0.019 τwss 0.035

ϕ 1.639 τrss 0.20

β 0.972 ρg 0.678

δ 0.10 ρz 0.847

α 0.33 ρr 0

gss 0.058 ρw 0

η 1 ζ 0.03

TFP shocks are calculated as residuals from regressing an AR(1) pro-
cess on detrended TFP data from Cole and Ohanian (1999), in line with
Equation (3). The autoregressive coffecient ρz is estimated to 0.85. Simi-
larly, public expenditure shocks are the residuals from regressing an AR(1)
process on the detrended share of public expenditure over GDP, which
reduces to Equation (8). The autoregressive coffecient ρg is estimated to
0.68. Tax shocks are directly measured from the data as the difference be-
tween the observed value at each time t and their 1929 (steady-state) value.
Accordingly, we set ρw = ρr = 0.
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The initial conditions for the learning model

In the case of the model with adaptive learning, we need to give initial
conditions for equations (24) and (25), and a value to the gain parameter ζ.
We set ζ = 0.03, in line with the accepted range in the literature, which is
between 0.02 and 0.06.9 For what concerns the φi coefficients, we assume
them to start at their rational expectations value. For what concerns the
variance and covariance matrix, R, we use the one implied by the rational-
expectations model, obtained by simulating the model for 250 periods
under random shocks. For this exercise, the volatility of the shocks is
chosen to match the observed volatility of output in the periods 1919-1929
and 1948-1975.10

4 Simulations

The model period is the year. All variables are assumed to be at steady
state in 1929. We feed in the calibrated values for the shocks on TFP,
taxes and public expenditures and run simulations. In Figure 1, we plot
the dynamic behaviour of the model economy with rational expectations
(black-dotted line) and adaptive learning (blue line with markers) against
the detrended data (black continuous line). The graphs show that the
model with learning behaves similarly to the one with rational expectations
for the period 1929-1932. The 1933 trough is deeper in the model with
learning, which accounts for 63% of the cumulative drop in detrended
output, compared to 57% for the model with rational expectations. The
greatest difference between the two models, however, is observed in the
1933-1939 period. During this period all variables, with the exception of
consumption, are significantly lower in the model with learning than in
the model with rational expectations. By 1939, GDP is almost at trend in
the model with rational expectations, about 9 points below trend in the
model with adaptive learning, and about 26 points below trend in the
data.11 Thus, the model with learning accounts for 32% of the cumulative

9In Appendix C we discuss the sensibility of our results to different values of ζ,
including the recursive-least-square formulation.

10This implies a simulation with a standard deviation of 3% for the TFP shock, 2.68%
for the public expenditure shock and 5.4% and 3.15% for the tax shock on capital and
labour income, respectively. These numbers are consistent with the observed volatility of
TFP, public expenditure and taxes on capital and labour income in that period, namely
2.11%, 2.25%, 3.12% and 2.82% respectively.

11As shown in Appendix C, the results mentioned in the text are independent of the
inisialisation of the variance-covariance matrix R. We used random generated data as
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Figure 1: Simulations. Model with rational expectations (black-dotted
line), model with adaptive learning (blue line with markers), data (black
line).

drop in detrended output in 1939, compared with a meager 6% for the
rational expectations model. These results lead to two conclusions. First,
bounded rationality helps a simple DGE model to account for the Great
Depression of the 1930s, especially for its depth and long duration. Second,
expectations are not likely to be the whole story. The model still needs
exogenous shocks to the fundamentals (real shocks, in the case of our
simple, flexible price model). Bounded rationality in the form of adaptive
learning acts as an amplifier for the shocks. This conforms to the historical
literature that sees uncertainty as an element of disturbance, hampering the
business environment of the 1930s, deepening the recession and delaying
the recovery. It is also in line with the standpoint of Cole and Ohanian
(2004), who claim that additional shocks are needed on top of standard
monetary and real shocks if one is to explain the long duration of the Great
Depression.

In order to grasp the working of the model, it may be useful to refer to
Figure 2. There, we reproduce two sets of graphs in two columns. In the
first column to the left, we have the simulated pattern of φi. In the second
column, the deviations from steady state of all the state variables. Hence,

benchmark, but the model with theoretical moments does just as good.

13



this figure represents a visual decomposition of the ALM – Equation (21)
or (23), with rational or adaptive expectations, respectively – element by
element. The graphs show that while with rational expectations the expec-

Figure 2: Simulations. Expectation coefficients (left column) and shocks
(right column). Blue line: adaptive learning. Black line: rational expecta-
tions. Red line: data.

tation coefficients are obiously constant, they do vary a lot in the model
with adaptive learning. In particular, the elasticity of the expected value of
capital to its past value decreases significantly along the Depression. At the
same time, the elasticities of the expected value of capital to tax and public
expenditures shocks become negative, while that to TFP shocks becomes
positive. Accordingly, the increase in taxes and public expenditures in the
second part of the 1930s have a strong negative impact on the expected
value of capital, while the model reacts less to the negative dynamics of
capital in the past. These effects contribute to further depress the economy,
and contrast the tendency to recovery driven by the positive TFP shocks
since 1934.

The economic intuition behind the working of the model can be re-
sumed as follows. With rational expectations, the dynamics of the model
is fully determined by the persistence of the shocks and the dynamics of
capital. In the model with learning, instead, the after-shock dynamics
are also driven by revisions in beliefs, which operate through changes in
the agents’s estimation of the elasticity of capital with respect to its past
values and contemporary shocks. Since simulations in both models start

14



from the rational-expectations solution, it takes some time before changes
in beliefs matter. The two models, hence, overlap at the onset of the De-
pression. As soon as agents adapt their expectations, the capital-labour
ratio drops dramatically in the learning model, and remains constantly
and significanlty below its rational-expectations counterpart (see Figure 4
in Appendix). The implied higher value of the real interest rate delays the
recovery. This pattern is accentuated by the additional uncertainty brought
about by fiscal policy. As shown in Figure 2, the tax shocks turn out to
be progressively more important, while their impact on the dynamics of
capital through expectations (the φi), which would be zero under rational
expectations, becomes more and more negative.

In fact, the presence of several shocks is crucial to the results. Since
simulations start from the rational expectations solution, beliefs only mat-
ter if the economic environment is sufficiently noisy. In a model with TFP
shocks only, for instance, the type of learning we have been discussing
so far would have little impact on the dynamics of aggregate variables.12

When the economy is perturbated along more than one dimension, instead,
forecast errors add to each other, thereby amplifying the distorting role of
beliefs. Uncertainty matters more in complex, deep crises.

5 Extensions

The learning solution implemented here above is but one of the possible
ways of introducing learning in DSGE models. We have chosen it since
it witnessess the smallest departure from rational expectations. This has
allowed us to assess the impact of bounded rationality on the data mim-
icking ability of the model for the Great Depression of the 1930s, in the
case that is most unfavourable to it, i.e. in the case in which the departure
from rational expectations is only minimal. We are now going to study
how modelling learning in different ways impacts on the explanation of
the Great Depression. The general lesson we may draw from this exercise
is twofold. First, the main conclusion from our previous analysis holds
true, whatever the type of learning considered: uncertainty helps to ex-
plain in particular the slow recovery from the Great Depression. Second,
the further the model departs from rational expectations, the stronger the
Depression is.

While modelling adaptive learning in Section 2.2.2, we have assumed
that agents know the full structure of the model and are able to obtain

12Results available upon request.
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its reduced-form solution. Following Milani (2007) and Slobodyan and
Wouters (2012a,b), we now relax this assumption and assume instead that
agents can only derive the model up the first order conditions. This implies
they have to solve the expectation operator appearing in the Euler equation
(15) without the possibility of iterating terms. Such a solution is typically
obtained by imposing an ad hoc PLM, meaning that there is no longer
a learnable mapping between the rational expectation and the learning
solution. Notice that this procedure may be criticised on the the ground
that it gives the researcher some freedom in choosing the information set
that agents are using when forming expectations in the model. On the
other hand, when subject to random shocks, the model with this type of
learning amplifies the volatility of economic variables and increase the
persistence of fluctuations, while mantaining the same average behaviour
over time as the model with rational expectations.13

In order to minimise the departure from rational expectations, we as-
sume that households expect future consumption and hours worked to be
function of the state variables. Hence, the perceived law of motion will be

Etĉt+1 = φc
k, t−1k̂t + φc

z, t−1ẑt + φc
g, t−1 ĝt + φc

τr, t−1τ̂
r
t + φc

τw, t−1τ̂
w
t . (26)

Etn̂t+1 = φn
k, t−1k̂t + φn

z, t−1ẑt + φn
g, t−1 ĝt + φn

τr, t−1τ̂
r
t + φn

τw, t−1τ̂
w
t , (27)

where φc
x and φn

x are the estimated coeficients associated to the PLM for
the expectations of consumption and hours worked respectively for each
state variable x.

The updating algorithm for the PLM coefficients is similar to Equations
(24) and (25):

Φt =Φt−1 + ζtR−1
t−1xt−1(f̂t − x′t−1Φt−1), (28)

Rt = Rt−1 + ζt
(
xt−1x′t−1 − Rt−1

)
, (29)

where f̂ is the (column) vector of the forecasted variables ĉ and n̂, xt is the
(column) vector of the state variables (k̂, ẑ, ĝ, τ̂r, τ̂w), Rt is the matrix (of
order 5) of the variances and covariances of the state variables and Φt is
the matrix of the coefficients corresponding to the PLMs and ζt stands for
the speed of learning.

We initialise the model by running simulations with random generated
data using the same set of shocks as in Section 3, which also allows us to
calculate the initial conditions for the φ j

i . We then plug in the measured
shocks linked to the Great Depression and simulate the model.

13See Appendix D.
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Figure 3 compares the dynamics of the model with learning about
FOCs (‘Euler learning’ – red line with markers) with that of the model
with rational expectations (black-dotted line) and adaptive learning (blue
line with markers), and contrasts them with the detrended data (black
continues line).

The graphs shows that while learning about FOCs delivers a dynamics
that is qualitatively similar to the benchmark adaptive learning model,
it greatly amplifies the response of the model to the shocks, so that the
model with learning about FOCs tracks the data on output, investment
and employment much better than the benchmark.This confirms that the
farer we depart from rational expectations, the more a simple DGE model
can account for the the Great Depression of the 1930s.

To better understand the logic of the results, remember that in this
model the after-shock dynamics are driven by revisions in beliefs. The
importance of this factor is even stronger in this extension than in the
benchmark model, because here expectations enter directly the consump-
tion and labour equations, while in the benchmark they only did indi-
rectly thorugh the law of motion of capital. As a result, here agents will
expect a stronger drop in labour and a higher capital-labour ratio (see
Figure 4 in Appendix B), which coupled with the actual and expected
lower drop in real wages, induces a higher intertemporal substitution ef-
fect, with investment decreasing more than in the rational-expectations
and adaptive-learning cases, and consumption, instead, increasing. As the
drop in investment progressively affects capital, the capital-labour ratio
eventually diminishes and remains significanlty below its counterpart in
both the rational-expectations and adaptive models. The implied higher
value of the real interest rate delays the recovery further. So, in this model,
learning affects the onset of the Great Depression, and has an even stronger
impact on its duration.

Notice that the model overestimates the dynamics of consumption in
the midst of the 1930s. This is due to the simplified, supply-driven na-
ture of the model, coupled with the abnormal magnitude of the shocks.
With investment dropping abruptly and public expenditures following an
exogenous given pattern, consumption is the only variable of adjustment
to maintain the equilibrium between aggregate demand and aggregate
supply.14

14One could improve the performance of the model with respect to consumption by
imposing a higher relative risk aversion and a higher elasticity of labour supply with
respect to wages, while at the same time severing the link between labour supply and
the marginal utility of consumption. In a robustness exercise available upon request,
we have simulated the same model with GHH preferences (Greenwood et al. (1988)),
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Figure 3: Simulations. Model with rational expectations (black-dotted
line), model with adaptive learning (blue line with circles), model with
learning about FOCs (red line with crosses), data (black line).

In Appendix E, we explore alternative modelling of learning expec-
tations: hybrid expectations, learning with a constant. These variants
deliver results that are in line with those of Section 4, both qualitatively
and quantitatively.

which assumes away the wealth effect on labour supply. We found that high values
of both the relative risk aversion (≥ 2.5) and the Frisch elasticity of substitution (∼ 2)
bring the pattern of consumption more in line with the data. The reason is twofold.
First, labour reacts more to the decrease in real wages implied by the shocks. Second,
the lower elasticity of intertemporal substitution induces a lesser decrease in investment
with restpect to the benchmark utility function. Overall, however, the improvement in
the dynamics of consumption is obtained at the price of decreasing the performance of
the model in terms of output and investment. Alternatively, one may switch to a more
complex New-Keynesian model with habit persistence, price and wage stickiness, which
would make the model dynamics more demand-driven. Since our focus here is on the
role of expectations on output dynamics more than on the perfect data mimicking of its
sectoral components, we abstract from all these complications.
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6 Conclusions

This article introduces adaptive learning in a stylised DGE model of the
U.S. Great Depression of the 1930s, thereby contributing to assessing the
quantitative importance of uncertainty as a driving factor of the Depres-
sion.

Results from simulations show that the the calibrated model with adap-
tive learning outperforms its rational-expectations counterpart, especially
for what concerns the explanation of the slow recovery from the Depres-
sion. By 1939, the model with adaptive learning can account for 32% of the
actual drop in detrended GDP, as opposed to 6% when expectations are
fully rational. This points to uncertainty as an important factor delaying
the recovery after 1933. Results are robust to different specifications of
the learning dynamics, while the data mimicking ability increases as the
model gets further away from rational expectations.

Our analysis leads to conclude that considering uncertainty in the form
of a light departure from rational expectations is a promising way to take
its important role in big crises into account, without introducing animal
spirits or forsaking the analytical advantage and quantitative strenght of
DGE modelling.
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A Computations

A.1 The log-linearised system of equations

We use equations (1), (4), (5), (7), (11), (12), (15) and (16) log-linearise it to
form a system of 8 equations and 8 variables (yt, wt, rt, trt, it, kt, ct, nt) in
addition to the four shock processes.

We start from the production function in equation (1), in detrended
terms yt = exp(zt)n1−α

t kαt−1, and take logs:

ln(yt) = ln
(
exp(zt)

)
+ (1 − α) ln(n) + α ln(kt−1)

The taylor expansion around the steady state is:

ln(yss) +

 yt − yss

yss

 = ln
(
exp(zt)

)
+

zt − zss

zss


+ (1 − α) ln(nss) + (1 − α)

nt − nss

nss

 + α ln(kss) + α

kt−1 − kss

kss

 ,
where the term on the right hand side ln(yss) is equal to ln(exp(zt)) + (1 −
α) ln(nt) + α ln(kt−1), therefore we have:yt − yss

yss

 =

zt − zss

zss

 + (1 − α)

nt − nss

nss

 + α

kt−1 − kss

kss


We can define ŷt =

yt − yss

yss

, and our ”tilde” equation becomes :

ŷt = zt + (1 − α)n̂t + αk̂t−1 (30)

The linearised demand for labor in equation (4):
Taking logs:

ln(wt) = ln
(
exp(zt)

)
+ ln(1 − α) − α ln(nt) + α ln(kt−1),

where the taylor expansion around the steady state is:

ln(wss) +

wt − wss

wss

 = ln
(
exp(zt)

)
+

zt − zss

zss


+ ln(1 − α) − α ln(nss) − α

nt − nss

nss

 + α ln(kss) + α

kt−1 − kss

kss

 ,
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where the term on the right hand side ln(wss) is equal to ln
(
exp(zt)

)
+ ln(1−

α) − α ln(nt) + α ln(kt−1), we have thatwt − wss

wss

 =

zt − zss

zss

 − α nt − nss

nss

 + α

kt−1 − kss

kss

 ,
and under ”tilde” becomes:

ŵt = zt + α(k̂t−1 − n̂t) (31)

The linearised demand for capital (5)is similar to the previous expre-
sion, thus:

r̂t = zt + (1 − α)(n̂t − k̂t−1) (32)

The linearised equation of the Goverment’s budget (7), after taking
logs:

ln(gt) = ln
(
wtτ

w
t nt + rtτ

r
tkt−1 − trt

)
,

where the taylor expansion around the steady state is:

ln(gss) +

gt − gss

gss

 = ln
(
wtτ

w
t nt + rtτ

r
tkt−1 − trt

)
+

γnssnss (wt − wss)

wssτwssnss + rssτrsskss − trss

+
wssnss

(
τw

t − τ
nss

)
+ wssγnss (wt − wss) + τrsskss (rt − rss)

wssτwssnss + rssτrsskss − trss

+
rsskss

(
τr

t − τ
rss

)
+ rssγrss (kt−1 − kss) + (trt − trss)

wssτwssnss + rssτrsskss − trss ,

where we know that the expresion in the denominator is equal to gss,
multiplying and dividing each term by its value in steady state:

gss ĝt = wssτ
w
ssnss(ŵt + τ̂w

t + n̂t) + rssτ
r
sskss(r̂t + τ̂r

t + k̂t−1) −
trsst̂rt

gss
(33)

The linearised household budget constraint (11) can be rewritten
using the production function and the goverment budget constraint, as
yt = cp

t + it + gt, taking logs and operating, we reach:

yss ŷt = cssĉ
p
t + isŝit + gss ĝt (34)

The linearised capital law of motion (12):

ît =
kss

issγk̂t−1 −
kss

iss (1 − δ) k̂t−1 (35)
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The linearised Euler equation (15): For simplicitiy, recallΩ = β/(1+γ)
and Rt+1 = (1 − τr

t+1)α exp(zt)kα−1
t n1−α

t+1 + 1 − δ, and taking logs:

ln

 Ω

cp
t + ηgt

 = ln(
β

cp
t + ηgt

) + ln(Rt+1),

then we have lnΩ − ln(cp
t + ηgt) = ln β − ln(cp

t+1 + ηgt+1) + ln(Rt+1), which
becomes:

− ln(cp
t + ηgt) −

cp
t + cpss

cp
ss + gss

 − η  gt + gss

cp
ss + gss

 = − ln(cp
t+1 + ηgt+1)

−

cp
t+1 + cpss

cp
ss + gss

 − η  gt+1 + gss

cp
ss + gss

 +
Rt+1 + Rss

Rss
+ ln(Rt+1)

Multipying and dividing by cp
ss and gss, we have:

−
cssc

p
t + gssηgt

cp
ss + gss

= −
cssc

p
t t+1 + gssηgt+1

cp
ss + gss

+ Rt+1,

where Rt+1 =
(

rss
rss+1−δ

) (
zt+1 + (1 − α)(nt+1 − kt) − τr

ssτ
r
t

)
, and finally our lin-

earised equation becomes:

cssĉ
p
t + gssηĝt

cp
ss + gss

=
cssĉ

p
t t+1 + gssηĝt+1

cp
ss + gss

−

( rss

rss + 1 − δ

) (
ẑt+1 + (1 − α)(n̂t+1 − k̂t) − τr

ssτ̂
r
t+1

)
.

(36)
The linearised labour market equilibrium equation (16). Taking logs

we have:

ln

 ϕ

1 − nt

 = ln(wt) + ln(1 − τn
t ) − ln

(
ct + ηgt

)
The taylor expansion around the steady state is:

ln(nss) + ϕ

nt − nss

1 − nss

 = ln(wt) +

wt − wss

wss

 + ln(1 − τn
t ) −

τn
t − τ

nss

τnss


− ln

(
cp

t + ηgt

)
−

ηgss

cpss + gss

cp
t − css

css

 − cpssη

cpss + gss

gt − gss

gss

 ,
we multiply the left hand side by nss to obtain ñ, replace w̃t, and reach:

n̂t =

 1 − nss

nss + α(1 − nss)

 ẑt − αk̂t−1 −

cpssĉp
t + gssηĝt

cpss + gss

 − τwssτ̂w
t

 (37)
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A.2 The reduced system of equations

We now show the steps for obtaining the reduced form system of the model,
this is, as a function of the state variable and the shocks, it is important
to follow a strategy in order to reduce the time devoted to algebra. The
to obtain an expresion of consumption as a function of the state variable
and the shocks, for doing so we use the resource constraint of the economy
(5-A) combined with equations (1) and (6).

yss

(
ẑt + (1 − α)n̂t + αk̂t−1

)
= cssĉ

p
t + γkssk̂t − kss (1 − δ) k̂t−1 + gss ĝt.

Next, we replace n̂t using equation (8-A), and we obtain:

cssĉ
p
t

1 +
n1

cpss + gss

 = (yss + n1)ẑt + (n1α + yssα + kss(1 − δ)kss)k̂t−1

− γkssk̂t − gss ĝt

1 +
ηn1

cpss + gss

 − n1τ
wssτ̂w

t ,

where n1 = (1 − α)

 1 − nss

nss + α(1 − nss

 This equation is going to be crucial in

obtaining the reduced form of the model, for the sake of simplicity we
rewrite it as:

ĉp
t = z0ẑt + k0k̂t−1 − k1k̂t − g0 ĝt − τ

w
0 τ̂

w
t , (38)

where z0 =
yss + n1

cpss

1 +
n1

cpss + gss

, k0 =
n1α + yssα + kss(1 − δ)kss

cpss
(
1 + n1

cpss+gss

) ,

k1 =
γkss

cpss

1 +
n1

cpss + gss

, g0 =

1 +
ηn1

cpss + gss

cpss

1 +
n1

cpss + gss

 andτw
0 =

n1τwss

cpss

1 +
n1

cpss + gss

.

Now we operate in the Euler equation and the labor market equilibrium
equation to express write the expectations of consumption and labor as a
function of the state variable and the shocks. After some algebra, and
substituing n̂t+1from equation (8-A) in t + 1 and the shocks in t + 1 as well,
by its autoregresive process (for instance, usingẑt+1 = ρzẑt), we can write
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equation (7-A) as:

c0ĉp
t = (1 + r1)c0ĉp

t+1 + (ρg − 1 + r1ρg)g1 ĝt − (r0 + r1)ρzẑt

+ (r0(1 − α) − r1)k̂t + r1ρwτ
wssτ̂w

t + r0ρrτ
rssτ̂r

t ,

where c0 = cpss

cpss+gss
, g1 =

ηgss

cpss+gss
, r0 = rss

rss+1−δ , and r1 = r0(1 − α)n0.

Next, we use equation (9-A) in t and t + 1to substitute ĉt ĉt+1in the
previous equation, reaching an equation where only the state variable and
the shocks appear:

k̂t = a1Etk̂t+1 + a2k̂t−1 + b1ẑt + b2 ĝt + b3τ̂
r
t + b4τ̂

w
t , (39)

where a0 = −c0k1 − c1k0 − r0(1 − α) + r1α, c1 = (1 + r1)c0,

a1 = −
c1k1

a0
, a2 = −

c0k0

a0
, b1 = −

c0z0 + c1ρzz0 − (r0 + r1)ρz

a0
,

b2 = c0g0 − ρgc1g0 + (ρg − 1 + r1ρg)g1/a0,

b3 =
r0τrssρr

a0
, and b4 =

c0τw
0 − c1τw

0 ρw + r1τwssρw

a0
.

The reduced form system of the model is formed with equation (35),
(34), (33), (26), (27), (28), (29), (30) and the shock processes (3), (8), (9) and
(10). Once the expectation of capital is solved and the shocks are realised,
the rest of variables can be obtained.
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B The k/n ratio and the price of the factors of
production
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Figure 4: Simulations. Model with rational expectations (black-dotted
line), model with adaptive learning (blue line with circles), model with
learning about FOCs (red line with crosses).
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C Robustness

In this section we shall evaluate the robustness of our results under different
specifications of the updating algorithm.

In Figure 5, we compare the results from our benchmark model (con-
stant gain with ζ = 0.03) with the results from simulations with constant
gain learning, under different values of the gain parameter. Since in the lit-
erature traditional values range from 0.02 to 0.06, we chose those extremes
for our sensitivity analysis. The Figure also shows the results from simula-
tions with recursive least squares. We may conclude from this comparison
that our results are robust to the specifications of the updating algorithm
that are most commonly adopted in the literature.
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Figure 5: Simulations under different gains. Model with rational expec-
tations (black-dotted line), model with adaptive learning (blue line with
cercles) and different gains (dashed lines) and recursive least squares (red
line with crosses).

In Figure 6, we check instead how the choice of initial conditions for the
learning algorythm, i.e. Equations (24) and (25), impacts on the results. We
do so by comparing results from our benchmark model with the results
from a model in which the initial value of the variance and covariance
matrix, R, is the theoretical value implied by the rational expectations
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Figure 6: Simulations of the learning model under different intial condi-
tions mechanisms. Model with rational expectations (black-dotted line),
learning model initialized with Randomly Generated Data (blue line with
cercles) and learning model initialized with the model implied theoretical
momments (red line with crosses .

model.15. The graph shows that the two models almost overlap, meaning
that if the simulation for the initial conditions under randomly generated
data is sufficiently long, the initial matrix converges to the theoretically-
implied one.

D Convergence

In this Section, we check the convergence properties of our model. To do
so, we run a 1000 periods simulation with large volatility, to impose long
periods of stress. We compare the series of output from the model with
rational expectations, and that with adaptive learning. Figure 7 shows that
the model with adaptive learning and constant gain converges quite fastly
to the rational expectation solution and shows similar volatility, whereas

15For the specific representation of this matrix, see Carceles-Poveda and Giannitsarou
(2007)

30



the model with FOC-learning à la Milani (Euler learning) tends to amplify
the volatility, especially in reaction to large shocks.
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Figure 7: Model dynamics under different expectations, measured in devi-
ations from the steady-state. Model with rational expectations (black line),
model with adaptive learning (blue line) and Euler learning (red-dotted
line).

E Alternative ways of modelling learning

E.1 Hybrid expectations

In this Section, we explore an even smaller deviation from rational expec-
tations, i.e. we assume that only a fraction of agents do not know the true
values of the actual law of motion, while all the others have rational expec-
tations. This is often referred to in the literature as ‘hybrid expectations’,
for in this context a fraction of agents have forward-looking, rational expec-
tations while the other fraction have backward-looking, adaptive-learning
expectations. The hybrid expectations formulation has gained some pop-
ularity in recent years (see Bernanke et al. (2019) and Gertler (2017) for
instance) as an easy way to introduce backward-looking agents in gen-
eral equilibrium models, which brings the persistence of fluctuations in
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the model closer to that in the data. With hybrid expectations, the PLM
becomes:

Etk̂t+1 = λERE
t k̂t+1 + (1 − λ)EAL

t k̂t+1,

where λ represent the fraction of agents whoc know the true values of the
ALM. Under this formulation, if λ=1, we have the rational expectation
solution, if λ=0, the adaptive learning one. Figure 8 shows the difference
in the dynamics of output and consumption for our excercise in Section 4
as the share of rational agents shrinks.
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Figure 8: Simulations under different degrees of hybrid expectations. From
1, black dotted line(purely rational) to 0, blue line with cercles (learning).

E.2 Learning with a constant

In this Section, we extend the benchmark adaptive-learning model by
including an intercept in the PLM, to capture the potential bias in the
estimation of the coefficients. This extension draws on Slobodyan and
Wouters (2012a,b), who introduce it to relax the restriction of agents having
a common, constant long-run trend of consumption and inflation. In their
paper, the additional term included in the PLM allows expectations to track
long-run movements observed in the data, such as the great moderation in
inflation during the 1980’s. In the case of our model, this term aims more
generally at capturing unspecified persistent deviations in the expectations
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Figure 9: Simulation. Model with rational expectations (black-dotted line),
baseline learning model (blue line with cercles) and learning model with
an intercept (red line with crosses).

of capital. Adding an intercept to Equation (22) results in the following
expression:

Etk̂t+1 = φ̄t−1 + φk,t−1k̂t + φz,t−1ẑt + φg,t−1 ĝt + φr,t−1τ̂
r
t + φw,t−1τ̂

w
t .

By the same token, the learning algorithm becomes:

Φt =Φt−1 + ζtR−1
t−1xt−1(k̂t − x′t−1Φt−1), (40)

Rt = Rt−1 + ζt
(
xt−1x′t−1 − Rt−1

)
, (41)

where xt is the (column) vector of the state variables (1, k̂t, ẑt, ĝt, τ̂r
t , τ̂

w
t ), Rt

is the matrix (of order 6) of variances and covariances of the state variables
andΦt is the (column) vector of the expectation coefficients (φ̄,φk, φz, φg,
φr, φw).

Figure 9 shows the results from simulating the model under the new
PLM. The inclusion of an intercept results into a slighly larger drop in
output with respect to the baseline learning model.
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