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Abstract

The evaluation of the likelihood function of the stochastic conditional duration model

requires to compute an integral that has the dimension of the sample size. We apply the

efficient importance sampling method for computing this integral. We compare EIS-based

ML estimation with QML estimation based on the Kalman filter. We find that EIS-ML

estimation is more precise statistically, at a cost of an acceptable loss of quickness of

computations. We illustrate this with simulated and real data. We show also that the

EIS-ML method is easy to apply to extensions of the SCD model.
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2Swiss Finance Institute at University of Lugano

Bauwens’s work was supported by a FSR grant from UCL. He is also a member of ECORE, a newly created

association between ECARES and CORE.

This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated

by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is

assumed by the authors.



1 Introduction

The stochastic conditional duration (SCD) model is a dynamic duration model that was

proposed by Bauwens and Veredas (2004) as an alternative to the autoregressive conditional

duration model of Engle and Russell (1998). These models are typically applied to analyze

the dynamics of the intra-daily trading activity of financial markets. The SCD model uses

two unobservable stochastic components for one observable variable (the duration), implying

that one of the stochastic terms must be integrated over the whole sample to compute the

likelihood function. The fact that the variables to be integrated enter the model nonlinearly

leads to the necessity to compute this high-dimensional integral by simulation. The same

problem arises for the stochastic volatility (SV) model, since it has the same structure as the

SCD model.

The solution proposed by Bauwens and Veredas in their original paper circumvented the

integration problem since they used quasi-maximum likelihood (QML) estimation based on an

approximation of the model by a linear space state representation. This makes it possible to

use the Kalman filter to approximate the likelihood function. This method has the advantage

of being simple and fast in terms of numerical computation and of providing consistent and

asymptotically normal estimators (under suitable regularity conditions), but it is in principle

suboptimal in finite samples.

To avoid approximations, in the literature on SV models other estimation procedures have

been proposed, for instance the generalized method of moments (GMM), the efficient method

of moments (EMM), and Bayesian estimation based on Markov chain Monte Carlo (MCMC)

sampling. For a survey of these procedures see E. Ghysels and Renault (1996). Some of

these methods have been extended to the estimation of SCD models. Ning (2004) proposes to

estimate SCD models via the empirical characteristic function (ECF) and GMM. Maximum

likelihood estimation based on MCMC integration of the latent variables is instead adopted

by Feng, Jiang, and Song (2004) to estimate a SCD model in the form proposed by Bauwens

and Veredas (2004) and an extended version with a leverage effect determined by the presence

of past durations in the mean of the latent variable. MCMC is used also by C. Strickland
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and Martin (2006) in the context of Bayesian estimation.

A relatively new method for computing the integral needed for evaluating the likelihood

function of models with latent variables relies on the efficient importance sampling (EIS)

procedure, recently developed by Richard and Zhang (1998). This method consists in an

extension of the well known importance sampling technique and seems to be particularly well

suited for the computation of the multidimensional though relatively well behaved integral

needed for evaluation the SCD likelihood. An application to an extended family of SV models

is provided in Liesenfeld and Richard (2003) who illustrate the flexibility of this algorithm.

The purpose of this article is to extend to the original SCD model of Bauwens and Veredas

(2004) the EIS method of numerical sampling, to compare it to the QML estimation method

on simulated and real data, and to use it in order to analyze some extensions of the original

specification proposed by Bauwens and Veredas. Our main finding is that for the order of

magnitude of the sample sizes used in practice, i.e. a few thousands, there is a substantial

efficiency gain in favour of EIS-ML.

The article is organized in the following way. In section 2 we present the main features of

the SCD model which are necessary to the subsequent analysis. In Section 3 we detail the EIS

numerical integration method employed for ML estimation of the SCD model. In section 4

we apply this method to several simulated data sets and compare the sampling distributions

of EIS-ML and QML estimates. In section 5 the EIS-ML technique is applied to the same

dataset used in Bauwens and Veredas (2004) and a comparison is drawn. Two examples of

parametric extensions of the SCD model which are easily estimated by EIS-ML are provided

in Section 6. The last section contains our concluding remarks.

2 SCD models: main features

In this section, we present briefly the SCD model. A more detailed description can be found

in Bauwens and Veredas (2004). If we denote by xi the duration between two events that

happened at times ti−1 and ti, and assume that the stochastic process {xi} generating the

durations is doubly infinite (i goes from −∞ to +∞), the stochastic conditional duration
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model can be written as

xi = eψiεi (1)

with

ψi = ω + βψi−1 + ui, (2)

where |β| < 1 to ensure the stationarity of the process, and

ui ∼ iid N (0, σ2), (3)

εi ∼ iid p(εi), (4)

with p(.) a distribution with positive support, and uj independent of εi, ∀i, j.

The moments and autocorrelation function of this process are

E(xi) = µe
ω

1−β+ 1
2

σ2

1−β2

1 + δ2x = (1 + δ2) e
σ2

1−β2

ρk = e
σ2βk

1−β2 −1

(1+δ2) (e
σ2

1−β2 −1)

≈ σ2βk/(1−β2)

(1+δ2) (e
σ2

1−β2 −1)

≈ βρk−1,

(5)

where µ stands for E(εi), δx for the dispersion index (i.e. the standard deviation to mean

ratio) of xi, and δ for the dispersion index of εi. The autocorrelation function ρk geometrically

decreases at rate β only asymptotically with respect to k, while for small k the decrease rate

is smaller.

Given a sequence x of n realizations of the process, with density g(x|ψ, θ1) indexed by the

parameter vector θ1, conditional on a vector ψ of latent variables of the same dimension as x,

and given the density h(ψ|θ2) indexed by the parameter θ2, the likelihood function of x can

be written as:

L(θ;x) = L(θ1, θ2;x) =
∫
g(x|ψ, θ1)h(ψ|θ2)dψ. (6)

Actually, the integrand in the previous equation is the joint density f(x, ψ|θ1, θ2). Given the
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assumptions we made, it can be sequentially decomposed as

f(x, ψ|θ1, θ2) =
n∏
i=1

p(xi|ψi, θ1)q(ψi|ψi−1, θ2), (7)

where p(xi|ψi, θ1) is obtained from p(εi) using the change of variable in (1) (so that θ1 corre-

sponds to the parameters of p(.)), and q(ψi|ψi−1, θ2) is the Gaussian density N (ω+βψi−1, σ
2)

(so that θ2 includes ω, β and σ2). Given the functional form usually adopted for p(εi) (Weibull,

gamma, generalized gamma...), the multidimensional integral in (6) cannot be solved analyt-

ically and must be computed numerically by simulation.

To perform a QML estimation, one can use the following transformation of the model:

lnxi = η + ψi + ξi,

ψi = ω + βψi−1 + ui,

where ξi = ln εi − η and η = E(ln εi). This puts the model in state space form with zero

mean errors. The ensuing distribution of ξi can be approximated by a Gaussian one, and the

Kalman filter applied to compute the approximate likelihood.

3 EIS based ML estimation

Alternative approaches to QML inference for the SCD model can be based on Monte Carlo

methods. These methods are widely used in Bayesian inference to evaluate moments of high-

dimensional posterior densities when they are not known analytically. One reason for their

success is the relative ease with which they can be applied. EIS, in particular, allows a very

accurate evaluation of the likelihood function and has been shown to be quite reliable for

the estimation of SV models and of latent factor intensity models, see Bauwens and Hautsch

(2006). Another advantage of this algorithm is that its basic structure does not depend on

a specific model. This renders changes in the distributional assumptions for the underlying

random variables rather simple.

For a detailed presentation of the algorithm, we refer the reader to Richard and Zhang

4



(1998). In this section, we present the basics of its motivation and functioning and we detail

its implementation in the context of the ML estimation of SCD models.

Assume one has to evaluate a unidimensional functional integral of the form

G(y) =
∫

Λ
g(y, λ)p(λ)dλ, (8)

where g is a integrable function with respect to a density p(λ) with support Λ. The vector y

denotes an observed data vector, which in our context corresponds to the observed durations.

A Monte Carlo (MC) estimate of (8) is

ḠS(y) =
1
S

S∑
i=1

g(y, λ̃i), (9)

where the λ̃i’s are draws from p and S is the number of draws. In cases where one cannot

generate directly draws from p(λ), one can resort to importance sampling (IS). The IS prin-

ciple consists of replacing the initial sampler p(λ) with an auxiliary parametric importance

sampler m(λ, a), which is an easy-to-simulate density for λ, indexed by the parameter vector

a. To apply importance sampling, equation (8) is transformed into

G(y) =
∫

Λ
g(y, λ)

p(λ)
m(λ, a)

m(λ, a)dλ, (10)

and the corresponding IS-MC estimate of G(y) is

ḠS,m(y, a) =
1
S

S∑
i=1

g(y, λ̃i)
p(λ̃i)

m(λ̃i, a)
, (11)

where the λ̃i’s now denote draws from the IS density m.

The aim of efficient importance sampling (EIS) is to minimize the MC variance of the

estimator in (11) by selecting optimally the parameters a of the importance function density

m given a functional form for m (for instance the Gaussian density).
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Given independent draws λ̃i’s, the sampling variance of ḠS,m(y, a) is given by

Var(ḠS,m(y, a)) = G(y)V (a, y), (12)

where

V (a, y) =
1

G(y)

∫
Λ

[
g(y, λ)p(λ)
m(λ, a)

−G(y)
]2

m(λ, a)dλ. (13)

If we denote by k(λ, a) the density kernel of the IS samplerm(λ, a) and by χ(a) its integral,

such that m(y, a) = k(λ,a)
χ(a) , V (a, y) in (13) can be rewritten as

V (a, y) =
∫

Λ
h(d2(y, a, λ))g(y, λ)p(λ)dλ, (14)

where

d(y, a, λ) = ln g(y, λ)− ln p(λ)− ln k(λ, a)− lnG(y)− lnχ(a), (15)

and

h(c) = e
√
c + e−

√
c − 2 = 2

∞∑
i=1

ci

(2i)!
. (16)

Noting that the term d(y, a, λ) is supposed to be small if an efficient sampler is used, the

function h(c) can be approximated by its leading term c to get

V (a, y) ≈ Ṽ (a, y) =
∫

Λ
d2(y, a, λ)g(y, λ)p(λ)dλ. (17)

Minimizing the MC variance amounts then to minimizing the quadratic term d2(y, a, λ). It

can be shown that if the importance sampler m belongs to the exponential family, the problem

remarkably simplifies to a least squares minimization problem for the components of the vector

of auxiliary parameters a.

Extending the EIS approach to the case where λ is of high dimension, like in the SCD

model (where λ corresponds to the ψ vector), requires that we can decompose the minimiza-

tion problem in a series of unidimensional subproblems.

A natural MC estimate of the likelihood function in (7), which is of the type of (9), is
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given by

L̃(θ;x) =
1
S

S∑
j=1

[
n∏
i=1

p(xi|ψ̃(j)
i , θ1)

]
, (18)

where ψ̃(j)
i denotes a draw from the density q(ψi|ψi−1, θ2). This approach bases itself only on

the information provided by the distributional assumptions of the model and does not consider

the information that comes from the observed sample. It turns out that this estimator is highly

inefficient since its sampling variance rapidly increases with the sample size. In any practical

case of a duration data set, where the sample size n lies between 500 and 50000 observations,

the Monte Carlo sampling size S required to give precise enough estimates of L(θ;x) would be

too high to be affordable and it turns out that this estimator cannot be relied on practically.

EIS tries to make use of the information provided by the observed data in order to come to

a reasonably fast and reliable numerical approximation. Let {m(ψi|ψi−1, ai)}ni=1 be a sequence

of auxiliary samplers indexed by the set of auxiliary parameter vectors {ai}ni=1. These densities

can be defined as a parametric extension of the natural samplers {q(ψi|ψi−1, θ2)}ni=1. We

rewrite the likelihood function as

L(θ;x) =
∫ [

n∏
i=1

f(xi, ψi|xi−1, ψi−1, θ)
m(ψi|ψi−1, ai)

n∏
i=1

m(ψi|ψi−1, ai)

]
. (19)

Then, its corresponding IS-MC estimator (the equivalent of (11)) is given by

L̃(θ;x, a) =
1
S

S∑
j=1

[
n∏
i=1

f(xi, ψ̃
(j)
i (ai)|xi−1, ψ̃

(j)
i−1(ai−1))

m(ψ̃(j)
i (ai)|ψ̃(j)

i−1(ai−1), ai)

]
. (20)

where {(ψ̃(j)
i (ai)}ni=1 are trajectories drawn from the auxiliary samplers.

Relying on the factorized expression of the likelihood, the MC variance minimization

problem can be decomposed in a sequence of subproblems for each element i of the sequence of

observations, provided that the elements depending on the lagged values ψi−1 are transferred

back to the (i − 1)-th minimization subproblem. More precisely, if we decompose m in the
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product of a function of ψi and ψi−1 and one of ψi−1 only, such that

m(ψi|ψi−1, ai) =
k(ψi, ai)
χ(ψi−1, ai)

=
k(ψi, ai)∫
k(ψi, ai)dψi

, (21)

we can set up the following minimization problem:

âi(θ) = arg min
ai

M∑
j=1

{ln
[
f(xi, ψ̃

(j)
i |ψ̃(j)

i−1, xi−1, θ)χ(ψ̃(j)
i , âi+1)

]
− ci − ln(k(ψ̃(j)

i , ai)}2, (22)

where ci is constant that must be estimated along with ai. If the density kernel k(ψi, ai)

belongs to the exponential family of distributions, the problem becomes linear in ai, and

this greatly improves the speed of the algorithm, as a least squares formula can be employed

instead of an iterative routine.

The estimated âi are then substituted in (20) to obtain the EIS estimate of the likelihood.

The EIS algorithm can be initialized by direct sampling, as in equation (18), to obtain a first

series of ψ̃i
(j)

and then iterated to allow the convergence of the sequences of {ai}, which is

usually obtained after 3 to 5 iterations. EIS-ML estimates are finally obtained by maximizing

L̃(θ;x, a) with respect to θ.

If we adopt a Weibull distribution for εi with parameter γ (=θ1) and a N(0, σ2) one for

ui, we come up with the following expressions:

p(xi|ψi−1, γ) =
γ

eψi−1

( xi
eψi−1

)γ−1
exp

{
−

( xi
eψi−1

)γ}
, (23)

q(ψi|ψi−1, θ2) =
1

σ
√

2π
exp

{
− 1

2σ2
(ψi − ω − βψi−1)2

}
. (24)

A convenient choice for the auxiliary sampler m(ψi, ai) is a parametric extension of the

natural sampler q(ψi|ψi−1, θ2), in order to obtain a good approximation of the integrand

without too heavy a cost in terms of analytical complexity. Following Liesenfeld and Richard

(2003), we can start by the following specification of the function k(ψi, ai):

k(ψi, ai) = q(ψi|ψi−1, θ2)ζ(ψi, ai), (25)
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where ζ(ψi, ai) = exp{a1,iψi+a2,iψ
2
i } and ai = (a1,i a2,i). This specification is rather straight-

forward and has two advantages. Firstly, as q(ψi|ψi−1, θ2) is present in a multiplicative form,

it cancels out in the objective function in (22), which becomes a least squares problem with

ln ζ(ψi, ai) that serves to approximate ln p(xi|ψi−1, θ1)+ lnχ(ψi−1, ai). Secondly, such a func-

tional form for k leads to a distribution of the auxiliary sampler m(ψi, ai) that remains

Gaussian, as stated in the following theorem, whose proof is given in the appendix.

Theorem 1 If the functional forms for q(ψi|ψi−1, θ2) and k(ψi, ai) are as in equations (24)

and (25) respectively, then the auxiliary density m(ψi|ψi−1, ai) = k(ψi,ai)
χ(ψi−1,ai)

is Gaussian, with

conditional mean and variance given by:

µi = v2
i (
ω+βψi−1

σ2 + a1,i),

v2
i = σ2

1−2σ2a2,i
,

(26)

and the function χ(ψi−1, ai) is given by

1√
1− 2σ2a2,i

exp

{
σ2

2(1− 2σ2a2,i)

(
ω + βψi−1

σ2
+ a1,i

)2

− 1
2

(
ω + βψi−1

σ

)2
}

(27)

By applying these results, it is possible to compute the likelihood function of the SCD

model for a given value of θ, based upon the following steps:

Step 1. Use the natural sampler q(ψi|ψi−1, θ2) to draw S trajectories of the latent variable{
ψ̃

(j)
i

}n
i=1

, as in (18).

Step 2. The draws obtained in step 1 are used to solve for each i (in the order from n to 1) the

least squares problems described in (22), which takes the form of the auxiliary linear

regression:

ln γ − γψ̃
(j)
i + (γ − 1) lnxi −

(
xi

eψ̃
(j)
i

)γ

+ lnχ(ψ̃(j)
i , âi+1) =

a0,i + a1,iψ̃
(j)
i + a2,i(ψ̃

(j)
i )2 + ε

(i)
i , j = 1, ..., S,
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where ε(i)i is the error term, a0,i is a constant term, and χ(ψ̃(j)
i , âi+1) is set equal to 1

for i = n and defined by (27) for i < n.

Step 3. Use the estimated auxiliary parameters âi to obtain S trajectories
{
ψ̃

(j)
i (âi)

}N
i=1

from

the auxiliary sampler m(ψi|ψi−1, âi), applying the result of theorem 1.

Step 4. Return to step 2, this time using the draws obtained with the auxiliary sampler. Steps

2, 3 and 4 are usually iterated a small number of times (from 3 to 5), until a reasonable

convergence of the parameters âi is obtained.

Once the auxiliary trajectories have attained a reasonable degree of convergence, the simulated

samples can be plugged in formula (20) to obtain an EIS estimate of the likelihood. This

procedure is embedded in a numerical maximization algorithm that converges to a maximum

of the likelihood function. After convergence, we compute the standard errors from the

Hessian matrix.

4 Simulation results

In order to assess the gain in performance allowed by EIS-ML estimation in comparison with

QML, we conducted several repeated simulation experiments with different parameter con-

figurations. As the QML estimator should be consistent but inefficient in relatively small

samples, trajectories of 250, 500, 1000, 5000 and 10000 observations form a SCD data gener-

ating process (DGP) were simulated 1000 times and the model was estimated both by EIS-ML

and by QML. The idea to use as much as 10000 observations comes from the wish to judge

the loss of efficiency of QML relative to EIS-ML. Moreover, such sample sizes are far from

unusual for real data sets of durations.

The estimations were performed using the MaxSQPF constrained maximization function

of Ox console 3.40, under Windows XP with a dual core Intel 2.0 Gb processor. The speed

of estimation varies from a few seconds for a series of 250 data to a few minutes for a 10000

data one. EIS -ML estimation is much slower, with a computing time ranging from 10 to 100

times the one required by QML with the Kalman filter. This should not come as a surprise
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and we suspect that alternative estimation strategies, such as Bayesian MCMC, would be

even slower than EIS-ML, as the results of Bauwens and Rombouts (2004) for the SV model

clearly show.

The DGP is defined by equations (1)-(4), plus formula (23). The parameter values used

in the simulations of the DGP were the following:

• ω = 0.0,

• β = 0.9,

• σ = 0.05 and 0.2,

• γ = 0.8 and 1.1,

thus leading to four combinations. The starting values for likelihood optimizations were set

for all estimations to ω = 0.0, β = 0.85, σ = 0.15 and γ = 1.05, but we checked that other

reasonable starting values provided quite similar results to those discussed below.

Tables 1 to 5 contain the means, standard deviations and mean-squared errors of the

1000 estimates for each experiment, and figures 1 to 4 display the corresponding sampling

densities (obtained by kernel based smoothing). As a first remark, it can be noticed that in

both estimation methods there is a tendency to underestimate the autoregressive parameter

β and to overestimate the parameter σ, especially when the latter takes the low value of

0.05. Anyway, also in these cases the EIS-ML method provides estimates which in mean are

closer to the DGP parameters than the QML one. The most striking result concerns the

efficiency of the estimators: the EIS-ML estimated standard deviations of the estimates are

always remarkably smaller than the QML ones, in particular when the parameter σ is equal

to 0.05. The combination of smaller bias and variance is reflected clearly in the mean-squared

errors, which are sensibly lower across the board for the EIS-ML method. The better general

performance of the EIS-ML estimator can be appreciated also by a visual inspection of the

sampling densities.

Looking at the tables and at figures 2 and 3 it is easy to remark how poor the performance

of QML estimator is when the parameter σ is small. To better illustrate the issue, Figure 5
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shows for each parameter the graph of the estimated standard deviations against the value

of σ in the DGP, for a sample size of 1000. These results are based on additional simulations

(for values of σ ranging from 0.02 to 0.7). This figure shows that for small values of σ in

the DGP, both estimation methods tend to be imprecise. This is understandable, since as

σ tends to 0, the parameter β becomes unidentified, so that the likelihood function becomes

flat. We also see in figures 2 and 3 that for the sampling distribution of the estimates of β

have a mode at (or close to) zero. However, the problem of is far more pronounced for QML

than for EIS-ML.

In order to dispel the doubt that the QML estimator might not be consistent (or that

the computer program is poorly written) we present in table 6 the results based on ten

QML estimations with one million data. From all this evidence we conclude that when the

sample size is not very large (of the order of hundreds of thousands), QML estimation can be

extremely inefficient if the standard deviation of second error term is small.

5 Estimation results for real data

In this section, we apply EIS-ML estimation to some data sets used by Bauwens and Veredas

(2004) for QML estimation, and we compare the results. The SCD model is exactly the same

as in the previous section, and as in these authors’ article.

The considered data sets correspond to five stocks traded at the New Your Stock Exchange

(NYSE): Boeing, Coca Cola, Disney, Exxon and Ibm (the last one was not used by Bauwens

and Veredas). The data were extracted from the trades and quotes database (TAQ) of the

NYSE and are relative to the months of September, October and November, 1996. From

the original trade and quote durations, price and volume duration were computed. Price

durations measure the amount of time before observing a given cumulated variation (up or

down) of the price (in this case, $1/8). Analogously, volume durations measure the amount

of time necessary to observe a cumulative traded volume of a given amount (25000 shares).

As it is customary in the literature on financial durations, the durations have been purged

of their seasonal component. An important feature of the trade and quote data is in fact
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the strong seasonality featured, both on a daily and a weekly basis, by key characteristics of

the duration processes. Price and volume durations feature a strong intra-day effect, being

smaller at the start and at the end of the trading day than around lunch time. Moreover, this

effect may depend on the day of the week. These deterministic time-of-day and day-of-the

week effect are controlled by nonparametrically regressing the observed durations of each day

of the week on the time of the day, and by defining the deseasonalized durations as the original

ones divided by the fitted values of the regression.

In tables 7 and 8 we present the estimated parameters of the QML and EIS-ML estima-

tions. For volume duration, even if the values taken by the estimates of the parameters for

the two methods considered are substantially the same, it is noticeable that the standard

errors of EIS-QML are generally lower, sometimes substantially, than the QML ones. We

also report in the table the computed dispersion index (δ̃x) of the durations implied by the

estimates. This is computed by plugging in formula (5) the point estimates. We see that

the data dispersion index is better approximated if we estimate with the EIS-ML algorithm.

The estimates and standard errors for the price duration data are more markedly different

between the two methods than for volume durations. Moreover, the improved match between

the data dispersion index and the implied one of the EIS-ML estimates is even more striking

in this case. To draw a conclusion, provided that the model is correctly specified, by using

EIS-ML estimation rather than QML, the estimates one gets are more precise.

Finally, in both table, in square brackets, we present the MC standard deviations of the

EIS estimates. These standard deviations are calculated from ten different different estimates

obtained by running the algorithm using each time a different random seed for the common

random numbers employed in the EIS evaluation of the likelihood. The resulting dispersion

of the estimates is extremely low, which suggests that EIS is a rather robust method in this

respect.
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6 Extensions

In order to illustrate the flexibility of EIS-ML as a numerical tool, we estimate two extensions

of the the SCD model described and used in the previous sections. The first extension consists

in the introduction of a “leverage” term in the mean of the latent factor. For a motivation

of this effect, we refer the reader to Feng, Jiang, and Song (2004), but we slightly differ from

these authors by letting the value of ψi to depend on the lagged duration xi−1 (rather than

εi−1), such that equation (2) becomes

ψi = ω + βψi−1 + αxi−1 + ui. (28)

The introduction of the lagged observed duration requires just a slight modification of the

code and the effect on the speed of the algorithm is negligible: the EIS based computation

of the likelihood takes almost exactly the same time while of course the introduction of an

extra parameter slows down the maximization routine. Table 9 presents the results of the

estimation with the data sets employed in the previous section. The introduction of the

lagged duration as an explanatory variable can be tested by the likelihood ratio for the null

hypothesis α = 0. The p-values are reported in the table in curled brackets before the value

of the likelihood at its maximum.

For volume durations, the estimated leverage coefficients do not display a clear sign pat-

tern. Moreover, the results of the LR tests are mixed: we clearly reject the null only for

Exxon, with a positive leverage effect, while in three other cases the evidence is mixed (p-

value around 0.05) and the effect is negative. In the case of Boeing, the leverage effect is

clearly not significant. For price durations the results are clearly in favor of a negative lever-

age effect, except for the puzzling case of the Exxon stock, where the estimates are somewhat

unusual (low β and high σ).

In the second variant of the model we change the distribution of variable εi, representing

the baseline duration. The Weibull distribution is replaced by a generalized gamma one with

parameters (ν, γ, c). The third parameter is a location parameter and, like in the case of the

Weibull, it is chosen so that the random variable has a unitary mean (so that c is a function of

14



ν and γ and therefore does not appear in the parameters to estimate). The density function

of the generalized gamma is as follows:

fGG(ε) =
γ

cνγΓ(ν)
ενγ−1 exp

[
−

( ε
c

)γ]
, (29)

and it can be easily seen that the Weibull density is a particular case, arising when ν = 1.

Further information about this distribution is available in Bauwens and Giot (2001), who

provide a detailed description of its characteristics.

The modifications in the computer code that were required to use this extension were

even simpler than in the case of the leverage effect. We did not observe any speed impact

on the likelihood computation, while, of course, its maximization was a tad slower because

of the introduction of an extra parameter. The estimation results are available in table 10.

Volume durations modeling does not appear to improve consistently with the introduction

of this richer baseline density. The p-values of the LR tests for the null hypothesis ν = 1

are seldom low (except for Ibm) as the values taken by the parameter ν tend to be rather

close to 1. Different results are obtained with price durations. A significant departure from

the Weibull is observed (estimates of ν are between 4.7 to 7.2) and gains in likelihood are

consistent, to the point that the p-values of the LR tests for ν = 1 are always smaller than

0.001. For the price durations of the Exxon stock the EIS-ML algorithm delivers a value for

the likelihood but the maximization routine failed to achieve strong convergence, regardless

of the vector of initial parameters chosen as a starting point.

7 Conclusion

This paper describes a new approach, the EIS-ML, for the numerical estimation of SCD

models, showing its capability to deliver more precise estimates than the approximate QML

method. The performance EIS-ML are tested both in a simulated and a real case, giving good

results in terms of precision of estimation at a cost of an acceptable loss in rapidity of the

computation. The evidence from the estimation of simulated series suggests an uncomfortably

poor performance of the QML estimator when the latent factor variance is low, while EIS-ML

15



appears to be much more robust. The algorithm is applied to the estimation of a set of

volume and price durations showing a remarkably low MC variance. Moreover, we observed

a significant gain in the capability of the SCD model in reproducing the first two empirical

moments of the data when QML is replaced by EIS-ML estimation. Further interesting

extensions are explored in the use of EIS-ML for the estimation of richer specifications, such as

the presence of a leverage effect in the autoregressive component or a more flexible distribution

for the baseline duration.

Appendix

Proof: [Theorem 1]

Given (24) and the definition of ζ(ψi, ai) following (25), the function k(ψi, ai) is given by

k(ψi, ai) = q(ψi|ψi−1, ai)ζ(ψi, ai)

=
1

σ
√

2π
exp

{
− 1

2

[ (
1
σ2

− 2a2,i

)
ψ2
i − 2

(
ω + βψi−1

σ2
+ a1,i

)
ψi

+
(
ω + βψi−1

σ

)2 ]}
.

(30)

Integrating k(ψi, ai) with respect to ψi, we obtain the function χ(ψi−1, ai) given in (27). If we

combine (30) and (27) as in (21), we find the functional form of m(ψi|ψi−1, ai), that can be

easily rewritten as a Gaussian density with mean and variance equal to µi and v2
i as defined
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in (26):

m(ψi|ψi−1, ai) = k(ψi, ai)/χ(ψi−1, ai)

=

√
1− 2σ2a2,i

σ
√

2π
exp

{
− 1

2

[ (
1
σ2

− 2a2,iψ
2
i

)
− 2

(
ω + βψi−1

σ2
− a1,i

)
ψi

+
σ2

1− 2σ2a2,i

(
ω + βψi−1

σ2
+ a1,i

)2 ]}

=
1

vi
√

2π
exp

{
−1

2

[
1
v2
i

ψ2
i − 2

µi
v2
i

ψi +
µ2
i

v2
i

]}
=

1
vi
√

2π
exp

[
− 1

2v2
i

(ψi − µi)2
]
.

(31)

�
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Table 1: Sampling means, standard deviations and mean-squared errors of 1000 estimates of
the SCD model parameters for simulated series of 250 observations

250
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0064 0.0000 0.0325 0.0649 0.0010 0.0042
β 0.9000 0.8262 0.7601 0.1482 0.2958 0.0274 0.1071
σ 0.2000 0.2431 0.2771 0.1073 0.1939 0.0133 0.0435
γ 1.1000 1.1261 1.1823 0.0792 0.4732 0.0069 0.2307

ω 0.0000 0.0083 -0.0332 0.0381 0.1373 0.0015 0.0199
β 0.9000 0.5963 0.0941 0.2784 0.5847 0.1697 0.9912
σ 0.0500 0.1703 0.3521 0.1384 0.3583 0.0336 0.2197
γ 1.1000 1.1415 1.5280 0.0801 1.2059 0.0081 1.6373

ω 0.0000 0.01471 -0.0729 0.0534 0.2164 0.0030 0.0521
β 0.9000 0.62392 -0.0906 0.2828 0.5489 0.1562 1.2827
σ 0.0500 0.18714 0.5391 0.1982 0.5122 0.0581 0.5016
γ 0.8000 0.83921 1.3096 0.0779 1.4544 0.0076 2.3752

ω 0.0000 0.0042 -0.0235 0.0482 0.1411 0.0023 0.0204
β 0.9000 0.7804 0.4938 0.2092 0.5288 0.0580 0.4446
σ 0.2000 0.2734 0.4394 0.1657 0.3681 0.0328 0.1928
γ 0.8000 0.8261 0.9536 0.0634 0.6779 0.0047 0.4831

Table 2: Sampling means, standard deviations and mean-squared errors of 1000 estimates of
the SCD model parameters for simulated series of 500 observations

500
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0038 -0.0021 0.0146 0.0255 0.0002 0.0006
β 0.9000 0.8699 0.8467 0.0770 0.1476 0.0068 0.0246
σ 0.2000 0.2186 0.2357 0.0706 0.1149 0.0053 0.0144
γ 1.1000 1.1089 1.1202 0.0535 0.0778 0.0029 0.0064

ω 0.0000 0.0043 -0.0433 0.0255 0.1190 0.0006 0.0160
β 0.9000 0.6200 0.0981 0.2776 0.5902 0.1554 0.9913
σ 0.0500 0.1430 0.3270 0.1132 0.3392 0.0214 0.1918
γ 1.1000 1.1254 1.4719 0.0562 1.1315 0.0038 1.4187

ω 0.0000 0.0068 -0.0701 0.0368 0.1831 0.0014 0.0384
β 0.9000 0.6602 -0.0944 0.2700 0.5288 0.1303 1.2686
σ 0.0500 0.1483 0.4989 0.1534 0.4563 0.0332 0.4098
γ 0.8000 0.8224 1.2012 0.0584 1.2614 0.0039 1.7521

ω 0.0000 0.0035 -0.0221 0.0261 0.0994 0.0006 0.0103
β 0.9000 0.8442 0.6473 0.1308 0.4308 0.0202 0.2494
σ 0.2000 0.2372 0.3708 0.1119 0.3157 0.0139 0.1289
γ 0.8000 0.8109 0.8863 0.0428 0.4887 0.0019 0.2462
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Table 3: Sampling means, standard deviations and mean-squared errors of 1000 estimates of
the SCD model parameters for simulated series of 1000 observations

1000
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0019 0.0001 0.0090 0.0101 0.0000 0.0001
β 0.9000 0.8859 0.8803 0.0423 0.0626 0.0019 0.0043
σ 0.2000 0.2099 0.2147 0.0428 0.0674 0.0019 0.0047
γ 1.1000 1.1037 1.1098 0.0352 0.0414 0.0012 0.0018

ω 0.0000 0.0012 -0.0516 0.0166 0.1122 0.0002 0.0152
β 0.9000 0.6883 0.1722 0.2571 0.5722 0.1109 0.8570
σ 0.0500 0.1074 0.3315 0.0882 0.3381 0.0110 0.1935
γ 1.1000 1.1133 1.4830 0.0365 1.1450 0.0015 1.4579

ω 0.0000 0.0018 -0.0915 0.0198 0.1822 0.0003 0.0415
β 0.9000 0.7376 -0.0241 0.2367 0.5091 0.0823 1.1131
σ 0.0500 0.1056 0.5402 0.1166 0.4680 0.0167 0.4594
γ 0.8000 0.8111 1.2733 0.0383 1.3596 0.0015 2.0726

ω 0.0000 0.0016 -0.009 0.0187 0.0514 0.0003 0.0027
β 0.9000 0.8712 0.7818 0.0957 0.2838 0.0100 0.0945
σ 0.2000 0.2183 0.2974 0.0718 0.2360 0.0055 0.0652
γ 0.8000 0.8043 0.8285 0.0300 0.1498 0.0009 0.0232

Table 4: Sampling means, standard deviations and mean-squared errors of 1000 estimates of
the SCD model parameters for simulated series of 5000 observations

5000
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 0.0005 0.0002 0.0031 0.0034 0.0000 0.0000
β 0.9000 0.8982 0.8959 0.0152 0.0201 0.0002 0.0004
σ 0.2000 0.1999 0.2035 0.0175 0.0263 0.0003 0.0007
γ 1.1000 1.0994 1.1026 0.0146 0.0173 0.0002 0.0003

ω 0.0000 -0.0002 -0.0302 0.0052 0.0703 0.0000 0.0058
β 0.9000 0.7793 0.3099 0.2142 0.4937 0.0604 0.5919
σ 0.0500 0.0785 0.2934 0.0522 0.2516 0.0035 0.1225
γ 1.1000 1.1048 1.2761 0.0162 0.7875 0.0002 0.6512

ω 0.0000 -0.0003 -0.0767 0.0068 0.1265 0.0000 0.0219
β 0.9000 0.7893 0.0781 0.2135 0.3672 0.0578 0.8103
σ 0.0500 0.0786 0.5901 0.0755 0.3513 0.0065 0.4152
γ 0.8000 0.8033 1.0754 0.0154 1.0024 0.0002 1.0807

ω 0.0000 0.0003 -0.0001 0.0047 0.0069 0.0000 0.0000
β 0.9000 0.8931 0.8909 0.0380 0.0536 0.0014 0.0029
σ 0.2000 0.2024 0.2086 0.0295 0.0612 0.0008 0.0038
γ 0.8000 0.8001 0.8023 0.0109 0.0158 0.0001 0.0002
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Table 5: Sampling means, standard deviations and mean-squared errors of 1000 estimates of
the SCD model parameters for simulated series of 10000 observations

10000
DGP Mean EIS Mean QML StDev EIS StDev QML MSE EIS MSE QML

ω 0.0000 <0.0001 0.0001 0.0021 0.0024 <0.0000 <0.0000
β 0.9000 0.9005 0.8999 0.0119 0.0139 0.0001 0.0002
σ 0.2000 0.1981 0.1986 0.0134 0.0192 0.0002 0.0004
γ 1.1000 1.0999 1.1002 0.0098 0.0114 <0.0000 0.0001

ω 0.0000 -0.0002 -0.0307 0.0021 0.0278 <0.0000 0.0044
β 0.9000 0.8561 0.2351 0.1145 0.3954 0.0150 0.5985
σ 0.0500 0.0615 0.3606 0.0299 0.1944 0.0010 0.1342
γ 1.1000 1.1018 1.1761 0.0092 0.0701 <0.0000 0.0107

ω 0.0000 -0.0001 -0.0867 0.0024 0.1213 <0.0000 0.0222
β 0.9000 0.8411 0.0522 0.1481 0.3294 0.0254 0.8273
σ 0.0500 0.0624 0.6381 0.0432 0.3477 0.0020 0.4668
γ 0.8000 0.8013 1.0656 0.0068 0.8636 <0.0000 0.8164

ω 0.0000 -0.0003 <0.0001 0.0025 0.0027 <0.0000 <0.0000
β 0.9000 0.8981 0.9001 0.0154 0.0221 0.0002 0.0005
σ 0.2000 0.2010 0.1992 0.0190 0.0307 0.0004 0.0009
γ 0.8000 0.8005 0.7994 0.0069 0.0081 <0.0000 <0.0000

Table 6: Sampling means, standard deviations and mean-squared errors of 1000 estimates of
the SCD model parameters for simulated series of one million observations

1000000
DGP Mean QML StDev QML Min QML Max QML

ω 0.0000 -0.0001 0.0002 -0.0004 0.0003
β 0.9000 0.9001 0.0007 0.8989 0.9012
σ 0.2000 0.1996 0.0013 0.1979 0.2013
γ 1.1000 1.1009 0.0008 1.0992 1.1022

ω 0.0000 -0.0001 0.0001 -0.0002 0.0002
β 0.9000 0.8997 0.0078 0.8875 0.9125
σ 0.0500 0.0496 0.0031 0.0445 0.0549
γ 1.1000 1.1008 0.0011 1.0985 1.1025

ω 0.0000 0.0000 0.0001 -0.0003 0.0002
β 0.9000 0.9006 0.0129 0.8787 0.9201
σ 0.0500 0.04911 0.0053 0.0413 0.0581
γ 0.8000 0.8007 0.0007 0.7993 0.8018

ω 0.0000 0.0000 0.0003 -0.0004 0.0004
β 0.9000 0.9002 0.0012 0.8985 0.9018
σ 0.2000 0.1993 0.0020 0.1966 0.2027
γ 0.8000 0.8007 0.0006 0.7994 0.8017
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Table 7: Results for volume durations for an SCD model

VOLUME Boeing Coca Cola Disney Exxon Ibm

obs. 1576 3022 1778 2045 4305

ω qml 0.002 -0.001 0.000 0.007 0.000
(0.0037) (0.0053) (0.0029) (0.0044) (0.0016)

eis 0.002 0.002 0.002 0.006 -0.002
(0.0026) (0.0021) (0.0018) (0.0030) (0.0010)
[<0.0001] [<0.0001] [0.0001] [<0.0001] [0.0001]

β qml 0.921 0.865 0.976 0.901 0.982
(0.0129) (0.0276) (0.0074) (0.0237) (0.0044)

eis 0.961 0.950 0.981 0.925 0.982
(0.0116) (0.0129) (0.0061) (0.0218) (0.0032)
[<0.0001] [<0.0001] [<0.0001] [<0.0001] [0.0005]

σ qml 0.116 0.209 0.102 0.133 0.101
(0.0168) (0.0278) (0.0117) (0.0206) (0.0020)

eis 0.101 0.109 0.088 0.102 0.112
(0.0143) (0.0159) (0.0101) (0.0181) (0.0081)
[<0.0001] [<0.0001] [<0.0001] [<0.0001] [0.0002]

γ qml 1.698 1.401 1.767 1.812 1.892
(0.0288) (0.0219) (0.0259) (0.0310) (0.0238)

eis 1.713 1.310 1.777 1.764 1.837
(0.0384) (0.0215) (0.0368) (0.0375) (0.0266)
[0.0001] [<0.0001] [0.0006] [<0.0001] [0.0005]

eis log lik -1303.51 -2843.79 -1381.95 -1682.94 -3158.13
[0.0186] [0.0062] [0.0450] [0.0116] [0.5885]

δ̃x data 0.70 0.88 0.72 0.65 0.80
qml 0.76 0.90 0.82 0.67 0.86
eis 0.74 0.89 0.80 0.66 0.94

QML and EIS-ML estimates and standard errors in parentheses. MC standard
deviations for the EIS estimates are in square parentheses. δ̃x denotes the
dispersion index. The estimated model is defined by (1)-(4) and (23).
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Table 8: Results for price durations for an SCD model

PRICE Boeing Coca ola Disney Exxon Ibm

obs. 2620 1609 2160 2717 6728

ω qml -0.026 -0.035 -0.005 0.008 -0.005
(0.0081) (0.0166) (0.0030) (0.0047) (0.0020)

eis -0.023 -0.027 -0.002 -0.127 -0.006
(0.0097) (0.0154) (0.0033) (0.0243) (0.0028)
[0.0001] [<0.0001] [<0.0001] [<0.0001] [<0.0001]

β qml 0.896 (0.774) 0.967 0.921 0.977
(0.0194) (0.0770) (0.0103) (0.0356) (0.0051)

eis 0.876 0.733 0.960 0.179 0.962
(0.0302) (0.0731) (0.0134) (0.0564) (0.0074)
[0.0004] [0.0006] [<0.0001] [0.0005] [<0.0001]

σ qml 0.286 0.292 0.108 0.100 0.135
(0.0301) (0.0739) (0.0181) (0.0320) (0.0041)

eis 0.332 0.377 0.136 0.674 0.192
(0.0487) (0.0698) (0.0247) (0.0344) (0.0197)
[0.0008] [0.0006] [<0.0001] [0.0002] [0.0002]

γ qml 1.149 1.113 1.177 1.161 1.244
(0.0200) (0.0308) (0.0192) (0.0175) (0.0131)

eis 1.067 1.113 1.056 1.344 1.130
(0.0284) (0.0402) (0.0208) (0.0493) (0.0159)
[0.0004] [0.0003] [<0.0001] [0.0003] [<0.0001]

eis log lik -2371.96 -1561.44 -2056.21 -2635.10 -5760.00
[0.0336] [0.0192] [0.0041] [0.0663] [0.0404]

δ̃x data 1.36 1.21 1.23 1.23 1.43
qml 1.29 1.07 1.03 0.93 1.21
eis 1.42 1.21 1.19 1.23 1.40

QML and EIS-ML estimates and standard errors in parentheses. MC standard
deviations for the EIS estimates are in square parentheses. δ̃x denotes the
dispersion index. The estimated model is defined by (1)-(4) and (23).
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Table 9: Results for volume and price durations for an SCD model with leverage

VOLUME Boeing Coca Cola Disney Exxon Ibm

obs. 1576 3022 1778 2045 4305

ω -0.008 0.028 0.012 -0.065 0.004
(0.009) (0.016) (0.007) (0.021) (0.002)

β 0.954 0.972 0.991 0.867 0.988
(0.016) (0.014) (0.005) (0.031) (0.002)

σ 0.096 0.117 0.088 0.043 0.115
(0.014) (0.018) (0.010) (0.030) (0.010)

γ 1.700 1.330 1.78 1.674 1.847
(0.039) (0.025) (0.037) (0.040) (0.028)

α 0.011 -0.028 -0.013 0.079 -0.007
(0.010) (0.016) (0.007) (0.024) (0.002)

LR p-value 0.289 0.068 0.041 <0.001 0.049

EIS log-lik -1302.96 -2842.12 -1379.86 -1676.29 -3156.17

PRICE Boeing Coca Cola Disney Exxon Ibm

obs. 2620 1609 2160 2717 6728

ω 0.049 0.119 0.041 -0.120 0.009
(0.011) (0.034) (0.007) (0.077) (0.002)

β 0.937 0.883 0.986 0.193 0.971
(0.023) (0.055) (0.005) (0.153) (0.006)

σ 0.331 0.392 0.166 0.673 0.205
(0.043) (0.056) (0.038) (0.038) (0.018)

γ 1.098 1.192 1.095 1.344 1.143
(0.027) (0.042) (0.022) (0.050) (0.015)

α -0.063 -0.133 -0.048 -0.005 -0.016
(0.011) (0.029) (0.009) (0.049) (0.003)

LR p-value <0.001 <0.001 <0.001 0.924 <0.001

EIS log-lik -2361.79 -1552.83 -2041.77 -2635.10 -5748.14

EIS-ML estimates of the parameters and standard errors in paren-
theses. The LR p-value is for the hypothesis α = 0. The estimated
model is defined by (1), (28), (3), (4) and (23).
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Table 10: Results for volume and price durations for an SCD model with a generalized gamma
baseline duration

VOLUME Boeing Coca Cola Disney Exxon Ibm

obs. 1576 3022 1778 2045 4305

ω 0.006 -0.011 0.002 -0.001 -0.006
(0.005) (0.008) (0.002) (0.008) (0.002)

β 0.960 0.953 0.981 0.930 0.982
(0.012) (0.012) (0.006) (0.021) (0.004)

σ 0.104 0.104 0.089 0.098 0.104
(0.016) (0.016) (0.010) (0.018) (0.008)

γ 1.900 1.126 1.819 1.633 1.437
(0.198) (0.092) (0.163) (0.155) (0.088)

ν 0.854 1.274 0.964 1.128 1.489
(0.130) (0.166) (0.133) (0.165) (0.149)

LR p-value 0.307 0.054 0.792 0.405 <0.001

EIS log-lik -1302.99 -2841.94 -1381.92 -1682.59 -3149.46

δx data 0.70 0.88 0.72 0.65 0.80
δx eis 0.74 0.91 0.81 0.67 0.90

PRICE Boeing Coca Cola Disney Exxon Ibm

obs. 2620 1609 2160 2717 6728

ω -0.377 -0.666 -0.170 na -0.105
(0.151) (0.292) (0.077) (0.029)

β 0.923 0.828 0.970 na 0.982
(0.020) (0.044) (0.010) (0.004)

σ 0.235 0.250 0.106 na 0.123
(0.367) (0.046) (0.019) (0.013)

γ 0.389 0.440 0.0365 na 0.373
(0.061) (0.080) (0.057) (0.031)

ν 5.631 4.717 6.894 na 7.167
(1.665) (1.583) (2.058) (1.151)

LR p-value <0.001 <0.001 <0.001 na <0.001

EIS log-lik -2335.20 -1542.15 -2009.12 na -5617.91

δx data 1.36 1.21 1.23 1.23 1.43
δx eis 1.57 1.32 1.33 na 1.52

EIS-ML estimates of the parameters and standard errors in paren-
theses. The LR p-value is for the hypothesis ν = 1. The estimated
model is defined by (1)-(4) and (29). For Exxon price durations,
results are not available (na).
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Figure 1: Sampling densities of 1000 EIS-ML (red, dashed) and QML (blue, full) estimates
of the parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.2, γ = 1.1.
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Figure 2: Sampling densities of 1000 EIS-ML (red, dashed) and QML (blue, full) estimates
of the parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.05, γ = 1.1.
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Figure 3: Sampling densities of 1000 EIS-ML (red, dashed) and QML (blue, full) estimates
of the parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.05, γ = 0.8.
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Figure 4: Sampling densities of 1000 EIS-ML (red, dashed) and QML (blue, full) estimates
of the parameters of an SCD model with parameters ω = 0.0, β = 0.9, σ = 0.2, γ = 0.8.

29



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
02

0.
04

0.
06

omega

sim. sigma

st
d 

de
v

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

beta

sim. sigma

st
d 

de
v

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

sigma

sim. sigma

st
d 

de
v

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

gamma

sim. sigma

st
d 

de
v

Figure 5: Standard errors of 1000 estimates of the SCD model parameters as a function of
the DGP value of σ. Case of 1000 observations simulated from the DGP with parameters
ω = 0.0, β = 0.9, γ = 1.1.
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