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1 Introduction

Recent contributions have suggested new social welfare relations for the purpose of

evaluating infinite utility streams representing the welfare levels of an infinite and

countable number of generations. In particular, Basu and Mitra (2007a) extend the

utilitarian ordering on a finite dimensional Euclidian space to the infinite dimensional

case, while Bossert, Sprumont and Suzumura (2007) do likewise for the leximin

ordering. Both these social welfare relations are incomplete, but may still be effective

in the sense of selecting a small set of optimal or maximal elements for a given class

of feasible infinite utility streams.

However, it is easy to construct pairs of infinite utility streams where it is clear

that the one infinite stream is socially preferred to the other both from a utilitarian

and egalitarian point of view, but where the streams are incomparable according

to the criteria of Basu and Mitra (2007a) and Bossert, Sprumont and Suzumura

(2007). To illustrate, consider the following two streams:
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It is intuitively clear that u is socially preferred to v from a utilitarian perspective

since the sum of utility differences between u and v is convergent and converges to

1
2 . Likewise, it is intuitively clear that u is socially preferred to v from an egalitarian

perspective since minimal utility exists for both streams and the minimal utility of u

(= 1
2) is greater than the minimal utility of v (= 0). Still, according to the criteria of

Basu and Mitra (2007a) and Bossert, Sprumont and Suzumura (2007) these streams

are incomparable since there is no cofinite set (a subset of all generations with finite

complement) on which u equals or Pareto-dominates v. This motivates an investi-

gation of social welfare relations for the evaluation of infinite utility streams which

are more complete than those proposed by Basu and Mitra (2007a) and Bossert,

Sprumont and Suzumura (2007), without compromising desirable properties.
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Extensions of utilitarian and leximin orderings to the infinite horizon are nor-

mally required to satisfy the axioms of Finite Anonymity (ensuring equal treatment

of generations) and Strong Pareto (ensuring sensitivity for the interests for each gen-

eration). Recent work by Lauwers (2007) and Zame (2007) confirms the following

conjecture, suggested by Fleurbaey and Michel (2003): it is not possible to construct

and describe a complete and transitive binary relation on the set of infinite utility

streams which satisfies the axioms of Finite Anonymity and Strong Pareto.1 We

will here be concerned with constructible social welfare relations satisfying Finite

Anonymity and Strong Pareto, and hence completeness is an unreachable goal.

However, there might be reasons—other than such non-constructibility—why

one should refrain from seeking excessive comparability. To make this argument,

consider the following two infinite utility streams:

x : 1 0 1 0 1 0 . . . 1 0 . . .

y : 0 1 0 1 0 1 . . . 0 1 . . .

When traditional overtaking (Atsumi, 1965; von Weizsäcker, 1965) is applied to the

utilitarian or leximin ordering (in the sense of catching up in finite time, see Asheim

and Tungodden, 2004), then x is socially preferred to y, since the finite head of

x is preferred to the finite head of y at all odd times, while they are indifferent

at even times. When extended Fixed-step Anonymity (Lauwers, 1997; Mitra and

Basu, 2007) is added to the criterion of Basu and Mitra (2007a) (as done by Banerjee,

2006) and to the the criterion of Bossert, Sprumont and Suzumura (2007) (as done by

Kamaga and Kojima, 2008) then x is socially indifferent to y. This is demonstrated

by the fact that choosing a fixed-step of 2 and permuting odd and even times for x

makes x identical to y.

We argue that either conclusion is problematic. By invoking Fixed-step Anony-

1Existence of such a complete and transitive binary relation follows (in an non-constructive way)

from Szpilrajn’s (1930) Lemma; see Svensson (1980).
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mity, leading to social indifference between x and y, Strong Pareto forces us to

conclude that the former of the following two streams is preferred to the latter:

(0,x) : 0 1 0 1 0 1 . . . 0 1 . . .

(0,y) : 0 0 1 0 1 0 . . . 1 0 . . .

This contradicts Koopmans’s (1960) Stationarity axiom (in the sense that preference

over future utilities should be independent of present utility). Hence, if one considers

Stationarity to be compelling, it comes at a cost to impose Fixed-step Anonymity.

A problem with the strict ranking between x and y induced by traditional over-

taking is that it is not invariant to the sequencing of time periods. In particular,

permuting odd and even times for both x and y, makes x equal to y and y equal

to x, thereby inverting the strict ranking. Even worse, by allowing for permutations

that are not of the fixed-step kind, there exists an infinite permutation matrix P

such that

Px : 0 0 1 0 1 0 . . . 1 0 . . .

Py : 1 1 0 1 0 1 . . . 0 1 . . .

implying that Strong Pareto implies that Py is socially preferred to Px when com-

bined with either (i) Fixed-step Anonymity or (ii) Finite Anonymity and traditional

overtaking (in the sense of catching up in finite time).2

It should be noted that Relative Anonymity (in the sense the ranking of two

streams does not change when the same permutation of time periods is applied to

both streams) is weaker than ordinary Anonymity (where a permutation of genera-

tions is applied to only one stream). To illustrate: the incomplete social welfare rela-

tion generated by Strong Pareto alone satisfies Strong Relative Anonymity (‘strong’

2The concept of a permutation and a permutation matrix is introduced in Section 2.2. The

matrix P moves time 2 to time 1, all other even times two periods backwards, and all odd times

two periods forwards.
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because infinite permutations of time periods are allowed), but fails to satisfy even

the weakest form of Anonymity, Finite Anonymity, because Pareto-dominance can

vanish when two elements of the one stream (only) are permuted.

It is easy to demonstrate that the utilitarian and leximin social welfare relations

proposed by Basu and Mitra (2007a) and Bossert, Sprumont and Suzumura (2007)

respectively satisfy both Stationarity and Strong Relative Anonymity. It is the

purpose of the present paper to extend the asymmetric parts of these binary relations

without compromising Stationarity and Strong Relative Anonymity. In particular,

we will present utilitarian and leximin social welfare relations that rank u strictly

above v, while considering x and y (and (0,x) and (0,y), and Px and Py) to be

incomparable. When evaluating the merit of this exercise one should keep in mind

that it is the extension of the asymmetric part that matters if one seeks to reduce

the set of maximal elements for a given class of feasible infinite utility streams.

A simple but important fact is that, for comparing infinite utility streams, all

welfare criteria, whether the utilitarian criterion of Basu and Mitra (2007b), the

leximin criterion of Bossert, Sprumont and Suzumura (2007), as well as other util-

itarian criteria such as Catching Up and Overtaking introduced by von Weizsäcker

(1965) and Atsumi (1965), and the leximin criteria defined in Asheim and Tun-

godden (2004), all use an infinite sequence of the standard finite version of either

the utilitarian or the leximin social welfare ordering. Using this fact, and a known

property of these respective sequences, namely that of being “proliferating” (to im-

pose the criterion for any finite number of persons, it is sufficient to impose it in

situations where only two persons are involved), all these criteria can be given a

“generalized” formulation. This generalized formulation is meaningful for any given

proliferating sequence of social welfare relations defined on finite utility streams (and

usually assumed to satisfy some Anonymity and Pareto conditions). The notion of

a proliferating sequence was introduced for the analysis of generalized versions of

infinite-dimensional SWRs by d’Aspremont (2007).
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Here we suggest a new version of the overtaking criterion within this general

approach to the evaluation of infinite utility streams. We call this generalized time-

invariant overtaking. The generalized time-invariant overtaking criterion (on the

space of infinite utility streams) is defined by extending proliferating sequences of

complete and transitive binary relations defined on finite dimensional spaces. Our

general analysis specializes in a straightforward manner to the utilitarian and lex-

imin cases. We establish as a general result (stated in Theorem 1) that general-

ized time-invariant overtaking satisfies Stationarity and Strong Relative Anonymity.

Moreover, we provide methods for determining the asymmetric and symmetric parts

in the special cases of the utilitarian and leximin time-invariant overtaking criteria;

these methods show that both criteria rank u strictly above v.

The paper is organized as follows: Section 2 contains preliminaries, Section 3

presents the concept of proliferating sequences, and Section 4 reviews different kinds

of “generalized criteria”. Section 5 defines and investigates the properties of gen-

eralized time-invariant overtaking, while Section 6 specializes this concept to the

utilitarian and leximin cases. Section 7 offers concluding remarks.

2 Preliminaries

2.1 Notation and Definitions

Let N denote the set of natural numbers {1, 2, 3, ...} and R the set of real numbers.

Let X denote the set Y |N|, where Y ⊆ R is an interval satisfying [0, 1] ⊆ Y . We let

X be the domain of utility sequences (also referred to as “utility streams” or “utility

profiles”). Thus, we write x ≡ (x1, x2, . . .) ∈ X iff xn ∈ Y for all n ∈ N. For x,

y ∈ X we will write x ≥ y iff xi ≥ yi for all i ∈ N and x > y iff x ≥ y and x 6= y.

Whenever we write about subsets M , N of N, we will be dealing with subsets

of finite cardinality, entailing that N\M , N\N are cofinite sets (i.e., subsets of N

which complements are finite). For all x ∈ X and any N ⊂ N, we will write x as
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(xN ,xN\N ). We will denote vectors (finite as well as infinite dimensional) by bold

letters; example are x, y, etc. The components of a vector will be denoted by normal

font. Negation of a statement is indicated by the logical quantifier ¬.

A social welfare relation (SWR) is a reflexive and transitive binary relation de-

fined on X (and denoted %) or Y |M | for some M ⊂ N (and denoted %M ). A social

welfare order (SWO) is a complete SWR.

An SWR %′ is a subrelation of SWR %′′ if (a) for all x, y ∈ X, (x ∼′ y ⇒ x ∼′′

y), and (b) for all x, y ∈ X, (x �′ y ⇒ x �′′ y).

2.2 Permutations

A permutation π is a one-to-one map from N onto N. For any x ∈ X and a permu-

tation π, we write x ◦ π = (xπ(1), xπ(2), . . . ) ∈ X. Permutations can be represented

by a permutation matrix. A permutation matrix P = (pij)i,j∈N is an infinite matrix

satisfying the following properties:

(1) For each i ∈ N, pij(i) = 1 for some j(i) ∈ N and pij = 0 for all j 6= j(i).

(2) For each j ∈ N, pi(j)j = 1 for i(j) ∈ N and pij = 0 for all i 6= i(j).

Writing permutations in terms of mappings or matrices, unsurprisingly, turns

out to be equivalent. Given any permutation π, there is a permutation matrix P

such that for x ∈ X, x ◦ π = (xπ(1), xπ(2), . . . ) can also be written as Px in the

usual matrix multiplication. Conversely, given any permutation matrix P , there is

a permutation π defined by π = Pa, where a = (1, 2, 3, . . . ). The identity matrix

I is an infinite permutation matrix such that pii = 1 for all i ∈ N. Given any

infinite permutation matrix P , we denote by P ′ its unique inverse which satisfies

PP ′ = P ′P = I. We denote the set of all permutations (permutation matrices) by

P.

A finite permutation π is a permutation such that there is some N ⊂ N with

π(i) = i for all i /∈ N . Thus, a finite permutation matrix has pii = 1 for all i /∈ N
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for some N ⊂ N. The set of all finite permutations is denoted by F .

Given a permutation matrix P ∈ P and n ∈ N, we denote the n × n matrix

(pij)i,j∈{1,...,n} by P (n). Let

S = {P ∈ P | there is some k ∈ N such that, for each n ∈ N,

P (nk) is a finite dimensional permutation matrix} .

This class of permutations was introduced in Lauwers (1997). It is easily checked

that this is a group (with respect to matrix multiplication) of cyclic permutations.3

2.3 Axioms of Anonymity and Pareto

In this subsection we introduce the basic axioms that are repeatedly used in the rest

of the paper. The first set of axioms pertains to SWRs defined on a finite-dimensional

space, whereas the latter set is on the space of infinite utility streams.

Let %M be an SWR defined on Y |M |. Throughout we will as assume that %M

satisfies the following condition as a minimal requirement. It is an anonymity condi-

tion where the same permutation applies to the two utility vectors. Hence we call it

“relative anonymity”. In the present intergenerational context it can be interpreted

as a time invariance property.

Axiom m-I (m-Relative Anonymity) For all xM , yM , uN , vN ∈ Y m with M =

{i1, i2, ..., im} ⊂ N and N = {j1, j2, ..., jm} ⊂ N satisfying |M | = |N | = m ≥ 2, if

there exists a finite permutation π : {1, . . . ,m} → {1, . . . ,m} such that xiπ(k)
= ujk

and yiπ(k)
= vjk

for all k ∈ {1, . . . ,m}, then xM %M yM if and only if uN %N vN .

By satisfying m-I, %M depends only on the dimension |M |. We will henceforth

write %m for an SWR on Y m, thereby signifying that the SWR satisfies m-I.

3A permutation is cyclic if for each ei = (0, . . . , 0, 1, 0. . . . ) (with 1 at the ith place) there exists

a k ∈ N such that πk(ei) = ei. The class of cyclic permutations is not necessarily a group, while P

is a group which does not contain only cyclic permutations.
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It is useful to compare m-I to the usual anonymity condition where a permutation

is applied to the one utility stream only.

Axiom m-A (m-Anonymity) For all a, b ∈ Y m with m ≥ 2, if a is a permutation

of b, then a ∼m b.

Since %m is transitive, m-A is equivalent to having a ∼m b whenever there exists

i, j ∈ {1, . . . ,m} such that ai = bj , aj = bi and ak = bk for all k 6= i, j.

The m-Pareto Principle (a %P
m b if and only if a ≥ b) illustrates that m-I does

not imply m-A. However, as originally shown by d’Aspremont and Gevers (1977,

Lemma 4), the two axioms are equivalent if %mis complete.

Lemma 1 If %m with m ≥ 2 is complete, then %m satisfies m-A.

Proof. Assume that %m is complete (where the notation entails that the SWR

satisfies m-I). Suppose by way of contradiction that there exists a, b ∈ Y m with

ai = bj , aj = bi and ak = bk for all k 6= i, j such that ¬(a ∼m b). Since %m

is complete, we may w.l.o.g. assume that a �m b. However, by permuting the

ith and jth element of both a and b and invoking m-I, we obtain b �m a, which

contradicts a �m b. Hence, a ∼m b whenever there exists i, j ∈ {1, . . . ,m} such

that ai = bj , aj = bi and ak = bk for all k 6= i, j.

The other kind of basic axiom is the Pareto condition.

Axiom m-P (m-Pareto) For all a, b ∈ Y m with m ≥ 2, if a > b, then a �m b.

Clearly, since %m is transitive, m-P is equivalent to having a �m b whenever there

exists i ∈ {1, . . . ,m} such that ai > bi and ak = bk for all k 6= i. As a matter of

notation, if it is clear from the context that an axiom on finite dimension is invoked,

then we will drop the letter m from its abbreviation.

Let % be an SWR defined on X. Consider the following versions of the anonymity

and Pareto axioms on %. Let Q be some fixed group of permutations equaling F , S
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or P, corresponding to the terms “Finite”, “Fixed-step” and “Strong” respectively

in the names of the axioms below.

Axiom QI (Finite/Fixed-step/Strong Relative Anonymity) For all x, y ∈ X and

all P ∈ Q, x % y iff Px % Py.

Axiom QA (Finite/Fixed-step/Strong Anonymity) For all x ∈ X and all P ∈ Q,

x ∼ Px.

Axiom FP (Finite Pareto) For all x, y ∈ X with some subset N ⊂ N such that

xi = yi for all i ∈ N\N , if x > y, then x � y.

Axiom SP (Strong Pareto) For all x, y ∈ X, if x > y, then x � y.

Clearly, since % is transitive, FA is equivalent to having x ∼ y whenever there

exist i, j ∈ N such that xi = yj , xj = yi and xk = yk for all k 6= i, j. Likewise,

FP is equivalent to having x � y whenever there exists i ∈ N such that xi > yi

and xk = yk for all k 6= i. This is what Basu and Mitra (2007b) refer to as Weak

Dominance; hence, FP coincides with Weak Dominance. Note that for Q = F , S or

P, QA implies QI, while the converse is not true for incomplete infinite-dimensional

SWRs. For an analysis of these issues and more generally on comparability of a social

welfare evaluation in the intergenerational context we refer to Mabrouk (2008). It

is also well-known that PA cannot be combined with SP, while SA can (since it is

a group of cyclic permuations, cf. Mitra and Basu, 2007).

3 Proliferating sequences

Many well-known finite-dimensional SWRs form proliferating sequences. The struc-

ture imposed by this concept on a sequence of finite-dimensional SWR enables the

extension to an infinite-dimensional SWR to be analyzed at a generalized level,

without considering the specific nature of the finite-dimensional counterpart. Fur-
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thermore, it allows infinite-dimensional SWRs to be defined solely on the basis of

the 2-dimensional version of the underlying finite-dimensional SWR.

An SWR % extends the SWR %m if, for all M ⊂ N with |M | = m and all x,

y ∈ X with xi = yi for every i ∈ N\M , xM �m yM implies x � y, and xM ∼m yM

implies x ∼ y.

Definition 1 A sequence of SWRs, {%∗
m}∞m=2, is proliferating if any SWR % that

extends %∗
2 also extends %∗

m for every m ≥ 2.

The following result implies that the m-Grading Principle (a %S
m b if and only

if there exists a permutation c of b such that a ≥ c) is proliferating.4

Lemma 2 (i) If %2 is an SWR on Y 2 that satisfies A, and % is an SWR on X

that extends %2, then % satisfies FA.

(ii) If %2 is an SWR on Y 2 that satisfies P, and % is an SWR on X that extends

%2, then % satisfies FP.

Proof. (i) Let x, y ∈ X and for some i, j ∈ N (i 6= j), xi = yj , xj = yi and

xk = yk for all k 6= i, j. Set M = {i, j}. Since %2 satisfies A, xM ∼2 yM . By the

fact that xk = yk for all k ∈ N\M and % extends %2, x ∼ y.

(ii) Let x,y ∈ X and for some i ∈ N, xi > yi and xk = yk for all k 6= i. Set

M = {i, k} for some k 6= i. Since %2 satisfies P, xM �2 yM . By the fact that

xj = yj for all j ∈ N\M and % extends %2, x � y.

The utilitarian and leximin SWOs, which will be defined and analyzed in Section

6, are other important examples of proliferating sequences. In the case of such

4The Grading Principle was introduced by Suppes (1966) and further analyzed by Sen (1970),

Kolm (1972) and Hammond (1976, 1979). Its proliferating property is mentioned by Sen (1976, fn

26) as suggested by Hammond as a step to derive the same property for Leximin. For a proof, see

Hammond (1979). The proof of d’Aspremont (1985, Lemma 3.1.1) can be immediately transposed

to Y m (in place of Rm).
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complete SWRs, the notion of proliferation yields added structure.5

Lemma 3 A proliferating sequence {%∗
m}∞m=2 of SWOs satisfies:

(i) Assume xi = yi for some i ∈ N\M . Then xM %∗
|M | yM iff xM∪{i} %∗

|M |+1

yM∪{i}.

(ii) Assume that %∗
m satisfies P for each m ≥ 2. If there exists M ⊂ N with

|M | ≥ 2 such that xN ∼∗
|N | yN for all N ⊇ M , then xi = yi for all i ∈ N\M .

Proof. (i) Let {%∗
m}∞m=2 be a proliferating sequence of SWOs, and let % extend

%∗
2, implying that % extends %∗

m for all m ≥ 2. Assume that xM %∗
|M | yM and

xi = yi for some i ∈ N\M . Let z ∈ X be an arbitrarily chosen utility stream. Since

% extends %∗
|M |, this implies (xM∪{i}, zN\(M∪{i})) % (yM∪{i}, zN\(M∪{i})). Suppose

xM∪{i} ≺∗
|M |+1 yM∪{i}. Since % extends %∗

|M |+1, this implies (xM∪{i}, zN\(M∪{i})) ≺

(yM∪{i}, zN\(M∪{i})), leading to a contradiction. Hence, ¬(xM∪{i} ≺∗
|M |+1 yM∪{i}),

implying since the SWO %∗
|M |+1 is complete that xM∪{i} %∗

|M |+1 yM∪{i}. Likewise,

xM �∗
|M | yM and xi = yi for some i ∈ N\M implies that xM∪{i} �∗

|M |+1 yM∪{i},

thereby establishing the converse statement.

(ii) Let {%∗
m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, %∗

m

satisfying P. Assume that there exists M ⊂ N with |M | ≥ 2 such that xN ∼∗
|N | yN

for all N ⊇ M . Suppose that xi 6= yi for some i ∈ N\M ; w.l.o.g. we can set xi > yi.

Since %∗
|M |+1 satisfies P, it follows from part (i) that

xM∪{i} ∼∗
|M |+1 (yM , xi) �∗

|M |+1 yM∪{i} ,

contradicting that xM∪{i} ∼∗
|M |+1 yM∪{i}. Hence, xi = yi for all i ∈ N\M .

5Sakai (2008) refers to property (i) of the following lemma as “correlation”.

11



4 Generalized criteria

In this section we review “generalized criteria”, namely infinite-dimensional SWRs

that extend finite-dimensional SWRs that are both complete and proliferating. We

first introduce two additional axioms on the space of infinite utility streams that

will be used to differentiate these generalized criteria and in the rest of the paper.

Axiom ST (Stationarity) For all x, y, u, v ∈ X with x1 = y1 and, for all i ∈ N,

ui = xi+1 and vi = yi+1, x % y iff u % v.

Axiom IPC (Time-Invariant Preference Continuity) For all x, y ∈ X, if there exists

M ⊂ N such that, for all N ⊇ M , (xN ,yN\N ) � y, then x � y.

Axiom IPC will turn out to be sufficient to ensure strict preference between u and

v of the introduction, in the utilitarian and leximin cases.

Let {%∗
m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, %∗

m

satisfying axiom P (while, by Lemma 1, axiom A follows from the assumption that

axiom I is satisfied). To illustrate the axioms and the trade-offs between them,

consider the following generalized criteria. The possibility results are available on

request from the authors, while the impossibility results follow from the examples

of Section 1 in the context of the utilitarian and leximin proliferating sequences.

• Equality on a cofinite set. %∗ is the SWR defined by

x %∗ y iff there exists N ⊂ N such that xN %∗
|N | yN and xN\N = yN\N .

The SWR %∗ satisfies PI, FA, FP and ST, but not SA, SP and IPC.

• Equality or Pareto-dominance on a cofinite set (Basu and Mitra, 2007a;

Bossert, Sprumont and Suzumura, 2007). %∗
F is the SWR defined by

x %∗
F y iff there exists N ⊂ N such that xN %∗

|N | yN and xN\N ≥ yN\N .

The SWR %∗
F satisfies PI, FA, SP, ST, but not SA and IPC.
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• Extended Anonymity (Banerjee, 2006; Kamaga and Kojima, 2008). %∗
S is

the SWR defined by

x %∗
S y iff there exists P ∈ S such that x %∗

F Py .

The SWR %∗
S satisfies SI, SA and SP, but not PI, PA, ST and IPC.

• Catching up (in finite time) (Atsumi, 1965; von Weizsäcker, 1965) %∗
C is

the SWR defined by

x %∗
C y iff there exists m ∈ N such that x{1,...,n} %∗

n y{1,...,n} for all n ≥ m .

The SWR %∗
C satisfies FI, FA, SP, ST and IPC, but not SI and SA.

• Fixed-step catching up (Fleurbaey and Michel, 2003). %∗
SC is the SWR

defined by

x %∗
SC y iff there exists k ∈ N such that x{1,...,nk} %∗

nk y{1,...,nk} for all n ∈ N.

The SWR %∗
SC satisfies SI, SA, SP and IPC, but not PI, PA and ST.

We have that, for a fixed proliferating sequence of SWOs, {%∗
m}∞m=2, %∗ is a

subrelation of %∗
F , %∗

F is a subrelation of each of %∗
S and %∗

C , and %∗
S is a subrelation

of %∗
SC . Going from %∗

F to %∗
C we pick up IPC, but must weaken PI all the way to

FI. Going from %∗
F to %∗

SC we strengthen FA to SA and pick up IPC, but must

weaken PI to SI and drop ST. This leads to the question: Is it possible to pick up

IPC without weakening PI and dropping ST?6 We show that this is indeed possible

by means of generalized time-invariant overtaking.

6The (x,y) example of Section 1 illustrates the problems of strengthening FA to SA while

retaining ST. Mitra (2007) discusses the problem of combining ST with any kind of extended

anonymity. The emphasis of the present paper is to show how the asymmetric part of %∗
F can be

extended, while retaining ST.
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5 A new criterion for infinite utility streams

We are now ready to state the definition of the generalized time-invariant overtaking

criterion. Let {%∗
m}∞m=2 be a proliferating sequence of SWOs with %∗

m satisfying

axiom P (while axiom A is implied by axiom I) for each m ≥ 2.7

Definition 2 (Generalized time-invariant overtaking) The generalized time-

invariant overtaking criterion %∗
I generated by {%∗

m}∞m=2 satisfies, for x, y ∈ X,

x %∗
I y iff there exists M ⊂ N with |M | ≥ 2 such that xN %∗

|N | yN for all N ⊇ M.

We can now state our main result.

Theorem 1 Let {%∗
m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥

2, %∗
m satisfying axiom P. Then:

(i) %∗
I is an SWR that satisfies PI, FA, SP and ST.

(ii) An SWR % extends %∗
2 and satisfies IPC iff %∗

I is a subrelation of %.

In the proof of Theorem 1, we make use of the following lemmas.

Lemma 4 The SWR %∗
I satisfies:

(i) x �∗
I y iff there exist M ⊂ N with |M | ≥ 2 such that xN �∗

|N | yN for all

N ⊇ M .

(ii) x ∼∗
I y iff there exist M ⊂ N with |M | ≥ 2 such that xN ∼∗

|N | yN for all

N ⊇ M .

Proof. (Only-if part of (i): x �∗
I y only if there exist M ⊂ N with |M | ≥ 2

such that xN �∗
|N | yN for all N ⊇ M .) Assume x �∗

I y that is, (a) x %∗
I y and

7Definition 2 is formulated as a “catching up” criterion. However, Lemmas 3(ii) and 4, showing

that a formulation in terms of an “overtaking” criterion is equivalent, justify our terminology.
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(b) ¬(y %∗
I x). By (a), there exists M ⊂ N with |M | ≥ 2 such that xN %∗

|N | yN

for all N ⊇ M . Note that ¬(y %∗
I x) implies that for any M ⊂ N there is some

M ′ ⊃ M such that xM ′ �∗
|M ′| yM ′ . By way of contradiction, suppose that there

does not exist M ′′ ⊂ N such xN �∗
|N | yN for all N ⊇ M ′′. In particular, since

then xN �∗
|N | yN for all N ⊇ M does not hold, it follows from (a) that there exists

A ⊇ M such that xA ∼∗
|A| yA. We claim that there exists B ⊂ N with A ∩ B = ∅

such that xA∪B �∗
|A|+|B| yA∪B. That is, the statement: for all B ⊂ N with A∩B = ∅

we must have yA∪B %∗
|A|+|B| xA∪B is false. This possibility is ruled out since if it

were correct, we would obtain y %∗
I x, which is contradicted by (b).

Since we suppose that there does not exist M ′′ ⊂ N such xN �∗
|N | yN for all

N ⊇ M ′′, it does not hold that xN �∗
|N | yN for all N ⊇ A ∪B. Hence, by (a) there

exists C ⊆ N with (A ∪ B) ∩ C = ∅ such that xA∪B∪C ∼∗
|A|+|B|+|C| yA∪B∪C . This

leads to the first indifference in (1), while the second strict preference in (1) follows

from Lemma 3(i):

yA∪B∪C ∼∗
|A|+|B|+|C| xA∪B∪C �∗

|A|+|B|+|C| (yA∪B,xC) . (1)

By transitivity we get (yA∪B,yC) �∗
|A|+|B|+|C| (yA∪B,xC). So, yC �∗

|C| xC . [If

¬(yC �∗
|C| xC), then xC %∗

|C| yC . By Lemma 3(i), we obtain (yA∪B,xC) %∗
|A|+|B|+|C|

(yA∪B,yC).] We now get:

yA∪C �∗
|A|+|C| (yA,xC) ∼∗

|A|+|C| xA∪C %∗
|A|+|C| yA∪C , (2)

The first strict preference in (2) is a consequence of Lemma 3(i) and yC �∗
|C| xC .

The second indifference in (2) is a consequence of Lemma 3(i) and xA ∼∗
|A| yA. The

last weak preference in (2) follows from (a) and the fact that A ∪ C ⊃ M . So (2)

leads us to a contradiction.This completes the proof of the only-if part of (i).

(If part of (i): x �∗
I y if there exists M ⊂ N with |M | ≥ 2 such that xN �∗

|N |

yN for all N ⊇ M .) Assume that there exists M ⊂ N with |M | ≥ 2 such that

xN �∗
|N | yN for all N ⊇ M . Then x %∗

I y. By way of contradiction, suppose
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y %∗
I x. Then there exists M ′ ⊂ N with |M ′| ≥ 2 such that yN %∗

|N | xN for all

N ⊇ M ′. For N ⊇ M ′ ∪M we must have xN �∗
|N | yN and yN %∗

|N | xN . This leads

to a contradiction. Hence, ¬(y %∗
I x) and, consequently, x �∗

I y.

(Only-if part of (ii): x ∼∗
I y only if there exist M ⊂ N with |M | ≥ 2 such that

xN ∼∗
|N | yN for all N ⊇ M . ) Let x ∼∗

I y. Then there exists sets M ′,M ′′ ⊂ N such

that xN %∗
|N | yN for all N ⊇ M ′ and yN %∗

|N | xN for all N ⊇ M ′′. Then for all

N ⊇ M ′ ∪M ′′ we must have xN ∼∗
|N | yN , as was required.

The if part of (ii) follows directly from the definition and we omit the details.

Lemma 5 The SWR %∗
I satisfies PI, SP and ST.

Proof. (%∗
I satisfies PI.) Let x,y ∈ X and P ∈ P. Assume x %∗

I y. Let

π : N → N be the equivalent representation of the infinite permutation matrix P .

Clearly π is a one-to-one and onto function. Since x %∗
I y there exists M ⊂ N

with |M | ≥ 2 such that xN %∗
|N | yN for all N ⊇ M . Let the image of M under

the function π be denoted by π(M), that is π(M) = {i ∈ N | there exists j ∈ M

such that π(j) = i}. Now for N ⊇ π(M), we must have π−1(N) ⊇ M , where

π−1 : N → N is the inverse of π. Since %∗
m satisfies m-I for all m ≥ 2, we must have

for all N ⊇ π(M), (Px)N %∗
I (Py)N . Hence, x %∗

I y implies Px %∗
I Py for any

P ∈ P. The converse is established in a similar manner.

(%∗
I satisfies SP.) Let x,y ∈ X satisfy x > y. Pick M ⊂ N such that xM 6= yM .

Since %∗
m satisfies P for all m ≥ 2, we must have xN �∗

|N | yN for all N ⊇ M . By

Lemma 4 (i) we can conclude x �∗
I y.

(%∗
I satisfies ST.) Let x, y, u, v ∈ X satisfy x1 = y1, and for all i ∈ N, ui = xi+1

and vi = yi+1. Assume x %∗
I y. Hence, there exists M ⊂ N with |M | ≥ 2 such

xN %∗
|N | yN for all N ⊇ M . Construct M ′ as follows: M ′ = {i ∈ N | i+1 ∈ M}, with

an arbitrary element added in if the number of elements in M ′ would otherwise be 1.

Consider any N ′ ⊆ M ′, and construct N as follows: N = {i ∈ N | i− 1 ∈ N ′} ∪ {1}.

Since, by construction, N ⊇ M , xN �∗
|N | yN . By Lemma 3(i), xN\{1} �∗

|N |−1 yN\{1}
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since x1 = y1. Thus, uN ′ %∗
|N |−1 vN ′ since %∗

m satisfies m-I for all m. Hence,

x %∗
I y implies u %∗

I v. The converse is establish in a similar manner.

Proof of Theorem 1. (i) It can be easily checked that %∗
I is reflexive and

transitive provided that %∗
m is reflexive and transitive for each m; hence, %∗

I is an

SWR on X. The rest of part (i) follows directly from Lemma 2(i) and Lemma 5.

(Only-if part of (ii): An SWR % extends %∗
2 and satisfies IPC only if %∗

I is a

subrelation of %.) For x, y ∈ X, let x �∗
I y. Then using Lemma 4 (i) we must have

that there exist M ⊂ N with |M | ≥ 2 such that xN �∗
|N | yN for all N ⊇ M . For

all N ⊇ M , since % extends %∗
2 and {%∗

m}∞m=2 is a proliferating sequence we obtain

(xN ,yN\N ) � y. Now by IPC we have x � y.

Now let x ∼∗
I y. By Lemma 4 (ii) we must have that there exist M ⊂ N with

|M | ≥ 2 such that xN ∼∗
|N | yN for all N ⊇ M . By Lemma 3 (ii), we have xi = yi

for all i ∈ N\M . Since % extends %∗
2 and {%∗

m}∞m=2 is a proliferating sequence we

get x ∼ y.

(If part of (ii): An SWR % extends %∗
2 and satisfies IPC if %∗

I is a subrelation

of %.) We omit the straightforward proof of the result that % extends %∗
2.

To show that % satisfies IPC, assume that there exists M ⊂ N with |M | ≥ 2

such that, for all N ⊇ M , (xN ,yN\N ) � y. Since % extends %∗
2 and {%∗

m}∞m=2

is proliferating, it follows from the completeness of the SWO %∗
m for every m that

xN �∗
|N | yN for all N ⊇ M . Hence, x �∗

I y by Lemma 4(i), and x � y since %∗
I

is a subrelation of %. This shows that % satisfies condition IPC.

6 Applications

In this section we study specific criteria based on particular proliferating sequences.

In particular, as the utilitarian SWO and the leximin SWO defined for pairs on

any subset of the m-dimensional Euclidean space define two proliferating sequences,

they lay the foundation for two specializations of the generalized time-invariant
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overtaking criterion: utilitarian and leximin time-invariant overtaking. Furthermore,

we propose methods for determining the asymmetric and symmetric parts of the

utilitarian and leximin time-invariant overtaking criteria.

6.1 The Utilitarian Case

To state the definition of the utilitarian SWO defined on Y m we first introduce some

additional notation. For each N ⊂ N, the partial sum
∑

i∈N xi is written as σ(xN ).

Let {%U
m}∞m=2 denote the sequence of utilitarian SWOs, with each %U

m defined on

Y m. Formally, for a, b ∈ Y m,

a %U
m b iff σ(a) ≥ σ(b) .

In order to rely on a standard characterization of utilitarianism, we first state

the Translation Scale Invariance axiom for finite populations social choice theory.

Axiom m-TSI (m-Translation Scale Invariance) For all a, b ∈ Y m with m ≥ 2, if

a %m b and α ∈ Rm satisfies a + α ∈ Y m and b + α ∈ Y m, then a + α %m b + α.

This axiom says that utility differences can be compared interpersonally. A com-

prehensive treatment of the literature on social choice with interpersonal utility

comparisons can be found in Bossert and Weymark (2004). The following charac-

terization of finite-dimensional utilitarianism is well-known.8

Lemma 6 For all m ∈ N, the utilitarian SWO %U
m is equal to %m iff %m satisfies

A, P and TSI.

Let % be an SWR defined on X. Consider the following axiom on %.

Axiom FTSI (Finite Translation Scale Invariance) For all x, y ∈ X with some

subset N ⊂ N such that xi = yi for all i ∈ N\N , if x % y and α ∈ RN satisfies that

8The argument is due to Milnor (1954) in the context of individual decision under risk. For a

proof in the social choice context, see d’Aspremont and Gevers (2002).

18



x + α ∈ X and y + α ∈ X and αi = 0 for all i ∈ N\N , then x + α % y + α.

By means of this axiom we can characterize the class of SWRs extending %U
2 :

Proposition 1 Let {%U
m}∞m=2 be the utilitarian sequence of SWOs for each m ≥ 2.

Then:

(i) If % is an SWR on X that extends %U
2 , then % satisfies FA, FP and FTSI.

(ii) If % satisfies FA, FP and FTSI, then % is an SWR on X that extends %U
m,

for all m ∈ N.

Proof of Proposition 1. (Proof of (i): % is an SWR on X that extends %U
2

only if % satisfies FA, FP and FTSI.) Assume % is an SWR on X that extends

%U
2 . It follows from Lemma 2 that % satisfies FA and FP. To show that % satisfies

FTSI, consider x, y ∈ X for which there exists some subset N ⊂ N such that xi = yi

for all i ∈ N\N , and α ∈ RN which satisfies x + α ∈ X and y + α ∈ X and αk = 0

for all i ∈ N\N . Since % extends %U
2 and satisfies FP, it follows from Lemma 8 of

the appendix that x % y iff σ(xN ) ≥ σ(yN ) and x + α % y + α iff σ(xN + αN ) ≥

σ(yN + αN ). Clearly, σ(xN ) ≥ σ(yN ) implies σ(xN + αN ) ≥ σ(yN + αN ), thereby

establishing that % satisfies FTSI.

(Proof (ii): % is an SWR on X that extends %U
m if % satisfies FA, FP and

FTSI.) Assume that % satisfies FA, FP and FTSI. Fix z ∈ X and M ∈ N with

|M | = m. Construct %z
m as follows: xM %z

m yM iff (xM , zN\M ) % (yM , zN\M ).

Since % satisfies FA, FP and FTSI, it follows that %z
m satisfies A, P and TSI.

Thus, by Lemma 6, %U
m is equal to %z

m. Since z ∈ X and M ∈ N with |M | = m are

arbitrarily chosen, it follows that % extends %U
m.

Proposition 1 implies the following result, which makes Theorem 1 applicable in

the utilitarian case.

Proposition 2 The sequence of utilitarian SWOs, {%U
m}∞m=2, is proliferating.
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Proposition 2 is established by d’Aspremont (2007, Lemma 4) in the case where

Y = R. In the appendix we provide a direct proof of Proposition 2 in the present

case where Y ⊆ R is an interval satisfying [0, 1] ⊆ Y .

Since, by Proposition 2, {%U
m}∞m=2 is proliferating, we can now state the following

specialization of generalized time-invariant overtaking.

Definition 3 (Utilitarian time-invariant overtaking) The utilitarian time-in-

variant overtaking criterion %U
I satisfies, for x, y ∈ X,

x %U
I y iff there exists M ⊂ N with |M | ≥ 2 such that σ(xN ) ≥ σ(yN ) for all N ⊇ M.

By Propositions 1 and 2, the following characterization of utilitarian time-invari-

ant overtaking is a direct consequence of Theorem 1 and Lemma 4:

Corollary 1 (i) %U
I is an SWR that satisfies PI, SP and ST.

(ii) An SWR % satisfies FA, FP, FTSI and IPC iff %U
I is a subrelation of %.

(iii) x �U
I y iff there exists M ⊂ N with |M | ≥ 2 such that σ(xN ) > σ(yN ) for all

N ⊇ M .

(iv) x ∼U
I y iff there exists M ⊂ N with |M | ≥ 2 such that σ(xN ) = σ(yN ) for all

N ⊇ M .

To facilitate its use, we provide a characterization of the asymmetric and sym-

metric parts of the utilitarian generalized overtaking criterion.

Proposition 3 Utilitarian time-invariant overtaking satisfies:

(i) x �U
I y iff there exists M+ ⊆ {i ∈ N | xi − yi > 0} such that σ(xM+∪M−) >

σ(yM+∪M−) for all M− ⊆ {i ∈ N | xi − yi < 0}.

(ii) x ∼U
I y if and only M+ := {i ∈ N | xi−yi > 0} and M− := {i ∈ N | xi−yi < 0}

are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−).
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Proof. (If part of (i).) Assume that there exists M+ ⊆ {i ∈ N | xi − yi > 0}

such that σ(xM+∪M−) > σ(yM+∪M−) for all M− ⊆ {i ∈ N | xi − yi < 0}. Let

M = M+ and choose N ⊇ M . We can partition N into A := {i ∈ N | xi − yi ≥ 0}

and M− := {i ∈ N | xi − yi < 0}, implying that xi − yi ≥ 0 for all A\M+. Hence,

σ(xN )− σ(yN ) = σ(xA∪M−)− σ(yA∪M−) ≥ σ(xM+∪M−)− σ(yM+∪M−) > 0 ,

where the partitioning of N into A and M− implies the first equality, xi − yi ≥ 0

for all A\M+ implies the second weak inequality, and the premise implies the third

strong inequality.

(Only-if part of (i).) Assume that there exists M ⊂ N with |M | ≥ 2 such that

σ(xN ) > σ(yN ) for all N ⊇ M . Let M+ := M ∩ {i ∈ N | xi − yi > 0} and choose

M− ⊆ {i ∈ N | xi − yi < 0}. Note that xi ≤ yi for all i ∈ M\(M+ ∩M−). Hence,

σ(xM+∪M−)− σ(yM+∪M−) ≥ σ(xM∪M−)− σ(yM∪M−) > 0

by the premise since M ∪M− ⊇ M .

(If part of Part (ii).) Assume that M+ := {i ∈ N | xi − yi > 0} and M− :=

{i ∈ N | xi − yi < 0} are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−). Let

M = M+ ∪M− and choose N ⊇ M . Since xi = yi for all i ∈ N\M , it follows that

σ(xN )− σ(yN ) = σ(xM )− σ(yM ) = σ(xM+∪M−)− σ(yM+∪M−) = 0

by the premise.

(Only-if part of (ii).) Assume that there exists M ⊂ N with |M | ≥ 2 such

that σ(xN ) = σ(yN ) for all N ⊇ M . By Lemma 3(ii) and the fact that {%U
m}∞t=2

is proliferating, it follows that xi = yi for all i ∈ N\M . Hence, M+ := {i ∈

N | xi − yi > 0} and M− := {i ∈ N | xi − yi < 0} are finite sets satisfying

σ(xM+∪M−) = σ(yM+∪M−).

The if parts can easily be amended to ensure that |M | ≥ 2.

This characterization can be illustrated by the (u,v) example of Section 1. In this

example {i ∈ N | ui− vi > 0} = {1} and {i ∈ N | ui− vi < 0} = N\{1}. By choosing
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M+ = {1} so that σ(uM+)−σ(vM+) = 1, and noting σ(uM−)−σ(vM−) < 1
2 for all

M− ⊂ N\{1}, it follows from Proposition 3(i) that u �U
I v.

The utilitarian criterion proposed by Basu and Mitra (2007a), which we discussed

in Section 1 and denoted %U
F , yields comparability only if there is equality or Pareto-

dominance on a cofinite set:

x %U
F y iff there exists N ⊂ N such that σ(xN ) ≥ σ(yN ) and xN\N ≥ yN\N .

It follows from Proposition 3 that %U
F is a subrelation of %U

I , since the symmetric

parts, ∼U
I and ∼U

F , coincide, while �U
I strictly extends %U

F , as illustrated by the

(u,v) example of Section 1.

6.2 The Leximin Case

To state a precise definition of the leximin order we introduce additional notation.

For any xM , (x(1), . . . , x(|M |)) denotes the rank-ordered permutation of xM such that

x(1) ≤ · · · ≤ x(|M |), ties being broken arbitrarily. For any xM and yM , xM �L
|M | yM

iff there exists m ∈ {1, . . . , |M |} such that x(k) = y(k) for all k ∈ {1, . . . ,m− 1} and

x(m) > y(m) and xM ∼L
|M | yM iff x(k) = y(k) for all k ∈ {1, . . . , |M |}.

We first recall through Lemma 7 below a standard characterization of finite-

dimensional leximin using the Hammond Equity axiom. This axiom states, in our

intergenerational context, that if there is a conflict between two generations, with

every other generation being as well off in the compared profiles, then society should

weakly prefer the profile where the least favored generation is better off.

Axiom m-HE (m-Hammond Equity) For all a, b ∈ Y m with m ≥ 2, if there exist

i, j ∈ {1, . . . ,m} such that bi > ai > aj > bj and ak = bk for all k 6= i, j, then

a %m b.

Lemma 7 For all m ∈ N, the leximin SWO %L
m is equal to %m iff %m satisfies A,

P and HE.
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Let % be an SWR defined on X. Consider also the HE axiom on %.

Axiom HE (Hammond Equity) For all x, y ∈ X, if there exist i, j ∈ N such that

yi > xi > xj > yj and xk = yk for all k 6= i, j, then x % y.

By means of this axiom we can characterize the class of SWRs extending %L
2 :

Proposition 4 Let {%L
m}∞m=2 be the leximin sequence of SWOs for each m ≥ 2.

Then:

(i) If % is an SWR on X that extends %L
2 , then % satisfies FA, FP and HE.

(ii) If % satisfies FA, FP and HE, then % is an SWR on X that extends %L
m,

for all m ∈ N.

Proof. (Proof of (i): % is an SWR on X that extends %L
2 only if % satisfies FA,

FP and HE.) Assume % is an SWR on X that extends %L
2 . It follows from Lemma

2 that % satisfies FA and FP. To show that % satisfies HE, let x, y ∈ X satisfy

that there exist i, j ∈ N such that yi > xi > xj > yj and xk = yk for all k 6= i, j.

Then x{i,j} %L
2 y{i,j} (since %L

2 satisfies 2-HE) and x % y (since % extends %L
2 ).

This establishes that % satisfies HE.

(Proof of (ii): % is an SWR on X that extends %L
m if % satisfies FA, FP and

HE.) Assume that % satisfies FA, FP and HE. Fix z ∈ X and M ∈ N with

|M | = m. Construct %z
m as follows: xM %z

m yM iff (xM , zN\M ) % (yM , zN\M ).

Since % satisfies FA, FP and HE, it follows that %z
m satisfies A, P and m-HE.

Thus, by Lemma 7, %L
m is equal to %z

m. Since z ∈ X and M ∈ N with |M | = m are

arbitrarily chosen, it follows that % extends %L
m.

Proposition 4 implies the following result, which makes Theorem 1 applicable in

the utilitarian case.

Proposition 5 The sequence of leximin SWOs, {%L
m}∞m=2, is proliferating.
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d’Aspremont (2007, Lemma 5) proves Proposition 5 through a direct argument

which is applicable also to the present case where Y ⊆ R is an interval satisfying

[0, 1] ⊆ Y .

Since, by Proposition 5, {%L
m}∞m=2 is proliferating, we can now state the following

specialization of generalized time-invariant overtaking.

Definition 4 (Leximin time-invariant overtaking) The leximin time-invariant

overtaking criterion %L
I satisfies, for x, y ∈ X,

x %L
I y iff there exists M ⊂ N with |M | ≥ 2 such that xN %L

|N | yN for all N ⊇ M.

By Propositions 4 and 5, the following characterization of leximin time-invariant

overtaking is a direct consequence of Theorem 1 and Lemma 4:

Corollary 2 (i) %L
I is an SWR that satisfies PI, SP and ST.

(ii) An SWR % satisfies FA, FP, HE and IPC iff %L
I is a subrelation of %.

(iii) x �L
I y iff there exists M ⊂ N with |M | ≥ 2 such that xN �L

|N | yN for all

N ⊇ M .

(iv) x ∼L
I y iff there exists M ⊂ N with |M | ≥ 2 such that xN ∼L

|N | yN for all

N ⊇ M .

We provide a characterization of the asymmetric and symmetric parts of the

leximin generalized overtaking criterion. For this purpose, we need some additional

notation. Let N′ be the class of all cofinite subsets of N. We denote the set of all

utility streams defined on some element of N′ and taking values in Y by Xc. Since a

utility stream can be viewed as a function from the domain of generations to the set

Y , we can formally write Xc := {x : Nx → Y |Nx ∈ N′}. Observe that for x ∈ Xc,

we denote that cofinite subset of N which is the domain of x by Nx.
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For any x ∈ Xc, write Nx
min := {i ∈ Nx | xi = infj∈Nx xj}. Say that x ∈ Xc

and y ∈ Xc have the same minimum and the same number of minimal elements if

infj∈Nxxj = infj∈Nyyj and 0 < |Nx
min| = |Ny

min| < ∞.

Define the operator R : (Xc)2 → (Xc)2 as follows, where x′ denotes the restric-

tion of x to Nx\Nx
min and y′ is restriction of y to Ny\Ny

min if x ∈ Xc and y ∈ Xc

satisfy that |Nx
min| and |Ny

min| are positive and finite:

R(x,y) =


(x′,y′) if x and y have the same minimum and

the same number of minimal elements,

(x,y) otherwise.

Write R0(x,y) := (x,y) and, for n ∈ N, Rn(x,y) := R(Rn−1(x,y)).

Proposition 6 Leximin time-invariant overtaking satisfies:

(i) x �L
I y iff

(a) there is P ∈ F such that Px > y, or

(b) there exists m such that (x′,y′n(x,y) for all n ≥ m and one of following

is true:

infj∈Nx′x′j > infj∈Ny′y′j

infj∈Nx′x′j = infj∈Ny′y′j and 0 ≤ |Nx′
min| < |Ny′

min| ≤ ∞.

(ii) x ∼L
I y iff there is P ∈ F such that Px = y.

Proof. Write (xn,yn) = Rn(x,y) for all n ≥ 0.

(If part of (i).) First assume that there is P ∈ F such that Px > y. By the

definition of %L
|M |, there exists M ⊂ N such that xM �L

|M | yM and xi ≥ yi for all

i ∈ N\M . Hence, xN �L
|N | yN for all N ⊇ M .

Then assume that there exists m such that (x′,y′n(x,y) for all n ≥ m. Let m

be the smallest such integer. Then, for all k ∈ {0, . . . ,m − 1}, xk and yk have the
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same minimum and the same number of minimal elements. Write

My :=
⋃

k∈{0,...,m−1}
Nyk

min .

If infj∈Nx′x′j > infj∈Ny′y′j , choose i′ ∈ Ny′ so that y′i′ < infj∈Nx′x′j . Let M =

My ∪ {i′}. Then xN �L
|N | yN for all N ⊇ M . If infj∈Nx′x′j = infj∈Ny′y′j and

0 ≤ |Nx′
min| < |Ny′

min| ≤ ∞, let Ny′ be a subset of Ny′

min with a larger number of

elements than Nx′
min. Let M = My ∪Ny′ . Then xN �L

|N | yN for all N ⊇ M .

(Only-if part of (i).) Assume that there exists M ⊂ N with |M | ≥ 2 such that

xN �L
|N | yN for all N ⊇ M . Suppose that (a) and (b) are not true. We must show

that, for all M ⊂ N with |M | ≥ 2, there exists N ⊇ M such that xN -L
|N | yN .

Suppose there is no P ∈ F such that Px > y, and there exists no m such that

(x′,y′n(x,y) for all n ≥ m. Then, for all n ≥ 0, xn and yn have the same minimum

and the same number of minimal elements, and
⋃

n≥0N
yn

min is an infinite set. For

any M ⊂ N, one can choose N ⊇ M such that N contains at least as many Nxn

min

elements as Nyn

min elements for any n ≥ 0, and more for some n′. Then xN ≺L
|N | yN .

Suppose there is no P ∈ F such that Px > y and that, even though there exists

m such that (x′,y′n(x,y) for all n ≥ m and infj∈Nx′x′j = infj∈Ny′y′j , we have that

|Nx′
min| = |Ny′

min| = ∞. Let m be the smallest such integer. Independently of how

My is complemented to form M ⊂ N, one can always choose N ⊇ M such that N

in addition to including
⋃

k∈{0,...,m−1}Nxk

min contains more Nx′
min elements than Ny′

min

elements. Then xN ≺L
|N | yN .

Suppose there is no P ∈ F such that Px > y and that, even though there exists

m such that (x′,y′n(x,y) for all n ≥ m and infj∈Nx′x′j = infj∈Ny′y′j , we have that

|Nx′
min| = |Ny′

min| = 0. Let m be the smallest such integer. Independently of how My

is complemented to form M ⊂ N, one can always choose N ⊇ M such that N in

addition to including
⋃

k∈{0,...,m−1}Nxk

min contains i′ ∈ Nx′ so that x′i′ < minj∈N∩Ny′y′j .

Then xN ≺L
|N | yN .

Suppose that, even though there exists m such that (x′,y′) = Rn(x,y) for all
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n ≥ m, we have that (1) infj∈Nx′x′j < infj∈Ny′y′j or (2) infj∈Nx′x′j = infj∈Ny′y′j and

∞ ≥ |Nx′
min| > |Ny′

min| ≥ 0. Then there is no P ∈ F such that Px > y, and it follows

from the if-part above that x ≺L
I y.

(If part of (ii).) Assume that there is P ∈ F such that Px = y. By the definition

of %L
|M |, there exists M ⊂ N such that xM ∼L

|M | yM and xi = yi for all i ∈ N\M .

Hence, xN ∼L
|N | yN for all N ⊇ M .

(Only-if part (ii).) Assume that there exists M ⊂ N with |M | ≥ 2 such that

xN ∼L
|N | yN for all N ⊇ M . By Lemma 3(ii) and the fact that {%L

m}∞t=2 is prolifer-

ating, it follows that xi = yi for all i ∈ N\M . It now follows from the definition of

%L
|M | that there is P ∈ F such that Px = y.

The if parts can easily be amended to ensure that |M | ≥ 2.

This characterization can be illustrated by the (u,v) example of Section 1. In

this example Nu = Nv = N and infj∈N uj > infj∈N vj so that u and v do not have

the same minimum, implying that (u,v) = Rn(u,v) for all n ≥ 1. By Proposition

6(i)(b) it follows that u �L
I v.

To illustrate part (i) of Proposition 6 further, we also consider the comparison

of v of Section 1 to

w : 0 1
2

1
2

1
2

1
2

1
2 . . . 1

2 . . .

Then v and w have the same minimum and the same number of minimal element,

implying that (v′,w′) = R(v,w) with v′ and w′ being the restrictions of v and w to

N\{1}. Furthermore, infj∈N\{1}v
′
j = infj∈N\{1}w

′
j = 1

2 and 0 = |Nv′
min| < |Nw′

min| = ∞.

This entails that (v′,w′) =Rn(v,w) for all n ≥ 1. By Proposition 6(i)(b) it follows

that v �L
I w.

The leximin criterion proposed by Bossert, Sprumont and Suzumura (2007),

which we discussed in Section 1 and denoted %L
F , yields comparability only if there

is equality or Pareto-dominance on a cofinite set:

x %L
F y iff there exists N ⊂ N such that xN %L

|N | yN and xN\N ≥ yN\N .
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It follows from Proposition 6 that %L
F is a subrelation of %L

I , since the symmetric

parts, ∼L
I and ∼L

F , coincide, while �L
I strictly extends %L

F , as illustrated by the

(u,v) example of Section 1.

7 Concluding remarks

We have defined the generalized time-invariant overtaking criterion %∗
I and special-

ized this criterion to the utilitarian and leximin cases, leading to %U
I and %L

I . We

have shown that through %U
I and %L

I we can extend the asymmetric parts of the

utilitarian and leximin criteria suggested by Basu and Mitra (2007a) and Bossert,

Sprumont and Suzumura (2007), %U
F and %L

F respectively, without compromising

their desirable properties.

It is feasible to go further as indicated at the end of Section 4: %∗
I is subrelation

both of the traditional overtaking criterion (in the sense of catching up in finite

time), which we denote %∗
C , and of fixed-step overtaking, which was suggested in its

utilitarian version by Fleurbaey and Michel (2003) and which we denote %∗
SC .

Going from %∗
I to %∗

C entails that Strong Time Invariance must be weakened all

the way to Finite Time Invariance, leading to the strict (and perhaps uncompelling)

ranking of x above y in the (x,y) example of Section 1.

Going from %∗
I to %∗

SC entails not only that Strong Time Invariance must be

weakened to Fixed-step Time Invariance, but also that Koopmans’s (1960) axiom of

Stationarity must be dropped. On the other hand, Finite Anonymity is strengthened

to Fixed-step Anonymity, which implies that both the symmetric and asymmetric

parts of %∗
I are extended. These positive properties makes it worthwhile to investi-

gate %∗
SC further; in particular, to characterize its implications for social preference

in the utilitarian and leximin cases. We expect to return to this in future work.
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Appendix

Lemma 8 If the SWR % extends %U
2 , then x ∼ u whenever x, u ∈ X satisfy that

there exists N ⊂ N such that ui = σ(xN )/|N | for i ∈ N and ui = xi for i ∈ N\N .

Proof. The result is shown by induction. Consider the statement that x ∼ u

whenever x, u ∈ X satisfy that there exists N ⊂ N such that ui = σ(xN )/|N | for

i ∈ N and ui = xi for i ∈ N\N .

This statement is true for all N ⊂ N with |N | = 1 by the reflexivity of %.

Assume that the statement is true for all M ⊂ N with |M | ≤ m. It remains to

be shown that then the statement is true for all N ⊂ N with |N | = m + 1, provided

that % extends %U
2 . This is shown in the remainder of the proof.

Suppose u ∈ X satisfy that there exists N ⊂ N such that ui = σ(xN )/|N | for

i ∈ N and ui = xi for i ∈ N\N , where |N | = m + 1. W.l.o.g., N = {1, . . . ,m + 1}.

Consider any M ⊂ N such that M ⊂ N and |M | = m. W.l.o.g., M = {1, . . . ,m}.

Construct v ∈ X by vi = σ(xM )/|M | for i ∈ M and vi = xi for i ∈ N\M .

Let the sequence {yk}m
k=0, where yk ∈ X for each k, be constructed as follows:

yk
M =


vM for k = 0

(u{1,...,k}, v{k+1,...,m}) for k = 1, . . . ,m− 1

uM for k = m ,

while for all k, yk
m+1 = xk

m+1+k(v1−u1), and yk
i = ui for i ∈ N\N . Then yk−1 ∼ yk

for k ∈ {1, . . . ,m} by the property that % extends %U
2 , since yk−1

k +yk−1
m+1 = yk

k+yk
m+1

and yk−1
i = yk

i for i ∈ N\{k,m + 1}. By transitivity, v = y0 ∼ ym = u. By

assumption, x ∼ v, leading by transitivity to the conclusion that x ∼ u.

Direct proof of Proposition 2. Assume that the SWR % extends %U
2 . We

must show that % extends %U
m for all m ≥ 2. Consider x, y ∈ X for which there

exists some subset M ⊂ N such that xi = yi for all i ∈ N\M .
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If xM ∼U
|M | yM , then σ(xM ) = σ(yM ) and, by Lemma 8, x ∼ u ∼ y, where

ui = σ(xM )/|M | for i ∈ M and ui = xi for i ∈ N\M . By transitivity, x ∼ y.

If xM �U
|M | yM , then σ(xM ) > σ(yM ) and, by Lemma 8 and FP, x ∼ u � v ∼

y, where ui = σ(xM )/|M | and vi = σ(yM )/|M | for i ∈ M and ui = vi = xi = yi for

i ∈ N\M . By transitivity, x � y.
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