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Abstract. We study the dynamics of the exploitation of a natural resource, dis-

tributed in space and mobile, where spatial diversification is introduced by a network

structure. Players are assigned to different nodes by a regulator, after he/she de-

cides at which nodes natural reserves are established. The game solution shows

how the dynamics of spatial distribution depends on the productivity of the various

sites, on the structure of the connections between the various locations, and on the

preferences of the agents. At the same time, the best locations to host a nature

reserve are identified in terms of the parameters of the model, and it turns out they

correspond to the most central (in the sense of eigenvector centrality) nodes of a

suitably redefined network which takes into account the nodes productivities.
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1. Introduction

In settings where a network of stocks migration flows connects the various sites

where a resource resides, how does the access to the resource of a number of competing

agents should be regulated? And in particular, where natural reserves should be

placed? To provide a first exploration of this issue, in this paper we develop a simple

model where the n ≥ 2 nodes of a weighted directed network represent the n regions

in which a geographical area is partitioned, and the weights upon the edges give the

interregional migration flows of the resource stocks. The n regions are heterogeneous

not only because they are differently connected, but also because the rate of growth

of the resource is not uniform across them. The regulator’s task is the assignment

of extraction rights to f < n agents in order to maximize a welfare function that is
1
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given by the sum of the agents utilities. For reasons we do not indagate - perhaps

there are strong congestion externalities, the regulator is also constrained to assign

no more than one agent to each region. Following the assignment stage, the f agents

compete for the exploitation of the resource as in the classical Levhari and Mirman

(1980) dynamic game, with the two differences that the stock of the resources is not

homogeneous but distributed among the n regions, and that each agent can only

access the resource through the single node he/she is assigned to. The main aim of

this paper is to study how the structure of the network affects the regulator’s choice.

A small literature has explored aspects of the problem of dynamic strategic inter-

action with distributed and moving resources, especially in order to evaluate whether

management of the resources through a system of Territorial Use Rights (TURF for

fisheries) can effectively mitigate the “tragedy of the commons” (see e.g., Kaffine

and Costello, 2011, Costello et al., 2015, Herrera et al., 2016, Costello and Kaffine,

2018, Costello et al., 2019, de Frutos and Martin-Herran, 2019, Fabbri et al., 2020).

For example, Kaffine and Costello (2011) have shown, using a discrete time model,

that Territorial Use Rights coupled with profits sharing can effectively reduce overex-

ploitation of moving resources. Costello et al. (2015) have extended the same model

to show how partial enclosure of the commons can improve the welfare of the com-

mon property regime. Costello and Kaffine (2018) compared the relative efficiency of

centralized versus decentralized management of a moving resource when users have

heterogeneous preferences for conservation and the regulator has incomplete informa-

tion about these preferences. On the other hand, in a two region model in continuous

time, Fabbri et al. (2020) have suggested that modulating the access to the different

sites through the assignment of Territorial Use Rights can be effective in rising the

rate of growth of moving collapsing resources, in a context of high harvesting effort.

None of these works, however, have given explicit attention to the network structures

that characterize both the access to the sites and the migration flows.

In the network literature, there are works that study the role of networks in the

management of natural resources. Currarini et al. (2016) survey various contributions
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in which network economics has been used in analyzing issues ranging from the pattern

and speed of diffusion of new green technology, to the structure and dynamics of

international agreements, from the formation of links in building an environmental

coalition, to the role of infrastructural networks in the access to natural resources.

Among these contributions, İlkılıç (2011) is closest to the question we explore here.

He studies a static game in which a given number of users exploit multiple sources of

a common pool, and each user faces marginal costs that are increasing in the total

extraction from the site, due to the presence of source specific congestion externalities.

The main conclusion is that in the unique Nash equilibrium of the game the rate of

extraction at each source is proportional to a centrality measure of the links of the

source. More recently, Kyriakopoulou and Xepapadeas (2018) studied the interaction

between a global congestion externality and local positive externalities, reflecting

collaboration links in the exploitation of a single resource by a given number of

agents. They show that the equilibrium rate of extraction of agents is, in this case,

proportional to their centrality in the local interactions network.

The aim of this paper is to take further the analysis of the exploitation by a

given number of agents of a moving spatially distributed resource, highlighting that

the equilibrium extraction intensities depend on both the network structure of the

migration flows and the access network. In the model we have n ≥ 2 regions with

general (and not necessarily symmetric) linear migration flows. We find a Markovian

equilibrium in which each agent’s welfare is decreasing in a suitable centrality measure

of his/her assigned node. At the same time we show that, in order to maximize the

sum of agents’ welfares, the social planner has to set natural reserves in the most

“central” regions of an appropriately modified migration network.

Since we focus on migration flows from heterogeneous sources, our centrality mea-

sure is not the Katz-Bonacich index used in İlkılıç (2011) or Kyriakopoulou and Xepa-

padeas (2018) to study complementarities, but depends both on the (net) growth rates

of the resource at the different nodes and on how much the nodes broadcast to the

other nodes. If all nodes are equally productive (i.e., the net growth rates are equal),
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then our measure coincides with the outdegree eigenvector centrality of the migration

network. In the general case, instead, it is the eigenvector centrality of a derived

network, obtained by magnifying outgoing links of each node by a factor, increasing

with the net productivity at the node. Moreover such factor is less than one for nodes

with negative net productivity, equal to one for nodes with zero net productivity, and

greater that one otherwise. In the case of an equally weighted and complete network,

in which the network is neutral, our centrality measure ranks nodes in increasing

order of productivity. The higher the rate of growth (either net or gross) the higher

the rank.

For our model, the highest eigenvalue of the derived network coincides with the von

Neumann rate of growth of the system and plays the same role as the productivity

parameter α in the homogeneous resource dynamic game analyzed in Tornell and

Lane (1999). As in the case examined by Tornell and Lane (1999), we also find

that the agents react voraciously to a positive shock that increases the dominant

eigenvalue when their elasticity of intertemporal substitution is sufficiently higher

than 1 (higher that f
f−1 when there are f agents). In turn, this disproportional

increase of the extraction rate results in a fall of the long run rate of growth of the

stocks. Since changing the weigh on a link from one region to another simultaneously

implies a change in the net rate of growth of the broadcasting node, the highest

eigenvalue depends in a complex way from the weights of the migration network.

However, for symmetric networks we are able to establish that the highest eigenvalue

is a decreasing function of the elements of the adjacency matrix. Thus it turns

out that, when voracity prevails in these family of networks, removing part of the

spatial externalities generated by migration actually reduces the rate of growth of the

resource.

The paper is organized as follows. In Section 2 the model is described and pre-

liminaries are discussed. Sections 3 contains the main results of the paper and the

description of the Nash equilibrium. In Section 4 the role of the network structure is
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discussed with the aid of a variety of examples. Section 5 contains the final remarks.

The proofs of all analytic results are collected in Appendix A.

2. The model

We consider a geographical area, partitioned in subareas/regions/locations, and a

standing natural renewable resource, for example fish, mobile through the different

regions.

We represent space through a weighted directed network G with n nodes – as

many as the number of regions, in which the area is partitioned. We denote with

N := {1, .., n} the set of nodes, and with gij ≥ 0 the weight upon the edge connecting

a source node i and a target node j, gij representing the intensity of the outflow from

i to j, so that when gij = 0 and gji = 0, then there are not direct paths between the

two nodes. We assume G strongly connected, that is, there exists a path connecting

any two nodes with corresponding strictly positive coefficients gij. We also assume

that G has no loops, so that gii = 0 for all i ∈ N . We denote with G the (weighted)

n × n adjacency matrix with elements gij, i, j ∈ N , with ei the i-th vector of the

canonical basis on Rn, and with 〈·, ·〉 the inner product in Rn. We also denote by R+

the set of nonnegative real values.

For all i ∈ N , the quantity Xi(t) stands for the biomass at location i at time t,

and X(t) for the vector with components X1(t), .., Xn(t). The evolution in time of

biomass Xi(t) on region i depends on several factors:

(a) the natural growth ΓiXi(t) of the resource at time t at node i, embodied by

the (constant) natural growth rate Γi;

(b) the outflow of the resource from region i to a linked region j at time t, given

by gijXi(t), so that the net inflow at location i is given by(
n∑
j=1

gjiXj(t)

)
−

(
n∑
j=1

gijXi(t)

)
= 〈Gei, X(t)〉 −

(
n∑
j=1

gij

)
Xi(t)
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(c) the rate of extraction ci(t) at time t from region i.

As a whole, we then have for all i

Ẋi(t) =

(
Γi −

n∑
j=1

gij

)
Xi(t) + 〈Gei, X(t)〉 − ci(t).

If A = (aij) is the diagonal matrix of the net reproduction factors, namely aij = 0 if i 6= j

aii ≡ ai = Γi −
(∑j=n

j=1 gij

)
,

c(t) is the vector with components c1(t), .., cn(t), and x is the vector of all initial stocks

of the resource at the different nodes, then the evolution of the system in vector form

is

(1)

Ẋ(t) = (A+G>)X(t)− c(t), t > 0

X(0) = x0,

where x0 ∈ Rn
+ is the vector of initial biomass concentrations in the various regions.

In addition to that, we require the following positivity constraints

(2) ci(t) ≥ 0, t ≥ 0, i ∈ N

as well as

(3) Xi(t) ≥ 0, t ≥ 0, i ∈ N

Remark 2.1. As a particular case of the described setting we have the situation where

the diffusion process follows Fick’s first law, that is, the flow of the resource from

region i to a linked region j at time t is proportional to the difference Xi(t)−Xj(t).

In this case the matrix G is symmetric as, for connected locations i and j, we have

gij = gji. As a consequence, A+G> = A+G and the problem simplifies.

Remark 2.2. Note that the matrix A + G> is a Metzler matrix, i.e. it has all non-

negative elements, except at most those on the principal diagonal. Moreover, since the

non-diagonal elements of A+G> are the same as those of G>, which is the adjacency

matrix of a strongly connected network, the graph associated to A+G> is also strongly
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connected, implying that A + G> is irreducible (see Theorem 2.1 page 36 in Latora

et al., 2017). Consequently, the Perron-Frobenius theorem (see e.g. Theorem 1.4.4

page 17 of Bapat and Raghavan, 1997) implies that the greatest eigenvalue of A+G> is

simple and that the associated normalized eigenvector is positive. The same statement

holds for the transpose matrix A+G.

Now we assume that some of the regions are exclusively devoted to reproduction

of the resource (natural reserves) while, at the same time, each of the remaining

is assigned to an agent for exclusive exploitation, enhancing a TURF policy. More

precisely, harvesting is prohibited in a subset M of N, while each of the remaining

regions F := N \M is exclusively assigned to an agent. We set f := |F |, with |F |

denoting the cardinality of the set F , so that n− f = |M |.

Finally, we assume that agents strategically interact in a differential game where

Player i maximizes the payoff

(4) Ji(ci) =

∫ +∞

0

e−ρt
(ci(t))

1−σ

1− σ
dt, i ∈ F

for σ > 0 and σ 6= 1.

We denote the trajectory of (1) at time t, starting at x0 and driven by c(t) with

X(t; c(·), x0). We use for strategy profiles the notation c = (ci, c−i), meaning that

Player i chooses ci and the other players choose the vector c−i ∈ Rn−1
+ (including the

zero components associated to the nature reserve). Admissible strategy profiles, at an

initial state x0 ∈ Rn
+, are those measurable functions c : [0,+∞)→ Rn

+ that generate

trajectories X(t; c(·), x0) which are contained in Rn
+ at all times. Markovian strategy

profiles are a subset of these strategies which are functions only of the current levels

of stock variables. The formal definition follows.1

Definition 2.3. (Markovian Admissible strategy profiles) Consider a given

initial state x0 ∈ Rn
+. We say that the vector of continuous functions ψ :=

1Note indeed that some constraint on the state space is needed in order to have existence of

meaningful equilibria, otherwise players would choose to extract infinite amounts of resource, even

from a negative stock.
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(ψ1, ..., ψn) : Rn
+ → Rn

+ is an admissible (stationary) Markovian strategy profile at

x0 if:

(i) for all i ∈M , ψi ≡ 0;

(ii) the equation (1) with ci(t) replaced by ψi(X(t)), i.e.

(5)

Ẋ(t) = (A+G>)X(t)− ψ(X(t)), t > 0

X(0) = x0, .

has a unique solution Xψ(·);

(iii) Xψ
i (t) ≥ 0, for all t ≥ 0 and for all i ∈ N .

We denote byM(x0) the set of all admissible Markov strategy profiles for the problem

at x0.

Definition 2.4. (Markovian Nash equilibrium) Consider a given initial state

x0 ∈ Rn
+, and let ψ ∈ M(x0). We say that ψ is a (stationary) Markovian Nash

equilibrium at x0 if the following fact is true: for all i ∈ F , the control ci(t) = ψi(X(t))

is optimal for the problem of Player i given by: the state equation (1) where the other

players choose c−i(t) = ψ−i(X(t)); the constraints (2); the functional Ji(ci) given by

(4), to be maximized over the set of admissible controls

Cψ−i(x0) = {ci : [0,+∞)→ R+ : Xj(t; (ci, ψ−i(X));x0) ≥ 0,∀j ∈ N,∀t ≥ 0} .

In formulas

Ji(ψi(X)) ≥ Ji(ci), ∀ci ∈ Cψ−i(x).

3. Existence of Markovian Equilibria

This section contains the main results of the paper, describing a class of Markovian

Nash equilibria for the given problem. We advise the reader that all the proofs of the

results stated below are contained in Appendix A. Further notation is now introduced.

We denote by λ the real positive eigenvalue of (A+G) having greatest real part (see
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Remark 2.2), and by {λ2, .., λn} the remaining ones, ordered with decreasing real

parts

λ > <(λ2) ≥ <(λ3) ≥ ... ≥ <(λn).

We denote by η = (η1, η2, .., ηn)> the positive normalized eigenvector associated to

λ. We also define as ξ the vector with components ξi = η−1i if i ∈ F , and ξi = 0

otherwise, and ξ η> the n × n matrix obtained by multiplying the column vector ξ

by the row vector η>, in symbols

(6) ξ =
∑
i∈F

η−1i ei, ξ η> = (ξiηj)ij.

Finally we set

(7) θ :=
ρ+ (σ − 1)λ

1 + (σ − 1)f
.

Remark 3.1. Observe that, when f = n (no nature reserves), ξ η> has n− 1 eigen-

vectors associated to the eigenvalue 0, all orthogonal to η (and hence generating 〈η〉⊥),

and the eigenvector ξ (described in (6)) associated to the eigenvalue λ. Symmetrically,

η ξ> has eigenvector η associated to the eigenvalue λ, while all remaining eigenvectors

generate 〈ξ〉⊥.

Remark 3.2. The expansion in rows of the equality (A+G)η = λη gives

(8) (λ− ai)ηi =
n∑

j=1,j 6=i

gijηj > 0,

since at least one of the gij is strictly positive (as the network is strongly connected),

which implies in particular

(9) ai < λ, ∀i ∈ F.

Theorem 3.3. Assume θ > 0, x0 ∈ Rn
+ and define ψ : Rn

+ → Rn
+ as

(10) ψi(x) =
θ

ηi
〈x, η〉 , for all i ∈ F , ψi(x) = 0, for all i 6∈ F .

Assume also that ψ ∈M(x0). Then:

(i) ψ is a Markovian equilibrium of the game in the sense of Definition 2.4;
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(ii) the welfare of agent i along such equilibrium is

Vi(x) =
θ−σησ−1i

1− σ
〈x, η〉1−σ ;

(iii) the corresponding evolution of the system is

(11)

 Ẋ(t) = (A+G> − θ ξη>)X(t), t > 0

X(0) = x0.

moreover the trajectory at equilibrium, X∗, satisfies

(12) 〈X∗(t), η〉 = egt〈x0, η〉

with

(13) g = λ− θf =
λ− fρ

1 + (σ − 1) f
.

Remark 3.4. One can study a version of the model with logarithmic utility. In this

case the evolution of the system is again described by system (1) but the i-th agent

maximizes the functional

Ji(ci) =

∫ +∞

0

e−ρt ln (c(t)) dt.

In this case a similar result to that described in Theorem 3.3 can be proven. The value

of θ simplifies to ρ, the equilibrium is characterized by the following strategies

ψi(x) =
ρ

ηi
〈x, η〉 , for all i ∈ F , ψi(x) = 0, for all i 6∈ F ,

and the welfare of agent i along the equilibrium is

Vi(x) =
1

ρ

(
ln (〈x, η〉) + ln

(
ρ

ηi

)
+ λ− fρ

)
.

The growth rate is λ− fρ.

Remark 3.5. Note that the positivity of η implies

min
i
ηi
∑
i

X∗i (t) ≤ 〈X∗(t), η〉 ≤ max
i
ηi
∑
i

X∗i (t),
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so that (iii) in Theorem 3.3 gives

1

maxi ηi
egt〈x0, η〉 ≤

∑
i

X∗i (t) ≤ 1

mini ηi
egt〈x0, η〉.

and g is also the growth rate in the long run of the aggregate stock
∑

iXi(t).

Proposition 3.6. Assume θ > 0 and that X∗ is the equilibrium trajectory described

in Theorem 3.3. Suppose that G is symmetric, i.e. gij = gji, and regard the growth

rate g as a function of gij (i, j ∈ N , i 6= j). Then:

(i) (standard case) if 1− (1− σ)f > 0, then g is a decreasing function of gij

(i) (voracity effect) if 1− (1− σ)f < 0, then g is an increasing function of gij.

Remark 3.7. We here gain some insight at the condition θ > 0, used in Theorem 3.3.

We preliminarily observe that a positive sign of the numerator ρ+(σ−1)λ > 0 implies

the boundedness of the functional in the case of a single player (f = 1), as well as the

boundedness of the functional of a control problem for a social planner maximizing

the sum of utilities of the players, as it can be easily proven. Moreover, since λ

represents the (asymptotic) growth rate of the resource under null extraction, the

result is consistent with the parallel condition ρ+(σ−1)A > 0 in the standard single-

player/social-planner AK-models (for extraction or growth). The interpretation of

such condition remains the same for a general number f of players, when both the

numerator and the denominator in (7) are positive.

When instead the denominator 1 + (σ − 1)f is negative, and then necessarily the

numerator ρ + (σ − 1)λ is also negative, the outcome for the game and the social

planner problem diverge, in that a Nash equilibrium exists for the game (in presence

of the so- called voracity effect, see Tornell and Lane, 1999) while it can be proven

that a solution for the social planner problem does not exist. This follows from the

greater consumption of the resource (and therefore from the sub-optimality of the

behavior) that one has in the game compared to the planner case: while with this

choice of parameters the functionals of the players remain bounded at the equilibrium,

infinite-utility controls are possible for the planner.
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In addition, note that when the denominator is negative (in particular σ ∈ (0, 1))

and the numerator is positive - hence when θ < 0, the reverse situation takes place.

Namely, there exists an optimal control for the planner problem but not our equilibrium

in the game, as the growth rate perceived by players (i.e. λ−(f−1)θ) is “too negative”

and it would push them to consume the whole resource at time 0, a strategy which is

nonadmissible in our setting.

Figure 1. Existence and non-existence of the equilibrium varying the

number of players. The common value of the equilibrium extraction

intensity of the stock ratio solves the linear system: θi = ρ−(1−σ)λ
σ

+

(f − 1)1−σ
σ
θj, θi = θj. In the case ρ − (1 − σ)λ > 0 and σ ∈ (0, 1),

the line θi = ρ−(1−σ)λ
σ

+ 1−σ
σ

(f − 1)θj intersects the bisector of the first

orthant if and only if 1−σ
σ

(f − 1) < 1 holds.

To better understand this fact, note that in our Markovian equilibrium the ratio

between the i-th agent’s extraction intensity and the capital value, normalized with

the i-th component of the eigenvector put equal to 1, is uniform across agents (the

common value is θ). So one may think that to find the equilibrium one must cross

the “reaction functions”

θi =
ρ− (1− σ)(λ−

∑
j 6=i θj)

σ
,
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with symmetry implying
∑

j 6=i θj = (f − 1)θj = (f − 1)θi. As shown in Figure 1, if

ρ− (1− σ)λ > 0, and σ < 1, then there is the solution for the single agent case, but

for an increasing number of agents f and as soon as 1−σ
σ

(f − 1) > 1, the extraction

intensity becomes infinite.

Similar conditions for the aggregate cases with A = 0 are given in Dockner et al.

(2000).

3.1. Stability. In order to address convergence of transitional dynamics towards a

potential steady state, it is useful to describe the equilibrium trajectory in terms of the

eigenvectors/eigenvalues of the matrix of the system in (11), namely A+G>− θ ξη>.

Firstly, we observe that η is a left eigenvector of A+G> and of ξη>, with associated

eigenvalues λ and f respectively, so η is also a left eigenvalue for A + G> − θ ξη>,

associated to the eigenvalue g = λ− θf . Then there exists a (right) eigenvector ζ of

A+G> − θ ξη> associated to the same eigenvalue g.

Remark 3.8. If in addition G = G>, the remaining eigenvectors of A+G−θ ξη> are

the set {w2, .., wn} of eigenvectors of A+G, respectively associated to the eigenvalues

{λ2, .., λn} (now all real). This can be checked by direct proof, making use of Remark

3.1 and of the fact that the vector subspace generated by {w2, .., wn} coincides with

〈η〉⊥. In other words, in the symmetric case, the dynamic of the system A + G −

θ ξη> with (respectively, without) extraction of the resource, namely the case θ > 0

(respectively, θ = 0), leaves unchanged all eigenvectors and relative eigenvalues except

one, that is associated to the dominant root. That eigenvalue changes from λ to λ−θf ,

while the associated eigenvector changes from η to ζ. That means that the trajectory

X∗ is modified only along the direction of such eigenvector.

This argument implies in particular the next proposition.

Proposition 3.9. Assume θ > 0 and the equilibrium trajectory X∗ described in

Theorem 3.3. Assume in addition G = G>. Then there exist real constants ki,
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i = 1, ..n, such that

X∗(t) = 〈x0, ζ〉 egtζ +
n∑
i=2

〈x0, wi〉 eλitwi.

Moreover, 0 < θ < λ−λ2
f

(that is, g > λ2) implies that the detrended trajectory

X∗(t)e−gt satisfies

lim
t→+∞

X∗(t)e−gt = k1ζ,

that is, it converges asymptotically towards the direction of ζ.

In the general case, i.e. when G is not necessarily symmetric, a similar statement

is true. We complete {ζ} into a basis of generalized eigenvectors {ζ ≡ v1, v2, .., vn}

of A + G> − θ ξη>. If {g ≡ µ1, µ2, .., µn} are the associated eigenvalues, with Re

denoting their real part, then the following results holds.

Proposition 3.10. Assume θ > 0 and the equilibrium trajectory X∗ described in The-

orem 3.3. Then there exist continuous coefficients mi, such that limt→∞mi(t)e
−εt = 0

for all ε > 0, and such that

(14) X∗(t) = m1(t)e
gtζ +

n∑
i=2

eRe(µi)tmi(t)vi.

Moreover, if 0 < θ < λ−Re(µ2)
f

(i.e. g > Re(µ2)) then

(15) lim
t→+∞

X∗(t)e−gt = 〈x0, ζ〉 ζ.

3.2. Admissibility. In the first part of this section, starting with Theorem 3.3, we

have always assumed that the strategy profile ψ was in M(x0), that is, admissible

at x0 ∈ Rn
+. Here we want to investigate under which conditions that is true. Some

factors are implicated in admissibility of the equilibrium strategy profile ψ:

(a) the magnitude of θ and the positivity of the eigenvector ζ. This is easily under-

stood from the analysis of the symmetric case. As a consequence of Perron-Frobenius

theorem, all eigenvectors wi for i ≥ 2 have at least one negative coordinate. If θ is too

big, i.e. θ > (λ− λ2)/f (equivalently g < λ2 ), Proposition 3.9 implies that the de-

trended trajectory X∗(t)e−λ2t converges along the direction of the second eigenvector
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w2 and leaves definitively the positive orthant, when starting at any initial position x

(except for the particular case in which x belongs to the halfline s = {tζ : t ≥ 0}). On

the other hand, when θ < λ−λ2
f

the detrended trajectory X∗(t)e−gt converges along

the direction of ζ, so that ζ needs to be a positive vector in order for the trajectory

to remain in the positive orthant. Since g and ζ are continuous functions of θ, and

for θ = 0 their values are respectively λ and η which are both positive, one may argue

that there exists θ∗ > 0 such that for all θ such that 0 < θ < θ∗ one has g(θ) > λ2

and ζ(θ) is a positive vector.

(b) the choice of the initial condition. One simple necessary and sufficient condition

of admissibility of ψ at all initial conditions x0 ∈ Rn
+ is the following.

Proposition 3.11. The strategy profile ψ described in Theorem 3.3 is admissible,

namely ψ ∈M(x0) , at every x0 ∈ Rn
+ if and only if the following condition is true

(16) 0 ≤ θ ≤ min
i∈F,j∈N

(
gij
ηi
ηj

)
.

The condition is meaningful when all nodes are connected to one another, but

when at least one of the coefficients gij, i ∈ F, j ∈ N is null (i.e. there exist two

locations which are not directly connected), it implies θ = 0, while for θ > 0 there

are always initial positions in the positive orthant at which the equilibrium strategy

is not admissible.

This is the case of the following example. Consider a network for n = 4 where node

i is only connected to nodes i−1 and i+ 1 and with weight α, and all natural growth

rates are equal to Γ, players are 4 and there is no reserve.

G =


0 α 0 α

α 0 α 0

0 α 0 α

α 0 α 0

 , A = (Γ− 2α)I, E =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

Then (see also Remark 3.8) λ = Γ, λ2 = Γ − 2α, λ3 = Γ − 4α, g = Γ − 4θ, η =

ζ = 1
2
(1, 1, 1, 1), θ = (ρ+ (σ − 1)Γ)/(4σ − 3). Assume in addition that ρ and σ
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are such that θ > 0, and θ < α/2 (one such choice is, for instance, σ = 7/8, and

Γ/8 < ρ < Γ/8 +α/4). Then ζ is positive and g > λ2, and the detrended equilibrium

trajectory tends to the direction of ζ, in view of Proposition 3.9. Now consider the

initial condition x0 = (0, 0, 1, 0)> and the associated trajectory X∗. Then (X∗1 )′(0) =

−θ < 0 and the trajectory leaves immediately the positive orthant.

Given all previous remarks, we are now ready to deliver a sufficient conditions of

admissibility of the equilibrium strategy ψ for a wide class of networks.

Proposition 3.12. Assume θ > 0 and suppose that the eigenvalue g of A+G−θ ξη>

satisfies g > Re(µ2), and is associated to a positive eigenvector ζ. Then there exists

a linear cone C containing ζ, such that the Markovian equilibrium ψ described in

Theorem 3.3 is admissible at all initial conditions x ∈ C.

Remark 3.13. In Proposition 3.12 we prove the existence of a subset - a cone - of

initial states for which the strategy profile ψ of Theorem 3.3 is admissible, and for

which ψ is in fact an equilibrium in the sense of Definition 2.4. The reader might

be led to think that this means that the described equilibrium is somehow, see e.g.

Dockner and Wagener (2014), a local equilibrium, and that the state space needs to

be restricted to that cone. This is not the case: in our results players maximize their

payoff over all admissible strategies, whether they drive the trajectory in or outside

the cone. When in addition conditions of Proposition 3.12 are verified, the chosen

profile of strategies always maintains the trajectory inside the cone.

4. The role of network structure

We intend now to interpret the equilibrium strategy in terms of the network struc-

ture. From Theorem 3.3 we derive the following property.
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Corollary 4.1. In the hypotheses and with the notation of Theorem 3.3, the overall

welfare of players
∑

i∈F Vi(x) is maximized if the nature reserves are built at the

locations i where ηi are highest.

The eigenvector η has a straightforward interpretation in network theory. In view

of Remark 2.2, if one considers the modified network G∗ associated with the matrix

G+A, then η represents the so called eigenvector centrality of the network G∗. Then

Corollary 4.1 establishes that nature reserve maximize social welfare when set at

nodes with maximal eigencentrality.

Assume that the Perron-Frobenius eigenvalue for G is λ◦ and that η◦ is the nor-

malized eigenvector associated to it, i.e. Gη◦ = λ◦η◦. To better understand how G

and G∗ are related, one may note that equation (A+G)η = λη can be rewritten as

(17) (I − λ−1A)−1Gη = λη,

so that the matrix G is magnified by the diagonal matrix (I−λ−1A)−1 with all positive

elements, as

〈ei, (I − λ−1A)−1ei〉 =
λ

λ− ai
> 0, ∀i ∈ N.

as a consequence of (9). Nonetheless, not necessarily are the components ηi of η

influenced by the initial network eigencentrality η◦ and the natural growth rates Γi in

a monotonic way, as better explained through the analysis of the following subcases

and examples:

(a) For networks with equal net reproduction rates, η coincides with the the eigen-

vector centrality of G. Now assume that all net reproduction rates are equal, namely

ai = Γi −
n∑
j=1

gij ≡ a, for all i ∈ N.

Then A+G = aI +G, eigenvectors of G and aI +G are the same, implying η = η◦,

and η, η◦ are associated, respectively, to eigenvalues λ, λ◦ = λ − a. Components

ηi are higher when nodes are better connected to the other nodes and are lower for

peripheral nodes. Corollary 4.1 then implies that welfare is higher when reserves are
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set in more central nodes. An example fitting the description is represented in Figure

2.

Figure 2. A network with equal net reproduction rates, exemplifying

those described in Section 4 (a). Here there are 4 nodes and 2 players,

so that the planner has to establish a 2-nodes reserve. The values of

the the natural growth rates Γi, together with the components of the

eigenvalue centrality of the networks G (η◦,i) and G∗ (ηi), are reported

in each node. Weights are reported over of the edges. The dashed line

encloses the two nodes in which it is optimal to establish the reserve.

(b) In a equally weighted complete network, ηi are ordered like reproduction rates

Γi. Assume now a complete network, with gij = α for some α > 0 and all i 6= j, and

gii = 0.

Combining the i-th and the `-th row of equation (8), one obtains

η` =
ai − λ− α
a` − λ− α

ηi,
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so that from a` − λ− α < 0 (see (9)) one derives

η` ≥ ηi ⇔ a` ≥ ai ⇔ Γ` ≥ Γi.

Then the overall productivity is highest when reserves are placed in locations with

highest reproduction rates. An example fitting the description is represented in Figure

3.

Figure 3. An equally weighted complete network, exemplifying those

described in Section 4 (b). Here there are 5 nodes and 3 players, and

the planner has to establish a 2-nodes reserve. The values of the the

natural growth rates Γi, together with the components of the eigenvalue

centrality of the networks G (η◦,i) and G∗ (ηi), are reported in each node.

Weights are reported over of the edges. The dashed line encloses the

two nodes in which it is optimal to establish the reserve.

(c) From the analysis of the previous subcases one may wonder if there exists a

monotonic relationship between Γi, η
◦
i and ηi. For example, if node i has a greater

centrality and reproduction rate than another node j, namely η◦i ≥ η◦i and Γi ≥ Γj,

then the reserve is better placed at node i than at node j, namely ηi ≥ ηj. The
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answer is negative, as explained in the following example. Consider

G =


0 1 0

0 0 1

2 0 0

 , Γ1 = 1, Γ2 = 1 + b, Γ3 = 0,

with b > 0. By explicit calculation one has λ◦ = 3
√

2 and η◦ = µ◦/|µ◦| with µ◦ =

(2−2/3, 2−1/3, 1)>. Note that η◦2 > η◦1 and Γ2 > Γ1, that is, node 2 precedes node

1 both in productivity (natural and net) and centrality. Nonetheless, η1 > η2 for

some choices of a positive b, as we show next. To this extent, if η = µ/|µ| , with

µ = (1, µ2, µ3)
>, then µ satisfies

(18)


0 1 0

0 b 1

2 0 −2




1

µ2

µ3

 = λ


1

µ2

µ3

 ,

whose expansion implies

µ1 = 1, µ2 = λ, µ3 = λ(λ− b), b = λ− 2

λ(λ+ 2)
.

Note that the last equation implies in particular that b is an increasing function of λ

and viceversa. A direct calculation shows that for b = 0 one has λ(0) ' 0.8, so that

by continuity λ(0) < λ(b) < 1 for a small positive b. Hence η1 > η2 and a reserve

is better set in node 1 rather than in node 2. The example is represented in Figure

4(C).

(d) The analysis of the previous example with Γ1 = Γ2 = 1 and Γ3 = 2 + a helps

confirming the interpretation of eigencentrality ηi as a measure of productivity and

connectiveness not only of the i-th node, but also of the nodes more directly connected

to it. In this case

µ1 = 1, µ2 = λ, µ3 = λ2, a = λ− 2

λ2
,

with λ is an increasing function of a, moreover for a = −1 one has µ1 = µ2 = µ3 = 1,

and λ = 1, so that λ > 1 if and only if a > −1. Therefore

µ1 < µ2 < µ3, for a > −1, and µ1 > µ2 > µ3, for a < −1.
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Hence, an increasing reproduction rate Γ3 not only does increase η3 making (defini-

tively) Node-3 the most central, but also influences the centrality η2 of Node-2, which

is more directly connected to it than Node-1. The example is represented in Figure

4(D).

5. Concluding remarks

The main aim of this paper has been to explore, in a simple framework with het-

erogeneous regions and a given number of agents, how the structure of the migration

network affects competition for spatially distributed moving resources. We have found

that if the regulator’s objective is the maximization of the unweighted sum of the util-

ities of the agents, and he/she is constrained to assign no more than one agent to each

region, then the reserves should be localized in the most central regions. Here the

relevant centrality measure is given by the eigenvector centrality of a derived network

obtained by magnifying the links of each node in the original migration network by

a factor that is increasing in the productivity of the node itself.

Although in our analysis both the agents and the regulator care only about con-

sumption of the resource, our model provides a basis for more general analysis where

preferences for conservation are considered, introducing for example the resource

stocks in the utility functions of the agents and/or in the regulator welfare func-

tion. A theme of this analysis will be how the role of the regulator is enhanced under

the new hypotheses.

In a different vein, the role of the regulator could be also examined in more general

contexts in which a “bad” extreme equilibrium coexists with the interior equilibrium.

For example, an extreme equilibrium can be expected to exist in variants of our model

if the extracted resource can be stored (e.g., Kremer and Morcom, 2000). In this case,

a spatially structured policy could be a useful tool to eliminate the incentives that

potentially could lead the agents to coordinate on the “bad” outcome.
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(c) The network associated to ex-

ample (c).

(d) The network associated to ex-

ample (d).

Figure 4. Representation of examples (c) and (d) of Section 4. In each

case we have 3 nodes and 2 players (so the planner has to establish a

1-node reserve). The values of the the natural growth rates Γi, together

with the components of the eigenvalue centrality of the networks G (η◦,i)

and G∗ (ηi), are reported in each node. Weights are reported over of

the edges. The dashed line encloses the node in which it is optimal to

establish the reserve.
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Appendix A. Proofs

Proof of Theorem 3.3. We initially take the standpont of player i, active at node i.

For all other players we assume that they play a Markovian strategy, described by

cj(t) = aj 〈X(t), η〉 , with j ∈ F − {i},

where aj are nonnegative real numbers. Then the current value Hamiltonian of ith

player is

(19) h(x, ci, p) :=
1

1− σ
c1−σi + 〈x, (A+G)p〉 − 〈x, η〉

∑
j∈F−{i}

pjaj − cipi

so that the maximal Hamiltonian is

(20) H(x, p) = max
ci

{
c1−σi

1− σ
− cipi

}
+ 〈x, (A+G)p〉 − 〈x, η〉

∑
j∈F−{i}

pjaj

=
σ

1− σ
p
1− 1

σ
i + 〈x, (A+G)p〉 − 〈x, η〉

∑
j∈F−{i}

pjaj.
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with maximum attained at ci = p
− 1
σ

i . As a consequence, the Hamilton-Jacobi-Bellman

(briefly, HJB) equation associated to the problem is

ρv(x) =
σ

1− σ

(
∂v

∂xi

)1− 1
σ

+ 〈x, (A+G)∇v(x)〉 − 〈x, η〉
∑

j∈F−{i}

(
∂v

∂xj

)
aj

Step 1: we search for a solution of HJB equation of type

(21) v(x) =
bi

1− σ
〈x, η〉1−σ , with ∇v(x) = bi 〈x, η〉−σ η

where bi is a suitable positive real number. Substituting v and its partial derivatives

into the HJB equation, we obtain that v is a solution if and only if

bi =
1

ηi

(
σηi

ρ− λ (1− σ) + (1− σ)
∑

j∈F−{i} ηjaj

)σ

.

Step 2: Markovian equilibrium. For (20), the candidate optimal strategy for player i

satisfies

(22) ci(t) = (biηi)
− 1
σ 〈X(t), η〉

At equilibrium one has ai = (biηi)
− 1
σ , implying

(23) ai =
1

ηi

ρ− λ (1− σ)

1− (1− σ) f
=

θ

ηi
, and bi = ησ−1i θ−σ

from which the formulas (10) and (ii) derive.

Step 3: Closed loop equation. Note that, along the equilibrium trajectories,

c(t) = θ〈X(t), η〉ξ = θ ξη>X(t),

so that the evolution system in (iii) follows. The second part of statement (iii) follows

from

〈Ẋ(t), η〉 = 〈X(t), (A+G)η〉 − 〈X(t), η〉〈ξ, η〉 = 〈X(t), η〉(λ− θf)

where λ− θf = g = (λ− fρ)(1 + (σ − 1) f)−1.

Step 4: Best response. We verify now that the feedback strategy (10) is the best

response for Player i, when the other players choose ψj, with j 6= i, as in (10). Then
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the problem of Player i is maximizing (4) under the dynamics

(24)

 Ẋ(t) = (A+G> − θ ξiη>)X(t)− ci(t)ei, t > 0

X(0) = x0.

where the vector ξi coincides with ξ except for the i-th component, which is set equal

to 0, namely ξi` = ξ` for all ` 6= i, and ξii = 0.

Set c∗i (t) = ψ(X∗(t)) and let ci(t) be any other admissible control, with X∗(t)

and X(t), respectively, the associated trajectories. Now we consider the quantity

(c∗i (t)−ci(t)) ∂v∂xi (X
∗(t)) and use the fact that c∗i (t) realizes the maximum in (20) with

aj = θ/ηj, and p = ∇v(X∗(t)) to derive

(25)
1

1− σ
(
c∗i (t)

1−σ − ci(t)1−σ
)
≥ (c∗i (t)− ci(t))

∂v

∂xi
(X∗(t))

Next, observe that, adding and subtracting
〈
(A + G> − θ ξiη>)(X∗(t) −

X(t)),∇v(X∗(t))
〉

and making use of (24), the right and side in (25) equals

(26)〈
(A+G> − θ ξiη>)(X∗(t)−X(t)),∇v(X∗(t))

〉
−
〈
(Ẋ∗(t)− Ẋ(t)),∇v(X∗(t))

〉
=
〈
X∗(t)−X(t), (A+G− θη(ξi)>)∇v(X∗(t))

〉
−
〈
(Ẋ∗(t)− Ẋ(t)),∇v(X∗(t))

〉
.

Recalling (21) and (12) we have

∇v(X∗(t)) = bi〈X∗(t), η〉−ση = bie
−σgt〈x0, η〉−ση.

Using this expression and the fact that (A + G − θη(ξi)>)η = (λ − θ(f − 1))η, the

expression in (26) can be written as

= bi〈x0, η〉−σe−σgt
[〈
X∗(t)−X(t), [λ− θ(f − 1)]η

〉
−
〈
(Ẋ∗(t)− Ẋ(t)), η

〉]
Thus, using these estimates, integrating (25) on [0, T ] for T > 0, we obtain

(27)

∫ T

0

e−ρt

1− σ
(
c∗i (t)

1−σ − ci(t)1−σ
)
dt ≥

bi〈x0, η〉−σ
[ ∫ T

0

e−(σg+ρ)t
〈
X∗(t)−X(t), (λ−θ(f−1))η

〉
dt−

∫ T

0

e−(σg+ρ)t
〈
(Ẋ∗(t)−Ẋ(t)), η

〉
dt

]
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and, integrating by parts the last term, the right hand side equals

(28) = bi〈x0, η〉−σ
[ ∫ T

0

e−(σg+ρ)t
〈
X∗(t)−X(t),

(
λ− θ(f − 1)

)
η
〉
dt+

− e−(ρ+σg)T 〈(X∗(T )−X(T )), η〉 −
∫ T

0

e−(σg+ρ)t
〈
(X∗(t)−X(t)), (σg + ρ)η

〉
dt

]
= bi〈x0, η〉−σe−(ρ+σg)T 〈(X(T )−X∗(T )), η〉 ≥ −bi〈x0, η〉−σe−(ρ+σg)T 〈X∗(T ), η〉

where the last equality is a consequence of σg+ρ = λ−θ(f−1), and the last inequality

a consequence of 〈X(T ), η〉 ≥ 0, as X(T ) is admissible and hence nonnegative. Now

e−(ρ+σg)T 〈X∗(T ), η〉 = e−(ρ+σg)T egT 〈x0, η〉 decreases to 0, as T tends to +∞, as

(29) g(1− σ)− ρ = −θ < 0.

Thus, taking the limit as T tends to +∞ of the inequalities (27)(28), implies∫ +∞

0

e−ρt
c∗i (t)

1−σ

1− σ
dt ≥

∫ +∞

0

e−ρt
ci(t)

1−σ

1− σ
dt,

that is, the optimality of c∗i (t). (Note that limits exist as integrals are monotonic in

T ).

�

Proof of Proposition 3.6. We first check the effect of an ε-increase of gij, with i 6= j,

on the value of λ. To this extent, fix ε > 0 and define Mij := (ei e
>
j +ej e

>
i )− (ei e

>
i +

ej e
>
j ), and note that the system matrix changes from A+G to A+G+ εMij. Note

that this last matrix can be written as the sum of two Metzler matrices

A+G+ εMij = [A− ε(ei e>i + ej e
>
j )] + [G+ ε(ei e

>
j + ej e

>
i )]

so that it is itself a Metzler matrix. On the other hand, Mij is a negative-semidefinite

matrix so that 〈x,Mijx〉 ≤ 0 for all x ∈ Rn. We can argue as in Remark 2.2 and

denote by ηε its Perron-Frobenius eigenvector of norm 1, and by λε the associated

Perron-Frobenius eigenvalue. Since the network matrix is symmetric, we can use the
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variational characterization of eigenvalues (see for instance Corollary III.1.2 of Bhatia,

2013) so that

(30) max
x∈Rn\{0}

〈x, (A+G+ εMij)x〉
|x|2

= λε =
〈ηε, (A+G+ εMij)ηε〉

|ηε|2

=
〈ηε, (A+G)ηε〉

|ηε|2
+ ε
〈ηε,Mijηε〉
|ηε|2

≤ max
x∈Rn\{0}

〈x, (A+G)x〉
|x|2

+ ε
〈ηε,Mijηε〉
|ηε|2

≤ max
x∈Rn\{0}

〈x, (A+G)x〉
|x|2

= λ

This means that dλ
dgi,j
≤ 0. Using this fact and the expression of the growth rate given

in (13) we get the claim. �

Proof of Proposition 3.10 . If J is the real Jordan form of the matrix A + G> − θE,

then there exists a real invertible matrix P such that P−1(A + G> − θE)P = J .

Consequently there exist real coefficients βi such that

(31) X∗(t) = et(A+G
>−θE)x = PetJ

(
n∑
i=1

〈x0, vi〉P−1vi

)
= P

n∑
i=1

βie
JtP−1vi.

It follows then from the general theory (see for instance Section 1.3 of Colonius and

Kliemann (2014)) that eJtP−1vi = eRe(λi)tMi(t)P
−1vi where Mi(t) is a block matrix

(which is non-zero only on the Jordan block related to µi) whose coefficients are

products of sinus and cosinus functions of t and of polynomials of t with maximum

degree the dimensions of the generalized eigenspace. Since PeJtP−1vi is again an

element of the generalized eigenspace associated to µi, it can be written as a linear

combination of the eigenvectors related to the same generalized eigenspace, with

coefficient having the same described behavior for t, and then the first claim follows.

The second statement is a consequence of the same construction, once we observe

that Mi(t) for simple eigenvalue is just a real coefficient. �

Proof of Proposition 3.11 . The conditions (16) is equivalent to requiring that the

matrix of system (11) (having nondiagonal terms gij − θηiξj) is a Metzler matrix,

which is equivalent to establishing that the system is positive, that is, it has solutions
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contained in the positive orthant Rn
+ for all initial conditions x ∈ Rn

+ (see for example

Farina and Rinaldi, 2000, Chapter 2). �

Proof of Proposition 3.12. The generalized eigenvector decomposition described in

(14) shows that a trajectory of X∗ starting at ζ always remains on the linear sub-

space generated by ζ. From the same decomposition and from (15) we see that the

the origin is asymptotically stable and then (Theorem 1.4.8 page 16 of Colonius and

Kliemann (2014)) exponentially stable for the system satisfied by

Z(t) = e−gtX∗(t)− 〈x0, ζ〉 ζ.

This assures the existence of a positive open linear cone of initial data containing ζ

for which trajectories always remain positive. �

Acknowledgments

We acknowledge fruitful discussions with the participants of the workshop “Inclu-

sive and Substainable Development” - DISAE in Naples, of the conferences SAET

in Ischia, PET in Strasbourg, LSSC in Sozopol, “Viennese Conference on Optimal

Control and Dynamic Games” in Vienna and of the seminar of the Department of

Economics of the University of Venice “Ca’ Foscari”. The work of Giorgio Fabbri

is partially supported by the French National Research Agency in the framework

of the “Investissements d’avenir” program (ANR-15-IDEX-02) and of the center of

excellence LABEX MME-DII (ANR-11-LBX-0023-01).



30 G.FABBRI, S.FAGGIAN, AND G. FRENI

∗Univ. Grenoble Alpes, CNRS, INRA, Grenoble INP, GAEL, 38000 Grenoble,

France.

Email address: giorgio.fabbri@univ-grenoble-alpes.fr

†Department of Economics, Ca’ Foscari University of Venice, Italy

Email address: faggian@unive.it

‡Department of Business and Economics, Parthenope University of Naples, Italy

Email address: giuseppe.freni@uniparthenope.it



INSTITUT DE RECHERCHE 
ÉCONOMIQUES ET SOCIALES

Place Montesquieu 3 

1348 Louvain-la-Neuve

ISSN 1379-244X D/2020/3082/22


	COUV-RECTO-2020-22.pdf
	2020.05.14PesciOnNetworkTE12pt.pdf
	COUV-VERSO-2020-22.pdf



