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Abstract

Consider a country with two regions that have developed differently so that
their current levels of energy efficiency differ. Each region’s production involves
the emission of pollutants, on which a regulator might impose restrictions. The
restrictions can be related to pollution standards that the regulator perceives as
binding the whole country (e.g., enforced by international agreements like the Ky-
oto Protocol). We observe that the pollution standards define a common constraint
upon the joint strategy space of the regions. We propose a game theoretic model
with a coupled constraints equilibrium as a solution to the regulator’s problem of
avoiding excessive pollution. The regulator can direct the regions to implement
the solution by using a political pressure, or compel them to employ it by using
the coupled constraints’ Lagrange multipliers as taxation coefficients. However, to
implement the solution, a coupled constraints equilibrium needs to exist and must
also be unique. We consider a stylised model that possesses these properties, of
the Belgian regions of Flanders and Wallonia. We analyse the regional production
levels, which result from the equilibrium, as a function of the pollution standards
and of the sharing rules for the satisfaction of the constraint.

Keywords: Coupled constraints; generalised Nash equilibrium
JEL: C6, C7, D7

1 Introduction

The aim of this paper is to examine the impact of imposition of emission constraints
on regional revenues and the national revenue of a two-region economy. The regions
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that are somewhat controllable by a sole regulator will be composed of industries of
diverging industrial specialisations. We will study the revenues as functions of the
sharing rules, adoptable by a regulator, for spreading the burden of the constraints’
satisfaction among the regions.

The need for regulation might result from the regulator’s wish to comply with
a national emissions’ quota assigned to the country through an international agree-
ment (like the Kyoto Protocol). The split of the quota among the regions is always
a contentious issue in the context of dissimilar profiles of the regional industries.
Moreover, the split will be a highly controversial matter if the regions are ethnically
different.

An example of such a problem is a disagreement between Wallonia and Flanders
(two Belgian regions) regarding sharing the pollution cleaning burden, recently
studied in [3] (in a dynamic setup) and [8] (in static). In those papers, an impact
of “grandfathering” emission permits on regional revenues in a small open multi-
sector (multi-regional) economic model (Heckscher-Ohlin type) is considered. Other
multi-ethnic countries (like Canada, UK or Switzerland) might be facing similar
problems.

In this paper, we treat the industries, or regions, as competitive agents and
analyse the resulting equilibrium policies as well as the corresponding outputs and
payoffs, as a consequence of adoption of a sharing rule, for apportioning a pollution
quota to each region. We think that the social planner would face an impossible
task if they endevoured enforcing a Pareto efficient solution in a bi-ethnic regional
context; we will keep such a solution as reference only.

We use a static setup and propose that it may correspond to a steady state sit-
uation, after an emission constraint has been implemented. What makes our paper
essentially different from the above cited publications is that we allow for an emis-
sion constraint upon the agents’ joint strategy space. Assuming the presence of an
industry-independent regulator, we then vary the levels of the agents’ responsibility
for the coupled constraint’s satisfaction and suggest which sharing rules might be
preferred by the regulator.

The problem’s setup in this paper is conceptually similar to that of [9], [10],
[15], [4], [12], [18], [7] and also [5]. The common feature is that all those papers
deal with coupled constraints games, in which competitive agents maximise their
utility functions subject to constraints upon their joint strategy space. However,
in this paper, we make explicit the relationship between a solution to the problem
and the weights, which the regulator may use to distribute the responsibility for
satisfaction of a joint constraint, among the agents. In that, we follow the seminal
work [20] and use a coupled constraints equilibrium as a solution concept for the
discussed problem. Under this solution concept the regulator can compute (for
sufficiently concave games) the agents’ strategies that are both unilaterally non-
improvable (Nash) and such that the constraints imposed on the joint strategy
space are satisfied.

If the regulator can modify the agents’ utilities and impose penalties for viola-
tion of the joint constraints then the game will become “decoupled” and the agents
will implement the coupled constraints equilibrium in its “own interest”, to avoid
fines associated with excessive pollution. These penalties, which prevent excessive
pollution, can be computed using the coupled constraints Lagrange multipliers.



However, for this modification of the players’ utilities to induce the required be-
haviour, a coupled constraints equilibrium needs to exist and be unique for a given
distribution of the responsibilities for the joint constraints satisfaction, among the
agents. We will prove that our model possesses the property of diagonal strict
concavity (DSC), which will be sufficient for uniqueness of a coupled constraints
equilibrium. Obviously, the game has to possess the same properties should the
sharing rules be implemented through a political process rather by threatening the
regions with penalties .

Publications [3] and [8] report on that the energy more-intensive sector’s rev-
enue is proportionally more affected by the environmental policy than that of its
less-intensive counterpart. Our model’s results suggest various degrees of market
distortion as a consequence of the imposition of pollution quotas and of the alter-
ation of the rules for sharing the burden of the joint constraints’ satisfaction. We
expect our model can help the regulator discover which rules imply an acceptable
degree of market distortion.

For the results we use NIRA, which is a piece of software designed to min-
maximise the Nikaido-Isoda function and thus compute a coupled constraints equi-
librium (see [2, 16]). We also notice that a coupled constraints equilibrium could be
obtained1 as a solution to a quasi-variational inequality (see [11], [18]) or gradient
pseudo-norm minimisation (see [20], [9], [10]).

What follows is a brief outline of what this paper contains. In Section 2 a stylised
model of a two-region country is presented. Section 3 briefly explains the idea of a
coupled constraints equilibrium and the algorithm that will be used to compute it.
We present the calibrated model for a two-region environmental game in Section 5
and report on the equilibrium solutions. In Section ?? an economic interpretation
is given to the results. The concluding remarks summarise our findings.

2 A two-region country model

2.1 A game with constraints upon the agents’ joint strat-

egy space

We understand a country as an entity, on whose territory Gross National Product
(GNP) is generated. In some countries that have historically developed into regions,
notwithstanding the inter-regional spill-over effects, the product created by one
region’s industry can be deemed somehow independent of the product created by
the other region’s industry. However, due to trade and, recently, environmental
concerns, the supply of some production factors might be jointly constrained.

As a plausible application area for our analysis, we have mentioned in the Intro-
duction the Belgian regions Flanders and Wallonia whose industries have developed
distinctly over the last two centuries. In result, their contributions to the Belgian
GNP and the overall “Belgian” pollution are significantly different.

There is some evidence (see Table2 I) on that Flanders produces about 60%

1We refer to [13] for a review on numerical solutions to coupled-constraint equilibria.
2The statistical data cited in this paper come from Belgostat [1] and [6]. The energy con-

sumption is expressed in the table in boe. A barrel of oil equivalent (boe) is a unit of energy
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of GNP using about 60% of energy consumed by Belgium. On the other hand,
Wallonia contributes to the gross product in about 24% but “burns” 33% of the
country’s energy supply. The remainders of GNP and energy consumption are the
contributions by Brussels. However, we will not consider Brussels an active player
in the game we define below. We believe that, firstly, Wallonia and Flanders see
each other as direct competitors and neither of them “cares” much about what
the regulator decides about the Brussels’ quota. Secondly, Brussels’ energy con-
sumption appears small and, perhaps, no quota will make a big difference to its
contribution to GNP.

Table I: Estimations of energy consumption and gross product generation in Bel-
gium, about 2000

Energy Use Gross Value Added GVA/En.Use
106 boe % 106 Euros % Euro/boe

Belgium 270.065 100 223 812.0 100 828.73
Brussels 14.427 5.4 42 562.5 19 2950.20
Wallonia 89.832 33.3 52 819.1 24 587.98
Flanders 165.804 61.4 128 146.6 57 772.88

In Table I, we observe that Wallonia’s usage of energy appears less effective
than Flanders’ is.

Intuitively, it seems possible to keep the overall pollution constant but vary its
regional contributions and achieve an improvement of the whole country’s perfor-
mance. For example, using different sharing rules of apportioning the energy use
between the two regions can force them use different equilibrium strategies, which
may be more efficient from the social planner’s point of view. It is the aim of the
analysis conducted in this paper to help the “planners” to improve the latter.

Unless Wallonia’s product is “badly” needed by Flanders, it may appear that
encouraging Wallonia to use less energy (especially, if constrained) and allowing
Flanders to use more of it, might be beneficial for the global revenue.

based on the approximate energy released by burning one barrel of crude oil. One boe contains
approximately 0.143 toe (a ton of oil equivalent) or 6.1178632 ·109 J or about 1.70 MWh. Using
boe rather than any other energy unit has the advantage that the price of 1 boe is the price OPEC
charges their clients.
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Table II: Estimations of energy consumption and gross product generation per unit
of labour in Belgium, about 2000

Employment Energy Use Gross Value Added GVA/Empl.
/Employment /Employment /En. Use

boe Euros Euro/boe

Belgium 4 085 677 66.10 54 780 0.0002
Brussels 640 992 22.51 66 401 0.0046
Wallonia 1 093 076 82.18 48 322 0.0005
Flanders 2 351 609 70.51 54 493 0.0003

Table II presents a slightly different picture. Here, the regional performance is
expressed in relation to the size of labour, employed in each region. We see that
Wallonia’s usage of energy per worker is the highest and the revenue generated by
a unit of labour is the lowest.3 In the rest of this paper we will propose and analyse
a few models to help politicians decide about the energy sharing rules that could
lead to a socially preferred equilibrium.4

2.2 Model specification

In this paper we consider a country of two regional industries i = w, f (we will
use for w =Wallonia and for f =Flanders) that generate output according to a
two-factor production function. Let ei denote energy input per unit of labour in
region i where5 ei ∈ IR+; e ≡ [ei, e−i] ∈ IR+ × IR+. One factor will be function
Gi(ei) concave and smooth, dependent on energy used in sector i; the other factor
Fi(ei, e−i), also a concave and smooth function, dependent on energy used in the
whole country, will represent the effects of learning-by-doing, knowledge spill-overs,
externalities’ impact, interregional flows, etc.. Energy will be purchased by each
sector at international price p.

If the regions are separated geographically (or constitute different political or
ethnic “units”) their decisions about the use of energy, feeding into the factors
Gi(·), Fi(·, ·), can be regarded as independent of one another. If, for various reasons,
each region strives to maximise its Gross Regional Revenue (GRR) we should look
for each region’s input and output levels as results of an equilibrium solution to
a non-cooperative two-agent (or, two-region) game. If, in addition, the amount
of energy to be used by the entire country is restricted6, a constraint needs to be
added to the agents’ joint strategy space. In result, the input and output will be

3The last column of Table II provides a rather complex and non standard measure of “effi-
ciency”, which is the revenue (in Euros) obtained out of one boe by one unit of labour. Here,
Wallonia may appear more “economic” than the rest of the country in such per unit of labour
terms. However, given the existing employment levels, it is impossible to claim on this basis that
allowing Wallonia to use more energy would increase the whole country’s revenue.

4As said in the Introduction, we are skeptical about the social planner’s ability to enforce a
Pareto efficient solution.

5Notation −i signifies the other player.
6E.g., implied by a trade balance or the Kyoto Protocol.
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determined as a coupled constraints equilibrium, see [20]7 .
We assume there is one identical good generated by each region and this good’s

price is normalised to 1. Below we propose a model for regional revenue Πi, or the
value added by region i that directly depends on this good’s production. The two
values sum up to the national revenue.

Each regional revenue (or net value-added) Πi i = w, f will be expressed in
monetary units and modelled as the difference between the “gross” good’s value,
modelled as product Fi(·, ·)Gi(·) (multiplied by price=1), and the cost of energy
input ei as follows:

Πi(e) = Fi(ei, e−i)︸ ︷︷ ︸
spill−overs, etc.

Gi(ei) − p ei . (1)

One could consider sever realisations of Gi(·) and Fi(·, ·). For example,

a. Fi(ei, e−i) ≡ constant (no spill-overs, no externalities). This model would
correspond to autarkic development of the regions; however it could also
serve as a benchmark case, to isolate the elementary economic mechanisms of
regional competition.

b. Fi(ei, e−i) = (e−i)
δi (strategic complementarities). This would be a simple

formulation of strategic complementarities: region −i exerts an externality
on the other region. If δi > 0 then the externality is positive.

c. F (ei, e−i) = (ei + e−i)
δi (production spill-overs8). In essence the production

of one region depends also of the total energy used by the country.

d. G(ei) = αie
βi

i . Coefficient αi is total factor productivity. If Fi(·) is like in
(b.), 0 < βi, 0 < δi and βi + δi < 1 then the first term (“output”) of Πi(e) is
a Cobb-Douglas production function with diminishing returns to scale.

e. G(ei) = αi ln(ei). To avoid ln(ei) < 0 we shall scale the model so that ei

will always check ei > 1, see Section 4. In conjunction with Fi(ei, e−i) =
constant (see (a.)), the corresponding Πi(e) and Π−i(e) constitute (arguably)
the simplest pair of the revenue functions that retain the production-function
(strict) concavity feature.

Notice that (1) and the factor realisations (a.)-(e.) capture several basic facts (albeit
with a different degree of accuracy) about regional economics that a game model
should encapsulate. In particular, expression (1) says it is costly to use energy and
all choices (a.)-(e.) reflect the fact that using energy increases output. On the
other hand, in each realisation we have abstracted from labour. We assume that
the variables are expressed in per-unit-of-labour terms.

We can summarise some features of the above choices as follows:

7Or see [9], [10], [15], [4], [12], [5].
8In this realisation, total factor productivity F (ei, e−i) is the same in both regions. This is

so because it captures total non-appropriable knowledge derived from all productive activities in
the economy, here proxied by the associated energy inputs. This specification is in the spirit of
[19].
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• if αi > α−i then region i’s total factor productivity is higher than in region
−i’s; this might suggest technology in region i’s is more energy efficient than
that of region −i’s;

• if βi > β−i then region i’s output is more elastic to energy changes than region
−i’s;

• if δi > δ−i than the externality produced by region −i is more important for
production of region i than the other way around.

To highlight the main features of energy usage rationalisation we will use a
benchmark model that combines (a.) and (e.)

Πi(e) = αi ln(ei) − p ei . (2)

This simple model will also help us to motivate the need for a numerical analysis
of a more complicated model. It will be the combination of (c.) and (d.) as follows

Πi(e) = αi (e−i)
δi(ei)

βi − p ei . (3)

As said before, this choice captures the likely fact that region −i (the “other”
region) produces positive externality that feeds into the production of region i.

Let Ei denote the amount of energy used in region i, i = w, f . As ei the amount
of energy used by a unit of labour then

Ei = ηiei (4)

where ηi > 0 is the quantity9 of labour in region i.
Believing the sectors are “burning” (predominantly) oil to obtain energy, the

emissions Mi can be assumed a linear function of energy Ei as follows

Mi = κi Ei , κi > 0 (5)

where κi characterises the “burning” technology in region i (compare (??)).
In case the whole country is striving to curb its emissions below M > 0 (where

M could result from the Kyoto protocol) the maximisation of (1) (or (2) or (3))
needs to allow for the following constraint

Mi + M−i ≤ M ⇒ κi Ei + κ−i E−i ≤ M . (6)

If the emissions Mi generated by a unit of Ei were identical in each industry
then κi = κ−i = κ and the constraint (6) could be rewritten as

ηiei + η−ie−i ≤ E (7)

which is imposed upon the joint strategy space IR+ × IR+ � [ei, e−i] and where

E =
M

κ
is the energy available to the whole country.

9Variable ei can be expressed in per-worker units, per hour, per worker·hour, etc.. The quantity
ηi will correspond to the measure of ei.
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Given our assumption that the regions are “playing” a non-cooperative game,
the optimal energy usage levels and the regional products can be obtained as a
solution to a coupled constraint game defined as follows:

Πi(e
∗) = max Πi(ei, e

∗
−i)

ei s.t. ηiei + η−ie
∗
−i ≤ E i = w, f

}
(8)

where e∗ = [e∗i , e∗−i] and we wrote Πi(ei, e
∗
−i) to stress that player i needs to allow

for the optimal action of player −i, in deciding about her own optimal level e∗i .
A solution to (8) is such that no region can improve its own payoff by a unilateral

action without breaching (7). Hence, this solution is a “generalised” Nash-Cournot
equilibrium as it is called in e.g., [18], or a coupled constraint equilibrium as we call
it. If it exists it depends on a vector of weights ri, (i = w, f) that can be viewed
as a political instrument, which the central government can use to distribute the
burden of satisfaction of the coupled constraint (7), among the players (regions or
industries). We explain this concept in section 3.

3 Constrained equilibria

3.1 Coupled constraints equilibria

An equilibrium defined by (8) is a coupled constraint equilibrium.
A coupled constraints equilibrium (CCE) is an extension of a standard Nash

equilibrium in which players’ strategy sets are allowed to depend upon other play-
ers’ strategies. Coupled constraints equilibria are also known as generalised Nash
equilibria. The competition between the regions subject to the energy constraint
described as is an example of such a problem. Analytical solutions to CCE prob-
lems are not normally possible so section A describes a numerical method for solving
some such problems.

Coupled constraints equilibria are particularly useful in a class of problems
where competing agents are subjected to regulation. Many electricity market and
environmental problems belong to this class see e.g., [9], [10], [4] where this concept
has been applied in microeconomic contexts; see [7] for an international economics
application. In general, CCE allows modelling of a situation in which the actions
of one player condition how ‘big’ the actions of other players can be. Constraints
in which the actions of one player do not affect the action space of another (as in
Nash equilibrium problems) are called uncoupled.

In these games the constraints are assumed to be such that the resulting col-
lective action set X is a closed convex subset of IRm. If Xi is player-f ’s action set,
X ⊆ X1×· · ·×XF is the collective action set (where X = X1×· · ·×XF represents
the special case in which the constraints are uncoupled).

Allowing for the above, a solution to (8) can be explained as follows. Let the
collective action x∗ be the game solution and the players’ payoff functions, Πi,
be continuous in all players’ actions and concave in their own action. The Nash
equilibrium can be written as

Πi(x
∗) = max

x∈X
Πi(yi|x∗) (9)
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where yf |x∗ ∈ X denotes a collection of actions where the fth agent “tries” yi while
the remaining agents continue to play the collective action x∗. Note that x∗ is a
column vector with elements xg, g = 1, 2, . . . , f − 1, f + 1, . . . , F . At x∗ no player
can improve his own payoff through a unilateral change in his strategy so x∗ is a
Nash equilibrium point. If X is a closed and strictly convex set defined through
coupled constraints (like (7)) then x∗ is a CCE.

Games with coupled constraints rarely allow for an analytical solution and so
numerical methods must be employed. In this paper, we will solve game (8), with
the revenue functions defined by (3), using a method based on the Nikaido-Isoda
function and a relaxation algorithm (hence the name: NIRA), explained in Ap-
pendix A.

3.2 Existence and uniqueness of equilibrium points

It is one thing to know that one has a method to solve games with constraints but,
before proceeding, one needs to establish that the game has an equilibrium at all.
Furthermore, since the NIRA algorithm converges to a single equilibrium point it
would be nice if that equilibrium could be shown to be unique. The conditions
for existence and uniqueness for games with coupled constraints will be given in
Section 3.2.1. The equivalent definition that relies upon the notion weak convex-
concavity of the Nikaido-Isoda function, used for the numerical solutions in this
paper, is formulated in Section 3.2.2. In particular, the satisfaction of Condition
(e.) of Theorem 3.2 (formulated in Section 3.2.2, see page 10) implies diagonal
strict concavity (explained in Section 3.2.1 in page 9) of a game whose Nikado-
Isoda function is weakly convex-concave (see [21], Theorem 5.2.1). Hence any
game which satisfies the convergence conditions for the relaxation algorithm will
satisfy the diagonal strict concavity condition required for the unique solution to
the Rosen coupled constraint game.

3.2.1 Diagonal strict concavity

We know from [20]10 that an equilibrium exists and is unique if the game is di-
agonally strictly concave. We summarise (after [14]) the main ingredients needed
for the confirmation that the constrained game (8) has a unique equilibrium. We
formulate theorem 3.1 for a two-player case as considered in this paper11.

Denote e ≡ [ew, ef ], ρ(e, r), r ∈ IR2, ri > 0, ∀i the “combined payoff” (or joint
payoff function) as

ρ(e, r) = rwΠw(e) + rfΠf(e), (10)

and g(e, r) the pseudo-gradient of ρ(e, r),

g(e, r) =

⎡
⎢⎢⎢⎢⎣

rw
∂Πw(e)

∂ew

rf
∂Πf (e)

∂xf

⎤
⎥⎥⎥⎥⎦ . (11)

10Also see [14] or [13] for some applications.
11The original Rosen theorem in [20] is valid for n players.
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Definition 3.1. The function ρ(e, r) will be called diagonally strictly concave in e,
if for every e = (ew, ef)

T and e′ = (e′w, e′f)
T , ew + ef ≤ E and fixed r ∈ IR2

+, we
have

(e − e′)T g(e′, r) + (e′ − e)T g(e, r) > 0,

where T means transposition.

We often call a game diagonally strictly concave whose joint payoff function is
diagonally strictly concave.

Lemma 3.1. If Πi(e), i = w, f are “enough” differentiable, a sufficient condition
that ρ(e, r) be diagonally strictly concave in e for fixed r > 0 is that the “pseudo-
Hessian” symmetric matrix

H = G(e, r) + GT (e, r) (12)

be negative definite for e ∈ S. Here the matrix G(e, r) is the Jacobian with respect
to e of gradient g(e, r).

Theorem 3.1. If ρ(e, r) is diagonally strictly concave for some r ∈ IR2
+\{0}, then

the Nash equilibrium point of game (8) exists and is unique.

We will apply this theorem to games considered in Sections 4 and 5.

3.2.2 Convergence theorem

A weakly convex-concave function is a bivariate function that exhibits weak con-
vexity in its first argument and weak concavity in its second argument. The next
three definitions (see [17] or [22]) formalise this notion.12 As Theorem 3.2 (the con-
vergence theorem) will document, weak convex-concavity of a function is a crucial
assumption needed for convergence of a relaxation algorithm to a coupled con-
straints equilibrium.

Let X be a convex closed subset of the Euclidean space IRm and f a continuous
function f : X → IR.

Definition 3.2. A function of one argument f(x) is weakly convex on X if there
exists a function r(x,y) such that ∀x,y ∈ X

αf(x) + (1 − α)f(y) ≥ f(αx + (1 − α)y) + α(1 − α)r(x,y) (13)

0 ≤ α ≤ 1, and r(x,y)
‖x−y‖ → 0 as ‖x − y‖ → 0 ∀x ∈ X.

Definition 3.3. A function of one argument f(x) is weakly concave on X if there
exists a function µ(x,y) such that, ∀x,y ∈ X

αf(x) + (1 − α)f(y) ≤ f(αx + (1 − α)y) + α(1 − α)µ(x,y) (14)

0 ≤ α ≤ 1, and µ(x,y)
‖x−y‖ → 0 as ‖x − y‖ → 0 ∀x ∈ X.

12Recall the following elementary definition: a function is “just” convex ⇐⇒

αf(x) + (1 − α)f(y) ≥ f
(
αx + (1 − α)y

)
, α ∈ [0, 1].
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Example: The convex function f(x) = x2 is weakly concave (see [15]) but the convex
function f(x) = |x| is not.

Now take a bivariate function Ψ : X × X → IR defined on a product X × X,
where X is a convex closed subset of the Euclidean space IRm.

Definition 3.4. A function of two vector arguments, Ψ(x,y) is referred to as
weakly convex-concave if it satisfies weak convexity with respect to its first argument
and weak concavity with respect to its second argument.

The functions r(x,y; z) and µ(x,y; z) were introduced with the concept of weak
convex-concavity and are called the residual terms. Notice that smoothness of
Ψ(z,y) is not required. However, if Ψ(x,y) is twice continuously differentiable
with respect to both arguments on X × X, the residual terms satisfy (see [15])

r(x,y;y) = 1
2
〈A(x,x)(x − y),x − y〉 + o1(‖x − y‖2) (15)

and

µ(y,x;x) = 1
2
〈B(x,x)(x − y),x − y〉 + o2(‖x − y‖2) (16)

where A(x,x) = Ψxx(x,y)|y=x is the Hessian of the Nikaido-Isoda function with
respect to the first argument and B(x,x) = Ψyy(x,y)|y=x is the Hessian of the
Nikaido-Isoda function with respect to the second argument, both evaluated at
y = x.

To prove the inequality of condition (e) of Theorem 3.2 (the convergence theo-
rem, below) under the assumption that Ψ(x,y) is twice continuously differentiable,
it suffices to show that

Q(x,x) = A(x,x) − B(x,x) (17)

is strictly positive definite.

Theorem 3.2 (Convergence theorem). There exists a unique normalised Nash equi-
librium point to which the algorithm (49) converges if:

a. X is a convex, compact subset of IRm,

b. the Nikaido-Isoda function Ψ : X × X → IR is a weakly convex-concave
function and Ψ(x,x) = 0 for x ∈ X ,

c. the optimum response function Z(x) is single valued and continuous on X,

d. the residual term r(x,y; z) is uniformly continuous on X w.r.t. z for all
x,y ∈ X ,

e. the residual terms satisfy

r(x,y;y) − µ(y,x;x) ≥ β(‖x − y‖) , x,y ∈ X (18)

where β(0) = 0 and β is a strictly increasing function (i.e., β(t2) > β(t1) if
t2 > t1),
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f. the relaxation parameters αs satisfy

• either (non-optimised step)

(a) αs > 0,

(b)
∑∞

s=0 αs = ∞,

(c) αs → 0 as s → ∞.

• or (optimised step)

αs = arg min
α∈[0,1)

{
max
y∈X

Ψ(x(s+1)(α),y)

}
. (19)

Proof. See [15] for a proof.

3.3 Enforcement through taxation

Once a CCE, x∗, has been computed it is possible to create an unconstrained
game which has x∗ as its solution by a simple modification to the players’ payoff
functions. For example, a regulator may compute that x∗ is the CCE of a game
involving the desired constraints on agents’ behaviour. He may then wish to induce
the players to arrive at this point through a scheme of taxation that modifies their
payoff functions. This can be achieved by the use of penalty functions that punish
players for breaching the coupled constraints.

Penalty functions are weighted by the Lagrange multipliers obtained from the
constrained game. For each constraint, players are taxed according to the function

T�,i(λ, ri,x) =
λ�

ri
max(0, Q�(x) − Q�) (20)

where λ� is the Lagrange multiplier associated with the 	th constraint and Q�(x)
can be the amount of energy as described by the left hand side of (7). Symbol
Q�, 	 = 1, 2, . . . L denotes the corresponding limits (L is the total number of con-
straints13); x is the vector of players’ actions, ri is player f ’s weight that defines
their responsibility for the constraints’ satisfaction.

If the weights r were identical [1 , 1 , . . . 1] then the penalty term for constraint
	 is the same for each player f

T�,i(λ, 1,x) = λ� max(0, Q�(x) − Q�) . (21)

Hence, if the weight for player f is for example ri > 1 and the weights for the
other players were 1, 1,. . . 1, then the responsibility of player f for the constraints’
satisfaction is lessened. Obviously, if the players’ responsibilities are distributed in
periods t non-equally, then the weights would become rt

i.
The players’ payoff functions, so modified, will be

Πi(x) = Πi(x) −
∑

�

T�i(λ, r,x) . (22)

13Here, we have � = L = 1.
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Notice that under this taxation scheme the penalties remain “nominal” (i.e., zero)
if all constraints are satisfied.

The Nash equilibrium of the new unconstrained game with payoff functions Π
is implicitly defined by the equation

Π(x∗∗) = max
yi∈IR

+
Π(yi|x∗∗) ∀ i, (23)

(compare with equation (9)). For the setup of the problem considered in this paper
x∗ = x∗∗. That is, the CCE is equal to the unconstrained equilibrium with penalty
functions for breaches of the constraints, weighted by the Lagrange multipliers (see
[15], [12] and [13] for a more detailed discussion).

4 The benchmark problem

4.1 Existence and uniqueness of equilibrium

We will formulate and analyse a simple problem of energy apportioning between two
regions with no externalities and no spill-over effects. We will also see that studying
the solutions to this “simplest” game of requires some computational analysis.

Consider two “autarkic” regions i = w, f with the revenue functions based on
(2) (see page 7) i.e.,

Πw(e) = ln(ew) − p ew (24)

Πf (e) = αf ln(ef ) − p ef (25)

where, for simplicity, we assumed αw = 1. As said in Section 2.2, we will scale the
model appropriately (see footnote 15) to avoid ei ≤ 1, i = w, f .

The regions face a joint constraint (compare (7))

ew + ηfef ≤ E (26)

where, for simplicity, we assumed ηw = 1. Naturally ηw ≥ 0, ηf ≥ 0.
To claim equilibrium existence and uniqueness (see Theorem 3.1) we need to

prove Lemma 3.1. Matrix H (see (12)) for game (8) with the revenue functions
(24), (25) is

H1 =

⎡
⎢⎣

− rw

ew
2

0

0 −rf αf

ef
2

⎤
⎥⎦ .

Clearly H1 is strictly negative definite. The constraint set determined by (26) and
ew ≥ 0, ef ≥ 0 is convex. Hence the game defined by payoffs (24), (25) is diagonally
strictly convex. Consequently, if we fix the weights (rw, rf) ∈ IR2

+ and compute an
equilibrium then the equilibrium is unique. The other theorems’ results, proved
in [20] for diagonally strictly convex games, which will be referred to below, are
applicable to this game.
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By definition, a coupled constraint equilibrium (e∗w, e∗f , λ
∗) is to be determined

as the triple that satisfies:

ln(e∗w) − p e∗w ≥ ln(ew) − p ew + λw (−ew − ηfe
∗
f + E)

αf ln(e∗f ) − p e∗f ≥ αf ln(ef ) − p ef + λf (−e∗w − ηfef + E)

}
(27)

where λw ≥ 0, λf ≥ 0 and λw(−e∗w − ηfe
∗
f + E), λf(−e∗w − ηfe

∗
f + E) . From

[20]14 we know that that for every concave game there exists a (Rosen-)normalised

equilibrium point (e∗w, e∗f) with λ∗
w =

λ∗

rw
, λ∗

f =
λ∗

rf
where λ∗ is a joint Lagrange

multiplier (“shadow” price) that corresponds to constraint (26).
If so and by the necessity of the Kuhn-Tucker-Karush conditions, in equilibrium

(e∗w, e∗f , λ
∗) satisfy

−e∗w − ηfe
∗
f + E ≥ 0

λ∗ ≥ 0

λ∗(−e∗w − ηfe
∗
f + E) = 0

1

e∗w
− p − λ∗ = 0

αf

e∗f
− p − ηf

λ∗

rf
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

where for simplicity we assumed rw = 1.

4.2 Properties of equilibrium

Given rf , the coupled constraint equilibrium for the interesting case of λ∗ > 0 is
available albeit as a function of λ∗. The equilibrium energy usage15 per worker is

e∗w =
1

p + λ∗ , e∗f =
αfrf

rfp + ηfλ∗ =
αf

p +
ηf λ∗
rf

. (29)

However, these relations are functions of the equilibrium shadow price λ∗. (We
notice that the marginal cost of violating the constraint is diminished rf -times for
the player whose ri �= 1.) To explicit the equilibrium shadow-price dependence on
the problem parameters (including rf �= 1) one has to solve the following equation

1

p + λ∗ +
αfηf

p +
ηf λ∗
rf

= E (30)

which is a quadratic equation in λ∗

14See Theorem 3 in [20].
15For e∗i > 1 so that we avoid negative output, p+λ∗ < 1. To assure this result we can scale the

model as follows: choose the energy unit so that price p < 1; then scale total factor productivity
αf (and/or the labour units) with respect to E so that the ratios appearing in (29) are larger
than 1.

14



ηfE(λ∗)2 − (ηf + ηfrfαf − Ep(ηf + rf ))λ∗ − prf (1 + ηfαf − Ep) = 0 .

The roots of this equation are

λ∗
1 =

ηf (1 + rfαf ) − Ep (ηf + rf )
2Eηf

(31)

+

√
(ηf + ηfrfαf )2 − 2Epηf

(
ηf − rf − ηfrfαf + αfr2

f

)
+ E2p2 (ηf − rf )2

2Eηf

λ∗
2 =

ηf (1 + rfαf ) − Ep (ηf + rf )
2Eηf

(32)

−

√
(ηf + ηfrfαf )2 − 2Epηf

(
ηf − rf − ηfrfαf + αfr2

f

)
+ E2p2 (ηf − rf )2

2Eηf

Any exact conclusions about the relationship between rf and the positive root
λ∗ are parameter specific and would require simulation. We will solve numerically a
more realistic game in Section 5 to analyse this relationship. Here, however, we can
formulate Proposition 4.1 to demonstrate a few simple general properties, which
the shadow price λ∗ satisfies in coupled constraint equilibrium (described by (29)
and (30)).

Proposition 4.1. In the unique coupled constraint equilibrium of the benchmark
bi-regional game (24)-(26), the constraint’s shadow price λ∗ possesses the following
properties:

a. if the amount of available energy E decreases, the shadow price λ∗ increases;

b. if total factor productivity αf increases, the shadow price λ∗ increases;

c. if the price of energy p increases, then the shadow price λ∗ decreases;

d. if rf increases, which means a diminution of the responsibility of region f ,
λ∗ increases.

e. if labour supply ηf or total factor productivity αf increase, λ∗ increases.

The proofs are elementary and based on the analysis of (30) re-written as

αfηf

p +
ηf λ∗
rf

= E − 1

p + λ∗ . (33)

For example, (a.) follows from the observation that if λ∗ decreased, rather than
increased as is claimed in the proposition, then the right hand side of (33) would
be negative. Similar reasoning proves the other items of the proposition.
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Remark 4.1. Notice that properties (a.)-(e.) are insufficient to claim that the
privileged player’s (here: region f whose rf > 1) marginal cost of violating the
constraint (see (20)) will always decrease for rf > 1. For the claim to be true,
dλ∗

drf

< 1. An analysis of this derivative could be performed using the implicit

function theorem. However, such analysis would have to be parameter specific hence
non-conducive to general conclusions. We will examine a similar relationship in the
game with externalities solved numerically in the next section.

Equilibrium revenue per worker (as a function of λ∗) is

Π∗
w = ln

(
1

p + λ∗

)
, Π∗

f = αf ln

⎛
⎝ ηfαf

p +
ηf λ∗
rf

⎞
⎠ (34)

and the country’s (total) revenue

Π∗
w +Π∗

f = ln

(
1

p + λ∗

)
+αf ln

⎛
⎝ ηfαf

p +
ηf λ∗
rf

⎞
⎠ = ln

(
1

p + λ∗

) ⎛
⎝ ηfαf

p +
ηf λ∗
rf

⎞
⎠

αf

. (35)

The latter may grow in rf but only if the growth of λ∗ is slower than the rise of
rf , see Remark 4.1. We will analyse the issue of improvements of Π∗

w + Π∗
f due to

the changes in rw and rf numerically in Section 5.
We also notice that, for this benchmark game without externalities or spill-over

effects, the symmetric Pareto-optimal (“efficient”) solution (ēw, ēf , λ̄) ≥ 0, which
satisfies

ln(ēw)−p ēw+ln(ēf )−p ēf ≥ ln(ew)−p ew+ln(ef )−p ef +λ̄ (−ew−ηfef +E) (36)

coincides16 with e∗w, e∗f , λ
∗ given in (29) and (30).

5 A game with externalities

5.1 Uniqueness and equilibrium conditions

Here we consider two competitive regions that face a joint constraint (compare (7))

ηw ew + ηf ef ≤ E (37)

and whose outputs are enhanced by positive externalities feeding into the oppo-
nents’ revenue functions as in (3) (see page 7) i.e.,

Πi(e) = αi (e−i)
δi(ei)

βi − p ei , i = w, f . (38)

The pseudo-Hessian for game (8) with the revenue functions (38) is

16The symmetric Pareto-optimal solution is when the weights for each player’s payoff are iden-
tical. Hence, we mean the coincidence with the game when rf = 1.
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H2 =⎡
⎢⎢⎢⎢⎣

rw αw ef
δwew

βw−2βw (βw − 1)
rf αf ew

δf δf ef
βf βf + rw αw ef

δw δw ew
βw βw

2 ew ef

rf αf ew
δf δf ef

βf βf + rw αw ef
δw δw ew

βwβw

2ew ef

rf αf ew
δf ef

βf −2βf (βf − 1)

⎤
⎥⎥⎥⎥⎦

We can clearly see that H1,1 < 0. However, to determine the diagonal strict concav-
ity of the game we also need detH2 > 0. This result appears parameter dependent
but will be satisfied at least for “large” ew and ef . Notice that the product H1,2H2,1,
to be subtracted from H1,1H2,2 > 0 (to compute the determinant) is vanishing for
large ew and ef ; this is so because the powers of ew and ef in the denominator are
greater than in the numerator.

We will check later in Section 5.3 (i.e., after calibration) that H2 is negative
definite. Hence, if we fix the weights rw, rf and compute an equilibrium for game
(8) this equilibrium is unique.

As in Section 4, a coupled constraint equilibrium is the triple (e∗w, e∗f , λ
∗) that

satisfies:

αw (e∗f)
δw(e∗w)βi − p e∗w ≥ αw (e∗f )

δw(ew)βi− p ew + λw (−ηwew − ηfe
∗
f + E)

αf (e∗w)δf (e∗f)
βi − p e∗f ≥ αf (e∗w)δw(ef )

βi− p ef + λf (−ηwe∗w − ηfef + E)

}
(39)

where λw ≥ 0, λf ≥ 0 and λw(−e∗w−ηfe
∗
f +E), λf(−e∗w−ηfe

∗
f +E) . As in Section 4,

we invoke the results obtained in [20]. In particular we look for an equilibrium point

(e∗w, e∗f) with λ∗
w =

λ∗

rw

, λ∗
f =

λ∗

rf

where λ∗ is a joint Lagrange multiplier (“shadow”

price) that corresponds to constraint (37).
If so and by the necessity of the Kuhn-Tucker-Karush conditions, the triple

(e∗w, e∗f , λ
∗) has to satisfy in equilibrium

−ηwe∗w − ηfe
∗
f + E ≥ 0

λ∗ ≥ 0

λ∗(−ηwe∗w − ηfe
∗
f + E) = 0

rw αw ef
δw ew

βw−1βw − rw p − ηwλ∗ = 0

rf αf ew
δf ef

βf −1βf − rf p − ηfλ
∗ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (40)

We can express the equilibrium strategies (e∗w, e∗f) as functions of λ∗ for the inter-
esting case of λ∗ > 0. However, after the substitution of the strategies in the energy
balance condition (ηwe∗w +ηfe

∗
f = E) the resulting equation is substantially “more”

nonlinear than (30). It appears that its analytical solution is unavailable. We will
solve the coupled constraint equilibrium problem (40) numerically using NIRA in
Section 5.3.
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5.2 A calibrated model

Given the data in Table II, we would like to establish plausible values for the 6
parameters (αi, βi, δi for the two regions i = w, f) that characterise the regional
revenue functions (38) (or (3)). The two functions (38) constitute two conditions
that the parameters have to satisfy for a given value of price p.

We assume that the joint constraint (37) was not binding in 2000 i.e., in the
year for which the data were collected in Table II. Since we claim that the regions
are “game players”, we have the following two first-order non-coupled-constraint-
equilibrium conditions

e∗w =

(
βw αw

p

) 1
1−βw

(e∗f)
δw

1−βw (41)

e∗f =

(
βf αf

p

) 1
1−βf

(e∗w)
δf

1−βf , (42)

which the coefficients also need to satisfy. Consequently, we have 4 equations in 6
variables.

Additionally, we have constraints on non-negativity of all parameters, [0, 1]
membership of the exponents and that βi > δi. This means that we have not-
so-much freedom in choosing the parameters. A Matlab constrained minimisation
function17 was used to minimise the sum of deviations (squared, weighted) between
the computed and historical revenues and between the postulated equilibrium en-
ergy consumptions and the historical consumptions. A solution (without any claim
of uniqueness) is presented in Table III.

Table III: Parameters of regional value-added functions

Wallonia Flanders
α 40592 43085
δ 0.002359 0.025848
β 0.048545 0.037365

We conjecture that the parameter values in Table III, can represent a stylised
regional competition problem. As said, we make no claim on any sort of uniqueness
of theses parameters. (In particular a change of unites could diminish the values of
αi but we will stick to the “natural” units: Euro and boe.)

The calibrated game with the revenue functions (38) and constraint (37) is
particular in several respects and so will be the numerical solutions to the game,
presented below. For example, δf > δw suggests that Flanders relies on the positive
externality that Wallonia produces more than the other way around18; the inequal-
ity βf < δw jointly with αf > αw may reflect better efficiency of Flanders’ use of
energy, albeit for a finite range. In brief, we believe that the calibrated model used

17fmincon.
18Traditionally, Wallonia was a coal and steel producer. Perhaps δf > δw captures Flanders’

reliance on those products.
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in the rest of this paper enables us to analyse coupled constraint equilibria for a
case study, which the model represents.

Notice that if p = 30 Euro/boe the revenue functions (38) reproduce the
statistical data displayed in Table II:

40592(70.51)0.002359 · (82.18)0.048545 − 30 · 82.18 = 48 332 (43)

43085(82.18)0.025848 · (70.51)0.037365 − 30 · 70.51 = 54 493 (44)

5.3 Numerical solutions

We have verified that the determinant of H2 > 0 for the adopted parameter values.

5.3.1 Sharing the constraint’s burden in solidarity or the “status quo”
solutions

We are interested to know how the regions respond to the imposition of the energy
constraint (37). We will assume that the revenue functions’ coefficients proposed in
Table III do not depend on the energy use and solve the coupled constraint game
(40) numerically for several values of E. We will keep the price p constant for these
experiments.19

In this section we examine the regions’ reaction to the imposition of the energy
constraint under the assumption that they share the responsibility for the con-
straint’s satisfaction in solidarity i.e., the weights are rw = rf = 1. To see the scope
for the regulator’s interventions we will analyse this competitive solution against
the symmetric Pareto-optimal (“efficient”) solution.

In the figures that follow the solid lines correspond to the former while the dotted
lines represent the latter. We will use an upper bar ¯ to denote the Pareto optimal
solutions; asterisk ∗ will be used for coupled constraint equilibrium solutions.

Figure 1, scaled in Euro per-unit-of-labour, and Figure 2, in Euro, show how
the regional and national revenues change when energy constraints are introduced.
The horizontal axis represents the energy availability so, tightening of the constraint
corresponds to “moving” from right to left.

The bottom panel in each figure corresponds to the value added of Wallonia,
the middle one represents the Flanders’ value and the top graph is the sum of both
and is meant to describe Belgium’s (total) national revenue20.

19In real life, a higher price of energy would cause the value added to increase. Our regional
revenue model (38) does not allow for this effect so, the assumption of a constant price might
correspond to the value added expressed in constant prices. Also, should the price increase
substantially the constraint would not be binding.

20As said in Section 2.1 we neglect the contributions of Brussels.
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Figure 1: Revenue per unit of labour as a function of the energy constraints.
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Figure 2: Total revenue as a function of the energy constraints.
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Figure 3: Wallonia’s and Flanders’ energy usage shares as functions of the energy
constraints.

As expected, all revenues diminish if the available energy decreases. However,
under the efficient solution, Wallonia is supposed to increase its contributions to
the national revenue. This would be a result of assigning Wallonia a higher share
of the energy consumption, as shown in Figure 3. (We notice that the constraint
becomes active at E = 2.5 ·108 for the competitive solutions. The efficient solutions
rely always on the whole energy quota, see Figure 5.)

A higher energy share apportioned to Wallonia might be “required” for the
revenue maximisation because Wallonia’s positive externality is “needed” for Flan-
ders’ output. Also, notice that under the Pareto optimal solution, Flanders’ revenue
per-unit-of-labour per-energy-input, see Figure 4, is growing faster than Wallonia’s.
This appears to compensate a possible decrease of Flander’s output due to a more
favourable treatment of Wallonia.
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Figure 4: Wallonia’s and Flanders’ revenue generation efficiency as functions of the
energy constraints.

It is interesting to notice that the competitive solutions are not only inefficient
regarding the revenues they can generate but also in terms of the constraint’s satu-
ration. Figure 5 shows the constraint’s slacks as the constraints are tightened. It is
clear that the constraint is not binding for E > 250 000 000 boe for the competitive
solutions. Conversely, the regions always work to their “full capacity” if a Pareto
optimal solution is implemented, see the dotted line at the level of zero.
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Figure 5: The constraint’s slack as a function of tightening the constraints.
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Finally, it is interesting to compare the shadow prices for the competitive and
efficient solutions. Figure 6 documents that higher prices are needed to support
the Pareto symmetric optimal solution, than for a game equilibrium.
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Figure 6: The shadow prices as functions of the energy constraints.

The observation about high shadow prices required for more socially acceptable
outcomes will be exploited in the following section. By increasing one weight (rw or
rf) the responsibility for the constraint’s satisfaction will be lessen for one region.
This will encourage this region to consume more energy. If this is the “right” region,
the total revenue might increase in a new equilibrium.

We will see that an unequal weight > 1 can produce a higher common-constraint
shadow price and help the equilibrium become closer to the optimal solution.

5.3.2 Asymmetrical sharing rules

Here, we compute the regions’ reactions to imposition of an energy constraint when
the responsibility for the constraint’s satisfaction is distributed unevenly. In par-
ticular, we will construct constrained equilibria when the marginal cost of violating

the energy constraint for Flanders will be weighted by a series of
1

rf

as follows

1

rf
: = 3, 2, 1.5, 1,

3

4
,

1

2
,

1

3
.

Obviously, hese weights correspond to

rf : =
1

3
,

1

2
,

3

4
, 1, 1.5, 2, 3 .

Most of the results in this section will be presented in three-dimensional spaces

where the first dimension is rf ∈
{

1

3
,
1

2
,
3

4
, 1, 1.5, 2, 3

}
and the second dimension is

the available energy E ∈ [1.5, 3]×108boe. The variable of interest will be presented
in the third dimension.
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Inspired by the observation that the shadow price for the symmetric Pareto
optimal solution dominates the equilibrium shadow price (see Figure 6) we will
examine whether varying rf can indeed generate λ∗ that would resemble λ̄.

We first show how the Pareto solution shadow price can be represented in 3D,
see Figure 7. In essence, this is the top line in Figure 6 (either panel) shown as a
surface where all iso-lines are parallel to rf (first dimension).
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Figure 7: The symmetric Pareto optimal shadow prices in 3D.

This surface could be added as the “ceiling” to the following 3D graphs in Figure
8.
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Figure 8: The equilibrium shadow prices as functions of the weight rf and the
energy constraints.

However, we will not do it to not “cover” the commented graph.21 What we show

21We could produce the Pareto efficient “ceilings” for all the remaining figures. However, this
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in this figure is how the equilibrium shadow prices λ∗ change in rf , and in E, for
Wallonia (left panel) and Flanders (right panel). The red dotted lines represent the
symmetric equilibrium shadow prices (i.e., rf = 1 as in Figure 6).

The shadow price for Flanders is
λ∗

rf

while for Wallonia it is just λ∗. We can

clearly see that λ∗ increases as rf rises. A comparison between the values reached by
λ̄ in Figure 7 and λ∗ in Figure 8 (left panel) suggests that varying rf might diminish
the difference λ̄−λ∗. Consequently, some equilibria might be socially more desirable
than some other equilibria. We will verify this conjecture by examining the total
revenue for the country as a function of rf (see Figure 9).
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Figure 9: Total revenue of the country as a function of the weight rf and the energy
constraints.

We can see in Figure 9 that the total revenue increases in
1

rf

. This corresponds

to shifting the responsibility for the constraint’s satisfaction away from Wallonia
and allowing it to consume more energy.

In the context of higher energy efficiency of Flanders vis-a-vis Wallonia this
might be a surprising conclusion. Let us examine what outcomes are caused by the
variation of rf at the regional level.

Figure 10 shows the regional revenues’ dependence on rf and E. We observe
that the preferential treatment of Wallonia (small rf) suits both regions well, albeit
Wallonia appears to gain more.

could blur the analysis. Instead, we will make occasional references to the respective Pareto
solutions represented by the dotted lines in Figures 2- 6.
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Figure 10: The regional revenues per unit of labour as functions of the weight rf

and the energy constraints.

Of great interest is to examine the regional equilibrium strategies, which lead to
the above revenue outcomes. Figure 11 shows the strategic decisions of how much
energy should be consumed per unit of labour in regions.
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Figure 11: The regional strategies boe/labour as functions of the weight rf and the
energy constraints.

Here we can see that increasing weight rf encourages Flanders to use more
energy while lowering it pushes Wallonia to consume more. These tendencies are
even more visible when we observe the energy consumption shares in Figure 12.
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Figure 12: The regional energy consumption shares as functions of the weight rf

and the energy constraints.

Finally we can remark that the coupled constrained equilibria are “efficient” in
that the slack on the constraint is zero, see Figure 13.
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Figure 13: Total revenue of the country as a function of the weight rf and the
energy constraints.

5.3.3 A variation in the reliance on externality

In our model, the existence of inter-regional externalities is a fundamental ingredient
of the problem: depending on the size of the positive externality exerted by the
energy less efficient region on the more efficient one, the latter should be apportioned
the higher or the lower energy share.

Compare the following figures, obtained for a decreased reliance of Flanders on
the positive externality produced by Wallonia (δf = .002), with Figures 9 and 10.
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Figure 14: Total revenue of the country as a function of the weight rf and the
energy constraints.
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Figure 15: The regional revenues per unit of labour as functions of the weight rf

and the energy constraints.
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We can clearly see that, now, a preferential treatment of Flanders (i.e., rf

increases) results in higher energy consumption by this region. However, the overall
country’s revenue growth appears non monotonic in rf .

6 Concluding remarks

We have proposed a novel methodological approach to regional cost sharing of
environmental regulation. The framework is game theoretic, based on the concept
of coupled constraint equilibrium, allowing us to formulate naturally an important
policy problem of national governments of multi-regional countries. The problem
is timely and concerns the implementation of international agreements like the
Kyoto Protocol. In particular, there are two specific questions that our model
helps answer: how to efficiently share the burden of environment regulations (like
emissions quotas) across regions? And, how to enforce such a sharing?

The problem is particularly acute when there exist significant structural dif-
ferences across regions. In the case considered in our paper, regions may differ in
their energy efficiency. , For example, a region may be (for many good reasons)
much more energy intensive than another region. If the national government has
to allocate emission permits across the regions, what could be the most efficient
sharing rule for the country?

In order to give substance to this discussion, we have considered the case Wallo-
nia vs. Flanders. Wallonia is traditionally significantly more energy intensive than
Flanders while the contribution of the latter to Belgian GDP is clearly larger.

It could be thought that having to enforce a national pollution norm, in ac-
cordance with international agreements, the regulator should penalise the more
polluting, or deviating, region, especially if its contribution to national wealth is
markedly lower than that of the less polluting regions. This is clearly the case
of Wallonia in Belgium. Our paper makes a point in this respect: the reasoning
that leads to limiting Wallonia’s energy use, does not take into account the fact
that regions do interact in several meaningful ways such that penalizing the more
deviating region may turn out to be inefficient in terms of the joint production
maximisation. In our model, the existence of inter-regional externalities is a fun-
damental ingredient of the story. We surmise that the decision of apportioning the
higher, or the lower, energy share to the more efficient, or disciplined, region must
depend on the size of the positive externality exerted by the more deviating region
on the former.

Hence, there is no simple theorem for efficient regulation of cost sharing across
regions. One has not only to look at the differences in factor intensity but also to
scrutinise the economic interactions betweens regions, which is far from easy. Even
if one restricts these interactions to inter-regional technological spillovers, the issue
is not so simple since a substantial part of these spillovers is intangible. Our analysis
points at a further and more political ingredient: the government may choose an
uneven distribution (acress regions) of the responsibility for the joint constraint
satisfaction to force a particular outcome. Our paper shows clearly that the shape
of equilibria identified and the corresponding national revenues tightly depend on
parameter rf . This opens a further important line of research: what could be an
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“optimal” rf? Our numerical analysis sheds light on some particular properties of
our model in this respect. Our ambition is to provide a more general appraisal in
less specific models regarding this question, which seems to us crucial in the design
of environmental regulation policies.
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Appendix

A NIRA

A.1 The Nikaido-Isoda function

This function is a cornerstone of the NIRA technique for solving games for their
CCE. It transforms the complex process of solving a (constrained) game into a far
simpler (constrained) optimisation problem.

Definition A.1. Let Πi be the payoff function for player f , X a collective strat-
egy set as before and ri > 0 be a given weighting22 of player f .The Nikaido-Isoda
function Ψ : X × X → IR is defined as

Ψ(x,y) =
F∑

f=1

ri[Πi(yi|x) − Πi(x)] (45)

Result A.1. See [22].

Ψ(x,x) ≡ 0 x ∈ X. (46)

Each summand from the Nikaido-Isoda function can be thought of as the im-
provement in payoff a player will receive by changing his action from xf to yf while
all other players continue to play according to x. Therefore, the function repre-
sents the sum of these improvements in payoff. Note that the maximum value this
function can take, for a given x, is always nonnegative, owing to Result A.1 above.
The function is everywhere non-positive when either x or y is a Nash equilibrium
point, since in an equilibrium situation no player can make any improvement to
their payoff. Consequently, each summand in this case can be at most zero at the
Nash equilibrium point [15].

We observe that the “sum of improvements” in Ψ depends on the weighting
vector r = (ri)f∈F . Consequently, a manifold of equilibria indexed by r is expected
to exist. However, for a given r and diagonal strict concavity of

∑
f∈F riΠi(xi),

uniqueness of equilibrium x∗ is guaranteed, see [20] and [10]. Also, notice that ac-
cording to Theorem 3.2 (the convergence theorem), if the assumptions are fulfilled,
then NIRA converges to the unique equilibrium, for the value of r that was used in
the definition of Ψ.

When the Nikaido-Isoda function cannot be made (significantly) positive for a
given y, we have (approximately) reached the Nash equilibrium point. This obser-
vation is used to construct a termination condition for the relaxation algorithm,
which is used to min-maximise Ψ. An ε is chosen such that, when

max
y∈IRm

Ψ(xs,y) < ε, (47)

22The weights can be viewed as a political instrument the regulator might use to distribute the
responsibility for the joint constraints’ satisfaction, among the generators (and periods).
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(where xs is the s-th iteration approximation of x∗) the Nash equilibrium would be
achieved to a sufficient degree of precision [15].

The Nikaido-Isoda function is used to construct the optimum response function.
This function is similar to the best response function in standard non-cooperative
game theory. It defines each player’s optimal action to maximise his payoff given
what the other players have chosen. The vector Z(x) gives the ‘best move’ of each
player when faced with the collective action x. It is at this point that the coupled
constraints are introduced into the optimisation problem. The maximisation of the
Nikaido-Isoda function in equation (48) is performed subject to the constraints on
the players’ actions.

Definition A.2. The optimum response function at point x is

Z(x) ∈ arg max
y∈X

Ψ(x,y). (48)

A.2 The relaxation algorithm

The relaxation algorithm iterates the function Ψ to find the Nash equilibrium of a
game. It starts with an initial estimate of the Nash equilibrium and iterates from
that point towards Z(x) until no more improvement is possible. At such a point
every player is playing their optimum response to every other player’s action and the
Nash equilibrium is reached. The relaxation algorithm, when Z(x) is single-valued,
is

xs+1 = (1 − αs)x
s + αsZ(xs) 0 < αs ≤ 1 (49)

s = 0, 1, 2, . . .

From the initial estimate, an iterate step s+1 is constructed by a weighted average
of the players’ improvement point Z(xs) and the current action point xs. Given
concavity assumptions explained in section 3.2, this averaging ensures convergence
(see [22], [15]) to the Nash equilibrium by the algorithm. By taking a sufficient
number of iterations of the algorithm, the Nash equilibrium x∗ can be determined
with a specified precision.
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