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Boris Chafwehéa, Charles de Beauffortb,c, and Rigas Oikonomouc

aJoint Research Centre, European Commission
bNational Bank of Belgium
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Abstract

We study the impact of debt maturity management in an economy where monetary policy is

’passive’ and subservient to fiscal policy. We setup a tractable model, to characterize analytically

the dynamics of inflation, as well as other macroeconomic variables, showing their dependence

on the monetary policy rule and on the maturity of debt. Debt maturity becomes a key variable

when the monetary authority reacts to inflation and the appropriate maturity of debt can

restore the efficacy of monetary policy in controlling inflation. This requires debt management

to focus on issuing long bonds. Moreover, we propose a novel framework of Ramsey optimal

coordinated debt and monetary policies, to derive analytically the interest rate rule followed by

the monetary authority as a function of debt maturity. The optimal policy model leads to the

same prescription, long term debt financing enables to stabilize inflation.

Lastly, the relevance of debt maturity in reducing inflation variability is also confirmed in a

medium scale DSGE model estimated with US data.
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“The Federal Reserve cannot make rational decisions of monetary policy without knowing what
kind of debt the Treasury intends to issue. The Treasury cannot rationally determine the maturity
structure of the interest-bearing debt without knowing how much debt the Federal Reserve intends to
monetise.”

James Tobin (1963), ’An essay on the principles of debt management’

1 Introduction

The large rise in government debt levels observed in many countries since the 2008-9 recession and
which will likely persist in the coming years as a consequence of COVID-19, raises numerous concerns
regarding the conduct of monetary policy and in particular its ability to control inflation. Since it
is questionable that governments will be able to generate the large required surpluses to finance
this debt, resorting to inflation for this purpose, may become the only option for many advanced
economies. If a such a scenario materializes, then monetary policy will become subservient to fiscal
policy, giving up (at least partially) its control over inflation.

Numerous papers have studied the interactions between monetary and fiscal policies using the
workhorse model of the fiscal theory of the price level (e.g. Leeper, 1991; Cochrane, 2001; Bianchi
and Melosi, 2017, 2019; Bianchi and Ilut, 2017; Sims, 2011; Cochrane, 2018; Bhattarai et al., 2014;
Leeper and Leith, 2016). One of the key findings in this literature is that when monetary policy
becomes subservient to fiscal policy, shocks filtered through the government’s budget can impact
inflation, and conventional ways to react to these shocks (e.g. lowering interest rates in response to
a demand contraction) will not be effective.

These important findings are supported by very elaborate models which account for numerous
margins of policy and features of the way monetary and fiscal policies are conducted in practice. Yet,
we believe that there is a policy margin whose effects the literature has not adequately explored and
which is potentially crucial: debt maturity management. With few exceptions (that we discuss in
detail below) the literature has abstracted from modelling explicitly the maturity of debt, assuming
(mainly for simplicity) that governments issue debt in one asset, either a short or a long term bond.
This is not an innocuous assumption. When debt can be issued in more than one maturity, then with
the appropriate issuance of short and long bonds, debt management can insulate the government’s
budget from shocks, and thus reduce inflation volatility and even partially restore the efficacy of
monetary policy in dealing with shocks.

In this paper we setup a tractable model to analyze how debt management can complement
monetary policy in cases where the latter is subordinate to a fiscal authority that does not adjust
the surplus to finance debt. Our arguments are rooted into a growing number of papers studying
debt management in macroeconomic models (e.g. Angeletos, 2002; Buera and Nicolini, 2004; Lustig
et al., 2008; Faraglia et al., 2016, 2019; Debortoli et al., 2017; Bhandari et al., 2017; Bouakez et al.,
2018) and in which debt portfolios are chosen to enable governments to smooth distortionary taxes
over time. Our paper, instead, investigates what types of debt can better enable monetary policy to
stabilize inflation.

In Section 2 we setup a simplistic model consisting of the standard New Keynesian block of
equations augmented with a fiscal block - the consolidated budget constraint and a policy rule which
determines taxes as a function of the lagged level of debt (e.g Leeper, 1991). Our model is broadly
similar to Leeper, 1991; Bianchi and Melosi, 2019, what is different is that debt can be issued in
two types of bonds, long and short. Monetary policy becomes subservient to fiscal policy when the
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nominal interest rate adjusts weakly to inflation and when the response of taxes to debt is also weak,
the standard configuration of a passive monetary/ active fiscal regime (Leeper, 1991).

Using this setup we first focus on how, depending on the maturity structure of debt, shocks
to government spending and to demand are propagated through the economy; we consider two
alternative specifications for the monetary policy rule. In the first case, we assume that the nominal
interest rate only reacts to inflation, through the usual systematic response, and in the second case
we assume that the nominal rate also reacts the movement of the real rate, through the standard
’stochastic intercept term’. For each case, we derive analytically the path of inflation, and show
that it hinges crucially on whether the government finances debt long or short term, and also hinges
on the specification of the monetary policy rule. We then turn to characterize optimal debt policy,
to find the maturity structure that minimizes intertemporally the variability of inflation deriving
from shocks to spending and demand. We establish that to deal with fiscal shocks the policymaker
issues as much long debt as possible, financing the position with short term assets. To ward off with
demand shocks, the optimal portfolio may feature positive short term debt, when monetary policy
only reacts to inflation, but long term debt is optimal when the nominal rate tracks the real rate.
Debt maturity becomes irrelevant when interest rates do not respond at all to inflation.

To understand these properties note first that under passive monetary policy, inflation becomes a
backward looking process. Reacting systematically to inflation through raising the nominal rate, will
generally not accomplish to reduce inflation, and rather will lead inflation to increase persistently.
Issuing long term debt is optimal to finance a spending shock, as this enables to reduce the real
value of debt both through current and future inflation, reducing the overall impact of the shock on
inflation. Hence the optimal strategy is to issue long and finance the position with short term assets.

On the other hand, inflation dynamics following a demand contraction shock can become complex,
inflation may drop initially and then (depending on debt maturity) switch sign to turn positive. This
happens because a demand shock is filtered through both the government budget constraint and the
Euler equation. Following a negative shock, intertemporal solvency requires that the market value of
debt increases, to be equal to the value of surpluses that compensate for debt, and so inflation needs
to fall. Eventually, however, the (opposite) Euler equation effect dominates and inflation rises.

Whether it is desirable to issue short or long term debt to deal with the demand shock, hinges
crucially on the response of monetary policy. When the nominal interest rate only reacts to inflation,
then short term debt accomplishes to shield the budget constraint from future inflation, avoiding an
even larger initial drop in the price level that would otherwise be required to balance the budget
intertemporally. In contrast, when monetary policy tracks the movement in the real rate, the impact
of the shock on the Euler equation is muted. Then issuing long debt is optimal and in fact we find a
portfolio that can fully insulate government’s budget from the demand shocks, so that in equilibrium
inflation is fully stabilized. This key finding suggests that the efficacy of monetary policy to control
inflation can be restored by debt management, in spite of the fact that we are in a ’passive money’
world.

These results emerge from a model with standard ad hoc monetary policy rules, the benchmark
fiscal theory framework and this provides a useful link to the literature as well as tractable analytics
to investigate the interactions between monetary policy and debt maturity. Since these interactions
turn out to be non-trivial we next study how monetary policy would react to any given debt structure,
when it can optimally set the nominal interest rate. In Section 3 we turn to a model where a ’Ramsey
planner’ chooses interest rates and the debt portfolio to minimize distortions stemming from inflation
and derive analytically an optimal interest rate rule that takes the maturity of debt into account. The
resulting policy rule is broadly similar to the ad hoc rules assumed in Section 2, featuring a systematic
response to inflation and a stochastic intercept term, however, now key parameters are tied down
by the maturity of debt. More specifically, the coefficient that governs the response of interest rates
to inflation reflects the maturity of the long term bonds issued, and the ’stochastic intercept’ that
determines how the nominal rate reacts autonomously to spending and demand shocks also depends
on maturity. The optimal debt portfolio then eliminates the dependence of monetary policy on the
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composition of debt through eliminating the impact of shocks on the consolidated budget. We find
that to accomplish this, debt management needs to again focus on issuing long term debt.

Section 4 demonstrates the relevance of considering the maturity structure of debt as a key
variable for macroeconomic stabilization under passive monetary policy, using a more realistic setup, a
medium scale DSGE model. Our quantitative model extends the baseline with preferences exhibiting
habit formation, and adds more shocks to the economy, in particular shocks to TFP, to markups,
to government transfers, besides the spending and demand shocks. The model has a rich structure
to match US data and it is broadly similar to the model of Bianchi and Ilut (2017). We estimate
the quantitative model with standard Bayesian techniques using the post 1980 sample of the US
historical data, when as is well known, monetary policy was not subservient to fiscal policy. We
then change the policy parameters to produce a ’passive monetary/active fiscal’ regime and study
the propagation of shocks under different maturity structures. Our analysis reveals that not only
does the maturity of debt matter for the propagation of shocks in the macroeconomy, but also that
the effect of debt management policy in reducing the volatility of macroeconomic variables can be
considerable. This holds in particular for fiscal shocks. According to our experiments, issuing long
term debt is optimal to deal with fiscal shocks.

This paper brings several insights to the literature and is related to several strands. First,
considering debt management as a policy margin that can complement monetary policy in pursuing
its inflation stabilization goals, is perhaps at odds with the current institutional setup in the US and
other OECD countries. According to current practice, the mandate of debt management is to finance
debt at low cost given tolerable levels of rollover risk (see e.g. Blommestein and Turner, 2012) and
therefore, debt managers do not pursue macroeconomic stabilization objectives as we will assume in
this paper. Nevertheless, the idea that monetary policy and debt management should coordinate is
not new, and dates back (at least) to the time James Tobin wrote on this subject. According to
Tobin (1963) both authorities have powers to influence the entire spectrum of debt, and coordinating
actions and aligning objectives seems natural.

Admittedly, changing the mandate of debt management is not a trivial shift in policy and to
make the claim that it is optimal involves, at least, modelling explicitly how it would affect private
sector expectations over inflation and the costs of debt issuance. 1 We will not consider any of the
(possibly numerous) trade-offs in this paper. Moreover, it is worth noting, from the point of view of
the model, a full alignment of objectives is perhaps not even necessary. Inflation is determined by the
net debt in the hands of the private sector, and since the consolidated budget constraint is sufficient
for an equilibrium, quantitative easing can implement the optimal policy outcomes that we identify.
However, this property relies on the simplicity of our setting. In a world where both monetary and
DM policies operate at the long end of the maturity structure and with conflicting goals, it is not clear
that one authority will not undermine the actions of the other. (See e.g. Greenwood et al., 2015). If
this is so, then changing the mandate of debt management to include macroeconomic stabilization
goals may become important. These are important elements that we leave to future work.

Ours is not the first paper to investigate the role of maturity within the context of the fiscal
theory of the price level. Cochrane (2001) was the first to introduce long debt to this model, and
study the implications for inflation and optimal policy. Cochrane (2018), revisits this analysis to
show that the issuance of long term debt gives rise to a ’stepping on a rake’ property of monetary
shocks: prices drop following a rise in the nominal interest rate but the sign of inflation is reversed
subsequently. In addition, a few recent papers have studied optimal debt portfolios using models
in which monetary and fiscal policies are coordinated. Lustig et al. (2008) explore how a Ramsey
planner will set inflation, tax and debt issuance policies under full commitment whereas Leeper and
Leith (2016) and Leeper et al. (2021) focus on equilibria without commitment. Bhattarai et al.
(2015) consider the role of maturity in shaping the inflation output trade-off facing the planner

1For instance, when monetary policy is not subordinate of fiscal policy, then coordination between monetary and
debt policies could be seen as implicit debt monetization or manipulating interest rates to reduce the cost of financing
debt. Our focus however is on a passive monetary policy equilibrium, where both of these elements are already present.
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during liquidity trap episodes.
These papers are related to ours, but there are some key differences. First and foremost, Ramsey

models with coordinated policies cannot be easily compared to the fiscal theory of the price level
model (Leeper and Leith, 2016). Typically, under Ramsey policy the planner has a dual objective to
smooth taxes and inflation across time, the resulting combination of optimal policies maybe far from
the ’passive monetary/active fiscal’ regime which we focus on here. When we turn to study Ramsey
policy in Section 3, we constrain the tax rate to be constant, thus fully focusing on an environment
where only inflation can adjust to ensure debt solvency. Moreover, the optimal monetary policy rule
that we obtain analytically is indeed a standard passive policy rule.

Second, most of these papers consider optimal policies in nonlinear models using global approx-
imation methods,2 and this implies that they cannot look at the interactions between debt and
monetary policy, when the latter is specified with the simple empirically relevant rules that the
DSGE literature has employed and identified from the data. In contrast, we utilize a linear model
and this enables us to connect with the standard fiscal theory framework of monetary/fiscal interac-
tions (e.g. Leeper, 1991), but also to derive sharp analytical results, and in Section 4 to apply our
findings in a medium scale DSGE model.

Finally, our optimal policy model in Section 3 is broadly related to the optimal fiscal/monetary
policy literature under incomplete markets (e.g. Aiyagari et al., 2002; Schmitt-Grohé and Uribe,
2004; Lustig et al., 2008; Faraglia et al., 2013, 2016 and many others). As in these papers, the lags of
the Lagrange multiplier on the government budget constraint are state variables influencing policy
through capturing the planner’s commitments to a path of the policy variables that enable to adjust
appropriately the real value of debt. Our analytical results showing that from complicated Ramsey
policy optimality conditions we can derive simple and transparent monetary policy rules, should be
of interest.

2 Theoretical Framework

We lay out our baseline model which consists of the standard New Keynesian block of equations, the
consolidated budget constraint and a fiscal policy rule that sets (distortionary) taxes as a function
of debt outstanding. The model draws from previous studies (e.g. Leeper, 1991; Bianchi and Melosi,
2019), the main difference is that we consider debt issued in both long and short term bonds.
For brevity, we define here the competitive equilibrium equations in log-linear form. In the online
appendix we describe the background non-linear model and derive the equations from the optimality
conditions of the households’ and firms’ optimization problems. Our model in this section can also
be seen as a simplified version of the model we setup in Section 4.

We let x̂ denote the log deviation of variable x from its steady state value, x. The system of the
competitive equilibrium equations is the following:

(1) π̂t = κ1Ŷt + κ2τ̂t + βEtπ̂t+1,

2An exception is Cochrane (2001) who draws insights from both linear and nonlinear models.
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where κ1 ≡ − (1+η)Y
θ

γh > 0, κ2 ≡ − (1+η)Y
θ

τ
(1−τ)

> 0,

ît = ξ̂t + Et

(
π̂t+1 − ξ̂t+1

)
(2)

pSbS b̂t,S + pSbS p̂t,S + pδbδ b̂t,δ + pδbδp̂t,δ +
τ(1 + η)Y

η

(
(γh + 1)Ŷt +

τ̂t
1− τ

)
−GĜt

= bS(b̂t−1,S − π̂t) + pδbδ(b̂t−1,δ − π̂t) + δbδpδp̂t,δ(3)

pδp̂t,δ =
∞∑
j=1

βjδj−1

[
Et

(
−

j∑
l=1

π̂t+l + ξ̂t+j − ξ̂t
)]

(4)

pS p̂t,S = βEt(ξ̂t+1 − ξ̂t − π̂t+1)(5)

ît = φππ̂t + εi,t(6)

τ̂t = φRτ,bD̂t−1(7) (
sbδ(1− sbδ)

)(
b̂t,δ − b̂t,S

)
= υD̂t−1(8)

(1) is the Phillips curve at the heart of our model. π̂t denotes inflation, Ŷt denotes the output
gap and τ̂t is a distortionary tax levied on the labor income of households. Parameters η < 0 and
θ > 0 that determine the constants κ1 and κ2, govern the markup over marginal costs of production
set by firms and the degree of price stickiness respectively.3 β is the usual discount factor in the
background nonlinear model.

(2) is the log-linear Euler equation which prices a short term nominal asset. The price of this
asset is denoted p̂S,t and it is equal to minus the nominal rate ît. ξ̂ is a standard demand shock
which in the background non-linear model reflects a disturbance to preferences changing the relative
valuation of current vs. future utility by the household. In standard fashion, a drop in ξ̂ makes the
household relatively patient, willing to substitute current for future consumption and thus leading
to a drop in the demand for output.

(3) is the consolidated budget constraint. We assume that debt is issued in two maturities, a short
bond with real issuance denoted b̂S and long bond, a perpetuity with decaying coupons, denoted b̂δ

where δ is the coupon decay factor. The term τ(1+η)Y
η

(
(γh + 1)Ŷt + τ̂t

1−τ

)
denotes the revenues of

the government from taxation. Parameter γh is (in the non-linear background model) the inverse
of the Frisch elasticity of labor supply. Ĝt denotes government spending. (3) equates the value of
new debt issuance and the value of the government’s surplus (top line) to the real market value of
debt outstanding in period t. Notice that the prices of long and short bonds are objects p̂t,S and p̂t,δ
defined in (4) and (5) respectively. Substituting into (3) these competitive equilibrium prices and
the steady state analogues pS = β and pδ = β

1−βδ . we get:

βbS b̂t,S + βbSEt(ξ̂t+1 − ξ̂t − π̂t+1) +
βbδ

1− βδ
b̂t,δ + bδ

∞∑
j=1

βjδj−1

[
Et

(
−

j∑
l=1

π̂t+l + ξ̂t+j − ξ̂t
)]

+
τ(1 + η)Y

η

(
(γh + 1)Ŷt +

τ̂t
1− τ

)
−GĜt

= bS(b̂t−1,S − π̂t) +
bδ

1− βδ
(b̂t−1,δ − π̂t) + δbδ

∞∑
j=1

βjδj−1

[
Et

(
−

j∑
l=1

π̂t+l + ξ̂t+j − ξ̂t
)]

(9)

3We assume price adjustment costs as in Rotemberg (1982). θ governs the magnitude of these costs. When θ equals
zero, prices are fully flexible.
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where (9) more succinctly summarizes the consolidated budget as an equilibrium object, since we
dispensed with prices.

Monetary policy is modelled as interest rate rule (6) featuring a systematic response of the nominal
interest rate to inflation, governed by parameter φπ, and a disturbance term εi,t which represents
the monetary policy shock. Note that in what follows we will consider two polar scenarios: In one
case we will set εi,t = 0 thus letting monetary policy react to inflation only through the systematic

component φππ̂t, and in the second case we will set εi,t = ξ̂t−Etξ̂t+1 thus letting the interest rule track

the movement of the real rate, the latter being determined fully by the demand shock ξ̂. Expressing
the policy rule as in (6) allows us to summarize these two cases.

Moreover, fiscal policy is rule (7) setting the tax rate as a function of the lagged face value of

government debt, defined here D̂t−1 = bS b̂S,t−1 + bδ
1−δ b̂δ,t−1.4 Parameter φτ,b measures the size of the

adjustment of taxes to debt.
Finally, equation (8) specifies a rule for the share of the face value of long term debt over the

total face value issued in t. sbδ denotes the steady state share of long bonds in the government’s

portfolio and υ governs the response of the share to the face value D̂.
The above equations define a model that is similar to the baseline fiscal theory framework com-

monly employed in the literature. As is well known, in this model parameters φτ,b and φπ are the
crucial objects that determine whether monetary policy is subordinate to fiscal policy. Unlike the
baseline model of the literature, our model assumes that taxes are distortionary and also that the
government issues debt in two different types of assets, short and long term bonds. Since these ele-
ments appear to be novel, we now precisely characterize the regions for parameters φπ and φτ,b which
give us an equilibrium where fiscal policy dominates monetary policy. The following proposition
gives the result:

Proposition 1: Policy configuration
The unique equilibrium when monetary/fiscal policy is passive/active is obtained when the follow-

ing is satisfied: φπ < 1 and φτ,b <
(β−1−1)

R(1− τ
γh(1−τ)

)
.

Proof: See Appendix A.1.

Notice that as in Leeper (1991) the ’passive money’ equilibrium emerges when coefficient φπ is
less than unity. On the other hand, the cutoff for fiscal policy φτ,b to become ’active’ is a function of
steady state taxes, 1

γh
and R, the Frisch elasticity and the steady state revenue respectively. Since

in our model taxes are distortionary, these parameters influence the behavior of hours in response to
changes in taxes. Note further that 1 − τ

γh(1−τ)
> 0 needs to hold otherwise the economy is on the

wrong side of the Laffer curve. Thus, the threshold (β−1−1)

R(1− τ
γh(1−τ)

)
is positive.

Our analysis below sets φτ,b = 0. We make this assumption to focus on a scenario where fiscal
policy does not finance debt through taxation and also for tractability, to be able to derive analytical
results. However, it is worth noting that under plausible values for parameters τ and γh the cutoff
defined in Proposition 1 will actually be close to zero, so that even assuming φτ,b > 0 would not
change our results.

2.1 Debt Maturity in a passive money world

Changes in the maturity of debt will in our model exert an influence on the equilibrium, as Ricardian
equivalence does not hold. Since the model is linear the crucial quantities are bS, bδ, the steady state

4The decaying coupon bond is priced in the model exactly as a portfolio of zero coupon bonds, the principal on
maturity j is δj−1. Thus the total face value is the quantity bδ b̂δ,t−1 times the principal payments (1 +δ + δ2 + ...).
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values of the two types of debt. These are the objects that influence equilibrium inflation since, as is
evident from (9), they interact with inflation in the government budget constraint. In contrast, the
quantities b̂δ, b̂S (the log deviations from steady state) have no bearing on the equilibrium.5

Due to this property, that (zero order) steady state portfolios are only relevant, we can fully
characterize macroeconomic outcomes through studying the responses of the economy to one off
shocks in spending, demand and εi,t. We now derive analytical formulae describing the dynamics
of inflation, when these shocks can occur in period t, assuming that all innovations are i.i.d and no
further shocks can occur thereafter. Without loss of generality we set initial debt b̂t−1,δ = b̂t−1,S = 0.
The following proposition provides a general formula for the path of inflation:

Proposition 2. Assume that shocks can only occur in period t. The path of inflation is given
by:

π̂t = η1εi,t + η2Ĝt + η3ξ̂t

π̂t+t = φt−1
π

[
(1 + φπη1)εi,t + η2φπĜt + (η3φπ − 1)ξ̂t

]
, t = 1, 2, ....

where η1, η2, η3 are:

η1 ≡ −
[

bδβδ

(1− βδ)(1− φπβδ)

]
/

[
R

(γh + 1)

κ1

+ bS +
bδ

(1− βδ)(1− φπβδ)

]
η2 ≡ G/

[
R

(γh + 1)

κ1

+ bS +
bδ

(1− βδ)(1− φπβδ)

]
η3 ≡

[
βbS +

bδβ(1− (1− δ)δβφπ)

(1− βδ)(1− φπβδ)

]
/

[
R

(γh + 1)

κ1

+ bS +
bδ

(1− βδ)(1− φπβδ)

]
and where R = τ(1+η)Y

η
denotes the government’s revenue in steady state.

Proof. See Appendix A.2

These expressions give us the responses as functions of the model’s deep parameters, γh, κ1, β, φπ...
and of the portfolio bS or bδ. They thus reveal the impact of maturity on inflation, and also that of
varying the debt level, (i.e. increasing autonomously bS or bδ). In our analysis we will mostly focus
on the impact of maturity holding debt constant. Given this, we can further simplify the expressions

for the ηs by making use of the steady state relation S
1−β = bS + bδ

1−βδ (equating the present value of

the surplus to the value of debt in steady state) as:

η1 ≡ −
[

bδβδ

(1− βδ)(1− φπβδ)

]
/

[
R

(γh + 1)

κ1

+
S

(1− β)
+

bδφπβδ

(1− βδ)(1− φπβδ)

]
η2 ≡ G/

[
R

(γh + 1)

κ1

+
S

(1− β)
+

bδφπβδ

(1− βδ)(1− φπβδ)

]
(10)

η3 = β

[
S

(1− β)
+

βδ2φπbδ
(1− βδ)(1− φπβδ)

]
/

[
R

(γh + 1)

κ1

+
S

(1− β)
+

bδφπβδ

(1− βδ)(1− φπβδ)

]
5For the same reason, the specification of the debt issuance rule (8) is also not important. In other words, our

framework is not suitable to talk about the optimal rebalancing of debt portfolios over the business cycle. This
would require a non-linear model. It is worth noting however, that a very persistent finding in the theoretical debt
management literature (see for example Angeletos, 2002; Buera and Nicolini, 2004; Lustig et al., 2008; Faraglia et al.,
2019) is that optimal portfolios are constant (or roughly constant), a property that also appears to be relevant in
practice. Whether or not this would hold in our framework can be explored in future work.
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Notice that now the impact of varying the maturity of debt on inflation, holding the debt level
constant, can be easily seen from the partial derivatives of η1, η2, η3 with respect to bδ. These
expressions, then reveal a few well known properties of the passive money model, with regard to the
response of inflation to shocks.

Consider the case of a monetary policy shock, εi,t > 0, assuming that this is not yet tied down
to the demand shock. If the government issues only short term debt, bδ = 0, a rise in the nominal
rate will have no effect on inflation in t (since η1 = 0) but will increase inflation in t + 1, t + 2, .....
In contrast, in the case where bδ > 0, a rise in the policy rate, will trigger first a drop in inflation to
subsequently increase inflation, since 1 + η1φπ > 0. The switching sign of inflation in response to an
interest rate shock is what Sims (2011) and Cochrane (2018) refer to as ’stepping on a rake’.

Moreover, consider the case of a shock to the spending level. In the passive money model, such
a shock is inflationary, and this is verified here by η2 being positive. An increase in spending needs
to be compensated by higher inflation (to make government debt solvent) and the longer is debt
maturity, the smaller is the required impact of the shock in t since a persistent increase in inflation
can reduce the real pay out of long term debt (e.g. Cochrane, 2001). As (10) reveals, this well known
property requires φπ > 0 since when φπ = 0 the response of inflation to the spending shock will be
concentrated in period t only.

A positive shock in ξ̂, a standard innovation to demand, will increase inflation in period t (assum-
ing that bδ is not too negative), but it will lower inflation in t+ 1, t+ 2, .... The effect of this shock is
thus qualitatively similar to that of an expansionary monetary policy shock, but not quantitatively,
since the coefficients η1 and η3 in general differ. This difference arises here because demand shocks
are filtered through the government’s budget whereas monetary policy shocks are not. We will later
show that due to this difference in the coefficients, monetary policy’s ability to mitigate demand
shocks is impaired. However, we will also show, that a suitable DM strategy can restore the ability
of the monetary authority to ward off ξ̂ shocks, when portfolios can absorb the impact of these shocks
from the consolidated budget.

Finally, note that knowing the path of inflation analytically enables us to obtain the path of
output in the model. Combining the solution for π̂ with the Phillips curve we can show that:

Ŷt =
1

κ1

(
(η1 − β(1 + φπη1))εi,t + η2(1− φπβ)Ĝt + (η3 − β(η3φπ − 1))ξ̂t

)
(11)

Ŷt+t = φt−1
π

1− φπβ
κ1

(
(1 + φπη1)εi,t + η2φπĜt + (η3φπ − 1)ξ̂t

)
, t ≥ 1

which demonstrates that the same forces that influence the response of inflation to the shocks (sum-
marized in coefficients η) also influence the path output.

2.1.1 The objective of DM

Optimal maturity management in our model consists in choosing bδ to minimize the volatility of
inflation, given the equilibrium paths we derived in the previous paragraph. Formally, we will solve
the following problem:

bδ = arg min
∑
t≥0

βtσ2
π̂,t+t(12)

8



where the measure of volatility is the conditional variance of inflation, before the shocks are realized.
Given the previous formulae, and continuing to assume that shocks are i.i.d we can derive σ2

π̂,t+t
as:

σ2
π̂,t = η2

1σ
2
εi

+ η2
2σ

2
Ĝ

+ η2
3σ

2
ξ̂

+ 2η1η3σεi,ξ

(13)

σ2
π̂,t+t = φ2(t−1)

π

[
(1 + φπη1)2σ2

εi
+ (η2φπ)2σ2

Ĝ
+ (η3φπ − 1)2σ2

ξ̂
+ 2(η3φπ − 1)(1 + φπη1)σεi,ξ

]
t = 1, 2, ....

As discussed previously, we will separately consider (σ2
εi
, σεi,ξ) ∈ {(0, 0), (σ2

ξ̂
, σ2

ξ̂
)} so that in one case

monetary policy reacts to the demand innovation through the systematic component of the interest
rate rule only, and in the other case monetary policy also responds to the demand shock, changing
the nominal rate to match the movement in the real interest rate.

2.2 Demand shocks

We begin with focusing on demand shocks assuming no other policy response to these shocks, beyond
the systematic response to inflation in the policy rule. Consider the case where a demand shock occurs
in period t. The relevant coefficient that measures the response of inflation to the shock is η3 in (10).

For simplicity, let us focus on the case where δ = 1 (long bonds are consols). η3 becomes

η3 = β

[
S

(1− β)
+

βφπb1

(1− β)(1− φπβ)

]
/

[
R

(γh + 1)

κ1

+
S

(1− β)
+

b1φπβ

(1− β)(1− φπβ)

]
(14)

To investigate this formula notice first that under the assumption that the government is a debtor,
so that S > 0 and R > 0, we have that η3 = 0 when b1 = − S

βφπ
(1 − φπβ) < 0. Moreover, the

derivative dη3
db1

is strictly positive and in the limit when b1 becomes infinite, η3 = β. In other words,

issuing negative long term debt (equivalently positive short debt) makes inflation zero in period t,
and issuing more long bonds increases the response of inflation to the demand shock.

To gain insights into why the long bond position affects inflation in this way, consider the in-
tertemporal constraint of the government in period t. Assuming wlog that debt before the shock, in
t− 1, is at its steady state value we can write:

∑
j≥0

βjR(γh + 1)Ŷt+j − Sξ̂t
β

1− β
= −bSπ̂t − b1

∞∑
j=0

βj
[ j∑
l=0

π̂t+l

]
− b1ξ̂t

β

1− β
(15)

The two terms on the LHS of this equation capture the impact of the shock on the government’s
intertemporal surplus. The leading term on the LHS represents the effect on output which changes
government revenues, whereas the second term is the effect of a shock ξ̂ on the present discounted
value of the surplus holding output constant. Analogously, the RHS of the equation tells us how the
real value of debt will adjust to the shock. The first two terms measure the impact of inflation on the
real payout of debt (short and long respectively), whereas the last term captures the shock impact
on the real long bond price.

(15) has to hold for debt to be solvent and notice that there are two different forces that jointly
ensure that this will be so. First, a standard fiscal theory argument, inflation will adjust, given debt
maturity, so that (15) is satisfied and second, a debt management argument, given inflation we can
find bS, b1 to satisfy intertemporal solvency.

Consider first how inflation responds to the shock given maturity. Notice that a negative demand
shock affects the LHS of (15) in two ways. Since the shock is probably going to be contractionary,
the term

∑
j≥0 β

jR(γh + 1)Ŷt+j is going to fall. In contrast, −Sξ̂t β
1−β will rise, since the shock will

reduce the real interest rate at which future surpluses are discounted. Whichever of these two effects
dominates will determine whether ultimately the RHS of (15) needs to rise or fall to make debt
solvent.
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Consider first the case where only short term debt is issued. Using Ŷt+j = 1
κ1

(π̂t+j − βπ̂t+j+1)
from the Phillips curve we can write (15) as

R
(γh + 1)

κ1

π̂t︸ ︷︷ ︸
=
∑
j≥0 β

jR(γh+1)Ŷt+j

−Sξ̂t
β

1− β
= −bSπ̂t(16)

and thus inflation must turn negative (equal to β
1−β

Sξ̂t

bS+R
(γh+1)

κ1

) to balance the intertemporal budget.

The demand shock thus increases the value of the surplus and negative inflation is required to also
increase the real value of debt.

Now suppose that both short and long bonds are issued. Going back to (15), it is evident that
the final term on the RHS −b1ξ̂t

β
1−β exceeds 0 and thus compensates for the higher surplus on the

LHS, whereas the term in the middle,
∑∞

j=0 β
j

[∑j
l=0 π̂t+l

]
will likely be of opposite sign than π̂t,

since as we previously showed, inflation will switch sign in t + 1. If this is indeed so, then issuing
long bonds will imply a reduction in the real payout of long term debt after the shock, which will
need to be compensated by more negative inflation in t to satisfy (15).

We can illustrate this, by considering the case where only long term debt is issued, b1 = S. Using
π̂t+t = φππ̂t+t−1 − ξ̂tIt=1, we can write (15) as

R
(γh + 1)

κ1

π̂t = − b1

(1− β)(1− βφπ)

(
π̂t − ξ̂tβ

)
︸ ︷︷ ︸

−b1
∑∞
j=0 β

j

(∑j
l=0 π̂t+l

)(17)

yielding

π̂t =
1(

R (γh+1)
κ1

+ S
(1−β)(1−βφπ)

) βS

(1− β)(1− βφπ)
ξ̂t <

β

1− β
Sξ̂t

R (γh+1)
κ1

+ S
1−β

(18)

where the final inequality is inflation under short debt issuance in (16). According to (18), focusing
on issuing long bonds produces a larger drop in π̂t than when only short debt is issued. More balanced
portfolios with both short and long bonds are in between these two cases.

Moreover, notice that the finding that issuing long bonds makes inflation in t more negative (to

compensate for future positive inflation) also explains why π̂t = 0 when b1 = − S
βφπ

(1 − φπβ) < 0.
When the government saves in a long term asset, the value of long term wealth will drop due to
positive future inflation, so that π̂t does not have to turn negative to increase the value of short term
debt.

Consider now, the debt management argument, how given the path of inflation, the maturity
structure of debt can be targeted to satisfy (15). Suppose that we can fix coefficient η3 ∈ (0, β) to
not depend on debt maturity. Then, using π̂t = η3ξ̂t along with the previous derivations, we can
show that intertemporal solvency requires:

R
(γh + 1)

κ1

η3ξ̂t − Sξ̂t
β

1− β
= −(S − b1)

1− β
η3ξ̂t −−

b1

(1− β)(1− βφπ)
ξ̂t

(
η3 − β

)
− b1ξ̂t

β

1− β
(19)

We can easily find the value of b1 that satisfies this equation.
Our exercise compiles both forces as we will look for portfolios that minimize the variability of

inflation when inflation simultaneously adjusts to satisfy (15). We now turn towards this optimal
debt policy when shocks to demand are driving inflation.
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2.2.1 The optimal DM policy

An optimal debt policy will trade off the costs of negative inflation in t with the costs of having
positive inflation rates after t. Maintaining the assumption that long bonds are consols the optimal
debt management program becomes:

b
∗
1 = arg min

∑
t≥0

βtσ2
π̂,t+t

= arg min σ2
ξ̂

(
η2

3 +
β

1− φ2
πβ

(η3φπ − 1)2

)
(20)

given η3 defined in (14). The following proposition gives us the optimal coefficient η3(b∗1) on inflation.

Proposition 3. The optimal portfolio solves η3(b∗1) = φπβ when φπ > 0.

Proof. See Appendix A.3

DM will thus choose the optimal portfolio so that the impact effect of the shock on inflation is
proportional to coefficient φπ. This optimal policy produces the following path of inflation:

π̂t = φπβξ̂t

π̂t+t = φt−1
π (φ2

πβ − 1)ξ̂t t = 1, 2, ....

and thus policy trades-off the fall in inflation in t (in response to a negative shock ξ̂t) with the
subsequent rise in inflation. Completely eliminating deflation in period t is never optimal.

What portfolio implements this optimal policy? When long bonds are consols we have:

b
∗
1 =

(1− β)(1− φπβ)

βφπ(β − φπ)

[
φπR

(γh + 1)

κ1

+
S(φπ − β)

(1− β)

]
which implies that the long bond issuance could be positive or negative depending on the relative
magnitude of β and φπ.

To gain insight into what b
∗
1 is, over a plausible range of values of model parameters, we calibrate

in Table 1. We set β = 0.995 (assuming a quarterly model horizon), θ = 17.5 and η = −6.88 which
give us a Phillips curve with slope coefficient of around 0.3 and a markup equal to 17% in steady
state.6 We normalize output to be equal to 1 in steady state and set G equal to 20 percent of Y .
Finally, we set the debt to GDP ratio equal to 60 percent of annual output. Table 1 reports the
corresponding value of taxes that satisfy the budget constraint in steady state where inflation is zero.

Given this parameterization of the model we get b
∗
1 = −0.042 when φπ = .2 (bS = 10.84). When

φπ = .5 we obtain b
∗
1 = −0.005 (bS = 3.56). Finally, in the case where φπ = .95 we have b

∗
1 = 0.007

and bS = 1.00. The optimal policy thus requires to finance debt short term.

2.3 Monetary Policy Shocks and Demand Shocks

The previous paragraph assumed that monetary policy responds to demand shocks only through the
systematic component of the Taylor rule. We now turn to study the impact of debt maturity when
monetary policy responds to the demand shock through setting εi,t = ξ̂t. It is well known, that in the
standard NK model, where inflation does not have to satisfy the intertermporal budget, such a policy
accomplishes to eliminate the impact of the shock, a property widely known as ’divine coincidence’.7

6These values are consistent with the rest of the literature (see for example Schmitt-Grohé and Uribe, 2004; Faraglia
et al., 2013).

7To be precise, divine coincidence would only approximately hold under ’active’ monetary policy, when κ2 ≈ 0,
since we assume distortionary taxes. It would definitely hold under perfect tax smoothing, when taxes do not respond
to demand shocks. In our model this would require debt management to ’complete the market’ (Angeletos, 2002;
Buera and Nicolini, 2004).
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Table 1: Calibration

Parameter Value Label

β 0.995 Discount factor
θ 17.5 Price Stickiness
η -6.88 Elasticity of Demand
γh 1 Inverse of Frisch Elasticity
τ 0.248 Tax Rate
Y 1 Output
G 0.2 Spending

Notes: The table reports the values of model parameters. β notes the discount factor chosen to target a
steady state annual real interest rate of 2 percent. Parameter η is calibrated to target markups of 17 percent
in steady state. θ is calibrated as in Schmitt-Grohé and Uribe (2004). Finally, the steady state level of debt
is assumed equal to 60 percent of GDP (at annual horizon), and the level of public spending is 20 percent
of aggregate output which is normalized to unity in steady state.

However, under passive money, this well known property does not generally hold. Monetary
policy is not able to ward off the shock completely, as the demand disturbance exerts an influence
on the consolidated budget constraint. Since inflation needs to adjust for the constraint to hold,
monetary policy faces an additional constraint that needs to be satisfied.

Consider the path of inflation predicted by the model. Combining the analytical expressions in
Proposition 2 we get:

π̂t+t = φtπ(η3 + η1)ξ̂t, t = 0, 1, 2, ...

Notice first that now the response of inflation to the shock is monotonic. Inflation will not switch
sign in t+ 1. Moreover, inflation will generally be different from zero, unless policy can set η1 = −η3

which accomplishes to fully stabilize inflation.
This condition generally fails to hold in the model. Using previous derivations we can obtain:

η1 + η3 = β

[
S

(1− β)
− δbδ

(1− βδ)

]
/

[
R

(γh + 1)

κ1

+
S

(1− β)
+

bδφπβδ

(1− βδ)(1− φπβδ)

]
Therefore, to fully insulate inflation from the demand shock, we need to set S

(1−β)
= δbδ

(1−βδ) . In the
case where δ = 1 as in the previous paragraph, this means that debt management should focus on
issuing exclusively long term debt.

To understand why this is so, consider again (15), which we can now express as

R
(γh + 1)

κ1

π̂t − Sξ̂t
β

1− β
= −bSπ̂t − b1

π̂t
(1− β)(1− βφπ)

− b1ξ̂t
β

1− β
(21)

Recall that the final term on the LHS measures how a change in the discount rate affects the value
of surpluses, whereas the final term on the RHS is the change market value of debt due to the rise of
the real long bond price that follows a negative ξ̂t shock. When debt management sets b1 = S these
two terms will cancel out and evidently inflation in t will have to be zero for (21) to hold. Inflation
will also be zero in all other periods.

We highlight these findings with the following proposition:

Proposition 4. Consider the case where the monetary policy rule is of the form ît = φππ̂t + ξ̂t,
and the nominal interest rate responds to changes in the real rate. There exists a debt management
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strategy, S
(1−β)

= δbδ
(1−βδ) that accomplishes to fully stabilize inflation. When δ = 1 (long bonds are

consols) the optimal debt management strategy is to issue long term debt only.

2.4 Fiscal Shocks

We consider now how maturity influences the impact of a fiscal shock. From (10), coefficient η2 is
decreasing in bδ insofar as φπ > 0. Moreover, from Proposition 2, inflation continues to respond to
the fiscal shock beyond period t according to π̂t+t = φtπη2Ĝt. Thus, it is clear that the more long
debt is issued, the lower is the effect of spending on inflation in all periods.

This result is intuitive: In our model, the real interest rate is not a function of the spending levels,
and a shock to spending impacts inflation only through its effect on the consolidated budget. Then,
a rise in spending reduces the government surplus, and requires an increase in inflation to bring the
intertermporal budget into balance. When the monetary authority attempts to fight back inflation
(but still its reaction is ’too weak’, raising the nominal rate less than inflation) it only accomplishes
to maintain persistently higher price level growth. With long debt, higher future inflation translates
into a larger reduction in the real payout of debt and a smaller inflation rate is required in all periods
to bring the intertermporal budget into balance.

2.5 Discussion: The importance of the monetary policy rule

Our analytical findings highlighted that the impact of varying debt maturity on macroeconomic out-
comes depends on the specification of the monetary policy rule. As we saw, when the monetary
authority only responded to inflation through the systematic component, then full inflation stabi-
lization in response to demand shocks was not possible. In contrast, in the case where the policy
rule changed the nominal rate to match the movement of the real interest rate, there was a debt
management strategy that fully stabilized inflation. In both cases considered DM could complement
monetary policy in pursuing the objective of reducing inflation variability.

Moreover, our analytical formulae revealed φπ as another key parameter that influences the in-
terplay between debt maturity and inflation. When φπ = 0, there is basically no difference between
long and short term financing (of fiscal shocks) and debt maturity exerts no influence on inflation.
When the nominal rate does not respond to inflation, then inflation displays no persistence and its
response to shocks is concentrated in period t. Then, the effect of inflation on the real value of long
and short bonds is the same.

The important lesson that we can draw from these findings is that it is not only debt policy that
can help monetary policy manage inflation, but also it is important that monetary policy adopts
the right kind of rule to allow debt policy to exert an influence. According to our findings, this rule
should feature both a strong systematic response to inflation setting φπ >> 0, but also allow the
nominal rate to respond to fluctuations in the real interest rate.

These are of course only partial results. We have not assumed that monetary policy is optimal,
allowing it to respond to shocks and to the maturity structure of debt. A fully optimal monetary
policy could turn out to follow a very different interest rate rule and analogously the optimal debt
portfolios could also be different than the ones we have found in this section. We will turn to the
case of optimal monetary policy in Section 3 of the paper.

2.6 Extensions

2.6.1 Optimal portfolios with simultaneous shocks

Thus far we have studied demand and spending shocks in isolation. However, since both types of
shocks can hit the economy in period t, it is purposeful to discuss debt management strategies that
can deal with the occurrence of both types of shocks. We saw previously that in order deal with
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fiscal shocks the optimal DM strategy calls for making the long bond position as large as possible,
and financing with short term assets. In contrast, for demand shocks optimal long bond positions
were finite. There is thus a tension when both shocks can occur simultaneously, and DM needs to
find a portfolio that balances the benefit from insulating inflation against demand shocks with the
benefit of dealing effectively with fiscal shocks.

In Appendix A.4 we derive the FONC of the optimal policy problem when the two types of shocks
coexist. The following proposition summarizes our results.

Proposition 5. Assume long bonds are consols. Consider the case where monetary policy reacts
to the demand shock only through the systematic reaction to inflation and φπ > 0. The optimal
portfolio solves:

η3 = φπβ + η2
G

βR (1+γh)
κ1

σ2
Ĝ

σ2
ξ̂

(22)

The optimal issuance becomes:

b
∗
1(ξ̂, Ĝ) =

(1− β)(1− φπβ)

βφπ(1− φπ)

[
φπR

(γh + 1)

κ1

− S(1− φπ)

(1− β)
+

G
2

β2R(γh+1)
κ1

σ2
Ĝ

σ2
ξ̂

]

Alternatively, in the case where monetary policy offsets the demand shock setting εi,t = ξ̂t, the
optimal portfolio is:

b
∗
1(ξ̂, Ĝ) = S +G

2σ
2
Ĝ

σ2
ξ̂

1− β
β(1− βφπ)

φπ(
S

1−βφπ +R (1+γh)
κ1

)(23)

Proof: See Appendix A.4.

Proposition 5 is easily comparable to our previous analytical results. We previously saw that
in the presence of only the ξ̂ shock, the optimal portfolio is η3 = φπβ when εi,t = 0. According to
(22) we have η3 > φπβ implying that the issuance of long term debt now increases. Moreover, when
monetary policy tracks the real rate, the optimal portfolio no longer sets b1 = S, now the issuance
of the long bond is higher as is illustrated by (23).

These results are of course to be expected. Spending shocks become a factor that pulls the long
bond issuance towards infinity (since for spending shocks the larger the position in long debt the
better). To deal with these types of shocks the policymaker has to tolerate a higher impact of demand
disturbances on inflation. The larger is the relative variance of the spending shock the larger is the

weight that the optimal formula attributes to it (the term
σ2
Ĝ

σ2
ξ̂

in (22) and (23)).

Finally, note that according to (23), φπ becomes a crucial parameter in the case where monetary
policy directly responds to the demand shock through the stochastic intercept term εi,t. To interpret
(23), recall that when φπ is close to zero, then increasing the long bond issuance will not help
much in stabilizing inflation in response to the spending shock, because inflation displays very little
persistence. Then, optimal policy prefers to focus on stabilizing inflation responding to the demand
disturbance. High values of φπ imply the opposite; it is now optimal ward off the inflationary effects
of spending shocks, by issuing large amounts of long term debt.

2.6.2 Macroeconomic Volatility

Does debt management help reduce considerably macroeconomic volatility? So far we have relied
on analytical expressions to find qualitative results. However, in order to suggest that DM is an
important tool to mitigate the impact of shocks on inflation we need to quantitatively assess this
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Figure 1: Responses to shocks when interest rates respond to inflation only.
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Notes: The solid lines show the response of inflation under the optimal portfolio. The dotted
lines represent the responses when all debt is long term, whereas the dashed lines the case where
debt is short term. The dashed-dotted lines assume the optimal portfolio in Proposition 5, when
spending and demand shocks can simultaneously occur. We assume a monetary policy rule of the
form ît = φππ̂t.

impact under alternative maturity structures. We use the parameter values reported in Table 1 and
further assume (σξ, σG) = (0.4%, 4.5%).8

Figures 1 and 2 show the impulse responses to one standard deviation shocks in demand and
spending. Figure 1 assumes εt,i = 0 whereas in Figure 2 we let the monetary authority lower the
nominal rate 1 for 1 with the real rate. The left panels consider the case of the demand shock,
whereas on the right we plot the responses to a spending shock. We consider alternative maturity
structures as follows: The dashed red lines assume that DM finances debt short term. The dotted
lines assume only long term financing, whereas solid lines correspond to the optimal portfolios.9

Finally, the dashed-dotted green lines set bδ to the optimal policy defined in Proposition 5, when
both shocks can simultaneously occur.

As is evident from the figures, even with our simplistic i.i.d structure of shocks we obtain large
impacts from varying the maturity of debt. For example, financing short implies that a spending
shock raises inflation by 1 percent on impact whereas long term financing reduces this impact effect

8The value for σξ is chosen so that a one standard deviation shock does not drive the level interest rate below zero.
σG = 0.045 is a standard calibration for the variance of the spending shock.

9In the case of the spending shock we make bδ a very large number (10 times GDP).
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Figure 2: Responses to shocks when interest rates track the real rate.
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Notes: See Figure for a description of the portfolio that corresponds to each graph. We assume a
monetary policy rule of the form ît = φππ̂t + ξ̂t.

considerably and the larger is coefficient φπ the less is the volatility displayed by inflation (e.g.
bottom panels). Analogously, whereas issuing long debt only, fully stabilizes inflation following a
demand shock in Figure 2, when short debt is issued, inflation drops to -1% and continues being
negative for several periods along the transition.

Finally, when debt management attempts to deal with both types of shocks adopting the portfolios
derived in Proposition 5, inflation turns positive following a demand contraction in Figure 2, since
now the long bond issuance exceeds 100 percent of the value of the portfolio and so η1 + η3 > 0.

2.6.3 The Impact of Debt Levels and the slope of the Phillips curve

We close this section by briefly considering how our results would change if we assumed a higher
initial debt level and if the slope of the Phillips curve (parameter κ1) is lower. Both impacts of these
parameter changes can be easily read off from our previous formulae. Higher debt implies higher
values of S and R. In the case of fiscal shocks, it remains optimal to issue as much long debt as
possible, and as the expression for η2 reveals, for any bδ the effect of spending shocks on inflation is
now less. Intuitively, at higher debt levels, a given increase in inflation reduces more the real payout
of debt and so less inflation is needed to satisfy the intertemporal constraint. In the case of demand
shocks, and focusing on the case where εi,t = ξ̂t and δ = 1 we still obtain b1 = S. Financing long
remains optimal and clearly the quantity of long bonds issued increases in the debt level.

Parameter κ1 exerts a similar influence, appearing in the denominator of the fractions η1, η2, η3.
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Changes in the slope of the Phillips curve do not affect the optimal portfolios identified previously.

3 Optimal Monetary and DM policies

Our analysis thus far has relied on a model where monetary policy is summarized through an ad
hoc interest rate rule. One of our key findings was that DM can restore the efficacy of monetary
policy in shielding inflation from the impact of demand shocks. This was the case when debt was
long term and the monetary policy rule responded to the demand shock directly, through tracking
the real rate. Another important finding was that for debt management to be able to contribute in
stabilizing inflation a significant systematic response of interest rates to inflation was needed.

We now abandon the assumption that monetary policy follows ad hoc interest rate rules and turn
to a model where both monetary and debt policies are optimal. We do so for several reasons, including
to investigate whether the above findings generalize to the case where the monetary authority can
set interest rates to be optimal for any debt maturity, but also to see whether optimal policy will tie
down parameter φπ and the stochastic intercept term to the maturity of debt issued. Moreover, under
optimal interest rates, perhaps a different maturity of debt than the one we identified previously will
be desirable.

To investigate the above, we solve a Ramsey program assuming coordinated DM and monetary
authorities. The ’planner’ sets the path of inflation, output and interest rates, and the debt portfolio
to minimize the variability of inflation in response to the spending and demand shocks and we further
assume full commitment to announced state contingent paths for the policy variables. Under these
assumptions, we will show that optimal monetary policy can be summarized through an interest
rate rule, broadly similar to the ad hoc rule that we employed in Section 2. However, the inflation
coefficient φπ and the stochastic intercept will indeed reflect debt maturity. Optimal portfolios will
however, be the same as before, as focusing on long term debt will enable to stabilize inflation.

3.1 Ramsey Program and Optimality

Even though we will maintain the same structure of shocks as in the previous section ( i.i.d. and
after t no further shocks occur), to make the analysis more general, we will first solve the optimal
policy program without imposing these assumptions. The Ramsey planner in our model chooses

sequences

{
π̂t+t, Ŷt+t, ît+t, b̂t+t,S, b̂t+t,δ

}
t≥0

and the steady state portfolio bδ to minimize the variability

of inflation subject to the competitive equilibrium equations (the Euler and Phillips curve equations
and the consolidated budget), assuming also that taxes are held constant.10 Noting that since ît+t
will only appear on the LHS of the Euler equation (as we do not tie down interest rates to follow a
specific functional form) we can dispense with this constraint. We then can state the policy problem
formally as:

max{
π̂t+t,Ŷt+t,b̂t+t,S ,b̂t+t,δ

}
t≥0

, bδ

−Et−1

∑
t≥0

βtπ̂2
t+t

subject to

π̂t+t = κ1Ŷt+t + βEt+tπ̂t+t+1

10Notice that the usual resource constraint that is included in Ramsey programs is already accounted for, since we
could replace consumption with output and spending.
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and

βbS b̂t+t,S + βbSEt+t(ξ̂t+t+1 − ξ̂t+t − π̂t+t+1) +
βbδ

1− βδ
b̂t+t,δ + bδ

∞∑
j=1

βjδj−1

[
Et+t

(
−

j∑
l=1

π̂t+t+l + ξ̂t+t+j − ξ̂t+t
)]

+
τ(1 + η)Y

η
(γh + 1)Ŷt+t −GĜt+t

= bS(b̂t+t−1,S − π̂t+t) +
bδ

1− βδ
(b̂t+t−1,δ − π̂t+t) + δbδ

∞∑
j=1

βjδj−1

[
Et+t

(
−

j∑
l=1

π̂t+t+l + ξ̂t+t+j − ξ̂t+t
)]

given also that bS = S
1−β −

δbδ
1−βδ .

11

Note that since bδ is chosen, the above is not a linear-quadratic program. To solve for the optimal
policies, we proceed in two steps: We first hold constant bδ and solve a linear quadratic program to

determine the optimal sequence

{
π̂t+t, Ŷt+t, b̂t+t,S, b̂t+t,δ

}
t≥0

through solving a system of first order

conditions. Second, we vary bδ to determine the portfolio through the upper envelope defined by the
optimality conditions in the first step.

3.1.1 Optimality

In the online appendix we setup a Lagrangian to derive the optimal paths of output inflation and
bond quantities (in log deviation from steady state). Attach a multiplier ψπ,t+t to the Phillips curve
and ψg,t+t to the consolidated budget; the first order conditions are the following:

−π̂t+t + ∆ψπ,t+t + bS∆ψgov,t+t +
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t+t−l = 0(24)

−ψπ,t+tκ1 +
τ(1 + η)

η
Y (1 + γh)ψgov,t+t = 0(25)

βbδ
1− βδ

(
ψgov,t+t − Et+tψgov,t+t+1

)
= 0(26)

βbS

(
ψgov,t+t − Et+tψgov,t+t+1

)
= 0(27)

(24) is the FONC with respect to π̂t+t; (25), (26) , (27) are first order conditions with respect to

Ŷt+t, b̂t+t,δ and b̂t+t,S respectively.
Several comments are in order. First, note that since the model is linear (26) and (27) will not

pin down an optimal rule for the share of long over short term bonds. As before, quantities b̂t+t,δ
and b̂t+t,S will not be important; thus, arbitrarily setting b̂t+t,δ to zero and financing with b̂t+t,S is
consistent with the first order conditions since both (26) and (27) define that ψgov,t+t evolves like a
random walk.

Second, the random walk property of the multiplier ψgov,t+t is a standard feature in the optimal
policy literature. Since financing debt impinges distortions to the economy, ours is a model of optimal
policy under incomplete markets as in Aiyagari et al., 2002; Schmitt-Grohé and Uribe, 2004; Lustig
et al., 2008; Faraglia et al., 2013, 2016. Whereas in these papers debt can be financed through taxes,
in our model taxes are held constant and the planner uses distortionary inflation to satisfy budget
solvency. In both contexts, shocks to the economy translate to changes in the excess burden of

11Note that we will further assume that the planner does not want to inflate away public debt at the beginning of
the horizon. As usual, this will involve choosing initial conditions for the Lagrange multipliers on the constraints.
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distortions, and the multiplier, which measures the magnitude of these distortions, behaves like a
random walk, since the planner wants to spread evenly the costs across periods.

Third, as (24) reveals, when government debt is long term, all the lags of the multiplier enter
into the state vector and influence inflation. Combining (24) and (25) to substitute out ψπ we can
obtain the following expression which pins down π̂t+t as a function of these state variables

π̂t+t = R
(1 + γh)

κ1

∆ψgov,t+t + bS∆ψgov,t+t +
bδ

1− βδ

∞∑
l=0

δl∆ψgov,t+t−l(28)

To interpret (28), note that a shock to either demand or spending will change the value of the
multiplier according to its impact on the consolidated budget. For instance, an increase in spending
will tighten the constraint and thus increase the value of ψgov,t. According to (28) this will increase
inflation on impact, but also continue exerting an influence on inflation in the future, i.e. through
the term δt∆ψgov,t in the final part on the RHS. When debt is long term, the planner desires to
spread inflation across periods, through promising higher inflation rates in the future. This feature
of optimal policy in our model is common with Lustig et al., 2008; Faraglia et al., 2013, 2016.

3.2 The Optimal Interest rate rule

We now show that optimal policy in the Ramsey model can be implemented with an interest rate
rule that is similar to the ad hoc rules we employed in Section 2. We summarize this policy rule in
the following proposition:

Proposition 6. The optimal interest rate policy that implements the Ramsey outcome is:

ît+t = δπ̂t+t − δωY ∆ψgov,t+t + ξ̂t+t(29)

where ωY ≡ S
1−β −

bδβδ
1−βδ +R (1+γh)

κ1
.

Proof: See Appendix A.5.

Notice first that optimal interest rates are determined by two components. The first is a standard
systematic response to inflation, δπ̂t+t, the second is the stochastic intercept term −δωY ∆ψgov,t+t +

ξ̂t+t. Let us focus first on the systematic response. Using, for comparison, the notation we employed
in Section 2, we now have φπ = δ < 1. Thus, the Ramsey planner fights inflation by raising the
nominal rate, but the magnitude of the reaction of the interest rate is now tied down by the decaying
coupon factor.

To interpret this feature, recall, that parameter φπ governs the persistence of inflation. When
long bonds are issued, both current and future inflation can contribute towards adjusting the real
value of debt. But if the duration of long bonds is not considerable (or δ is a small number) then
letting inflation deviate persistently from target (setting φπ > δ) will not help in terms of making
debt more sustainable. Thus, under the optimal plan, inflation distortions persist for as long as long
debt coupon payments last.

Notice however, that (perhaps counterintuitively) the term δπ̂t+t does not depend on whether the
long term debt is actually issued, i.e. when bδ > 0. We will now explain that the stochastic intercept
term will compensate for this, and inflation will be frontloaded if all debt is short.

Consider the term δωY ∆ψgov,t+t. Notice that the maturity of debt influences it. Coefficient ωY is
decreasing in the quantity of long bonds issued. Moreover, as we argued previously, shocks filtered
through budget constraint, will induce fluctuations in ∆ψgov,t+t. For example, a positive spending
shock occurring in period t + t, will result in ∆ψgov,t+t > 0, since the consolidated budget tightens.
Then, if debt is short term, ωY > 0 and the planner will keep the interest rate lower in period t + t
(than δπ̂t+t). In contrast, if a sufficiently high quantity of long bonds is issued then the opposite will
hold, the nominal rate will be set higher when the shock hits, since now ωY < 0.
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What is the planner trying to do? Notice that lowering the nominal rate will have as effect
to frontload inflation. When debt is financed short, this enables a larger reduction of real debt in
response to the shock. Conversely, increasing ît+t will accomplish to spread inflation across periods,
which is optimal when debt is long term.

Lastly, according to (29), the nominal rate tracks movements in the real rate. ξ̂t+t exerts a direct
influence on the policy rule, but also an indirect influence through the intertemporal budget and
∆ψgov,t+t.

3.3 One off Shocks: The dynamic path of inflation

To investigate further these properties let us now go back to the case where shocks in t are i.i.d and
there are no further shocks to the economy after t. Under these assumptions it is possible to derive
analytical expressions for the multiplier ψgov. From (26) and (27) (removing conditional expectations
after t) we have ∆ψgov,t+t = 0 for t ≥ 1 and ∆ψgov,t 6= 0. Assuming further ψgov,t−1 = ψgov,t−2 = ....
(such that in the absence of shocks optimal inflation is zero), the optimal interest rate path becomes:

ît = δπ̂t − δωY ∆ψgov,t + ξ̂t

(30)

ît+t = δπ̂t+t

and we can further show that:

∆ψgov,t =

[(
R

(1 + γh)

κ1

+
S

1− β

)2

+
b

2

δβδ
2

(1− βδ2)(1− βδ)2

]−1[
GĜt +

(
βS

1− β
− βδbδ

1− βδ

)
ξ̂t

]
(31)

(see Appendix A.6).
(31) expresses ∆ψgov,t as a function of spending and demand shocks; the loadings on the shocks

are functions of the maturity of debt. As is evident, higher long debt issuance reduces the response
of the multiplier to the spending shock. Moreover, the effect of the demand shock is zero when the

government sets βδbδ
1−βδ = S

1−β .

Using (28) we can now show that the path of inflation is given by

π̂t =

(
R

(1 + γh)

κ1

+
S

1− β

)
∆ψgov,t

(32)

π̂t+t =
bδ

1− βδ
δt∆ψgov,t, t ≥ 1

Combining (31) and (32) we can derive the impact effects (the counterparts of coefficients η in
Section 2) for spending and demand shocks as:

η∗2 =

[(
R

(1 + γh)

κ1

+
S

1− β

)2

+
b

2

δβδ
2

(1− βδ2)(1− βδ)2

]−1

G

(
R

(1 + γh)

κ1

+
S

1− β

)
(33)

(η∗1 + η∗3) =

[(
R

(1 + γh)

κ1

+
S

1− β

)2

+
b

2

δβδ
2

(1− βδ2)(1− βδ)2

]−1(
βS

1− β
− βδbδ

1− βδ

)(
R

(1 + γh)

κ1

+
S

1− β

)(34)

where the stars denote that monetary policy is now optimal. Consider first the response to the
spending shock, η∗2, and let us compare this to the analogous response in the model of Section 2. As
is clear from (10) and (33), η∗2 is not the same as η2 even when we set φπ = δ. The terms that appear
in the denominator in (10) appear also in (33), however, it is now the squares that show up in the
denominator, rather than the levels. The numerators of η∗2 and η2 are also different.
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Figure 3: Responses to shocks under optimal policy.
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Notes: The left panel shows the response of inflation to a negative demand shock when monetary
policy is optimal. The dashed line assumes long term financing, whereas the dotted line assumes
only short term debt. The solid line corresponds to the optimal portfolio. The right panel plots the
responses to a spending shock.

Analogously, in the case of the demand shock, letting φπ = δ we have

η1 + η3 = β

[
S

(1− β)
− βδbδ

(1− βδ)

]
/

[
R

(γh + 1)

κ1

+
S

(1− β)
+

bδβδ
2

(1− βδ)(1− βδ2)

]
where again the coefficient differs from the response under optimal policy in (33).

Where do these differences come from? Simple inspection of the monetary policy rules suggests
that the s term −δωY ∆ψgov,t is responsible. As explained, this term determines whether the optimal
policy desires to frontload/backload inflation as a function of the quantity of long bonds issued.

In Figure 3 we show the impulse responses of inflation to the demand and spending shocks under
optimal policy. The dotted lines plot the responses when all of debt is short term and the dashed
lines the case where all debt is long. Under short term debt both demand and spending shocks have
only a temporary effect on inflation. This is the term −δωY ∆ψgov,t at work. In contrast, when debt
is long term (bS = 0 in the figure), inflation deviates persistently from zero after the spending shock.
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3.4 Optimal Maturity

The optimal maturity bδ is easy to find. Consider first the case of spending shocks only. We can
show that the objective function becomes:

−Et
∑
t≥0

βtπ̂2
t+t = −

[(
R

(1 + γh)

κ1

+
S

1− β

)2

+
b

2

δβδ
2

(1− βδ2)(1− βδ)2

]−1

G
2
σ2
Ĝ

and as in the model of section 2, the optimal policy is to issue as much long term debt as possible.

Moreover, from (31) it is obvious that the policy that fully stabilizes inflation sets βδbδ
1−βδ = S

1−β , the
optimal structure of debt we identified in Section 2.

Notice, finally, that under optimal debt we will have ∆ψgov,t = 0 (in the limit in the case of
spending shocks). The optimal debt policy thus eliminates the dependence of the monetary policy
rule on the composition of debt, through eliminating the impact of shocks on the consolidated budget.
For this to happen debt management needs to again focus on issuing long term debt.

4 A Medium Scale DSGE model

Our core analysis in this paper has relied on a simplistic model to characterize transparently the
interplay between debt maturity and inflation. Yet to claim that the interactions between debt and
monetary polices are indeed relevant, it is important to extend our findings to a more empirically
relevant setup, a medium scale DSGE model. We now work with a model with a wider set of shocks,
including shocks to productivity, markups and government transfers, to study how debt policy can
influence inflation in the presence of these additional disturbances. Moreover, the representative
household in the model has preferences featuring habit formation, this implies more realistic adjust-
ment of asset prices to shocks.

We first briefly describe our medium scale model, which is broadly similar to Bianchi and Ilut
(2017). Then, we describe the estimation of the model and the results we get in subsection 4.2.
Lastly, we will investigate the effects of maturity on equilibrium outcomes in subsection 4.3.

4.1 The Model

4.1.1 Household Preferences and Optimality

The economy is populated by a single household with preferences of the following form:

E0

∞∑
t=0

βtξt

(
log(Ct − ΩCa

t−1)− χ h
1+γh
t

1 + γh

)
where Ct denotes the consumption of the household, ΩCa

t−1 is an external habit stock, where 0 <
Ω < 1 and Ca

t−1 denotes the average level of consumption in t− 1. The household derives disutility
from exerting labor effort ht. Parameters χ and γh govern the household’s preferences over leisure.
ξt is a preference shifter which impacts the relative discounting of current and future utility flows.

The household maximizes utility subject to the flow budget constraint:

PtCt + Pt,δBt,δ + Pt,SBt,S = (1− τt)Wtht + PtTrt +Bt−1,S + (1 + δPt,δ)Bt,δ + PtDivt

Bt,δ is a long government bond. Pt,δ is the price of the asset. Bt,S denotes the quantity of short term
(one-period) debt and Pt,S its price at issuance.

Wt denotes the nominal wage and Pt is the price level. Divt is real dividends paid by monopo-
listically competitive firms and Trt denotes lump-sum transfers given to the household by the fiscal
authority. The household maximizes utility subject to the flow budget constraint.
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The household maximizes utility subject to the budget constraint. The first order conditions for
long and short bonds and the labor supply condition are given by:

1

Ct − ΩCa
t−1

= βRtEt
1

πt+1

1

Ct+1 − ΩCa
t

(35)

1

Ct − ΩCa
t−1

PL,t = βEt
1 + δPL,t+1

πt+1

1

Ct+1 − ΩCa
t

(36)

χhγht (Ct − ΩCa
t−1) = (1− τt)

Wt

Pt
(37)

4.1.2 Firms, Production and the Phillips curve

We assume that output is produced by a continuum of monopolistically competitive firms which
operate technologies with labor as the sole input. Aggregate output is produced by a representa-
tive, perfectly competitive, final-good producer that aggregates the intermediate products of firms

according to Yt =
( ∫ 1

0
Yt(j)

1+ηt
ηt dj

) ηt
1+ηt . ηt is a (time varying) parameter that governs the elasticity

of substitution. The production function of the generic good firm j is Yt(j) = Atht(j)
1−α; At denotes

the level of TFP in the economy. We assume that the growth rate of At (expressed in logarithms)
follows an AR(1) process:

ln
( At
At−1

)
≡ at = (1− ρa)γ + ρaat−1 + εa,t

Parameter γ denotes the steady-state growth rate of At.
Firms face price adjustment costs as in Rotemberg (1982). The cost function of firm j is: ACt(j) =

θ
2
( Pt(j)
Pt−1(j)

− π)2Yt. θ ≥ 0 again governs the degree of price stickiness. π is the steady state level of
gross inflation.

The profit maximization problem of the generic firm j is defined by :

max
Pt(j)

Et

∞∑
s=0

Qt,t+s

(Pt+s(j)
Pt+s

Yt+s(j)−
MCt+s(j)

Pt+s
Yt+s(j)− ACt+s(j)

)
s.t. Yt+s(j) =

(Pt+s(j)
Pt+s

)ηt
Yt+s

ACt+s(j) =
θ

2

( Pt+s(j)

Pt+s−1(j)
− π

)2

Yt+s

where Qt,t+s ≡ βsEt
Ct−ΩCat−1

Ct+s−ΩCat+s−1
is the household’s discount factor and MCt+s denotes marginal costs

of production. ACt+s(j) is the quadratic price adjustment cost incurred by the firm.
In the online appendix we show that solving this problem and imposing a symmetric equilibrium,

gives rise to the following (non-linear) New-Keynesian Phillips curve:

θ(πt − π)πt = (1 + ηt)(1−
MCt
Pt

) + βθEt
Ct − ΩCa

t−1

Ct+1 − ΩCa
t

Yt+1

Yt
(πt+1 − π)πt+1.

MCt denotes marginal costs of production.

4.1.3 Fiscal and Monetary Policy

The government levies distortionary taxes and issues debt to finance spending Gt and transfers Trt.
The flow budget constraint of the government is:

Pt,SBt,S + Pt,δBt,δ = Bt−1,S + (1 + δPt,δ)Bt−1,δ + Pt(Gt + Trt)− τtWtht + Λt(38)
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Notice that following Bianchi and Ilut (2017) we augment the flow budget with an exogenous shock
variable Λt capturing features of government finances that we have left outside the model.12 τtWtht
denotes the fiscal revenues of the government.

In the online appendix, we rewrite all model equations, expressing variables as ratios over nominal
GDP and take a log linear approximation around the non-stochastic steady state. To define the policy
rules of the fiscal and the monetary authorities, and the stochastic processes for transfers and the
shocks we will now use the log-linear format.

Labour income taxes are set according to:

τ̂t = ρτ τ̂t−1 + (1− ρτ )
[
φτ,bD̂t−1 + φτ,y(Ŷt − Ŷ n

t ) + φτ,g(g
−1ĝt + t̂rt)

]
+ ετ,t(39)

where again D̂t−1 denotes the face value of debt issued in t−1, Ŷt is output and ĝt is the log deviation
of scaled spending, 1

1−Gt
Y t

, from its steady state value. Y n
t is the natural level of output, that obtains

under flexible prices.
Notice that in (39) labour income taxes are not only allowed to adjust to debt, but also to the

cycle, through the term φτ,y(Ŷt − Ŷ n
t ), and we further allow for spending and transfers to influence

τ̂t.
Transfers in the model evolve according to:

t̂rt = ρtr t̂rt−1 + (1− ρtr)φtr,y(Ŷt − Ŷ n
t ) + εtr,t(40)

where ρtr governs the persistence of transfers and φtr,y measures the response to the output gap.
Government spending (as a fraction of GDP) follows a simple AR(1) process:

ĝt = ρgĝt−1 + εg,t(41)

The shocks ετ,t, , εtr,t and εg,t are all assumed to be i.i.d.
Monetary policy is assumed to set the nominal rate according to:

ît = ρr ît−1 + (1− ρr)
(
φππ̂t + φy(Ŷt − Ŷ n

t )
)

+ εi,t(42)

Finally, the remaining shocks are all assumed to follow first order autoregressive processes (see
online appendix).

4.2 Estimation

We estimate parameter values and stochastic processes so that the model matches the data obser-
vations from the US economy. As it is well known, since the beginning of the 1980s, US monetary
policy was not subservient to fiscal policy. The passive regime is more likely to have prevailed in
the 1970s and before (see e.g. Bianchi and Ilut, 2017). Since our model is not designed to deal with
regime fluctuations, we thus have to choose either to estimate the model under the assumption that
monetary policy is ’active’ using post 1980 data, and then set policy parameters to produce a passive
regime, or estimate the model with observations prior to 1980 which would allow us to identify these
policy parameters directly from the data.

We choose to do the former. The main reason is that we do not see why, if the passive monetary
regime is to resurface in the future, the interest rate rule coefficients have to be equal to the values that
fit the pre 1980 data. In our experiments below we will treat these coefficients as free parameters,
considering various specifications of the passive monetary policy rule. Moreover, using the more

12Note that this shock is also necessary in order to estimate the model since debt, spending and transfers will be
treated as observables.
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recent observations allows us to obtain more accurate estimates of structural parameters that are
likely to have shifted over the decades.13.

Our sample is 1980:Q1 - 2008Q4. We truncate the sample to the 4th quarter of 2008 since the
short term nominal rate in the US reached zero in the first quarter or 2009. Dealing with the non-
linearities implied by the non-negativity constraint on the nominal interest rate, in estimation is
beyond the scope of this exercise.

We include the following variables in the estimation of the model: Real GDP growth, GDP deflator
inflation, the federal funds rate, federal revenues as a fraction of GDP, total government expenditures
(including transfers) to GDP, the market value of debt to GDP ratio and finally government spending
(for consumption and investment) to GDP. The details on the sources of these variables and the
measurement equations that are employed to link data variables with their model counterparts are
spelled out in the online appendix.

To proceed with estimation we first select prior distributions for the parameters we wish to
estimate and pick values for parameters that we want to fix in estimation. Table 2 summarizes the
calibrated values of the parameters that we fix and the right side of Table 3 reports our choice of
prior distributions for the parameters we estimate with Bayesian techniques. The priors are in line
with previous papers in the literature (see e.g. Bianchi and Ilut, 2017).

Table 2: Calibrated parameters

Parameter Value
y steady state output (normalization) 1
1− α labor share 0.66
δ decaying rate of coupon bonds 0.95
η demand Elasticity -7.66
γh inverse of Frisch elasticity 1

Notes: The table reports model parameters whose values we fix in estimation.

See text for details.

We fix the values of the labor share, α, the elasticity of labor supply, 1
γh

and the demand elasticity
parameter, η. We assume α = 0.66 and γh = 1. Moreover, η is chosen so that that markups are 15
percent in steady state. Finally, we normalize the steady-state value of output to unity. Parameter
δ is also set exogenously and we assume δ = 0.95.14

The left side of Table 3 reports the posterior estimates of the model parameter distributions. Our
estimates are reasonably close to the analogous objects reported in Bianchi and Ilut (2017) for the
post 1980s sample. For example, according to both our estimates and theirs, the monetary policy
rule displays a strong reaction of the nominal interest rate to inflation, and the estimated mean of
the response to output is around .6. The parameter that governs interest rate smoothing exceeds 0.9.
Moreover, the estimated response of taxes to the lagged value of debt is relatively low (φτ,b = 0.064
at the mean of the posterior distribution). Though with this value fiscal policy is active, debt is close
to being an explosive process.

Other key parameters, e.g. the slope of the New Keynesian Phillips curve (which is relatively flat
- the mean estimate being κ = 0.009) and the habit parameter (Ω, which is centered around roughly
0.5) are also in line with the results reported in Bianchi and Ilut (2017).

13Most notably, parameters related to the Phillips curve have shifted as recent literature advocates (see Del Negro
et al., 2015)

14Note that, to simplify, we allow for only long term debt in the estimation. As discussed, in the linear model the
behavior of bond portfolios over the cycle does not matter, and moreover, under active monetary policy the steady
state portfolios will not impact (directly) inflation.
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Table 3: Prior and posterior distributions

Parameter Posterior Prior
mean 90 % interval distrib par A par B

Quarterly trends and ss values
100γ trend growth 0.361 [0.29 ; 0.433] G 0.4 0.05
100 log π inflation 0.607 [0.516 ; 0.692] G 0.5 0.05
100(β−1 − 1) discount rate 0.139 [0.051 ; 0.228] G 0.25 0.1
g g-to-gdp 1.07 [1.06 ; 1.08] N 1.06 0.04
bL/4 annual mv debt-to-gdp 0.223 [0.17 ; 0.282] N 0.25 0.05
tax taxes-to-gdp 0.043 [0.041 ; 0.046] N 0.045 0.0025

Households and firms
Ω habits 0.501 [0.407 ; 0.593] B 0.8 0.1
κ slope nkpc 0.009 [0.001 ; 0.017] G 0.3 0.15

Monetary policy
φπ taylor, inflation 2.264 [1.69 ; 2.802] N 2.5 0.3
φy taylor; output 0.649 [0.467 ; 0.844] G 0.4 0.1
ρr i.r. smoothing 0.964 [0.954 ; 0.975] B 0.5 0.2

Fiscal rules
φτ,b tax response to b 0.064 [0.037 ; 0.09] G 0.07 0.02
φτ,y tax response to y 0.307 [-0.021 ; 0.641] N 0.4 0.2
φτ,g tax response to g 0.491 [0.17 ; 0.811] N 0.5 0.2
φtr,y tr response to y -0.641 [-0.771 ; -0.5] N -0.4 0.2
ρtr tr smoothing 0.212 [0.131 ; 0.293] B 0.2 0.05
ρτ tax smoothing 0.969 [0.95 ; 0.99] B 0.5 0.2

Shocks, persistence
ρη markup 0.563 [0.483 ; 0.637] B 0.5 0.2
ρξ preference 0.954 [0.935 ; 0.973] B 0.5 0.2
ρa tfp 0.299 [0.162 ; 0.439] B 0.5 0.2
ρg gov. spending 0.976 [0.959 ; 0.993] B 0.5 0.2
ρλ gov b.c 0.155 [0.038 ; 0.265] B 0.5 0.2

Shocks, standard deviations
στ taxes 3.603 [2.607 ; 4.632] IG 1 2
σg gov. spending 3.742 [3.342 ; 4.144] IG 1 1
ση markup 0.227 [0.202 ; 0.251] IG 1 1
σξ preference 0.178 [0.156 ; 0.199] IG 1 1
σa tfp 0.894 [0.691 ; 1.096] IG 1 1
σm mon. policy 0.088 [0.078 ; 0.096] IG 0.5 0.5
σλ gov b.c 0.371 [0.313 ; 0.43] IG 0.5 0.5
σtr transfers 0.285 [0.247 ; 0.324] IG 0.5 0.5

Notes: The table reports the prior and posterior distributions of the estimated parameters. The first column reports
the mean of the posterior of each parameter, obtained from Monte-Carlo simulations of the posterior distribution using
the MH algorithm. The second column reports the 90% HPD intervals obtained from the same draws. The third
column indicates the assumed prior distribution (B: beta, G: gamma, IG: inverse gamma, N: normal). The fourth and
fifth columns report the first and second moments of the priors.

Finally, before turning to the main focus of this exercise, which is to evaluate how debt maturity
affects the properties of inflation under passive monetary, we study the impulse responses to shocks
in the active monetary policy regime that we have estimated.
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Figure 4: Responses to shocks in the estimated model under active monetary policy.
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Notes: The graphs show impulse responses to one standard deviation shocks from the posterior
distributions of the medium scale model. For each of the shocks in the model we plot inflation and
output responses. Debt is only long term, as we assume in estimation.

Figure 4 plots the responses of inflation and output to demand, TFP, markup shocks and shocks to
fiscal variables15 and notice that these responses are now measured in percentage points. Therefore,
1 is a 1 percent increase of a variable relative to the balanced growth path, 0.1 is a 0.1 percent
increase, etc. As is evident from the figure shocks related to technology and to fiscal variables exert
essentially no influence on inflation (though they do impact the output gap) and it is rather shocks
to markups and demand shocks driving inflation volatility. This is to be expected. Since monetary
policy is not concerned with debt sustainability in this model fiscal shocks have effectively no bearing
on inflation. On the other hand, the fact that markup shocks are key is a common finding in the
literature.16

4.3 The role of debt maturity in the medium scale DSGE model

Our theoretical analysis explored how the maturity of debt influences the properties of inflation.
In some cases, we were able to show that choosing the right maturity of debt completely insulated
inflation from the impact of random shocks, and restored the ability of monetary policy to control
inflation. Though it is possible to repeat this type of analysis in the medium scale model of this

15We leave outside the figure the tax shock and the shock to the interest rate rule, since we will also later not
consider them in the passive monetary policy model.

16See, for example, Fratto and Uhlig (2020).
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section, since we now have many shocks, we choose to focus on a set of simpler experiments, studying
how three alternative debt management strategies (’only short’, ’only long’, ’borrow long and save in
short’) impact the dynamic adjustment of inflation to the shocks. The aim throughout this section
is to verify, in the medium scale model, that debt maturity is important for inflation variability.

To bring the economy to the passive regime we assume first that taxes are constant through time
and second, we assume that monetary policy follows rules of the form (42) but now parameters are
such that the nominal interest rate responds weakly to inflation. In Figures 5 and 6 we set φπ = 0.9
leaving the remaining parameters of the monetary policy rule be equal to the reported means of
the posterior distributions in Table 3. Each of the figures shows impulse responses to three types
of shocks. The top panels trace the responses of inflation whereas the bottom panels concern the
adjustment of output. The dashed red lines show impulse responses when all debt is short term. The
solid (blue) lines assume that all debt is long term and the dotted (black) lines set long term debt
to be 10 times larger than the total value of debt financing the position with short term savings.

Figure 5: Responses to shocks in the medium scale model I.
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Notes: The figure plots the impulse responses of inflation and output to TFP, markup shocks and
shocks to the government budget Λ. The dashed lines correspond to the case where all debt is short
term, the solid lines to the case where all debt is long and the dashed-dotted lines assume that long
term debt is 10 times the value of total debt.

Consider first Figure 5 which covers shocks to TFP, markups and shocks to the government
budget (Λ). Notice that even though the impact of TFP shocks is not large, it is clearly evident that
shorter debt maturity increases the magnitude of the response of inflation to the shock. In contrast,
debt maturity does not seem to matter for the propagation of markup shocks, which essentially lead
to the same impulse responses in Figure 5 as in Figure 4 under the active policy regime.
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Figure 6: Responses to shocks in the medium scale model II.
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Notes: The figure plots the impulse responses of inflation and output to spending, demand (prefer-
ence) and transfer shocks. The dashed lines correspond to the case where all debt is short term, the
solid lines to the case where all debt is long and the dashed-dotted lines assume that long term debt
is 10 times the value of total debt.

In contrast to the active regime, where markup shocks are the most important driver of inflation,
under passive policy inflation displays a strong reaction to fiscal shocks. This is clearly shown in the
right panel of Figure 5 but also in Figure 6 where we plot the reaction of inflation to Ĝ shocks in the
left panel. Moreover, for both types of shocks the maturity structure of debt impacts the response of
inflation, and the longer is maturity, the less is the response. Under a very long maturity structure
(when the long bond issuance is 10 times the value of debt) we obtain for both shocks a response of
inflation that is less than half of the response under short term debt. This prediction is obviously
in line with our theoretical analysis where we found that issuing large amounts of long term debt is
optimal to deal with fiscal shocks.

Finally, consider the middle panel of Figure 6, where we plot the response to a negative demand
shock. When debt is only short, the demand shock causes a drop in inflation and a recession initially,
however, a few periods down the line, inflation turns positive. This also happens with long term
debt. Because of the switch in sign, debt maturity cannot mitigate the response of inflation to the
shock, it could only be chosen to balance the cost of initial deflation with the cost of future inflation,
as we saw in Section 2 of the paper.

To reiterate debt management is effective in stabilizing inflation in the face of fiscal shocks, which
drive most of the excess inflation volatility under passive monetary policy. Thus, according to our
findings it is preferable to issue large amounts of long bonds.
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The online appendix extends further this analysis. We experiment with interest rate rules that
feature no interest rate smoothing, and also consider rules that track the real interest rate. In these
cases as well, large long bond issuances reduce the impact of fiscal shocks and it is preferable to tilt
the maturity structure towards long debt.

5 Conclusion

We have provided a tractable framework to think about the interactions between debt maturity and
inflation when monetary policy is subservient to fiscal policy. Our analytical results showed that
these interactions are non-trivial and that debt management can complement monetary policy in
pursuing its objective to control inflation. We drew analogous insights from a model where monetary
and debt policies are jointly optimal. A particularly interesting analytical finding we obtained from
this model, is that optimal monetary policy can be summarized in a simple interest rate rule that
clarifies how interest rate policies depend on the maturity of debt issued.

Lastly, using a medium scale DGSE model we have tested whether indeed debt maturity matters
when monetary policy is passive and found large effects when we looked at fiscal shocks and their
impact on inflation.

Future work could apply these insights to models with regime fluctuations when monetary policy
can transition between the active and passive regimes. In this case, debt maturity could exert a
significant influence even in the active policy scenario. Moreover, such an exercise could be useful
to pin down the optimal maturity when there is a temporary switch in the regime to e.g. monetize
part of debt.

Of course a meaningful next step would also be to make the model non-linear, such that it can
rely on more realistic yield curves, when inflation risk premia matter. Finally, in a non-linear model
with regime fluctuations one could consider whether changing the mandate of debt management to
align objectives with monetary policy as we assumed in this paper, is indeed desirable.
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Appendices

Appendix A Derivations from the analytical model

A.1 Proof of proposition 1

Let V̂t = ΩS b̂t,S + Ωδ b̂t,δ be the log deviation of the total market value of debt from its steady state

value where ΩS ≡ βbS and Ωδ ≡ βbδ
1−βδ . According to rule (7), the tax rate responds to the market

value of debt.17 Then, the system of equations period-to-period can be written as:

V̂t − ΩS ît + Ωδ(1− δ)p̂t,δ

−β−1V̂t−1 − β−1(ΩS + Ωδ)π̂t +
τ(1 + η)Y

η

(
[1− γh]ŷt +

τ̂

1− τ

)
−GĜt = 0

p̂t,δ + ît − βδEtp̂t+1,δ = 0

ît − Et(π̂t+1 − ξ̂t+1)− ξ̂t = 0

π̂t − κ1ŷt − κ2τ̂t − βEtπ̂t+1 = 0

where p̂t,δ denotes the price of the long-term bond. Applying substitutions with rules (7) and (6),

the system can be reduced to the following three equations:

V̂t − ΩSεi,t + Ωδ(1− δ)p̂t,δ −

(
β−1 − τY (1 + η)(κ1 − (1− τ)(1 + γh)κ2)

η(1− τ)κ1

φRτ,b

)
V̂t−1 −GĜt

+

(
β−1(ΩS + Ωδ) +

τ(1 + η)Y (1 + γh)

ηκ1

− ΩSφπ

)
π̂t −

τ(1 + η)Y (1 + γh)

ηκ1

βEtπ̂t+1 = 0

p̂t,δ + φππ̂t + εi,t − βδEtp̂t+1,δ = 0

φππ̂t + εi,t − Etπ̂t+1 + Etξ̂t+1 − ξ̂t = 0

Let’s denote Ω ≡ ΩS+Ωδ and Φ ≡ τ(1+η)Y (1+γh)
ηκ1

β. For any variable xt, define the rational expectations

errors by ηxt ≡ x̂t − Et−1x̂t and replace xt with Et−1xt + ηxt . Assuming i.i.d. shocks, we can then

17Notice that the precise definition of V̂t does not matter for the dynamics of other macroeconomic variables provided
appropriate scaling.
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write the system in matrix form as  1 0 0

0 βδ 0

−Φ 0 1


 Etπ̂t+1

Etp̂t+1,δ

V̂t



=


φπ 0 0

φπ 1 0(
ΩSφπ − β−1Ω− Φβ−1

)
−Ωδ(1− δ)

(
β−1 − κ1−(1−τ)(1+γh)κ2

(1−τ)(1+γh)β
ΦφRτ,b

)

 Et−1π̂t

Et−1p̂t,δ

V̂t−1



+

 1 0 −1

1 0 0

ΩS G 0


εi,tĜt

ξ̂t

+


φπ 0

φπ 1(
ΩSφπ − β−1Ω− Φβ−1

)
−Ωδ(1− δ)


[
ηπt

ηpδt

]

Or, more compactly:

AZt = BZt−1 + CXt +DYt

where Xt is the vector of exogenous variables. Now, premultiply each side by:

A−1 =

1 0 0

0 (βδ)−1 0

Φ 0 1


The resulting system reads  Etπ̂t+1

Etp̂t+1,δ

V̂t



=


φπ 0 0

φπ(βδ)−1 (βδ)−1 0(
Φφπ + ΩSφπ − β−1Ω− Φβ−1

)
−Ωδ(1− δ)

(
β−1 − κ1−(1−τ)(1+γh)κ2

(1−τ)(1+γh)β
ΦφRτ,b

)

 Et−1π̂t

Et−1p̂t,δ

V̂t−1



+

 1 0 −1

(βδ)−1 0 0

Φ + ΩS G −Φ


εi,tĜt

ξ̂t

+


φπ 0

φπ(βδ)−1 (βδ)−1(
Φφπ + ΩSφπ − β−1Ω− Φβ−1

)
−Ωδ(1− δ)


[
ηπt

ηpδt

]

The system has three eigenvalues:

e1 = φπ

e2 = (βδ)−1

e3 = β−1 − τY (1 + η)(κ1 − (1− τ)(1 + γh)κ2)

η(1− τ)κ1

φRτ,b

Moreover, there are two non-predetermined variables, Etp̂t+1,δ and Etπ̂t+1. For determinacy, we

hence need two of the eigenvalues to lie outside the unit circle. For any non-explosive maturity

of debt, we have that δ ≤ 1 and thus, e2 > 1. Consequently, we need either φπ > 1 or φτ,b <
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η(1−τ)κ1(β−1−1)

τ(1+η)Y (κ1−(1−τ)(1+γh)κ2)
. �

A.2 Proof of proposition 2

Assume that φτ,b = 0 and φπ < 1. Combining the Euler equation with the monetary policy rule (and

assuming no shocks after period t) we get:

π̂t+t = φππ̂t+t−1 + (εi,t − ξ̂t)It=1(43)

From the Phillips curve we have

Ŷt+t =
1

κ1

(
π̂t+t − βπ̂t+1+t

)
=

1

κ1

(1− βφπ)π̂t+t −
β

κ1

(εi,t − ξ̂t)It=1

Given these expressions to characterize inflation in t we use the date t intertemporal budget constraint

of the government. We can write the constraint as:

∑
j≥0

βjEt

(
τ(1 + η)Y

η
((γh + 1)Ŷt+j + ξ̂t+j)−G(Ĝt+j + ξ̂t+j)

)
= bS(b̂t−1,S − π̂t) +

bδ
1− βδ

b̂t−1,δ+

bδEt

∞∑
j=0

βjδj
[
−

j∑
l=0

π̂t+l

]
+ ξ̂t(bδ + bS)

The RHS can be written as:

bS(b̂t−1,S − π̂t) +
bδ

1− βδ
b̂t−1,δ − bδ

∞∑
j=0

βjδj
[

(1− φj+1
π )

1− φπ
π̂t +

(1− φjπ)

1− φπ
(εi,t − ξ̂t)

]
+ ξ̂t(bδ + bS)

The LHS is

τ(1 + η)Y

η
(γh + 1)

1

κ1

π̂t −GĜt +

(
τ(1 + η)Y

η
−G

)
ξ̂t

Simplifying further the RHS can be written as:

bS(b̂t−1,S − π̂t) +
bδ

1− βδ
b̂t−1,δ −

bδ
(1− βδ)(1− φπβδ)

π̂t −
bδβδ

(1− βδ)(1− φπβδ)
(εi,t − ξ̂t) + ξ̂t(bδ + bS)

Equating LHS and RHS letting R = τ(1 + η)Y
η

and noting that the steady state surplus can be

written as

(
τ(1+η)Y

η
−G

)
= (1− β)bS + 1−β

1−βδ)bδ and rearranging we get:

[
R

(γh + 1)

κ1

+ bS +
bδ

(1− βδ)(1− φπβδ)

]
π̂t¸ =

−
[

bδβδ

(1− βδ)(1− φπβδ)

]
εi,t +GĜt +

[
βbS +

bδβ(1− (1− δ)δβφπ)

(1− βδ)(1− φπβδ)

]
ξ̂t
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It is easy to obtain coefficients η1, η2 and η3 from the above expression. From (43) it is possible to

characterize the entire path of inflation. �

A.3 Proof of Proposition 3.

The FONC of the minimisation program (12) with only demand shocks is:(
η3 +

φπβ

1− φ2
πβ

(η3φπ − 1)

)
dη3

db1

σ2
ξ̂

= 0

When φπ = 0, it holds that dη3
db1

= 0. The maturity of debt is irrelevant.

In the case where φπ > 0 we have that dη3
db1
6= 0 and thus, the FONC imposes that η3+ φπβ

1−φ2πβ
(η3φπ−

1) = 0 which corresponds to η3 = βφπ �

A.4 Proof of Proposition 5.

Let’s consider first the case where the interest rate respond to the demand shock only through its

endogenous response to inflation. The FONC for the combined shock is:

η2η
′
2σ

2
G

(
1 +

βφ2
π

1− βφ2
π

)
+ η′3σ

2
ξ

(
η3 +

βφπ(η3φπ − 1)

1− βφ2
π

)
= 0

where η′2 ≡
dη2
db1

and η′3 ≡
dη3
db1

. Rearranging this expression, we obtain:

η3 = βφπ − η2
η′2
η′3

σ2
G

σ2
ξ

(44)

Notice that η2 and η3 can be written as:

η2 =
G

Λ

η3 =
β
(

Λ− R(γh+1)
κ1

)
Λ

where Λ ≡ R (γh+1)
κ1

+ S
(1−β)

+ bδφπβδ
(1−βδ)(1−φπβδ) . And thus,

η′2 =
−Λ′bδG

Λ2

η′3 =

βR(γh+1)
κ1

Λ′bδ
Λ2

Substituting these derivatives in (44) allows to easily recover the formula in the text.

Next, let us consider the case of monetary policy responding one-to-one to the demand shock i.e.
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εi,t = ξ̂t. Since this implies that σεi,ξ̂ = σ2
ξ̂
, the FONC becomes:

η1η
′
1σ

2
G + (η2η

′
2 + η3η

′
3 + η′1η3 + η′3η1)σ2

ξ +
βφπη2η

′
2

1− βφπ
σ2
G +

(
(1 + φπη1)η′1

1− βφπ
+

(η3φπ − 1)η′3
1− βφπ

)
βφπσ

2
ξ

=
φπη1 − η3φπ − η′1η3φ

2
π − η′3η1φ

2
π

1− βφπ
βσ2

ξ

Simplifying this expression, we arrive to:

η1 + η3 = − η2η
′
2

η′1 + η′3

σ2
G

σ2
ξ

where η′1 ≡
dη1
db1

.

Focus first on the LHS. Notice that η1 can be written as:

η1 = −

[
Λ−

(
R(γh+1)

κ1
+ S

1−β

)]
1
φπ

Λ

and hence, we have:

LHS = η1 + η3 =
β

(1− β)Λ
(S − bδ)

Let us now turn to the RHS. The derivative of η1 is:

η′1 = −

(
R(γh+1)

κ1
+ S

1−β

)
Λ′bδ
φπ

Λ2

Hence,

η′1 + η′3 =

(
R(γh+1)

κ1
(βφπ − 1)− S

1−β

)
Λ′bδ
φπ

Λ2

The RHS is thus:

RHS = − G
2
φπ(

R(γh+1)
κ1

(1− βφπ) + S
1−β

)
Λ

Equating the LHS and the RHS and rearranging, one can easily retrieve the formula in the text. �

A.5 Proof of Proposition 6.

Rewriting equation (28) with the lag operator gives:

(1− δL)π̂t+t =
(1− L)(1− δL)(1 + γh)

κ1

R̄ψgov,t+t + (1− L)(1− δL)b̄Sψgov,t+t +
1− L
1− βδ

b̄δψgov,t+t
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Forward this equation one period and use the backshift operator BEt+txt+t = Et+txt+t−1 to obtain:

(1− δB)Et+tπ̂t+t+1 =
(1−B)(1− δB)(1 + γh)

κ1

R̄Et+tψgov,t+t+1

+ (1−B)(1− δB)b̄SEt+tψgov,t+t+1 +
1−B
1− βδ

b̄δEt+tψgov,t+t+1

Since ψgov,t is a random walk, we have that (1−B)Etψgov,t+1 = 0. Hence, the previous equation boils

down to:

(45) Et+tπ̂t+t+1 = δπ̂t+t − δ

(
(1 + γh)

κ1

R̄ + b̄S

)
∆ψgov,t+t

Plugging this expression in the Fisher equation ît+t = Et+tπ̂t+1+t + ξ̂t+t gives the optimal interest

rule in the text. �

A.6 Derivation of equation (31) in the text

Since we assume that no further shock hits the economy after period t then ∆ψgov,t+j = 0, j ≥ 1.

Moreover setting ψgov,t−1 = ψgov,t−2 = ... we can write (28) as

π̂t =

(
R

(1 + γh)

κ1

+
S

1− β

)
∆ψgov,t

Moreover, combining this equation with (45) and extrapolating for any generic period gives the

following path of future inflation

π̂t+t =
bδ

1− βδ
δt∆ψgov,t(46)

Next, consider the intertemporal government budget constraint:

∞∑
j=0

βj
(
R̄[(1 + γh)ŷt+j + ξ̂t+j]− Ḡ[Ĝt+j + ξ̂t+j]

)
= b̄S(b̂t−1,S − π̂t) +

b̄δ
1− βδ

b̂t−1,δ − b̄δ
∞∑
j=0

βjδj
j∑
l=0

π̂t+l + (b̄S + b̄δ)ξ̂t

Plugging (46) in the Phillips Curve, we have:

ŷt =
π̂t
κ1

− βbδ
κ1(1− βδ)

δ∆ψgov,t

and, for any j > 0,

ŷt+j =
bδ

κ1(1− βδ)
δj∆ψgov,t −

βbδ
κ1(1− βδ)

δj+1∆ψgov,t
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Hence:
∞∑
j=0

βj ŷt+j =
π̂t
κ1

The LHS of the intertemporal budget constraint can be written as:

R(1 + γh)

κ1

π̂t −GĜt + Sξ̂t

Let’s focus now on the RHS. The following decomposition applies:

− bδ
∞∑
j=0

βjδj
j∑
l=0

π̂t+l = −bδ
∞∑
j=0

βjδjπ̂t −
b

2

δ

1− βδ
∆ψgov,t

∞∑
j=1

βjδj
j∑
l=1

δl

= − bδ
1− βδ

π̂t −
b

2

δ

1− βδ
∆ψgov,t

∞∑
j=0

βjδj+1 1− δj

1− δ
=

(
bS −

S

1− β

)
π̂t −

b
2

δβδ
2

(1− βδ)2(1− βδ2)
∆ψgov,t

where the last equality stems from the steady state identity bδ
1−βδ = bS − S

1−β . Equating the LHS and

the RHS (assuming as before that initial debt is zero), we find:(
R(1 + γh)

κ1

+
S

1− β

)
π̂t = GĜt + (bS + bδ − S)ξ̂t −

b
2

δβδ
2

(1− βδ)2(1− βδ2)
∆ψgov,t

Using (28) to substitute for π̂t and rearranging gives the expression in the text.

Appendix B Lagrangian of the optimal policy problem

Let ψπ,t+t and ψg,t+t be the Lagrange multipliers attached to the Phillips curve and the consolidated

budget, respectively. We formulate the Lagrangian as

L = Et

∞∑
t=0

βt

{
π̂t+t + ψπ,t+t

[
π̂t+t − κ1Ŷt+t − βEt+tπ̂t+t+1

]
+ ψg,t+t

[
βbS b̂t+t,S + βbSEt+t(ξ̂t+t+1 − ξ̂t+t − π̂t+t+1) +

βbδ
1− βδ

b̂t+t,δ

+ bδ

∞∑
j=1

βjδj−1

(
Et+t

(
−

j∑
l=1

π̂t+t+l + ξ̂t+t+j − ξ̂t+t
))

+
τ(1 + η)Y

η
(γh + 1)Ŷt+t −GĜt+t

−bS(b̂t+t−1,S−π̂t+t)−
bδ

1− βδ
(b̂t+t−1,δ−π̂t+t)−δbδ

∞∑
j=1

βjδj−1

(
Et+t

(
−

j∑
l=1

π̂t+t+l+ξ̂t+t+j−ξ̂t+t
))]}
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