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Abstract

Using Current Population Survey (CPS) data over the period 1976-2010 and the occupation clas-
sification of Autor and Dorn (2013) to rank occupations between high, medium and low skill, this
paper provides a flow rate analysis of quarterly fluctuations in occupation-specific and aggregate
stocks. I apply the variance decomposition developed by Elsby et al. (2015) and find that inflows
(the ins) explain a higher share of the variance in the fluctuations of the high skill unemployment
rate (around 54%), while outflows (the outs) account for 60% of the variance of the low skill un-
employment rate variance. I then show how the variance decomposition for occupation-specific
stocks can be used to study fluctuations of aggregate stocks, namely the unemployment and labor
force participation rates. This allows to analyze the role of occupation-specific flow rates but also
effects of variations in the occupational shares of employment and unemployment. The variance
decomposition results indicate that compositional effects do not account for much of the variance
in aggregate unemployment rate fluctuations. It is occupation-specific transition rates out and
into unemployment that account for most of the variance in these fluctuations. Outflows and in-
flows explain 60% and 35% of the variance in unemployment fluctuations with flows into and out
of middle and low skill unemployment contributing for 80%. I focus on labor force participation
fluctuations in the last part of the paper. In addition to the occupation compositional effect, I
find that outflows from the labor force are also affected by fluctuations of the unemployment rate:
when unemployment increases, the transition rate out of the labor force increases as well given
that unemployed have a much higher exit rate compared to employed workers. This compositional
effect is also described by Barnichon (2019) and I find that it accounts for 34% of the variance in
quarterly fluctuations of labor force participation. The remaining share is explained by inflows to
the labor force (65%) with inflows to employment and unemployment contributing for 45% and
20% respectively.
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1 Introduction

Understanding the dynamics of the labor market is a topic that attracted numerous contributions
over the last 50 years. It is well known that the U.S. labor market is characterized by substantial
worker flows between employment, unemployment and inactivity, which shape fluctuations of these 3
stocks. Early contributions on unemployment rate fluctuations (Darby et al. (1986), Blanchard and
Diamond (1990)) focused on gross worker flows and emphasized the role of inflows to unemployment.
More recent contributions have looked at the role of transition rates and reached opposite conclusion
by highlighting the prominent role of outflows (Hall (2005), Shimer (2012)). Alternatively, Fujita and
Ramey (2009) and Elsby et al. (2009) conclude that both inflows and outflows matter whereas Elsby
et al. (2015) underline the role of transitions between unemployment and inactivity.

On the other hand, less contributions are focusing on the analysis of labor force participation fluc-
tuations partly because this stock is less volatile and less correlated with GDP than unemployment.
Moreover, standard model of the labor market have trouble in reproducing the mild procyclicality of
this stock (Tripier (2004), Veracierto (2008), Shimer (2011)). The procyclicality of labor force is usu-
ally thought to capture a discouraged worker effect leading to an increase of outflows during recessions,
as jobs are harder to find and individuals drop out of the labor force. Workers then re-enter as the
economy recovers. These outflows are offset by other factors, in particular an increase of the transition
rate from inactivity to unemployment during recession which can help explain the mild procyclicality
of labor force participation (Mankart and Oikonomou (2016a)). Some recent contributions focusing on
transition rates have challenged the discouraged worker mechanism. Elsby et al. (2015) show that the
transition rate from unemployment to inactivity actually decrease during recessions as the unemploy-
ment pool shift towards more attached workers. Moreover, Barnichon (2019) and Elsby et al. (2019)
apply a flow rates decomposition of labor force fluctuations and argue that the cyclical behavior of
outlflows can be primarily explained by fluctuations of the unemployment rate. When unemployment
increases, outflows from the labor force increase as the transition rate from unemployment to inactivity
is much greater than the transition rate from employment.

This paper proposes to study the dynamics of labor market stocks by focusing on worker flows and
transition rates disaggregated by occupations. More precisely, I use the Current Population Survey
(CPS) for the period 1976-2010 and the occupation classification of Autor and Dorn (2013) to rank
occupations between high, medium and low skill. I adjust series of stocks and flow rates for various
issues (see Ounnas (2019)) and use these series to apply the variance decomposition proposed by Elsby
et al. (2015). This decomposition measures the contributions of each flow rates to the fluctuations of
labor market stocks. Thereby, I can provide an analysis of the fluctuations of disaggregated stocks
(high, middle and low skill unemployment rates) but also study the effects of occupation-specific tran-
sition rates on the dynamics of aggregate unemployment and labor force participation.

Cortes et al. (2016) have recently taken a similar approach by looking at flow rates that can ac-
count for the decrease of middle skill employment originating from Job Polarization (Autor and Dorn
(2013)). Their study focuses on medium run dynamics of middle skill employment without studying
occupational unemployment rates or aggregate stocks. In this paper, only short run fluctuations of
the unemployment and labor force participation rates are analyzed. Moreover, I use the variance de-
composition of Elsby et al. (2015) to study the relation between transition rates and the dynamics of
stocks.

The variance decomposition results for occupation-specific unemployment rates show that fluctu-
ations of the high skill unemployment rate are mostly driven by inflows (54% of the variance) while
outflows explain the largest share of the variance (60%) in the low skill unemployment rate variance.

To study aggregate stocks fluctuations, I show how to derive aggregate transition rates expressed
in terms of transition rates by occupations. I decompose variations of aggregate transition rates into
a (disaggregated) hazard rate effect, and a composition effect originating from changes in the occu-
pational composition of employment and unemployment. It turns out that composition effects only
explain a very small share of the variance of the aggregate unemployment rate. I find that outflows
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from unemployment account for around 60% of the variance of aggregate unemployment fluctuations
while inflows explain around 35%. This confirms that both ins and outs matter to understand fluc-
tuations of the unemployment rate (Elsby et al. (2009), Fujita and Ramey (2009)). Moreover, I find
that middle and low skill unemployment outflows and inflows account for 80% of the variance of the
aggregate unemployment rate.

For labor force participation, I show that the aggregate outflow rate can also be decomposed into
a disaggregated hazard rate effect and a composition effect. The composition effect captures variations
of the occupational composition of (un)-employment but also effects from unemployment rate fluctu-
ations as described by Barnichon (2019) and Elsby et al. (2019).
The variance decomposition results imply that outflows from the labor force explain around 34% of
the variance of labor force participation and unemployment rate variations account for the entirety of
this contribution. This result confirms the central role of unemployment variations in driving outflows
from the labor force. The graphical analysis of contributions also reveals that transition rates from
unemployment to inactivity act as an offsetting force. During recessions, these transition rates decrease
(see Elsby et al. (2015)) which lowers outflows from the labor force. This negative effect on outflows
compensate the positive effect coming from the increase of the unemployment rate and contributes
to dampen labor force fluctuations. The variance decomposition also highlights the role of inflows
to the labor force which explain the remaining share of the variance (around 65%). This substantial
contribution comes primarily from inflows to employment (45%) in particular to middle and low skill
occupations. Similarly to outflows, the graphical analysis of inflows shows that hazard rates to em-
ployment and unemployment act as opposing forces. In recessions, the inflow to employment decreases
which has a negative effect on labor force participation. On the other hand, the inflow to unemploy-
ment increases which compensate the negative effect from the inflow to employment. The fluctuations
of labor force participation are therefore the results of different hazard rates and composition effects
which compensate each other and contribute to the mild procyclicality of this stock.

The paper is organized as follows. In Section 2, I present the data and briefly review some cyclical
properties of labor market stocks and flow rates. The framework for the variance decomposition of
Elsby et al. (2015) is explained in Section 3. Lastly, the results of the decomposition are discussed in
Section 4. Section 5 concludes the paper.

2 Data

2.1 Data Description

Elsby et al. (2015) propose a variance decomposition of labor market stocks fluctuations that they
apply to the aggregate unemployment rate in the US from 1968 to 2012. This decomposition relies
on discrete and continuous time transition rates. To compute those rates, I use the monthly Current
Population Survey (CPS) for the period 1976-2010 and restrict the sample to individuals aged 16 and
over.1 Each month, the CPS assigns detailed occupation (3-digit) codes to employed (unemployed)
workers according to their current (last) job. No occupation codes are assigned to workers who enter
the labor market for the first time (New unemployed entrants in the CPS). These individuals are
therefore dropped from the sample. I use the occupation-task classification developed by Autor and
Dorn (2013) to rank each detailed occupation between high, medium and low skill. Note that Autor
and Dorn (2013) classify occupations according to their task content. Hence, high skill occupations
should be understood as cognitive intensive tasks occupations, middle skill as routine intensive tasks
occupations and low skill as manual task intensive occupations. Table 1 displays the classification.

1I restrict the analysis to December 2010 given that a new occupational classification is introduced by the BLS in
January 2011.
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Occupations Abstract/Cognitive tasks Routine tasks Manual tasks skill level

Managers/prof/tech/finance/public safety + - - high
Production/craft + + - middle
Transport/construct/mech/mining/farm - + + low
Machine operators/assemblers - + + middle
Clerical/retail sales - + - middle
Service occupations - - + low

The first 4 columns of this Table are taken from Table 2 of Autor and Dorn (2013). A "+" indicates that the task value of a given

occupation-group is above the task value averaged over all occupation-groups. The shaded cells give the maximum task value for

each occupation-group. I assign a skill level to an individual occupation according to whether the task value of the occupation-

group she belongs to is more abstract (high skill), routine (middle skill) or manual (low skill).

Table 1: Occupation classification

The computation of labor market stocks, flows and hazard rates is performed in 2 steps. First,
population stocks can be obtained from monthly CPS files. The 3 group occupation classification
implies that there are 7 labor market states; high, middle and low skill employment (Eh, Em and
El) and unemployment (Uh, Um and U l), with I standing for inactivity. The computation of gross
flows requires to match CPS files for 2 consecutive months and I follow Madrian and Lefgren (1999)
to perform the matching. Stocks and gross flows time series further have to be adjusted for various
problems. These include breaks originating from the 1994 redesign of the CPS questionnaire, updates
in occupational classifications (every 10 years or so) and new population estimates. These issues and
the method used to correct them are presented in detail in Ounnas (2019). The seasonal adjustment
of series is also carried out during this step. Thus, the first step allows to obtain adjusted time series
of stocks, and flow rates are computed from the adjusted gross flows.

In a second step, I use these series to compute continuous time transition rates and retrieve tran-
sition rates adjusted for the time aggregation bias. The correction for this bias relies on the close links
between discrete and continuous time Markov chains. Whereas the correction applied by Shimer (2012)
and Elsby et al. (2015) is easily implemented and requires to perform an eigenvalue decomposition of
the discrete time transition matrix, I cannot apply this method to the data used in this work.2 As a
results, I use the Bayesian estimation technique proposed by Bladt and Sørensen (2005). Although the
method used to compute hazard rates is different, Ounnas (2019) shows that the adjusted transition
rates are similar to those reported by Shimer (2012) and Elsby et al. (2015).

However, It should be noted that I do not correct for misclassifications errors between unem-
ployment and inactivity (Abowd and Zellner (1985) and Poterba and Summers (1986)),3 as it would
require assuming that the misclassification probabilities estimated for aggregate stocks E, U and I, are
equal across high, middle and low skill occupations. Another potential source of problems is related
to spurious occupational mobility (Kambourov and Manovskii (2013)) which inflate transitions rates
between occupation groups (e.g. from Uh to Em or from Eh to Em). See Ounnas (2019) for more
details on these issues.

2See Ounnas (2019) and the discussion in Section 3.1 on restrictions specific to occupational data and transitions to
unemployment.

3Note that Kudlyak and Lange (2017) cast doubt on the fact that frequent transitions between unemployment and
inactivity capture misclassification errors. By matching individuals in the CPS for 4 consecutive month, they show that
individuals frequently transitioning between unemployment and inactivity have a job finding probability 5 times larger
than individuals inactive for consecutive months. Furthermore, frequent movers have lower wages when finding jobs than
those unemployed. Kudlyak and Lange (2017) claim that these 2 facts rule out misclassification errors for these frequent
movers who appear to be different from individuals consistently reporting to be unemployed or inactive.
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2.2 Cyclical Properties of Stocks and Flows

Cyclical properties for aggregate series (without the occupation dimension) are well known (Darby et al.
(1986), Blanchard and Diamond (1990), Fujita and Ramey (2009), Krusell et al. (2017)). However,
properties for high, middle and low skill series are largely unknown, in particular for flow rates.4 The
cyclical component is computed as 100 times the log deviation from the trend extracted using the
HP-filter with smoothing parameter λ = 1600.5

Table 2 presents results for quarterly averages of aggregate and occupation-specific stocks. These
stocks are normalized by total population6 implying that Eht + Emt + Elt + Uht + Umt + U lt + It = 1.
Therefore, employment series are employment to population ratios (with Et = Eht +Emt +Elt) and the
aggregate labor force participation rate is lft = 1− It. Table 2 also displays results for unemployment
rates (e.g. uht =

Uht
Eht +Uht

). The cyclical properties for aggregate series are in line with what is usually
reported. Employment is strongly correlated and slightly less volatile than GDP. On the other hand,
the unemployment rate is highly volatile (around 7 times that of GDP) and negatively correlated
with GDP. The labor force participation rate is the least volatile series and is mildly procyclical. The
correlation with GDP is slightly higher than what is usually reported although this higher figure could
originate from the deseasonalization procedure. Furthermore, Van Zandweghe (2017) argues that the
correlation between the participation rate and GDP increased over time exhibiting a break that he
traces to 1984. Prior to 1984, Van Zandweghe (2017) reports a correlation of .2 while post 1984, the
correlation rises to 0.5 in line with the results of Table 2.

σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Employment to population ratio

E 0.0101 0.693 0.866 0.901
Eh 0.0095 0.652 0.542 0.697
Em 0.0147 1.017 0.779 0.800
El 0.0135 0.931 0.740 0.685

Unemployment rate

u 0.1123 7.749 -0.883 0.918
uh 0.1332 9.189 -0.811 0.888
um 0.1160 8.000 -0.875 0.890
ul 0.1047 7.220 -0.885 0.899

Labor force participation rate

lf 0.0036 0.248 0.520 0.656

The cyclical component xt is extracted as 100 times the log deviation from the HP-filter trend with smoothing pa-

rameter λ = 1600. The first column reports the standard deviation of xt, the second column displays the standard

deviation of xt relative to the standard deviation of the cyclical component of GDP, yt. The third shows the cor-

relation between xt and yt and the last column computes the autocorrelation at lag 1 for xt. The superscript h,m

and l stand for high, middle and low skill.

Table 2: Cyclical Properties for quarterly average of stocks over the period 1976-2010

4Foote and Ryan (2015) use a different classification and focus mostly on stocks and flows from and to their measure
of middle skill unemployment.

5Following the critics made by Hamilton (2018) on the limits of the HP-filter, I also extract the cyclical component
using his proposed filter. The results are not qualitatively affected by this alternative set-up for trend extraction. These
results are presented in Appendix A.1.1. This appendix also displays results obtained from the HP-filter with a smoothing
parameter equal to 105 which is the value used by Shimer (2005) and Foote and Ryan (2015).

6The population aged 16 and over from which new unemployed entrants have been removed.
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With regards to employment to population ratios by occupations, Table 2 shows that high skill
employment is the least volatile and cyclical employment series while middle and low skill employment
appear to share similar cyclical properties. All three employment series are positively correlated with
GDP but their correlations are smaller than reported for aggregate employment.7 For unemployment
rates, it is worth pointing out the high volatility of high skill unemployment8 despite the cyclical
component of this series being the least correlated with GDP. Middle and low skill unemployment
rates are strongly negatively correlated with GDP.

σxt
σxt
σyt

ρxt,yt ρxt,xt−1 σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Emp. Unemp.

Aggregate

pEU 0.069 4.772 -0.752 0.634 pUE 0.080 5.494 0.818 0.822
pEI 0.032 2.179 0.324 0.263 pUI 0.057 3.899 0.800 0.749

High Skill

pE
hEm

0.119 8.241 0.287 0.393 pU
hEh

0.113 7.808 0.511 0.494
pE

hEl

0.096 6.609 0.377 0.286 pU
hEm

0.156 10.753 0.544 0.306
pE

hUh

0.100 6.921 -0.632 0.531 pU
hEl

0.142 9.828 0.348 0.316
pE

hI 0.057 3.908 0.031 -0.036 pU
hI 0.084 5.826 0.565 0.359

Middle Skill

pE
mEh

0.088 6.058 0.217 0.430 pU
mEh

0.161 11.105 0.456 0.274
pE

mEl

0.069 4.734 0.286 -0.020 pU
mEm

0.103 7.121 0.676 0.665
pE

mUm

0.088 6.060 -0.615 0.448 pU
mEl

0.099 6.807 0.561 0.400
pE

mI 0.046 3.178 0.323 0.236 pU
mI 0.059 4.098 0.706 0.490

Low Skill

pE
lEh

0.101 6.967 0.446 0.465 pU
lEh

0.164 11.330 0.304 0.151
pE

lEm

0.053 3.673 0.226 -0.014 pU
lEm

0.131 9.064 0.731 0.593
pE

lUl

0.067 4.598 -0.717 0.572 pU
lEl

0.075 5.143 0.781 0.624
pE

lI 0.038 2.599 0.237 0.079 pU
lI 0.066 4.523 0.691 0.639

Inactivity

Aggregate

pIE 0.043 2.992 0.655 0.391
pIU 0.064 4.439 -0.688 0.639

Skill

pIE
h

0.071 4.916 0.247 -0.026
pIE

m

0.063 4.337 0.578 0.235
pIE

l

0.054 3.713 0.530 0.152
pIU

h

0.099 6.827 -0.438 0.254
pIU

m

0.078 5.381 -0.607 0.451
pIU

l

0.067 4.653 -0.608 0.537

The cyclical component xt is extracted as 100 times the log deviation from the HP-filter trend with smoothing pa-

rameter λ = 1600. The first column reports the standard deviation of xt, the second column displays the standard

deviation of xt relative to the standard deviation of the cyclical component of GDP, yt. The third shows the cor-

relation between xt and yt and the last column computes the autocorrelation at lag 1 for xt. The superscript h,m

and l stand for high, middle and low skill.

Table 3: Cyclical Properties for quarterly average of flow rates over the period 1976-2010

7It is worth noting that no restrictions ensure that the correlation for aggregate stocks is bounded by the correlations
for disaggregated stocks. For instance, we can show that for series detrended in level (as in Tables 9 and 12 in Appendix
A.1.1), the correlation for aggregate stocks is a weighted average of disaggregated stocks’ correlations with the weight
given by the relative standard deviation (e.g. ρEt,yt =

σ
Eh

σE
ρEh

t ,yt
+ σEm

σE
ρEm

t ,yt +
σ
El

σE
ρEl

t,yt
). Since σEh +σEm +σEl > σE ,

the sum of the weights is greater than 1 and the correlation for aggregate employment is bigger than for disaggregated
series. This formula does not hold exactly when cycles are computed as log deviations from trends but the results in
Table 2 suggest that a similar condition applies.

8This observation comes from the computation of the cyclical component in log (multiplicative model). When
computed in level, the cyclical component is more volatile for the low skill unemployment rate. See Table 9 in Appendix
A.1.1.
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Table 3 displays the cyclical properties for quarterly average of monthly flow rates pijt or the dis-
crete time transition rate from state i to state j during month t. For aggregate flow rates, results are
again very similar to what is reported by Fujita and Ramey (2009) and Krusell et al. (2017). Inflows
to unemployment (EU and IU) are countercyclical, whereas outflows (UE and UI) are procyclical.
This implies that during recessions, inflows increase and outflows decrease which both contribute to
the increase in the unemployment rate. The procylicality of pUI and the countercylicality of pIU can
be seen as counterintuitive as they imply that unemployed are more likely to stay in unemployment
during recessions while inactive individuals are more likely to enter unemployment.

As pointed by Elsby et al. (2015), the procylicality of pUI can be explained by a change in the
composition of the unemployment pool during recessions. Workers more attached to the labor force
(prime aged men) enter unemployment which lowers the aggregate exit rate to inactivity. On the other
hand, the countercyclicality of pIU can be explained by the Added Worker effect studied in detail by
Mankart and Oikonomou (2016b).9. However, Elsby et al. (2015) argue that married couples with an
inactive spouse only represent a small subset of the workforce and that the Added Worker effect alone,
is probably not enough to fully explain the countercyclicality of pIU . Furthermore, misclassification
errors could affect the cyclical behavior of pIU as Elsby et al. (2015) and Krusell et al. (2017) show
that this transiton rate is much less countercyclical in the corrected data. Alternatively, time aggre-
gation could also potentially explain the cyclicality of pIU (and pIE). In good times, transition from
unemployment to employment are high and individuals transition faster through unemployment. The
decrease in pIU and the increase in pIE could therefore result from a missed intermediate transition
through unemployment. However, the adjustment applied in Ounnas (2019) corrects for this time
aggregation problem and Elsby et al. (2015) argue that the adjusted transition rates preserve their
cyclical properties.

With regard to occupation-specific transition rates, EU flow rates share similar cyclical properties
across high, middle and low skill occupations.10 Consistent with Fallick and Fleischman (2004), EE
flow rates are mildly procyclical. Although, flow rates from unemployment are all procyclical, those
involving high skill occupations (from and to) are usually less correlated with GDP. This observation
also holds for flows from inactivity, in particular for the flow rate to high skill employment (pIEh).
Flows to middle and low skill occupations seem to share relatively similar cyclical properties.

3 Variance Decomposition

I start this section by presenting the framework developed by Elsby et al. (2015) and used to decom-
pose the variance of the fluctuations in stocks. This decomposition relates fluctuations11 of stocks to
variations in flow rates which then allows to compute the contributions of each flow rate to the vari-
ance of the stocks of interest. In a second step, I show how this framework for disaggregated stocks,
Eht , E

m
t , . . . , U

l
t , can be used to study fluctuations of aggregate stocks, Et, Ut and lft. The last part of

this section presents some minor adjustments to the procedure proposed by Elsby et al. (2015) that
allow to slightly improve the contributions computed from the variance decomposition.

9The Added Worker effect captures the mechanism through which the spouse (usually the woman) may enter the
labor force during recessions when the other spouse loses her/his job. This mechanism allows to ensure the household
against income loss during these periods.

10As discussed for unemployment rates by occupations, the higher volatility of the pE
hUh

cyclical component comes
from the extraction of this component as log deviations. See Table 12 in Appendix A.1.1.

11Throughout the paper, I use the terms "fluctuations", "changes" or "variations" to refer to the first difference in
the series of interest (i.e. ∆xt = xt − xt−1).
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3.1 Variance Decomposition’s Framework

Elsby et al. (2015) start by assuming that monthly labor market stocks, st evolve according to a dis-
crete time first order Markov chain (DTMC):12



Eh

Em

El

Uh

Um

U l

I


t︸ ︷︷ ︸

st

=



pE
hEh pE

mEh pE
lEh pU

hEh pU
mEh pU

lEh pIE
h

pE
hEm pE

mEm pE
lEm pU

hEm pU
mEm pU

lEm pIE
m

pE
hEl pE

mEl pE
lEl pU

hEl pU
mEl pU

lEl pIE
l

pE
hUh pE

mUh pE
lUh pU

hUh pU
mUh pU

lUh pIU
h

pE
hUm pE

mUm pE
lUm pU

hUm pU
mUm pU

lUm pIU
m

pE
hU l pE

mU l pE
lU l pU

hU l pU
mU l pU

lU l pIU
l

pE
hI pE

mI pE
lI pU

hI pU
mI pU

lI pII


t︸ ︷︷ ︸

Pt



Eh

Em

El

Uh

Um

U l

I


t−1︸ ︷︷ ︸

st−1

where the stocks, st, are normalized by total population. Pt is the discrete time transition matrix (or
stochastic matrix) and pijt is the flow rate from state i to state j. We have:

st = Ptst−1

pijt ≥ 0

piit = 1−
∑
j 6=i

pijt

Using the fact that total population is normalized to 1, the above Markov chain can be rewritten
as:



Eh

Em

El

Uh

Um

U l


t︸ ︷︷ ︸

s̃t

=



pE
hEh − pIEh pE

mEh − pIEh pE
lEh − pIEh pU

hEh − pIEh pU
mEh − pIEh pU

lEh − pIEh

pE
hEm − pIEm pE

mEm − pIEm pE
lEm − pIEm pU

hEm − pIEm pU
mEm − pIEm pU

lEm − pIEm

pE
hEl − pIEl pE

mEl − pIEl pE
lEl − pIEl pU

hEl − pIEl pU
mEl − pIEl pU

lEl − pIEl

pE
hUh − pIUh pE

mUh − pIUh pE
lUh − pIUh pU

hUh − pIUh pU
mUh − pIUh pU

lUh − pIUh

pE
hUm − pIUm pE

mUm − pIUm pE
lUm − pIUm pU

hUm − pIUm pU
mUm − pIUm pU

lUm − pIUm

pE
hU l − pIU l pE

mU l − pIU l pE
lU l − pIU l pU

hU l − pIU l pU
mU l − pIU l pU

lU l − pIU l


t︸ ︷︷ ︸

P̃t



Eh

Em

El

Uh

Um

U l


t−1︸ ︷︷ ︸

s̃t−1

+



pIE
h

pIE
m

pIE
l

pIU
h

pIU
m

pIU
l


t︸ ︷︷ ︸

vt

(1)

or
s̃t = P̃ts̃t−1 + vt (2)

where P̃t is no longer a stochastic matrix.
Elsby et al. (2015) show that this process can be rewritten as the following partial adjustment

equation:
∆s̃t = At∆¯̃st +Bt∆s̃t−1 (3)

where ¯̃st is the vector of steady state stocks and At and Bt are given by:

At = I − P̃t
Bt = AtP̃t−1A

−1
t−1

¯̃st = A−1
t vt

12Note that this assumption usually corresponds to how stocks evolve in standard search model of the labor market
(e.g. search and matching model). Akerlof and Main (1981) discuss the limits of this assumption for the labor market.

8



Iterating backwards on (3) leads to:

∆s̃t =
t−1∑
j=0

j−1∏
i=0

Bt−iAt−j∆¯̃st−j +
t−1∏
j=0

Bt−j∆s̃0 (4)

Given some initial condition ∆s̃0, equation (4) implies that we can express the current variations in
labor market stocks as the sum of current and past changes in their steady states.

In order to compute these steady state variations and to link them to flow rates, Elsby et al.
(2015) propose to switch from a discrete to a continuous time framework. A continuous time Markov
chain (CTMC) can be defined in the following way (Norris (1997)):

ṡ = Ftst (5)

with Ft, the infinitesimal generator matrix of the CTMC satisfying:

0 ≤ −f iit ≤ ∞
f ijt ≥ 0∑
j

f ijt = 0

In the context of this paper, the generator matrix has the following form:

Ft =



fE
h

fE
mEh fE

lEh fU
hEh fU

mEh fU
lEh f IE

h

fE
hEm fE

m
fE

lEm fU
hEm fU

mEm fU
lEm f IE

m

fE
hEl fE

mEl fE
l

fU
hEl fU

mEl fU
lEl f IE

l

fE
hUh 0 0 fU

h
0 0 f IU

h

0 fE
mUm 0 0 fU

m
0 f IU

m

0 0 fE
lUl 0 0 fU

l
f IU

l

fE
hI fE

mI fE
lI fU

hI fU
mI fU

lI f I


t

(6)

where f i can be interpreted as the staying rate in state i, and f ij are instantaneous transition rates
(hazard rates) from state i to j. Note that some hazard rates have to be restricted to 0 since it is
impossible to transition instantaneously between some states. These restrictions originate from the fact
that the occupation of an unemployed is assigned according to her previous occupation in employment.
Therefore, instantaneous transition rates such as fEhUm or fUhUm , should be equal to 0.

The CTMC can also be reduced and expressed as:

˙̃s = F̃ts̃t + qt

F̃t and qt can be obtained in a similar manner as P̃t and vt in (1). The steady state is given by:

¯̃st = −F̃−1
t qt (7)

and taking a first order approximation of the steady state stocks (7) around lagged values of hazard
rates leads to:

∆¯̃st ≈
∑
i

∑
j 6=i

∂ ¯̃st

∂f ijt
∆f ijt (8)

where the steady states derivatives with respect to each hazard rate can be obtained from results in
matrix algebra (see Petersen and Pedersen (2012)). Therefore, (8) allows to compute the steady state
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variations ∆¯̃sijt originating from variations of each hazard rate f ijt . For instance, fluctuations of fEhUht

imply:

∆¯̃sE
hUh

t ≈ ∂ ¯̃st

∂fE
hUh

t

∆fE
hUh

t

≈ F̃−1
t

∂F̃t

∂fE
hUh

t

F̃−1
t qt∆f

EhUh

t

using (7) and the identity for the derivative of matrix inverse. This approximation is key and allows to
connect fluctuations of hazard rates and stocks. More precisely, variations of hazard rates ∆f ijt , affect
the steady states stocks, ∆¯̃st, which drives the current fluctuations of stocks, ∆s̃t (through equation
(3)). We then have:

var(∆s̃t) ≈ cov

∆s̃t,

t−1∑
j=0

j−1∏
i=0

Bt−iAt−j
∑
i

∑
j 6=i

∂ ¯̃st−j

∂f ijt−j
∆f ijt−j

 (9)

for a given stock (e.g. Eht ), the contribution of a specific hazard rate f ij is obtained as:

βij
Eh

=
cov

(
∆Eht ,

∑t−1
j=0

∏j−1
i=0 Bt−iAt−j

∂Ēht
∂f ijt

∆f ijt

)
var

(
∆Eht

) (10)

The quantities in the vector s̃t are normalized by total population while the interest is in the vari-
ance of the unemployment rate (e.g. uht =

Uht
Lht

with Lht = Eht +Uht ). Taking a first order approximation
of the unemployment rate first difference around lagged values of E and U leads to:

∆ut ≈ (1− ut−1)
∆Ut
Lt−1

+ ut−1
∆Et
Lt−1

(11)

with ∆Ut = ∆Uht + ∆Umt + ∆U lt and ∆Et = ∆Eht + ∆Emt + ∆Elt. This expression also applies to
unemployment rates by occupations. We can then compute the contribution of the hazard rate f ijt as:

∆uijt ≈ (1− ut−1)
∆U ijt
Lt−1

+ ut−1
∆Eijt
Lt−1

(12)

where ∆U ijt = ∆Uh,ijt + ∆Um,ijt + ∆U l,ijt and ∆Eijt = ∆Eh,ijt + ∆Em,ijt + ∆El,ijt . ∆Uk,ijt and ∆Ek,ijt

are the k occupation group (un)-employment fluctuations originating from the hazard rate f ijt .

There are six states in the vector ∆s̃t and 30 hazard rates f ijt . Defining ∆s̃ijt to be the con-
tribution of the hazard rate f ijt to the fluctuations of stocks, there is a total of 180 contributions ∆s̃ijt
to compute. Using equation (8), we can compute the steady states variations for each hazard rate,
∆¯̃sijt . For some initial values ∆s̃ij0 , equation (3) can be used to produce fluctuations of stocks resulting
from each individual hazard rates:

∆s̃ijt = At∆¯̃sijt +Bt∆s̃
ij
t−1 (13)

and the fluctuations, ∆s̃t, are obtained by adding up each hazard rate contributions:

∆s̃t = Z∆s̃ijt (14)

10



where Z is a 6×180 matrix of 0 and 1 which sums the relevant contributions.13 Once these contributions
have been obtained, results in terms of unemployment rates are computed using the approximation
(12). This process is applied to monthly data and quarterly results are then computed by taking
monthly average of stocks. Defining months 1, 2 and 3 of quarter t, the quarterly variations, ∆ut, are
related to monthly variations through:

∆ut =
∆ut−1,2 + 2∆ut−1,3 + 3∆ut,1 + 2∆ut,2 + ∆ut,3

3

and the quarterly unemployment rate fluctuation originating from the variations of hazard rate f ijt ,
∆uijt , is given by:

∆uijt =
∆uijt−1,2 + 2∆uijt−1,3 + 3∆uijt,1 + 2∆uijt,2 + ∆uijt,3

3
(15)

3.2 Variance Decomposition for Aggregate Stocks

In order to study the fluctuations of the aggregate unemployment rate, it is possible to use the contri-
butions ∆s̃ijt computed from the disaggregated Markov Chain and equation (12). Likewise for the labor
force participation rate using the fact that ∆lft = ∆Eht + ∆Emt + · · ·+ ∆U lt . However, an alternative
way to proceed is to directly compute aggregate stocks from the CTMC defined in (5). More precisely,
it holds that:

Ė = Ėh + Ėm + Ėl

U̇ = U̇h + U̇m + U̇ l

and from (5), one has:

Ė = fE
h

t Eht + fE
mEh

t Emt + fE
lEh

t Elt + fU
hEh

t Uht + fU
mEh

t Umt + fU
lEh

t U lt + f IE
h

t It

+ fE
hEm

t Eht + fE
m

t Emt + fE
lEm

t Elt + fU
hEm

t Uht + fU
mEm

t Umt + fU
lEm

t U lt + f IE
m

t It

+ fE
hEl

t Eht + fE
mEl

t Emt + fE
l

t Elt + fU
hEl

t Uht + fU
mEl

t Umt + fU
lEl

t U lt + f IE
l

t It

rearranging this expression leads to:

Ė =

((
fE

h

t + fE
hEm

t + fE
hEl

t

) Eh
t

Et
+
(
fE

mEh

t + fE
m

t + fE
mEl

t

) Em
t

Et
+
(
fE

lEh

t + fE
lEm

t + fE
l

t

) El
t

Et

)
Et

+

((
fU

hEh

t + fU
hEm

t + fU
hEl

t

) Uh
t

Ut
+
(
fU

mEh

t + fU
mEm

t + fU
mEl

t

) Um
t

Ut
+
(
fU

lEh

t + fU
lEm

t + fU
lEl

t

) U l
t

Ut

)
Ut

+
(
f IE

h

t + f IE
m

t + f IE
l

t

)
It

and I can define the following aggregate hazard rates fE , fUE and f IE :

fEt =
(
fE

h

t + fE
hEm

t + fE
hEl

t

) Eh
t

Et
+
(
fE

mEh

t + fE
m

t + fE
mEl

t

) Em
t

Et
+
(
fE

lEh

t + fE
lEm

t + fE
l

t

) El
t

Et
(16)

13The 180 × 1 vector of contributions, ∆s̃ijt is such that, the first six elements of this vector are the contributions of
the fE

hEm

t hazard rate to the fluctuations of the 6 stocks ordered as in (1). The next six elements are the contributions
of fE

hEl

t , the following six are the contributions of fE
hUh

t . . . This implies that the 6 × 180 matrix Z is made of 30
identity matrices of size 6 × 6.
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fUE
t =

(
fU

hEh

t + fU
hEm

t + fU
hEl

t

) Uh
t

Ut
+
(
fU

mEh

t + fU
mEm

t + fU
mEl

t

) Um
t

Ut

+
(
fU

lEh

t + fU
lEm

t + fU
lEl

t

) U l
t

Ut
(17)

f IEt = f IE
h

t + f IE
m

t + f IE
l

t (18)

similar steps for unemployment and inactivity lead to the following aggregate hazard rates:

fEUt = fE
hUh

t

Eht
Et

+ fE
mUm

t

Emt
Et

+ fE
lU l

t

Elt
Et

(19)

fUt = fU
h

t

Uht
Ut

+ fU
m

t

Umt
Ut

+ fU
l

t

U lt
Ut

(20)

f IUt = f IU
h

t + f IU
m

t + f IU
l

t (21)

fEIt = fE
hI

t

Eht
Et

+ fE
mI

t

Emt
Et

+ fE
lI

t

Elt
Et

(22)

fUIt = fU
hI

t

Uht
Ut

+ fU
mI

t

Umt
Ut

+ fU
lI

t

U lt
Ut

(23)

Using these aggregate hazard rates, I can analyze aggregate stocks fluctuations in the usual 3-states
framework studied by Elsby et al. (2015): Ė

U̇

İ

 =

 fE fUE f IE

fEU fU f IU

fEI fUI f I


t

 E
U
I


t

which can be reduced to:[
Ė

U̇

]
=

[
−fEU − fEI − f IE fUE − f IE

fEU − f IU −fUE − fUI − f IU
]
t

[
E
U

]
t

+

[
f IE

f IU

]
t

Therefore, these computations allow to reduce the dimension of the Markov Chain from 7 to 3
states (from 6 to 2 for the reduced Markov Chain) and to trace the effect of disaggregated hazard rates
by occupations on aggregate stocks through their impact on aggregate transition rates.
Furthermore, the fluctuations of aggregate hazard rates can be decomposed into a compositional effect
and an hazard rate effect. For instance, fluctuations of the aggregate employment to unemployment
hazard rate can be written as:

∆fEU
t = fE

hUh

t

Eh
t

Et
+ fE

mUm

t

Em
t

Et
+ fE

lU l

t

El
t

Et
−
(
fE

hUh

t−1
Eh

t−1
Et−1

+ fE
mUm

t−1
Em

t−1
Et−1

+ fE
lU l

t−1
El

t−1
Et−1

)
= fE

hUh

t−1 ∆
Eh

t

Et
+ fE

mUm

t−1 ∆
Em

t

Et
+ fE

lU l

t−1 ∆
El

t

Et︸ ︷︷ ︸
Compositional effect

+ ∆fE
hUh

t

Eh
t

Et
+ ∆fE

mUm

t

Em
t

Et
+ ∆fE

lU l

t

El
t

Et︸ ︷︷ ︸
Hazard rate effect

= (fE
mUm

t−1 − fE
hUh

t−1 )∆
Em

t

Et
+ (fE

lU l

t−1 − fE
hUh

t−1 )∆
El

t

Et︸ ︷︷ ︸
Compositional effect

+ ∆fE
hUh

t

Eh
t

Et
+ ∆fE

mUm

t

Em
t

Et
+ ∆fE

lU l

t

El
t

Et︸ ︷︷ ︸
Hazard rate effect

=
∑

i={m,l}

(fE
iUi

t−1 − fE
hUh

t−1 )∆
Ei

t

Et︸ ︷︷ ︸
Compositional effect

+
∑

i={h,m,l}

∆fE
iUi

t

Ei
t

Et︸ ︷︷ ︸
Hazard rate effect

(24)

where to pass from the first to second line, I add and subtract fEiU it−1
Eit
Et

and I use the fact that

∆
Eht
Et

= −∆
Emt
Et
− ∆

Elt
Et
. The compositional effect captures variations of aggregate hazard rates orig-

inating from fluctuations in the occupational shares of employment (or unemployment for aggregate
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transition rates from this state). For example, when the middle and low skill employment shares in-
crease, the aggregate hazard rate fEUt tends to increase given that fElU lt and fEmUmt are (on average)
greater than fEhUht . Similar expression can be derived for the remaining hazard rates from employ-
ment and unemployment. No compositional effect can be derived for transition rates from inactivity
given that no occupation is assigned to individual outside of the labor force. Using these aggregate
hazard rates fluctuations, I can apply the same steps described in Section 3.1. I can compute steady
state fluctuations using (8) with s̃t = [Et Ut]

′ and generate fluctuations in aggregate stocks from each
specific hazard rate using (13).

I proceed in the same way for labor force participation with l̇f = Ė + U̇ . I then have the fol-
lowing 2 states framework: [

l̇f
İ

]
=

[
f lf f Ilf

f lfI f I

]
t

[
lf
I

]
t

This 2 states Markov Chain reduces to the following single equation:

l̇f = −(f lfI + f Ilf)lft + f Ilf

with

f Ilft = f IEt + f IUt

f lfIt = fEIt
Et
lft

+ fUIt
Ut
lft

where the hazard rates f IE , f IU , fEI and fUI are given in equations (18) and (21)-(23).
The fluctuations of the hazard rate from the labor force to inactivity, f lfIt , can also be decomposed

between a compositional and an hazard rate effect:

∆f lfIt = fEIt−1∆
Et
lft

+ fUIt−1∆
Ut
lft

+ ∆fEIt
Et
lft

+ ∆fUIt
Ut
lft

(25)

this expression can be further developed using ∆Et
lft = −Ut

lft and the fluctuations ∆fEIt and ∆fUIt
(which are similar to (24)):

∆f lfIt = (fUIt − fEIt )∆
Ut
lft︸ ︷︷ ︸

Compositional effect (1)

+
∑

i={m,l}

Et
lft

(
fE

iI
t−1 − fE

hI
t−1

)
∆
Eit
Et

+
Ut
lft

(
fU

iI
t−1 − fU

hI
t−1

)
∆
U it
Ut︸ ︷︷ ︸

Compositional effect (2)

+
∑

i={h,m,l}

Eit
lft

∆fE
iI

t +
U it
lft

∆fU
iI

t︸ ︷︷ ︸
Hazard rate effect

(26)

This expression shows that there are two compositional effects. The second one is similar to the
effect describe previously for aggregate (un)-employment. It captures variations in the occupational
composition of employment and unemployment which affect the aggregate outflows to inactivity, fEIt
and fUIt and therefore f lfIt . On the other hand, the first compositional effect in the above expression
captures changes of the labor force composition between employment and unemployment. When the
unemployment rate increases ∆Ut

lft > 0, the outflow rate to inactivity increases given that fUIt −fEIt > 0.
This effect is described by Barnichon (2019) while Elsby et al. (2019) emphasize the role played by
hazard rates between employment and unemployment, fEUt and fUEt (which they label Churning).
These two hazard rates do not explicitly appear in the above expression but their main effects act
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through the variations in the unemployment rate.14

3.3 A Small Adjustment

The decision to adjust the procedure described in the previous section comes from the fact that
the fluctuations obtained from equation (3) and from (13) do not allow to exactly reproduce the
observed fluctuations of stocks. This is highlighted in Figure 1 which illustrates, for example, that the
fluctuations of high skill employment obtained from (3) explain around 92% of the variance in observed
fluctuations.15 For the other stocks, the observed fluctuations are actually matched fairly well by the
recursion in (3), as the covariances between these two quantities lie between 98% and 103%.

The main idea of the adjustment is to augment the partial adjustment equation (13) with an error
term ε̃ijt :

∆s̃ijt = At∆s̄
ij
t +Bt∆s̃

ij
t−1 + ε̃ijt , ε̃ijt ∼ N (0, σ2

i ) (27)

these error terms can be seen as capturing measurement noise from approximations taken at various
steps of the decomposition procedure, in particular (8) which computes steady state changes. The
inclusion of this error term implies that we can use the Kalman Filter16 to compute the contributions:

yt = Zαt (28)
αt+1 = µt + Ttαt + ηt, ηt ∼ N (0,Σ) (29)

The observation vector yt contains the observed fluctuations ∆s̃t and Z is a matrix of 0 and 1 which
sums the relevant contributions from the state vector (see (14)). The individual hazard rates contri-
butions ∆s̃ijt are assumed to be the unobserved state variables in the vector αt. Since there are 180
contributions to compute, the size of the state vector is 180× 1 with µt = I30 ⊗At∆¯̃sijt , Tt = I30 ⊗Bt
and ηt is the vector of error terms ε̃ijt .17

The Kalman filter allows to sequentially compute the conditional expectation (E (αt|yt) = at) and
variance (V ar (αt|yt) = Vt) of the state vector. For some initial values a0 and V0 and starting from
the first period in the sample, the recursion produces a forecast of the observed variable yt using (28).
In a second step, the filter uses the observed realization of yt to update the current state vector. It is
this second step that allows to improve the results for individual contributions ∆s̃ijt compared to those
obtained through the recursion (13).18

The use of the Kalman Filter also provides guidance on how to initialize the recursions and offers
the possibility to estimate the variance parameters σ2

i . Regarding initialization, it is common to start
the recursion from the unconditional mean and variance of the state vector which can be computed
from the state equation (29). However, these two quantities cannot easily be computed in the context
of this work (since the matrix Tt is time dependent). As a result, I use the exact initial Kalman Filter

14Note that the emphasis is on the outflows from the labor force f lfI
t but it is also possible to study the staying rate

f lf since f lf = −f lfI
t . We have f lf

t =
(
fEt + fEUt

)
Et
lft

+
(
fUEt + fUt

)
Ut
lft

which shows that fEUt and fUEt also have an effect
on the staying rate. Note that these 2 hazard rates only partly explain the fluctuations of the staying rate which is also
affected by the staying rate in employment and unemployment, fEt and fUt .

15Moreover, Figure 2 (and Figure 5 in Appendix A.2) shows that the stocks in levels generated from these fluctuations
are quite different from the actual ones.

16See Durbin and Koopman (2012) for a detailed review of the Kalman Filter.
17The dimensions of these vectors and matrices apply to disaggregated stocks. For aggregate employment and un-

employment there are 32 contributions (24 from hazard rates and 8 from compositional effects) and 64 in total for both
stocks. The size of state vector is 64×1, At and Bt are 2×2 matrices, µt = I32⊗At∆s̄ijt , Tt = I32⊗Bt. Labor force par-
ticipation is studied through a single equation and there are 17 contributions (12 from hazard rates fEI , fUI , fIE and fIU

by occupations, 4 from occupation compositional effects and 1 for the compositional effect through the unemployment
rate).

18Note that the results obtained through equation (13) can be obtained using the Kalman Filter by skipping the
updating step as if yt was missing.

14



of Durbin and Koopman (2012).19
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(3)

Comparison of the first difference in stock series obtained using recursion (3) in red with their data counterparts in
blue. First difference are measured in percentages points.

Figure 1: First Difference of Stocks Series from Data and Recursion (3)

Figure 2 clearly sets out that the contributions obtained from the Kalman Filter better reproduce
the evolution of stocks in level. Moreover, it is possible to further improve the fit through the use of
the Kalman Smoother (see Durbin and Koopman (2012)). The Kalman Smoother recursions compute
the expected value of the state vector given all the information available in the sample. As can be seen
from Figure 2, the contributions computed from the smoothing recursions allow to (almost) perfectly
match the evolution of stocks and therefore reproduce the actual fluctuations of these stocks. In Tables
13 and 14 in Appendix A.2, I also show that the contributions obtained from the Kalman Filter or
Smoother only lead to marginal changes in the variance decomposition results. This could have been
expected since the original contributions obtained through equation (13) were already reproducing
fluctuations in stocks rather accurately (see Figure 1). Therefore, the main advantages of the Filter
and Smoother adjustment are that they provide the ability to better reproduce the fluctuations of
stocks in level as well as provide guidance on how to initialize the recursions.

19All the derivations and results as well as alternatives solution to tackle the issue of initialization, can be found in
Durbin and Koopman (2012).
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Figure 2: Effects of the Kalman Filter and Smoother Adjustment

From this point onwards, I work with contributions ∆s̃ijt obtained from the Kalman Smoother.
Since these contributions are (almost) exact, I avoid using the approximation (12) to obtain contribu-
tions in terms of unemployment rates. Instead, these contributions can be computed as:

∆ut =
Ut
Lt
− Ut−1

Lt−1

=
UtLt−1 − Ut−1Lt

LtLt−1

=
(Ut−1 + ∆Ut)Lt−1 − Ut−1 (Lt−1 + ∆Et + ∆Ut)

LtLt−1

= (1− ut−1)
∆Ut
Lt

+ ut−1
∆Et
Lt

Contributions for individual hazard rates f ijt can be computed from:

∆uijt = (1− ut−1)
∆U ijt
Lt

+ ut−1
∆Eijt
Lt

(30)

Note that this expression is very similar to the first order approximation (12) except for the denomina-
tor, which is the current labor force level instead of the previous period one. Quarterly contributions
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are then obtained using (15).

4 Results

This section presents the results obtained from the decomposition of quarterly fluctuations of unem-
ployment and labor force participation rates. Section 4.1 discusses the results for occupation-specific
unemployment rates whereas Sections 4.2 and 4.3 focus respectively, on the aggregate unemployment
rate and the labor force participation rate. To facilitate the analysis, the contributions have been
aggregated along various dimensions and the detailed results can be found in Table 15 in Appendix
A.3.1.

4.1 Occupation-specific unemployment rates

Table 4 displays the results obtained from the variance decomposition of disaggregated unemployment
rates quarterly fluctuations. The main take away from this table can be seen from panel (a) which
aggregate hazard rates contributions in terms of ins and outs of unemployment. These results show
that fluctuations of the high skill unemployment rate are mostly driven by hazard rates to unemploy-
ment (54.0%) while variations of the low skill unemployment rates are explained primarily by hazard
rates out of unemployment (60.3%). The dynamics of the middle skill unemployment rate lies between
these two occupation groups with ins and outs contributing for respectively, 39.7% and 53.3% of the
variance. This heterogeneity across high, middle and low skill unemployment rates suggests that the
occupational composition of the unemployment pool can affect the dynamics of the aggregate unem-
ployment rate.20

The results from panel (a) also show that ins and outs account for almost the entirety of the
variance of these unemployment rates with total contributions ranging from 93.0% (39.7%+53.3%) for
the middle skill unemployment rate to 100.4% for the high skill one. The remaining hazard rates (from
and to employment and between employment and inactivity) only contribute marginally to short term
fluctuations of these various rates. Furthermore, variations in the unemployment rate of an occupation
group are almost only explained by hazard rates in and out of of this specific occupation group. For
example, ins and outs of high skill unemployment account for 100.8%, 1.0% and -0.8% of the variance
of high, middle and low skill unemployment, respectively.

Panel (b) in Table 4 allows to better understand the heterogeneity in flows driving the dynamics of
occupational unemployment rates. The inflow from employment to unemployment has relatively simi-
lar contributions for high and middle skill unemployment and slightly lower for low skill unemployment
(respectively 28.1%, 28.8% and 23.9%). It is the inflow from inactivity that explains the difference
across occupation groups. Table 4 shows that f IU account for 25.9% of the high skill unemployment
rate variance but only 10.9% and 9.3% for middle and low skill unemployment.

With regards to outflows from unemployment, the larger contribution of outs to low skill unem-
ployment fluctuations originates from outflows to employment. These hazard rates explain 41.2% of
the low skill unemployment rate variations against 30.5% and 32.2% for the high and middle skill
unemployment rates. Note also that transition rates from unemployment to employment of a different
skill level (∆s̃U iEj ) accounts for 8.5% to 16.3% of unemployment rates variances, and that these con-
tributions appear to be increasing with the skill level (16.3% for high skills and 8.5% for low skills).
Finally, outflows to inactivity explain a slightly higher share of the middle and low skill unemployment
rates variances (21.1% and 19.1%) while they account for 15.9% of the high skill unemployment rate
variance.

20For instance, Darby et al. (1986) use a dataset from the manufacturing industry which is likely to contain unemployed
mostly in middle skill occupations. This aspect could therefore affect their results.
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Unemployment rates

uh um ul

panel (a)

From U vs To U

βXU
h

53.87 0.35 -0.21
βXU

m

-0.06 39.36 -0.44
βXU

l

0.18 0.01 33.83
βXU 54.00 39.72 33.17

βU
hX 46.91 0.63 -0.59

βU
mX -0.23 51.44 -0.46

βU
lX -0.26 1.18 61.35

βUX 46.42 53.25 60.31

βXX -0.42 7.03 6.52

Tot 100.00 100.00 100.00

panel (b)

Aggregate

βEE -2.20 3.84 2.95
βEU 28.13 28.79 23.88
βEI -0.46 -0.86 -0.13

βU
iEi

14.25 20.77 32.74
βU

iEj

16.25 11.43 8.51
βUE 30.51 32.20 41.24
βUI 15.92 21.05 19.06

βIE 2.24 4.05 3.71
βIU 25.87 10.93 9.29

Tot 100.00 100.00 100.00

Variance decomposition results for quarterly fluctuations of occupation-specific unemployment rates. The re-

sults in panel (a) aggregate contributions in terms of ins and outs of unemployment (e.g βXU
h

= βE
hUh

+βIU
h

and βXU = βXU
h

+ βXU
m

+ βXU
l
). The second set of results (panel (b)) present contributions obtained by

aggregating occupation groups (e.g βEU = βE
hUh

+ βE
mUm

+ βE
lUl

). The fUE contribution is further dis-

aggregated according to whether the transition is to the same occupation i, fU
iEi

or to a different occupation

group j, fU
iEj

.

Table 4: Occupation Specific Unemployment rates

4.2 Aggregate Unemployment Rate

Before discussing the results, it is worth mentioning that the contributions of aggregate hazard rates
(panel (b) and 4th column in Table 5) are very similar to those reported by Elsby et al. (2015) in their
Table 3 (fourth line), despite the differences in series of stocks and flow rates.21 Table 5 indicates that
variations of hazard rates from employment to unemployment (fEU ) accounts for 24.9% of the variance
of aggregate unemployment rate fluctuations. For fUE , fEI , fUI , f IE and f IU , the contributions are
respectively, equal to 40.8%, -0.8%, 21%, 3.7% and 10.5%. Using data unadjusted for classification
errors over the 1978-2012 time period, Elsby et al. (2015) report contributions of 22.3%, 35.1%, -

21For instance, I exclude New Unemployed Entrants and adjust series of flows between unemployment and inactivity
for the 1994 redesign of the CPS (see Section 2.1).
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0.7%, 22.3%, 1.5% and 13.2%. Therefore, they find slightly higher contributions for flows between
unemployment and inactivity (21% and 10.5% vs 22.3% and 13.2%) and lower ones for flows between
employment and unemployment (24.9% and 40.8% vs 22.3% and 35.1%).22

Unemployment rate

Hazard Rate Composition Total

∆f Middle skill Low skill

panel (a)

From U vs To U

βXU
h

6.19 - - 6.19
βXU

m

13.97 - - 13.97
βXU

l

15.74 - - 15.74
βXU 35.90 -0.13 -0.39 35.38

βU
hX 8.71 - - 8.71

βU
mX 20.54 - - 20.54

βU
lX 32.27 - - 32.27

βUX 61.53 0.32 -0.04 61.81

βXX 2.84 -0.01 -0.01 2.82

Tot 100.26 0.18 -0.44 100.00

panel (b)

Aggregate

βEU 25.41 -0.13 -0.39 24.89

βEI -0.81 -0.01 -0.01 -0.83

βU
iEi

28.09 - - 28.09
βU

iEj

12.53 - - 12.53
βUE 40.62 0.22 -0.03 40.81

βUI 20.90 0.10 -0.00 21.00

βIE 3.65 - - 3.65

βIU 10.48 - - 10.48

Tot 100.26 0.18 -0.44 100.00

Variance decomposition results for quarterly fluctuations of the aggregate unemployment

rate. The results in panel (a) aggregate contributions in terms of ins and outs of unemploy-

ment (e.g βXU
h

= βE
hUh

+ βIU
h

and βXU = βXU
h

+ βXU
m

+ βXU
l
). The second set

of results (panel (b)) present contributions obtained by aggregating occupation groups (e.g

βEU = βE
hUh

+ βE
mUm

+ βE
lUl

). The fUE contribution is further disaggregated accord-

ing to whether the transition is to the same occupation i, fU
iEi

or to a different occupation

group j, fU
iEj

. The first column displays results from fluctuations of occupation-specific

hazard rates (hazard rate effect). The second and third columns give results for compositional

effects. Note that variations of employment occupational shares, ∆Emt /Et and ∆Elt/Et, af-

fect aggregate hazard rates from employment (fEU and fEI) while ∆Umt /Ut and ∆U lt/Ut

affect aggregate hazard rates from unemployment (fUE and fUI). The last column sums

contributions of hazard rates and compositional effects. See Section 3.2 for more details.

Table 5: Aggregate Unemployment rate

22A potential reason for these differences could be the exclusion of New Unemployed entrants which have higher
transition rates between unemployment and inactivity.
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Hazard rates contributions in percentage points, to quarterly unemployment rate fluctuations in level. The top
graph displays contributions from hazard rates into unemployment, ∆s̃EU and ∆s̃IU . The bottom graph shows con-
tributions from hazard rates out of unemployment, ∆s̃UE and ∆s̃UI . These 4 contributions sum occupation-specific
hazard rate contributions (e.g. ∆s̃EU = ∆s̃E

hUh

+ ∆s̃E
mUm

+ ∆s̃E
lUl

). Contributions from the remaining hazard
rates (fEI and fIE) and from composition effects are small and not displayed in this figure. Unemployment rate
fluctuations, ∆ut are displayed in black and shaded areas correspond to recession periods as defined by the NBER.

Figure 3: Ins and Outs Contributions to Quarterly Fluctuations of the Unemployment Rate

A few aspects are worth noticing from Table 5. Firstly, Panel (a) shows that aggregate un-
employment fluctuations are mostly explained by outflows from unemployment which account for
61.8% of the variance. Inflows contribute for 35.4% which is, nevertheless, a significant contribution.
Therefore, these results suggest that both ins and outs matter to understand unemployment rate
fluctuations (Elsby et al. (2009)). Secondly, Table 5 indicates that the occupational composition of
(un)-employment, which affect the aggregate hazard rates fEU , fEI , fUE and fUI (see Section 3.2),
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have almost no impact on the variance of aggregate unemployment fluctuations. The fact that the
focus of this paper is on short term (quarterly) fluctuations could explain this result and these compo-
sitional changes could be larger and play a more important role at lower frequency (e.g. 5-10 years).

Table 5 also displays results for contributions of ins and outs of occupation-specific unemployment
(e.g. from and to high skill unemployment). These results show that transitions from and to high
skill unemployment contribute for 14.9% (6.2%+8.7%) of the aggregate unemployment rate variance.
On the other hand, ins and outs of middle and low skill unemployment contribute approximately for
34.5% and 48.0% respectively. These contributions are similar to the occupational composition of
unemployment. On average over the 1976-2010 period, high skill unemployment represent 16.1% of
aggregate unemployment, the average middle skill unemployment share is 34.1% and the low skill one
is 49.9%. The results in Table 5 also indicate that transition rates into middle and low skill unem-
ployment have similar contributions (14.0% and 15.7%) and the difference between the 2 occupation
groups originates solely from outflows. The outs of low skill unemployment contribute for 32.3% of the
aggregate unemployment rate variance while outflows from middle skill unemployment explain 20.5%.

Finally, Figure 3 displays contributions from hazard rates into (∆s̃EU and ∆s̃IU ) and out (∆s̃UE

and ∆s̃UI) of unemployment. This figure shows that hazard rates out of unemployment to employment
have the largest contributions to unemployment rate fluctuations in level, particularly during reces-
sions. Despite explaining a bit more than 1/3 of the aggregate unemployment variance, hazard rates
into unemployment appear to have relatively small contributions in level. However, the contribution
from fEUt spikes during the 1980-82 and 2007-09 recessions. This is consistent with an observation
made by Elsby et al. (2010) about the fact that this hazard rate significantly increased during these
2 severe recessions while its variations were small during the other 2 recessions. For hazard rates
between unemployment and inactivity, it is interesting to note that the signs of contributions matches
the cyclical behavior of these transition rates during recessions. The hazard rate fUI is procyclical
and decreases which contributes positively to unemployment fluctuations. On the other hand, f IU

contributions are smaller but this hazard rate is countercyclical and increases during recessions which
also contributes positively to unemployment fluctuations.

4.3 Labor Force Participation Rate

Panel (a) in Table 6 aggregates contribution in terms of ins and outs of the labor force. From these
results, we see that outflows account for 34.4% of the variance of quarterly labor force partcipation
fluctuations. As explained in Section 3.2, this contribution can be decomposed into hazard rates effects
and compositional effects.

The compositional effect captures two different mechanisms. Firstly, changes in the occupa-
tional composition of (un)-employment, ∆Eit/Et and ∆U it/Ut, affect aggregate exit rates from (un)-
employment, fEIt and fUIt . As can be seen from Table 6, occupational composition effect (3rd and
4th columns of Table 6) have small contributions to quarterly fluctuations of labor force participation
similar to what is reported for unemployment in the previous section. The second composition effect
works through variations of the unemployment rate, ∆ut (2nd column of Table 6), which affect out-
flows to out of the labor force, f lfIt . This composition effect contributes for 40.09% of the labor force
participation variance which is more than the total outflow contribution.

The combined effects of hazard rates, fEIt and fUIt are small (-3.52%) but panel (b) shows that this
contribution hides a negative contribution from fUIt . This seems to indicate that the procyclicality of
outflows from unemployment to inactivity, which decrease during recessions, are important to dampen
the variations of labor force participation.23

23Note that, from equation (10), a negative contribution implies that the covariance between the fluctuations of the
stock and the contributions from a given hazard rate is negative. In other words, when fluctuations of labor force
participation are positive (negative), the contributions from the hazard rate fUIt tend to be negative (positive).
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Labor Force Participation

Hazard Rate Composition Total

∆f ∆u Middle skill Low skill

panel (a)

From lf vs To lf

βlfhI 0.23 - - - 0.23
βlfmI -4.72 - - - -4.72
βlflI 0.97 - - - 0.97
βlfI -3.52 40.09 -1.11 -1.09 34.37

βIlf
h

11.20 - - - 11.20
βIlf

m

25.02 - - - 25.02
βIlf

l

29.40 - - - 29.40
βIlf 65.63 - - - 65.63

Tot 62.11 40.09 -1.11 -1.09 100.00

panel (b)

Aggregate

βEI 14.24 - -0.84 -0.77 12.63

βUI -17.76 - -0.27 -0.33 -18.36

βIE 45.87 - - - 45.87

βIU 19.76 - - - 19.76

Tot 62.11 - -1.11 -1.09 59.91

Variance decomposition results for quarterly fluctuations of the labor force participation

rate. The results in panel (a) aggregate contributions in terms of ins and outs of the la-

bor force (e.g. βIlf
h

= βIE
h

+ βIU
h
and βIlf = βIlf

h
+ βIlf

m
+ βIlf

l
). The second set of

results (panel (b)) presents contributions obtained by aggregating occupation groups (e.g.

βEI = βE
hI + βE

mI + βE
lI). The first column displays contributions of occupation-specific

hazard rate (or hazard rate effects). The second, third and fourth columns give results

for compositional effects. Note that ∆u only affect the aggregate outflows from the la-

bor force, f lfI and its contribution βlfI . Variations in occupational composition of employ-

ment, ∆Emt /Et and ∆Elt/Et, affect the aggregate hazard rates from employment, fEI while

∆Umt /Ut and ∆U lt/Ut affect the aggregate hazard rates from unemployment, fUI . The last

column sums hazard rates and composition effects. The total contribution of panel (b) does

not sum to 100 given that ∆u does not affect aggregate contributions βEU , βEI , ... See

Section 3.2 for more details.

Table 6: Labor Force Participation

The top graph in Figure 4 allows to gain a better idea of the various forces affecting the outflow
contributions. This figure clearly shows that during recessions, the increase in the unemployment rate
contributes negatively to labor force participation fluctuations through its positive effect on the out-
flow rate f lfI . On the other hand, the decrease in fUI has a substantial positive contributions which
allows to dampen the negative effect from the increase in the unemployment rate. Note also that fEI
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is mildly procyclical and the decrease in this transition rate also contributes positively to labor force
fluctuations during recessions.

The analysis of outflows confirms the results of Barnichon (2019) and Elsby et al. (2019) and
highlights the role played by fluctuations of the unemployment rate.24 During recessions, outflows
from the labor force increase because of the increase in the unemployment rate. However, hazard rates
from the labor force to inactivity, in particular from unemployment, play a key role in offsetting the
negative effects of the unemployment rate and dampen labor force fluctuations. Therefore, the cyclical
behavior of these two hazard rates, fEI and fUI , appears to be important to understand the mild
procyclicality of labor force.

Turning to inflows, f IE and f IU , the results in Table 6 imply that the bulk of quarterly fluc-
tuations of the labor force participation rate are explained by these 2 hazard rates. The ins account
for 65.6% of the variance with around 70% of this contribution originating from inflows to employment
(45.9% from panel (b)). The importance of transition rates into the labor force stands in contrast
with the conclusion reached by Barnichon (2019). Using a 2 state decomposition and the framework
of Fujita and Ramey (2009), he argues that hazard rates out of the labor force are the main drivers
of labor force fluctuations. Restricting his sample to individuals aged 25-55, he claims that over the
period 1976-2018, outflows account for 55% of the variance of the labor force participation rate (and
even 84% over the 1990-2018 period). However, instead of focusing on quarterly fluctuations of hazard
rates and labor force participation (as is the case in this work), he studies deviations of these quantities
from their means. This leads to an analysis of different time series for labor force participation and
hazard rates which can explain the opposite conclusions reached in this work.25

On the other hand, a recent paper by Cairo et al. (2019) studies the cyclicality of the labor force
participation rate in search and matching models. They argue that the ability of the model to re-
produce the mild procyclicality of labor force participation is closely related to whether the model
matches the procyclicality of the transition rate from inactivity to employment.26 The results in Table
6 highlight the role of f IE which can be seen as supporting their emphasis on this particular transition
rate.

In terms of occupations-specific hazard rates, Table 6 shows that inflows to middle and low skill
labor force account for more than half of the variance (respectively for 25.0% and 29.4%) and for 80%
of the inflow contribution (54.4%/65.6%). These 2 occupation groups represent 64.8% of the labor
force on average (respectively 35.2%, 31.6% and 33.2% for high, middle and low skill occupations)
which highlights the importance of inflows to these 2 occupations representing 2/3 of the labor force
but 80% of the inflow contribution.

Finally, the graphical analysis of inflows in Figure 4 (bottom graph) shows that the inflow contribu-
tions (usually) result from hazard rate contributions of opposite signs. In particular, during recessions,
the inflow to unemployment, f IU , increases which contributes positively to labor force fluctuations.
On the other hand, the decrease of f IE puts a negative pressure on labor force participation. Similarly
to outflows, contributions of inflows are therefore the results of offsetting forces which are also likely

24Note that Elsby et al. (2019) emphasize the role of hazard rates between employment and unemployment, fEU and
fUE which do not explicitly appear in the hazard rate decomposition used in this work (see footnote 14). However, the
effects of these hazard rates are implicitly contained into the fluctuations of the unemployment rate. Table 5 shows that
these two hazard rates account for 65% of the variance of the aggregate unemployment rate. Since fEU and fUE explain
most of the variance of ∆u, we can expect that these 2 hazard rates account for an important share of the 40% explained
by ∆ut.

25Note that by removing the mean, the labor force series studied by Barnichon (2019) still features the trends present
in the original series (increase until 2000 and decrease after). This raises questions about decomposing the variance of
a non stationary series. Furthermore, the decomposition proposed by Fujita and Ramey (2009) (which is based on the
steady state decomposition of the stock of interest) can also be used to study quarterly fluctuations of a stock or its
cyclical component extracted using the hp-filter (deviations from trend). I have applied this decomposition using both
quantities and found that ins account for 75% of the variance, more in line with the results reported in Table 6.

26Cairo et al. (2019) argue that in recessions, transition rates between unemployment and inactivity tend to put
upward pressure on participation through a decrease of fUIt and an increase of fIUt . The decrease of fIEt is therefore
important to counteract these positive pressures.
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contributing to the the mild procyclicality of labor force participation.

Hazard rates contributions in percentage points, to quarterly fluctuations of labor force participation in level. The
top graph displays contributions from outflows decomposed into the contributions of hazard rates out of the labor
force, ∆s̃EIt = ∆s̃E

hI
t + ∆s̃E

mI
t + ∆s̃E

lI
t and ∆s̃UIt = ∆s̃U

hI
t + ∆s̃U

mI
t + ∆s̃U

lI
t and the composition effect from

unemployment variations, ∆s̃u. Occupational composition effects are small and not displayed in this figure. The
bottom graph shows inflows contributions, ∆s̃IEt = ∆s̃IE

h

t + ∆s̃IE
m

t + ∆s̃IE
l

t and ∆s̃IUt = ∆s̃IU
h

t + ∆s̃IU
m

t + ∆s̃IU
l

t .
Labor force participation fluctuations, ∆lf are displayed in black and shaded areas correspond to recession periods
as defined by the NBER.

Figure 4: Ins and Outs Contributions to Quarterly Fluctuations of Labor Force Participation
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5 Conclusion

Using CPS data over the 1976-2010 period and the variance decomposition proposed by Elsby et al.
(2015), this paper studies the role of aggregate and disaggregated hazard rates by occupations, in
driving short term fluctuations of labor market stocks.

Accounting for the occupational dimension reveals some interesting differences between the dy-
namics of disaggregated unemployment rates. Fluctuations of the high skill (or cognitive occupations)
unemployment rate are mostly explained by hazard rates into unemployment, whereas the outs drive
variations of the low skill (manual occupations) unemployment rate. For the high skill unemployment
rate, the higher contributions of inflows originates from inflows from inactivity while outflows to em-
ployment are particularly important for fluctuations of the low skill unemployment rate.

This paper also focuses on the fluctuations of the aggregate unemployment rate and labor force
participation. I show how the framework used to study variations of occupation-specific stocks, can
be applied for the analysis of these aggregate stocks fluctuations. This allows to study the effects
of occupation-specific hazard rates but also the role of variations in the occupational composition of
(un)-employment.

The variance decomposition results show that these compositional effects do not matter for short
term fluctuations of the aggregate unemployment rate. I find that hazard rates out of unemployment
to employment and to inactivity explain around 60% of the variance in aggregate unemployment fluc-
tuations whereas hazard rates to unemployment from employment and from inactivity account for the
remaining share. This suggests that both types of transitions are required to understand the dynamics
of the unemployment rate (Elsby et al. (2009)). Furthermore, hazard rates into and out of middle and
low skill unemployment account for more than 80% of the variance in fluctuations of the unemploy-
ment rate. The graphical analysis of these contributions also reveals the significant role of outflows to
employment particularly during recessions.

The analysis of labor force participation allows to better understand the mechanisms behind the
fluctuations of this stock. The results of the variance decomposition show that flows out of the labor
force explain around 35% of its variance and unemployment rate variations account for the entirety
of this contribution. This highlight the key role played by unemployment on labor force fluctuations:
when unemployment increases (during a recession for instance), the exit rate from the labor force
increases as well which exerts negative pressure on labor force participation. However, this effect is
partly compensated by the hazard rate from unemployment to inactivity which decreases and limits
the increase in outflows. On the other hand, I find that inflows to the labor force account for 65% of
its variance with hazard rates to employment contributing for 45% and hazard rates to unemployment
for 20%.

Taken together, these results imply that during recessions, the increase in the unemployment rate
and the decrease in hazard rates from inactivity to employment, f IE , have a negative impact on labor
force fluctuations through an increase in outflows and a decrease in inflows. However, hazard rates from
the labor force to inactivity, fEI and fUI , decrease which limits the increase in outflows. Furthermore,
the hazard rate from inactivity to unemployment, f IU , increases which has a positive effect on inflows.
The mild procyclicality of labor force participation is therefore the result of various hazard rates and
composition effects which offset each other and dampen the fluctuations in this stock.

Despite the substantial adjustments performed in Ounnas (2019), the data used in this paper
could still suffer from misclassification errors between unemployment and inactivity as well as spurious
occupational mobility. Implementing some adjustments proposed in the literature could therefore help
to make the results obtained in this paper more robusts. Moreover, this paper focused on the occu-
pational dimension of labor market fluctuations but this framework could be used to analyze effects
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of other common dimension of heterogeneity such as age or gender. Finally, the results obtained in
this paper are more of a descriptive nature. Further research would be needed to understand why
inflows to unemployment have higher contributions to fluctuations of the high skill unemployment
rate or why outflows from unemployment matter more for low skill unemployment rate fluctuations.
Understanding the cyclical behavior of the employment to inactivity and inactivity to unemployment
hazard rates would also be important given the role that these transition rates play in dampening labor
force fluctuations.
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A Appendix

A.1 Data

A.1.1 Cyclical properties of stocks using different Filers

Hamilton (2018) Filter

Hamilton (2018) proposes to extract the cyclical component as the residuals from the following regres-
sion:

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3

For quarterly data, Hamilton (2018) recommends setting h = 8 which is the value used to compute
the results displayed in Tables 7 and 10.

σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Employment

E 0.0210 0.650 0.877 0.902
Eh 0.0206 0.638 0.709 0.871
Em 0.0303 0.939 0.646 0.891
El 0.0202 0.624 0.491 0.773

Unemployment

u 0.2120 6.559 -0.851 0.899
uh 0.2095 6.482 -0.702 0.882
um 0.2084 6.448 -0.805 0.910
ul 0.2057 6.366 -0.852 0.887

Labor force

lf 0.0075 0.231 0.582 0.846

The cyclical component xt is extracted using the Hamilton Filter with h = 8. The first column re-

ports the standard deviation of xt, the second column displays the standard deviation of xt relative

to the standard deviation of the cyclical component of GDP, yt. The third shows the correlation be-

tween xt and yt and the last column computes the autocorrelation at lag 1 for xt. The superscript

h,m and l stand for high, middle and low skill.

Table 7: Cyclical Properties for quarterly average of stocks over the period 1976-2010 (2)
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HP Filter with λ = 105

σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Employment

E 0.0160 0.652 0.880 0.951
Eh 0.0161 0.657 0.714 0.886
Em 0.0205 0.834 0.654 0.889
El 0.0211 0.859 0.837 0.862

Unemployment

u 0.1791 7.290 -0.894 0.960
uh 0.2023 8.236 -0.814 0.943
um 0.1765 7.183 -0.878 0.945
ul 0.1737 7.070 -0.912 0.956

Labor force

lf 0.0055 0.224 0.575 0.838

The cyclical component xt is extracted as 100 times the log deviation from the HP-filter trend with

smoothing parameter λ = 105. The first column reports the standard deviation of xt, the second

column displays the standard deviation of xt relative to the standard deviation of the cyclical com-

ponent of GDP, yt. The third shows the correlation between xt and yt and the last column computes

the autocorrelation at lag 1 for xt. The superscript h,m and l stand for high, middle and low skill.

Table 8: Cyclical Properties for quarterly average of stocks over the period 1976-2010 (3)

Cyclical Component for series in Level using the HP Filter with λ = 1600

σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Employment

E 0.6105 0.004 0.839 0.901
Eh 0.2152 0.001 0.506 0.728
Em 0.2769 0.002 0.772 0.799
El 0.2672 0.002 0.709 0.684

Unemployment

u 0.7129 0.005 -0.869 0.911
uh 0.3734 0.003 -0.867 0.892
um 0.8084 0.005 -0.869 0.888
ul 0.9994 0.007 -0.849 0.898

Labor force

lf 0.2339 0.002 0.488 0.655

The cyclical component xt is extracted for series in level and using the HP-filter with smoothing

parameter λ = 1600. The first column reports the standard deviation of xt, the second column dis-

plays the standard deviation of xt relative to the standard deviation of the cyclical component of

GDP, yt. The third shows the correlation between xt and yt and the last column computes the au-

tocorrelation at lag 1 for xt. The superscript h,m and l stand for high, middle and low skill.

Table 9: Cyclical Properties for quarterly average of stocks over the period 1976-2010 (4)
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A.1.2 Cyclical properties of flow rates using different Filers

Hamilton (2018) Filter

σxt
σxt
σyt

ρxt,yt ρxt,xt−1 σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Emp. Unemp.

Aggregate

pEU 0.122 3.779 -0.836 0.851 pUE 0.134 4.132 0.707 0.859
pEI 0.049 1.525 0.437 0.707 pUI 0.087 2.683 0.739 0.824

High Skill

pE
hEm

0.173 5.361 -0.086 0.716 pU
hEh

0.179 5.547 0.592 0.764
pE

hEl

0.143 4.439 0.071 0.677 pU
hEm

0.227 7.031 0.491 0.642
pE

hUh

0.117 3.626 -0.399 0.661 pU
hEl

0.186 5.763 0.390 0.585
pE

hI 0.070 2.163 0.065 0.388 pU
hI 0.112 3.456 0.497 0.613

Middle Skill

pE
mEh

0.141 4.368 -0.069 0.753 pU
mEh

0.242 7.496 0.629 0.645
pE

mEl

0.096 2.984 0.251 0.491 pU
mEm

0.191 5.914 0.593 0.818
pE

mUm

0.125 3.860 -0.723 0.740 pU
mEl

0.154 4.773 0.591 0.710
pE

mI 0.067 2.067 0.385 0.641 pU
mI 0.091 2.810 0.689 0.759

Low Skill

pE
lEh

0.145 4.491 0.129 0.760 pU
lEh

0.215 6.638 0.468 0.512
pE

lEm

0.076 2.360 0.019 0.529 pU
lEm

0.219 6.776 0.716 0.813
pE

lUl

0.125 3.865 -0.816 0.824 pU
lEl

0.127 3.928 0.724 0.798
pE

lI 0.051 1.570 0.416 0.518 pU
lI 0.108 3.339 0.724 0.812

Inactivity

Aggregate

pIE 0.069 2.122 0.547 0.714
pIU 0.124 3.828 -0.733 0.851

Skill

pIE
h

0.088 2.726 0.504 0.466
pIE

m

0.100 3.093 0.609 0.678
pIE

l

0.084 2.587 0.684 0.663
pIU

h

0.166 5.142 -0.548 0.709
pIU

m

0.145 4.495 -0.731 0.787
pIU

l

0.126 3.907 -0.695 0.827

The cyclical component xt is extracted using the Hamilton Filter with h = 8. The first column reports the standard

deviation of xt, the second column displays the standard deviation of xt relative to the standard deviation of the

cyclical component of GDP, yt. The third shows the correlation between xt and yt and the last column computes

the autocorrelation at lag 1 for xt. The superscript h,m and l stand for high, middle and low skill.

Table 10: Cyclical Properties for quarterly average of flow rates over the period 1976-2010 (2)
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HP Filter with λ = 105

σxt
σxt
σyt

ρxt,yt ρxt,xt−1 σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Emp. Unemp.

Aggregate

pEU 0.091 3.694 -0.798 0.782 pUE 0.121 4.937 0.867 0.916
pEI 0.041 1.680 0.495 0.569 pUI 0.080 3.273 0.790 0.870

High Skill

pE
hEm

0.143 5.800 -0.027 0.567 pU
hEh

0.152 6.189 0.626 0.712
pE

hEl

0.133 5.422 0.160 0.624 pU
hEm

0.186 7.551 0.638 0.505
pE

hUh

0.124 5.055 -0.667 0.688 pU
hEl

0.172 6.985 0.474 0.521
pE

hI 0.065 2.640 0.158 0.210 pU
hI 0.106 4.296 0.540 0.583

Middle Skill

pE
mEh

0.113 4.585 -0.170 0.645 pU
mEh

0.189 7.712 0.610 0.475
pE

mEl

0.076 3.078 0.109 0.156 pU
mEm

0.150 6.103 0.787 0.832
pE

mUm

0.104 4.234 -0.593 0.601 pU
mEl

0.131 5.351 0.729 0.651
pE

mI 0.059 2.410 0.549 0.534 pU
mI 0.077 3.153 0.760 0.696

Low Skill

pE
lEh

0.136 5.532 0.129 0.688 pU
lEh

0.189 7.713 0.516 0.359
pE

lEm

0.068 2.748 -0.078 0.360 pU
lEm

0.182 7.415 0.798 0.783
pE

lUl

0.093 3.801 -0.811 0.777 pU
lEl

0.112 4.541 0.851 0.827
pE

lI 0.042 1.721 0.347 0.267 pU
lI 0.092 3.729 0.742 0.810

Inactivity

Aggregate

pIE 0.061 2.476 0.816 0.683
pIU 0.099 4.048 -0.833 0.841

Skill

pIE
h

0.086 3.500 0.479 0.281
pIE

m

0.079 3.232 0.742 0.512
pIE

l

0.067 2.722 0.703 0.449
pIU

h

0.125 5.068 -0.621 0.518
pIU

m

0.110 4.473 -0.759 0.715
pIU

l

0.102 4.153 -0.812 0.791

The cyclical component xt is extracted as 100 times the log deviation from the HP-filter trend with smoothing pa-

rameter λ = 105.. The first column reports the standard deviation of xt, the second column displays the standard

deviation of xt relative to the standard deviation of the cyclical component of GDP, yt. The third shows the cor-

relation between xt and yt and the last column computes the autocorrelation at lag 1 for xt. The superscript h,m

and l stand for high, middle and low skill.

Table 11: Cyclical Properties for quarterly average of flow rates over the period 1976-2010 (3)
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Cyclical Component for series in Level using the HP Filter with λ = 1600

σxt
σxt
σyt

ρxt,yt ρxt,xt−1 σxt
σxt
σyt

ρxt,yt ρxt,xt−1

Emp. Unemp.

Aggregate

pEU 0.109 0.001 -0.770 0.624 pUE 2.052 0.014 0.824 0.810
pEI 0.093 0.001 0.329 0.246 pUI 1.155 0.008 0.752 0.739

High Skill

pE
hEm

0.111 0.001 0.219 0.389 pU
hEh

1.721 0.012 0.550 0.459
pE

hEl

0.057 0.000 0.268 0.255 pU
hEm

1.014 0.007 0.558 0.277
pE

hUh

0.060 0.000 -0.675 0.558 pU
hEl

0.696 0.005 0.370 0.307
pE

hI 0.094 0.001 0.043 -0.054 pU
hI 1.455 0.010 0.587 0.348

Middle Skill

pE
mEh

0.094 0.001 0.093 0.456 pU
mEh

0.353 0.002 0.459 0.303
pE

mEl

0.092 0.001 0.265 0.001 pU
mEm

1.508 0.010 0.695 0.672
pE

mUm

0.130 0.001 -0.632 0.462 pU
mEl

0.715 0.005 0.546 0.378
pE

mI 0.145 0.001 0.356 0.231 pU
mI 1.322 0.009 0.648 0.480

Low Skill

pE
lEh

0.075 0.001 0.257 0.395 pU
lEh

0.243 0.002 0.268 0.159
pE

lEm

0.073 0.000 0.224 -0.027 pU
lEm

0.595 0.004 0.720 0.571
pE

lUl

0.165 0.001 -0.747 0.574 pU
lEl

1.582 0.011 0.743 0.591
pE

lI 0.157 0.001 0.228 0.073 pU
lI 1.331 0.009 0.622 0.627

Inactivity

Aggregate

pIE 0.215 0.001 0.643 0.393
pIU 0.161 0.001 -0.722 0.627

Skill

pIE
h

0.076 0.001 0.255 0.002
pIE

m

0.096 0.001 0.576 0.223
pIE

l

0.127 0.001 0.504 0.143
pIU

h

0.037 0.000 -0.555 0.352
pIU

m

0.073 0.000 -0.612 0.483
pIU

l

0.081 0.001 -0.633 0.518

The cyclical component xt is extracted for series in level using the HP-filter with smoothing parameter λ = 1600.

The first column reports the standard deviation of xt, the second column displays the standard deviation of xt rel-

ative to the standard deviation of the cyclical component of GDP, yt. The third shows the correlation between xt

and yt and the last column computes the autocorrelation at lag 1 for xt. The superscript h,m and l stand for high,

middle and low skill.

Table 12: Cyclical Properties for quarterly average of flow rates over the period 1976-2010 (4)
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A.2 Variance Decomposition

Cov(ΔEh,(3)) =  92.0
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Comparison of stocks obtained using recursion (3) in red with their data counterparts in blue. Stocks are measured in
percentages.

Figure 5: Stocks from Data and Recursion (3)
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uh um ul

Orig. KF KS Orig. KF KS Orig. KF KS

From E

βE
hEm

-2.7 -2.6 -2.7 2.5 2.5 2.6 1.5 1.3 1.3
βE

hEl

-0.9 -0.8 -0.9 0.9 0.9 1.0 2.5 2.4 2.3
βE

mEh

0.2 0.3 0.2 0.2 0.2 0.3 0.0 -0.2 -0.2
βE

mEl

0.2 0.3 0.2 -0.3 -0.3 -0.2 0.8 0.6 0.6
βE

lEh

1.0 1.1 1.0 -0.3 -0.3 -0.2 -0.5 -0.6 -0.7
βE

lEm

0.0 0.1 0.0 0.4 0.4 0.4 -0.1 -0.3 -0.3

βE
hUh

27.8 27.9 27.8 0.3 0.3 0.4 0.3 0.1 0.1
βE

mUm

0.1 0.2 0.1 28.1 28.2 28.2 0.3 0.1 0.1
βE

lUl

0.2 0.3 0.2 0.1 0.1 0.1 24.0 23.7 23.7

βE
hI -1.9 -1.8 -1.9 1.1 1.1 1.2 1.3 1.1 1.1

βE
mI 0.6 0.7 0.6 -2.2 -2.2 -2.2 0.3 0.1 0.1

βE
lI 0.9 1.0 0.9 0.1 0.1 0.1 -1.1 -1.2 -1.3

from U

βU
hEh

14.6 14.7 14.6 -0.5 -0.5 -0.4 -0.6 -0.7 -0.8
βU

hEm

8.8 8.8 8.7 1.0 1.0 1.1 0.0 -0.1 -0.2
βU

hEl

6.7 6.8 6.7 0.0 0.0 0.1 0.7 0.6 0.5
βU

mEh

0.6 0.7 0.6 1.1 1.1 1.1 -0.1 -0.3 -0.3
βU

mEm

-0.1 -0.0 -0.1 21.3 21.4 21.4 -0.5 -0.7 -0.7
βU

mEl

-0.1 -0.0 -0.1 6.9 6.9 7.0 1.4 1.3 1.2
βU

lEh

0.2 0.3 0.2 -0.1 -0.1 -0.0 0.8 0.6 0.6
βU

lEm

0.1 0.2 0.1 2.1 2.1 2.2 6.8 6.7 6.6
βU

lEl

-0.2 -0.1 -0.2 -0.3 -0.3 -0.3 34.4 34.2 34.2

βU
hI 16.9 17.0 16.9 -0.2 -0.2 -0.1 0.0 -0.1 -0.2

βU
mI -0.6 -0.5 -0.6 21.8 21.8 21.9 -0.5 -0.7 -0.7

βU
lI -0.4 -0.3 -0.4 -0.8 -0.8 -0.7 20.1 19.9 19.9

From I

βIE
h

1.7 1.8 1.7 -0.1 -0.1 -0.1 0.3 0.1 0.1
βIE

m

0.3 0.4 0.3 3.5 3.5 3.6 -0.1 -0.3 -0.3
βIE

l

0.2 0.3 0.2 0.5 0.5 0.5 4.2 4.0 4.0

βIU
h

26.1 26.2 26.1 -0.1 -0.1 -0.1 -0.1 -0.3 -0.3
βIU

m

-0.2 -0.1 -0.2 11.1 11.1 11.1 -0.4 -0.5 -0.6
βIU

l

-0.0 0.1 -0.0 -0.2 -0.2 -0.1 10.4 10.2 10.2

Tot 100.2 103.1 100.0 97.8 98.1 100.0 106.3 100.9 100.0

Table 13: Comparison of the Variance Decomposition Results for Occupational Unemployment Rates
obtained using the Kalman Filter and Smoother
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u lf

Orig. KF KS Orig. KF KS

From E

βE
hUh

3.5 3.6 3.6 - - -
βE

mUm

9.9 10.3 10.3 - - -
βE

lUl

11.1 11.5 11.5 - - -
βEU − comp Em -0.2 -0.1 -0.1 - - -
βEU − comp El -0.4 -0.4 -0.4 - - -

βE
hI 0.1 0.0 0.0 3.6 3.3 3.3

βE
mI -0.1 -0.5 -0.5 3.1 2.9 2.8

βE
lI -0.4 -0.4 -0.4 8.3 8.1 8.1

βEI − comp Em -0.0 -0.0 -0.0 -0.6 -0.8 -0.8
βEI − comp El -0.0 -0.0 -0.0 -0.5 -0.7 -0.8

From U

βU
hEh

3.0 3.1 3.1 - - -
βU

hEm

1.5 1.6 1.6 - - -
βU

hEl

1.3 1.4 1.4 - - -
βU

mEh

0.7 0.8 0.8 - - -
βU

mEm

7.4 7.7 7.7 - - -
βU

mEl

3.6 3.8 3.8 - - -
βU

lEh

0.5 0.5 0.5 - - -
βU

lEm

4.3 4.5 4.5 - - -
βU

lEl

16.7 17.3 17.3 - - -
βUE − comp Um 0.2 0.2 0.2 - - -
βUE − comp U l -0.1 -0.1 -0.0 - - -

βU
hI 2.7 2.6 2.6 -2.8 -3.1 -3.1

βU
mI 8.8 8.3 8.3 -7.3 -7.5 -7.5

βU
lI 10.6 10.0 10.0 -6.9 -7.1 -7.1

βUI − comp Um 0.1 0.1 0.1 -0.0 -0.2 -0.3
βUI − comp U l -0.0 -0.0 -0.0 -0.1 -0.3 -0.3

From I

βIE
h

0.3 0.5 0.5 9.1 8.9 8.9
βIE

m

0.9 1.2 1.2 19.4 19.1 19.1
βIE

l

1.4 1.9 1.9 18.1 17.9 17.9

βIU
h

2.7 2.6 2.6 2.6 2.3 2.3
βIU

m

3.8 3.6 3.6 6.2 5.9 5.9
βIU

l

4.4 4.2 4.2 11.8 11.6 11.5

From lf to I

βlfI − comp u - - - 40.3 40.1 40.1

Tot 98.2 99.5 100.0 104.2 100.4 100.0

Table 14: Comparison of the Variance Decomposition Results for Aggregate Stocks obtained using the
Kalman Filter and Smoother
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A.3 Complementary Results for Section 3

A.3.1 Full sample: detailed results

uh um ul u lf

βE
hEm

-2.67 2.60 1.26 - -
βE

hEl

-0.91 0.98 2.32 - -
βE

mEh

0.19 0.26 -0.20 - -
βE

mEl

0.19 -0.22 0.57 - -
βE

lEh

1.00 -0.23 -0.66 - -
βE

lEm

0.01 0.44 -0.34 - -

βE
hUh

27.78 0.41 0.09 3.58 -
βE

mUm

0.13 28.24 0.12 10.32 -
βE

lUl

0.21 0.15 23.67 11.51 -
βEU − comp Em - - - -0.13 -
βEU − comp El - - - -0.39 -

βE
hI -1.91 1.16 1.09 0.02 3.32

βE
mI 0.56 -2.16 0.05 -0.46 2.84

βE
lI 0.90 0.13 -1.27 -0.37 8.09

βEI − comp Em - - - -0.01 -0.84
βEI − comp El - - - -0.01 -0.77

βU
hEh

14.57 -0.42 -0.77 3.08 -
βU

hEm

8.74 1.08 -0.17 1.61 -
βU

hEl

6.73 0.07 0.51 1.41 -
βU

mEh

0.56 1.15 -0.29 0.78 -
βU

mEm

-0.12 21.44 -0.72 7.71 -
βU

mEl

-0.12 6.99 1.24 3.76 -
βU

lEh

0.19 -0.03 0.60 0.49 -
βU

lEm

0.14 2.17 6.61 4.47 -
βU

lEl

-0.20 -0.26 34.22 17.31 -
βUE − comp Um - - - 0.22 -
βUE − comp U l - - - -0.03 -

βU
hI 16.87 -0.10 -0.17 2.61 -3.09

βU
mI -0.55 21.85 -0.68 8.29 -7.55

βU
lI -0.40 -0.70 19.92 10.00 -7.12

βUI − comp Um - - - 0.10 -0.27
βUI − comp U l - - - -0.00 -0.33

βIE
h

1.71 -0.08 0.09 0.47 8.89
βIE

m

0.33 3.58 -0.35 1.24 19.12
βIE

l

0.20 0.54 3.96 1.94 17.87

βIU
h

26.09 -0.06 -0.30 2.61 2.31
βIU

m

-0.19 11.13 -0.56 3.65 5.91
βIU

l

-0.03 -0.13 10.16 4.22 11.54

βlfI − comp u - - - - 40.09

Tot 100.00 100.00 100.00 100.00 100.00

Table 15: Detailed Results of the Variance Decomposition
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