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1. Introduction

Imagine the following situation. A group of agents considers collaborating on a project which
requires putting together elements owned by some of them. These elements are pure public
goods with exclusion1 i.e. nonrival but excludable goods like for instance knowledge, data or
information, patents or copyrights.2 The question is not to share the cost of these goods
because they are already available. Their costs are sunk. The question is instead to possibly
compensate some of the agents who own these goods, knowing that any additional cost has to
be shared independently. This problem can be framed as a cost sharing game in which the
value of the grand coalition is zero: these games are compensation games to which standard
cost allocation rules like the Shapley value or the nucleolus can be applied.

These games are defined on the basis of the replacement cost of the goods involved e.g. the
cost of acquiring today the data or the cost of developing alternative technologies. In what
follows we shall keep the term "data" for expository reason and talk about "data games".

We first define data games and analyze their general properties. Data games are essential,
monotone decreasing and subadditive. Their core is nonempty as it always contains the no
compensation allocation: no coalition of players can object when no one is asked to pay. We
then consider two special classes of data games.

In the first class, individual datasets are nested and, as a consequence, at least one player owns
the complete dataset. Although this does not fit many actual situations, any data game can be
written as a sum of nested data games by working data by data. Furthermore, nested data
games are "reverse" airport games, a property which is used to compute the compensation rule
derived from the Shapley value.

In the second class, individual datasets form a partition of the complete dataset. This case
applies to many actual situations and fits perfectly the case of patents or copyrights.

The core of both nested and partition data games happens to have a very simple structure: it is
a regular simplex. As a consequence, the nucleolus coincides with the core centroid. Partition
data games are concave implying that the Shapley compensation belongs to the core and,
given the regular structure of the core, it coincides with the nucleolus. Instead, nested data
games are generally not concave and core allocations involve compensations only if a single
player owns the complete dataset in which case only that player is compensated. As a
consequence, the allocation derived from the Shapley value does generally not belong to the
core because it often compensates other players as well.

The paper is organized as follows. Cost games in general and data games in particular,
together with their associated surplus sharing games, are defined in Section 2. Section 3 is
devoted to the core which is further characterized for the two special classes of data games,
nested data games and partition data games. The compensation rule derived from the Shapley
value is defined in Section 4 and compared to the sharing rules derived from the nucleolus
and from accounting methods. Concluding remarks are offered in the last section.

1 To quote Drèze (1980, p.6): "Public goods with exclusion are public goods … the consumption of which by
individuals can be controlled, measured and subjected to payment or other contractual limitations."

2 The origin of the present paper is the cost sharing problem faced by the European chemical industry which
must submit detailed analysis for about 30.000 substances it produces, a requirement imposed by EU under the
acronym "REACH".
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2. Data games

2.1 Cost sharing games

A set N = {1,…,n} of players, n  2, have a common project and face the problem of dividing
its cost. The cost of realizing the project to the exclusive benefit of the members of any
coalition is also known.

This defines a real-valued function C – a cost function – on the subsets of N with C() = 0.3

A pair (N,C) defines a cost game and the cost to be divided is C(N).

A sharing rule  associates a cost allocation y =  (N,C) to any cost game (N,C) such that

( )i
i N

y C N




Notation: The letters n, s, t,… will denote the size of the sets N, S, T,… For a vector y, y(S)
will denote the sum over S of its coordinates. Coalitions will be identified as ijk… instead of
{i,j,k}… For any set S, S\i will denote the coalition out of which player i has been removed.

2.2 Data games

We denote by M = {1,…, m} the set of existing data and by dh the cost of reproducing data
h  M, with dh > 0 for all h  M. We denote by Mi  M the subset of data owned by player i
and by MS the dataset owned by S:

S i
i S

M M




We assume that MN = M and Mi  M for some i  N. This includes the possibility that some
players do not own data (Mi = ) or do own the complete dataset (Mi = M).

The cost associated to a coalition is the cost of reproducing the data it does not own:

0
\

( )
S S

h h
h M M h M

C S d d d
 

    (1)

where 0 h
h M

d d


  is the replacement cost of the complete dataset.

This defines a cost game (N,C) that we call "data game". Because C(N) = 0, data games are
"compensation games".

In what follows we shall consider examples involving four players and four data, with a
common cost vector d = (6,4,10,12). The cost of the complete dataset is then d0 = 32. Only the
distribution of data among players will change. Player 1 will however be assumed to own no
data in all these examples.

3 See for instance Young (1985) or Moulin (1988, 2003).
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Example 1 Consider the following datasets M1 = , M2 = {1}, M3 = {1,2} and M4 = {3,4}.
The corresponding data game is given by:

C(1) = d0 = 32
C(2) = C(12) = d2 + d3 + d4 = 26
C(3) = C(13) = C(23) = C(123) = d3 + d4 = 22
C(4) = C(14) = d1 + d2 = 10
C(24) = C(124) = d2 = 4
C(34) = C(134) = C(234) = C(1234) = 0

Because M  Mi for some i, data games are essential:

0
1

( ) 0
i

n

h
i i N h M

C i nd d
  

   

Data games are monotonically decreasing: for any coalitions S and T such that S  T,

and ( ) ( ) 0
S T

S T h h
h M h M

M M C T C S d d
 

     

Data games are subadditive: for any disjoint and nonempty coalitions S and T,

0 0( ) ( ) 2 ( ) ( )
S T S T

h h h
h M h M h M M

C S C T d d d C S T d d C S T
   

           

Concavity is a stronger form of scale economies.4 However data games are generally not
concave except in special cases as we shall see.

We denote by ki the cost of reproducing the data owned by player i:

i

i h
h M

k d


 

and by ci = C(i) the cost of reproducing the data player i does not own. The ci's and the ki's
are related by the equations

0i ic k d  (2)

and the ci's satisfy the inequalities

0 0
1

10 and 0 ( )
n

i i
i

c d c n d


    

4 A set function f is concave if f (S) + f (T)  f (S  T) + f (S  T). Hence concavity implies subadditivity.
Equivalently, a set function f is concave if, for all i, the marginal costs f (S) – f (S\i) are non increasing with
respect to set inclusion.
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2.3 Surplus sharing games

It will be useful to consider the division of the surplus generated by the grand coalition. For
any coalition S  N, we denote by v(S) the gain generated by coalition S if it forms:

( ) ( ) ( )
i S

v S C i C S


  (3)

The characteristic v function defines the surplus (sharing) game (N,v) associated to the cost
game (N,C). In particular v(i) = 0 and v(N) > 0 (for essential cost games). If the cost game
(N,C) is subadditive (resp. concave) then the surplus game (N,v) is superadditive (resp.
convex), and vice versa.

Shares z in the surplus v(N) and shares y in the cost C(N) are linked by the following
identities:

zi + yi = C(i) i = 1,…,n (4)

The surplus game associated to the data game (1) is defined by

\ \ \

( )
S i S

i h h h
i S h M M i S h M M h M M

v S c d d d
    

       

and the complete surplus to be divided is

1

( )
n

i
i

v N c



Clearly v(i) = 0 for all i. The surplus game associated to Example 1 is given by:

v(12) = v(13) = v(14) = d0 = 32 v(123) = d0 + d2 + 2d3 + 2d4 – d3 – d4 = 58
v(23) = d2 + 2d3 + 2d4 – d3 – d4 = 26 v(124) = d0 + d1 + 2d2 + d3 + d4 – d2 = 64
v(24) = d1 + 2d2 + d3 + d4 – d2 = 32 v(134) = d0 + d1 + d2 + d3 + d4 = 64
v(34) = d1 + d2 + d3 + d4 – 0 = 32 v(234) = d1 + 2d2 + 2d3 + 2d4 = 58

with v(1234) = d0 + d1 + 2d2 + 2d3 + 2d4 = 90.

2.4 Marginal cost vectors

Marginal cost vectors play an important role in the core of concave games and in the
computation of the Shapley value. Let  be the set of all players' permutations. To each
permutation  = (i1,...,in)  , we associate the vector t() whose element ik is given by:

1 1

1 1 1 2

( ) ( )

( ) ( ,..., ) ( ,..., ) for ,...,
k

i

i k k

t C i

t C i i C i i k n



 



  

The player who is first pays his/her own cost. In example 1, the marginal cost vector
associated to the permutation  = (1,2,3,4) is given by:

( ) (32, 6, 4, 22)t     
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We shall now analyze two special classes of data games.

2.5 Nested data games

Let us assume that players can be ordered in such a way that datasets are nested i.e. i < j
implies Mi  Mj. Then Mn = M and d0 = kn. Furthermore, the individual cost parameters ci's
satisfy the following inequalities:

1 2 1... 0n nc c c c     (5)

and the corresponding data game (N,C) is simply defined by

( ) Min for all ,i S iC S c S N S    (6)

with C() = 0.

This game looks like a "reversed" airport game.5 The cost function C can indeed be written as
C(S) = – C0(S) where C0(S) = MaxiS (– ci). However C0 does not define a proper airport game
because C0(S)  0 for all S. In particular, the cost function C0 is superadditive.

Using (2) nested data games can alternatively be written in terms of the ki's:

( ) Maxn i S iC S k k  (7)

where kn = d0 is a fixed cost which applies to all players and coalitions, and the cost function
K(S) = MaxiS ki defines a proper airport game. Indeed the ki's satisfy the inequalities

1 2 10 ... and 0n n nk k k k k     

Example 2 Consider the datasets M1 = , M2 = {1}, M3 = {1,2,3} and M4 = {1,2,3,4}. The
corresponding data game is given by:

C(1) = d0 = 32
C(2) = C(12) = d2 + d3 + d4 = 26
C(3) = C(13) = C(23) = C(123) = d4 = 12

and C(S) = 0 for all the other coalitions (i.e. all coalitions including player 4).

Actually, by working data by data, any data game (N,C) can be written as a sum of nested data
games. For each h  M, define the cost game (N,Ch) by

( ) 0 if

( ) if

h S

h h S

C S h M

C S d h M

 

 

for all S  N, S  , and Ch() = 0.

5 See Littlechild and Owen (1973) and Littlechild and Thomson (1977) for a definition and analysis of airport
games.
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Clearly (N,Ch) is an elementary nested data game and

\

( ) ( )
S

h h
h M h M M

C S d C S
 

   (8)

2.6 The partition case

Let us assume that the datasets form a partition of M i.e. Mi  Mj =  for all i  j. As a
consequence,

S i

h h i
h M i S h M i S

d d k
   

   

and, using (1) the corresponding data game (N,C) is then simply defined by:

0( ) i
i S

C S d k


  (9)

to be compared to (7) where d0 coincides with kn. Here instead 0 i
i N

d k


 and
/

( ) i
i N S

C S k


  .

Partition data games are concave. Indeed, C(S) – C(S\i) = – ki for all i  S and all S  {i}
while C(i) – C() = ci = d0 – ki. Hence, for any given player, marginal costs associated to
proper coalitions are constant (and negative). Altogether they are non-increasing.

Example 3 Consider the following datasets M1 = , M2 = {1}, M3 = {2} and M4 = {3,4}. The
corresponding data game is given by:

C(1) = d0 = 32 C(23) = C(123) = d3 + d4 = 22
C(2) = C(12) = d2 + d3 + d4 = 26 C(24) = C(124) = d2 = 4
C(3) = C(13) = d1 + d3 + d4 = 28 C(34) = C(134) = d1 = 6
C(4) = C(14) = d1 + d2 = 10 C(234) = C(1234) = 0

Interestingly, the surplus game turns out to be symmetric in the partition case. Indeed, the
value of a coalition depends only on its size:

0 0( ) ( 1)i i

i S i S

v S c d k s d
 

     

As a consequence, any sharing rule satisfying symmetry ("equal treatment of equals")
allocates the total surplus equally.

Using (4), the corresponding compensation is given by

1,...,i i cy c i n   (10)

where

0

1

( ) 1 1
n

c i

i

v N n
d c

n n n





   
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A player pays if and only if his/her cost exceeds the mean upgrading cost c. This is the equal
surplus sharing rule. Alternatively, the compensation defined by (10) can be written as:

0 1,...,i i

d
y k i n

n
  

i.e. a player pays if and only if the per capita cost of the complete dataset exceeds the cost of
the data he/she owns.

In Example 3, c = (32,26,28,10) and c = 24. Hence, the resulting compensation is given by
y = (8,2,4,–14): player 4 is compensated by the other three players.

3. The core

3.1 Nonemptiness of the core of data games

Individual rationality is the minimal requirement to impose to a cost allocation y

( ) for alliy C i i N 

i.e. no player should pay more than his or her "stand alone" cost. This defines an imputation.
Extending the argument to coalitions is a stronger requirement: the core is the set of
allocations y against which no coalition can object

( ) ( ) for ally S C S S N  (11)

i.e. no coalition pays more that its stand alone cost. Equivalently, an allocation y is in the core
if and only if

( ) ( ) ( \ ) for ally S C N C N S S N  

i.e. there is no cross-subsidization: each coalition pays at least its marginal cost.6

In general, the core is a convex polyhedron, possibly empty, whose dimension does not
exceed n–1. The core of a data game as defined by (1) is always nonempty. Indeed, C(S)  0
for all S  N and, as a consequence, the trivial allocation defined by the absence of
compensation y0 = (0,0,…,0) belongs to the core of any data game. The following proposition
concerns the case where some players own the complete dataset.

Proposition 1 If one but only one player owns the complete dataset, only that player is
possibly compensated in core allocations and there are core allocations
different from y0. If two players (or more) own the complete dataset, the core
reduces to the singleton {y0}.

6 See Faulhaber (1975).
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Proof Assume that Mn = M and let y be a core allocation. Applying (11), y(N/i)  C(N/i) = 0
for all i  n. Combining this with y(N) = 0, we get yi  0 for all i  n and yn ≤ 0.

If Mi  M for all i  n, the allocation yb = (b,b,…,(1-n)b) where b = C(N/n)/n > 0 belongs to
the core. Indeed consider a coalition S  N:

if , ( ) ( \ ) ( )

if , ( ) ( ) 0 ( )

b

b

n S y S sb nb C N n C S

n S y S s n b C S

    

    

Assume that Mn-1 = M as well. Then yn  0 because y(N/i)  C(N/i) = 0 for all i  n-1. Hence
yn = 0 and y(N/n) = 0. This is possible only if y = y0. à

Remark 1 Actually the core reduces to y0 whenever each data is owned by at least two
players. Indeed, in this case C(N\i) = 0 for all i  N.

We shall now investigate the structure of the core for the two special classes of data game,
nested and partition data games. It turns out to be a regular simplex in both cases i.e. an
equilateral triangle for n = 3, a regular tetrahedron for n = 4,…

3.2 The core of a nested data game

In the nested case, only the last player – who owns the complete dataset – is possibly
compensated in the core and it reduces to {y0} if and only if more than one player own the
complete dataset, independently of the other cost parameters. These are consequences of
Proposition 1. Furthermore, the core has a very simple structure which depends on a single
parameter, cn-1, the largest compensation player n can expect to receive.

Proposition 2 The core of the nested data game (6) is a regular simplex whose n vertices
are:

(a,0,…,0, –a), (0,a,0,…,0, –a), … ,(0, 0,…, a, –a) and (0,…,0)

where a = cn-1.

Proof We first show that y belongs to the core if and only if there exist 1,…,n-1 such that:

1

1

11, 0 1 and 1,...,
n

i i i i
i

y a i n  




      (12)

If y is an allocation defined by (12), the following inequalities hold for all S  N

1 1

1 1

( ) if

0 ( ) if

i i
i S i S

n n

i i i i
i S i S i i

i n i S

y a a C S n S

y a a a C S n S



  

 

 

   
 

   

      

 

   

Hence y belongs to the core.
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If y is an element of the core, we have successively:

1

2 2 1

1

1

1

0

0

...

0

n

n n n

n

i
i

y a

y y y a

y y a



  





 

   

  

i.e. 0  yi  a for all i = 1,…,n-1. The i's defined by i
i

y

a
  then satisfy (12).

Consequently, the core is the convex hull of the vectors (a,0,…,0, –a), (0,a,0,…,0, –a),
… ,(0, 0,…, a, –a) and (0,…,0). It is a simplex whose regularity follows from the fact that all
vertices are connected to each other by line segments of identical length 21/2a. à

Remark 2 The proof of Proposition 2 reveals that an allocation belongs to the core if and
only if 0  yi  cn-1 for all i  n and – cn-1  yn  0.

Normalizing and translating – by dividing by cn-1 and adding the vector (0,0,…,1) – the core is
transformed into the standard unit simplex n = {x  Ñn | x  0, i xi = 1}. Applying this
transformation to the nested data games defined by the cost vector (c1,…,cn-1), we obtain the
equivalent cost game defined by:

 

 
1

1 if

Min ifi
i S

n

C S n S

c
C S n S

c




 

 

whose core is indeed n.

The core being a regular simplex, its centroid or centre of gravity7 is simply defined by the
average of its vertices:

1 1 1 11ˆ , ,..., , ( )n n n nc c c c
y n

n n n n
    

   
 

which coincides with the nucleolus (and the least core).8 Only the last player is compensated
and the n-1 other players all contribute the same amount. Given the coordinates of its centre,
the diameter of the core is equal to 2(1-1/n)1/2 cn-1 < 2

1/2 cn-1 and it has full dimension if and
only if cn-1 > 0.

In example 2, cn-1 = c3 = 14 and the resulting compensation is (3½,3½,3½,–10½).

7 See Gonzales-Diaz and Sanchez-Rodriguez (2007) for a general definition of the core centroid.
8 The nucleolus is a single-value solution introduced by Schmeidler (1969). Intuitively the idea is to minimize

the loss incurred by coalitions suffering the highest loss – the loss of a coalition being measured by the
difference between the amount it pays and its cost. The nucleolus is always defined and belongs to the core if
nonempty. For a definition of the least core see Maschler M. et al. (1979) where it is shown that nucleolus is
the lexicographic centre of the core if nonempty.
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3.3 The core in the partition case

Partition data games are concave and, as a result, the core is the convex hull of the marginal
cost vectors associated to the n! players' permutations. Actually the core is again a regular
simplex.

Proposition 3 The core of the partition data game (10) is a regular simplex of full dimension
whose n vertices are:

(c1,c2 – d0,…,cn – d0), (c1 – d0,c2,…,cn – d0), … ,(c1 – d0,c2 – d0,…,cn).

Proof If player i is first in a given permutation he/she pays its cost ci. Otherwise he/she saves
the cost of the data he/she owns d0 – ci. Hence there are n distinct marginal cost vectors each
with a multiplicity equal to (n-1)! and the vector t associated to the permutations where player
i is first is defined by ti = ci and tj = cj – d0 for all j  i.

It is a simplex whose regularity follows from the fact that all vertices are connected to each
other by line segments of identical length 21/2d0. Positivity of d0 ensures the full
dimensionality of the core. à

Translating and normalizing – by substracting the vector (c1–d0,c2–d0,…,cn–d0) and dividing
by d0 – the core is transformed into the standard unit simplex n. Applying this transformation
to the partition data games defined by the cost vector (c1,…,cn-1), we obtain the equivalent
"constant" cost game defined by:

  1 for allC S S N 

whose core is indeed n.

Remark 3 In the extreme case where Mn = M and Mi =  for all i  n, the resulting game is
nested and its core is given by Proposition 2 with a = d0.

The core of partition data games has the same structure than the core of nested data games.
Being a regular simplex, its centroid is again the average of its vertices

0
0 1

1
ˆ ,...,i i i

n d
y c d k i n

n n


    

where used has been made of equation (2). Indeed ci appears n times and – d0 appears (n-1)
times. This is the equal surplus allocation – as defined by (10) – which also coincides with the
least core and the nucleolus.

Given the coordinates of its centre, the diameter of the core is equal to 2(1-1/n)1/2 d0 < 2
1/2 d0.

Hence the size of the core depends only on d0 – the cost of the complete dataset.
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4. The Shapley value

4.1 The cost allocation derived from the Shapley value

For a general cost game (N,C), the cost allocation derived from the Shapley value is simply
the average marginal cost vector

1
( , ) ( )

!
i iN C t

n 

 


 

This formula is obtained by first computing the Shapley value of the associated surplus game
(3) and then using identity (4).

The Shapley value is the unique additive sharing rule which satisfies symmetry and dummy.9

There exist alternative axiomatizations of the Shapley value.10 In the context of cost sharing it
is shown that the Shapley sharing rule is the unique rule which allocates fixed costs fairly.11

The Shapley value is individually rational for subadditive cost games and belongs to the core
for concave cost games.12

We have seen that any data game can be written as a sum of nested data games. This fact will
be used to obtain a simple formula based on the additivity of the Shapley value.

4.2 Shapley compensation in the nested case

One way to derive the Shapley compensation is to use the definition of a nested data game
given by (7) and the cost allocation formula for the airport game (N,K). Additivity and
symmetry of the Shapley value then imply:

( , )n
i i

k
y N K

n
 

i.e.

1 1
1

1 2 1 1 2 1
2

1 2 1 1 2 1 2

1 1

1

1

1 1

2 2

...

... ...

n

n

n n n n n
n n n n n

k k c
y

n n n

k k k k c c c
y

n n n n n

k k k k k k c c c
y k k c c

n n n n
   

 

  

  
       

   
            

 

(13)

with cn = 0. The resulting allocation looks like the airport cost allocation derived from the
Shapley value. This is consistent with the fact that C(S) = – MaxiS (– ci).

9 These are the original axioms used by Shapley (1953, 1981): players with identical marginal costs pay the same
amount (symmetry or "equal treatment of equals") and players with zero marginal costs pay nothing (dummy).
Instead the nucleolus satisfies symmetry and dummy but not additivity.

10 See Moulin (2003).
11 See Dehez (2006).
12 The core is then typically large and the Shapley value is located somewhere in its centre. See Shapley (1971).



12

In example 2, c = (32,26,12,0) and the resulting Shapley compensation is given by:

1 2 3 4

32 6 14 12
8, 8 6, 6 1, 1 13

4 3 2 1
y y y y             

This allocation does not belong to the core because two players are compensated. The
following proposition clarifies the relationship between the core and the Shapley value in
nested data games.

Proposition 4 In a nested data game, the allocation y derived from the Shapley value
belongs to the core if and only if yn-1  0.

Proof We already know that yn-1  0 if y belongs to the core. Let y be the allocation derived
from the Shapley value. It is such that y1  y2 … yn. Hence yn-1  0 implies yi  0 for all i  n
and yn  0. Furthermore yn = yn-1 – cn-1  – cn-1 implies y(N\n)  cn-1 and yi  cn-1 for all i  n.
From Remark 2, we can then conclude that y belongs to the core. à

This proposition gives a single condition on the cost parameters ci's such that the Shapley
value belongs to the core in the nested case. For n = 3, that condition reduces to c1  3c2. For
n = 4, it becomes c1 + 2c2  6c3.

Formula (13) has a simple recursive structure and the Shapley compensation y can be written
simply as:

y = A.c

where A is a n  n triangular matrix whose elements are defined by:

1 1

1 1
if and

( )( )
ij iia j i a

n j n j n i


  

    

with aij = 0 otherwise. For n = 4, the matrix A is given by:

1 / 4 0 0 0

1 / 12 1 / 3 0 0

1 / 12 1 / 6 1 / 2 0

1 / 12 1 / 6 1 / 2 1

A


 

  



 
 
 
 
 
 

These matrices are overlapping, starting from the lower right element 1.13 For instance, if
n = 5, the first column starts with 1/5, followed by -1/20.14 The condition under which the
allocation derived from the Shapley value belongs to the core can then be written as:

1

2
1

1 2

n
n

n j j
j

c
a c







 

13 Actually the element ann is arbitrary because cn = 0. It is equal to 1 in the matrix defining the Shapley value of
an airport game.

14 The elements of any of the first n-1 columns sum up to 0 and the elements of any row sum up to 1/n.
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In the particular case where a subset T of t players own the complete dataset while the other
players own no data i.e. Mi =  for all i  N\T and Mi = M for all i  T, we have:

0

0 0

( , ) for all

( , ) for all

i

i

d
N C i T

n

d d
N C i T

n t





 

  

This can be used to obtain a formula for the Shapley compensation for general data games.
Indeed, using (8) and the additivity of the Shapley value, we have:

( ) ( ) ( , ) ( , ) 1,...,h i i h
h M h M

C S C S N C N C i n 
 

    
where

( , ) for all

( , ) for all

h
i h h

h h
i h h

h

d
N C i T

n

d d
N C i T

n t





 

  

Here th is the number of players owing data h. Hence,

\

1 1 1 1
( , ) (1 )

i i i

i h h h h
h M h M M h M h Mh h

n
N C d d d d

n t n n t


   

       

The compensation derived from the Shapley value for a general data game (N,C) is then given
by the following simple formula:

0 1( , ) ,...,
i

h
i

h M h

d d
N C i n

n t




   (14)

Remark 4 This formulation shows that what a player pays (resp. receives) decreases (resp.
increases) with the cost of the data he/she owns. It also increases (resp. decreases) with the
number of players owning the same data.

In Example 1, d = (6,4,10,12) and t = (2,1,1,1). The resulting Shapley compensation is given
by:

1 2 3 4

6 6 4 10 12
8, 8 5, 8 1, 8 14

2 2 1 1 1
y y y y            

4.2 Shapley compensation in the partition case

In the partition case, we already know that the compensation derived from the Shapley value
is given by (10):

0
0

1
ˆ 1,...,i i i

n d
y c d k i n

n n


    
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It is a consequence of the symmetry of the associated surplus game and it is consistent with
the particular structure of marginal costs in the partition case, as described in Proposition 3
where, for each player i, ci appears n! times and – d0 appears (n-1)(n-1)! It is also consistent
with (14) because th = 1 for all h in the case of a partition.

Remark 5 In the extreme case where only one player owns some data, Mn = M and Mi = 
for all i  n, the Shapley compensation is defined by yi = d0/n for i = 1,…,n-1.

We have seen that partition data games are concave. As a consequence, the compensation
derived from the Shapley value belongs to the core. Actually the Shapley compensation
coincides with the compensations derived from any symmetric sharing rules, in particular the
nucleolus, the core centroid and the equal surplus.

4.3. Accounting methods

There exist various accounting methods for dividing joint costs based on players' marginal
costs computed with respect to the grand coalition. They are of the form:

1

( , ) ( ( ) )
n

i i i j
j

N C MC C N MC 


   (15)

where MCi = C(N) – C(N\i) is sometime called the "separable costs" of player i and the
weights i are such that 0  i  1 for all i and ii = 1.

The "equal charge" method uses equal weights i = 1/n for all i. Another is the "separable
costs remaining benefits" method (SCRB)15 in which the weights are given by:

( )
i

i

b

b N
 

where bi = C(i) – MCi is the "remaining benefits" of player i and b(N) = i bi.

For a nested data game as defined by (6), we have:

MCi = 0 for all i  n

MCn = – cn-1

Applying (15), the corresponding cost allocation is given by:

yi = i cn-1 for all i  n

yn = (n – 1) cn-1

From Remark 2, we can conclude that it defines a core allocation for any choice of weights
while the nucleolus corresponds to equal weights.

15 See Young (1985).



15

For a partition data game as defined by (9), we have:

MCi = – ki for all i  N

Applying (15), the corresponding cost allocation is given by:

yi = i d0 – ki for all i  N

This allocation belongs to the core for any choice of weights. Indeed we have:

0 0 0 1( ) ( ) ( ) ( ) ( ) 0 for alli i i i
i S i S i S i S

C S y S d k d k d S N 
   

           

For i = 1/n, y is the equal surplus allocation (10) which coincides with the Shapley value, the
core centroid and the nucleolus. This is also the allocation resulting from the SCRB method.
Indeed we have:

0 for alli i ib c k d i  

and consequently i = 1/n.

6. Concluding remarks

The Shapley value is the natural sharing rule to be used in cost sharing as well as in the
compensation framework considered here. The fact that the resulting allocation may not
belong to the core because it involves cross subsidization should not be a reason to dismiss
the Shapley value as a fair compensation mechanism because what the core suggests is often
not fair. This appears forcefully in the situation where only two players own data, say players
n and n-1, and the datasets they own differ only by a single data, say data 1:

Mn = {1,…,m} and Mn-1 = {2,…,m}

In this case, the core imposes that only player n may be compensated with an amount not
exceeding d1, while all the other players may be asked to pay up to d1, including player n-1.
The nucleolus goes even further by imposing that the n-1 first players pay the same amount,
d1/n. This is to be compared with the allocation derived from the Shapley value. Using for
instance (14) we get:

0

1 0 1 0
1 0

1 0 1 0
0

for 1,... 2

2

2 2 2 2

2

2 2 2 2

i

n

n

d
y i n

n

n d d d d
y d

n n

n d d d d
y d

n n



  


     


     

This is definitely more acceptable from a fairness point of view: the players without data pay
the per capita cost of the complete dataset while players n and n-1 are both compensated, the
difference between what they receive being precisely equal to the cost of the missing data.
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In actual cost sharing problems, like the one faced by the European chemical industry, there
must be an agreement on the compensation formula and on the value of the costs parameters.
Reaching a consensus on the cost parameters is clearly the most difficult part in particular
because, under the Shapley value, we know from Remark 4 that what a player pays decreases
with the cost of the data he/she owns. One should however keep in mind that these cost
parameters measure the present cost of reproducing the data and not the actual cost that has
been sunk in the past.
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