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1 Introduction

In this paper we design and implement a financial model for optimal portfolio allocations

of currencies. An optimal allocation maximizes the expected portfolio return subject to a

Value-at-Risk (VaR) constraint. In the econometric implementation of the model, we deal

with portfolios made of two or three currencies among the euro (EUR), the Great Britain

pound (GBP), and the Japanese yen (JPY), the numeraire being the US dollar (USD). Our

model is set up for foreign exchange dealers who re-balance their portfolio of currencies at

regular time intervals during each trading day and must satisfy a daily VaR constraint.

We use several econometric models to compute the optimal portfolios. Each model is

estimated using historical data until some date. Each estimated model then serves to generate,

for the next period, an out-of-sample forecast of the expected return and a quantile of the

future return distribution, which are used as inputs to compute the optimal allocation of

risky currencies. The optimization step also determines the optimal amount of numeraire that

investors are allowed to borrow or to lend. The whole procedure is carried out sequentially,

by adding one observation at a time to the estimation sample and generating the investment

recommendations for the next date.

Our theoretical model is related to the model of Campbell, Huisman, and Koedijk (2001)

who propose to allocate financial assets by maximizing the expected return subject to the

constraint that the expected maximum loss should meet the VaR constraint. Rengifo and

Rombouts (2004) extend this work to a forward looking portfolio selection framework. They

implement the model using univariate GARCH models for daily portfolio returns. One dis-

advantage of using univariate GARCH models is that one needs to re-estimate the model for

each change of weights of the risky assets forming the portfolio. This must be done as many

times as necessary to solve the optimization problem, i.e. for computing the optimal weights.

As an alternative, if a multivariate GARCH model is used, the multivariate distribution

of the returns can directly be used to compute the implied distribution and the VaR of any

portfolio, and there is no need to re-estimate the model for different weight vectors. Therefore,

we use both univariate and multivariate GARCH and non-GARCH models and compare the

performance of the different models on the basis of two economic criteria (the generated

wealth and a performance ratio) and two statistical tests (the failure rate and the dynamic

quantile tests). Our results indicate clearly that using multivariate GARCH models improves
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the results of the optimal portfolio allocation in terms of the evaluation criteria.

In Section 2, we present the portfolio allocation model. In Section 3, we describe the

econometric models we use for the prediction of the VaR. In Section 4, we present an empirical

illustration using intradaily data. In the last section, we conclude.

2 Portfolio Allocation Model

The portfolio model serves to find the allocation of currencies that maximizes the expected

return subject to a VaR constraint. We make the following assumptions:

• Dealers re-balance their currency portfolio regularly (e.g. every thirty minutes) during

each trading day. They make capital gains or losses, due to exchange rate fluctuations,

and interest gains or losses from their wealth lent or borrowed at the overnight interest

rate. However, as the overnight interest rate is very small, we only consider the gains

or losses coming from exchange rate fluctuations.

• There is no transaction costs and no bid-ask spreads. This assumption is coherent with

the stylized fact found in FX markets, that the effective spread is almost constant and

very small, of the order of one basis point.

• There is no failure risk, i.e. the interest rate at which dealers can borrow or lend during

the day is the same. In our context, this assumption is acceptable since the difference

between the lending and borrowing overnight interest rates is very small.

• The desired amount of USD that dealers may want to borrow can be obtained quickly

because of the high speed of intradaily operations. The borrowing can take the form of

a ”count in advance” that involves no trading costs. If a dealer represents a bank, the

borrowing and lending inside the same institution is most of the time granted.

Let n+1 be the number of available currencies for trading. Taking the (n+1)-th currency

as numeraire, in our case the USD, let pi,t, with i = 1, . . . , n, be the exchange rate between

currencies i and n+1 expressed in units of currency n+1 per unit of currency i (e.g. 1.25

USD per 1 EUR). Define the return of currency i at time t+1 as ri,t+1 = log(pi,t+1)− log(pi,t),

for i = 1, . . . , n.
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Let Wt be the investor’s wealth, in USD, at time t. Define Ωt ≡ {wt ∈ Rn :
∑n

i=1 wi,t = 1}
as the set of portfolio weights at time t. Note that this formulation allows for short-selling of

some of the currencies in the portfolio and assumes that the income from these short-sellings

is invested in the other currencies of the portfolio. Then, xi,t = wi,tWt/pi,t represents the

USD value of foreign currency i held at time t. This implies:

xi,tpi,t = wi,tWt, (1)

and

Wt =
n∑

i=1

xi,t pi,t. (2)

The wealth at time t + 1 can be expressed as:

Wt+1 = Wt(1 +
n∑

i=1

wi,t ri,t+1). (3)

We allow the dealers to borrow or to lend USD according to their degree of risk aversion.

If dealers are less risk averse, they would like to borrow in order to invest this money in

currencies that allow them to maximize their expected returns. This borrowing can be seen

as a leverage to obtain a higher return.

Denote by bt the amount of USD that a dealer can borrow (bt > 0) or lend (bt < 0) at the

risk free interest rate rf . With borrowing and lending, Equation (3) becomes

Wt+1 = (Wt + bt)(1 +
n∑

i=1

wi,tri,t+1)− bt(1 + rf ). (4)

Dealers wish to maximize their expected wealth since future returns are not known due

to the uncertainty present in the markets. Accordingly, Equation (4) in terms of conditional

expectations is given by

EtWt+1(wt) = (Wt + bt)(1 + Etrt+1(wt))− bt(1 + rf ), (5)

where Etrt+1(wt) is the expected portfolio return at the end of the rebalancing period. The

expectation operator Et is conditional on all the information available at time t. In order to

maximize this objective function, dealers face two constraints: the budget constraint and the

risk constraint given in terms of the VaR. The budget constraint is given by

Wt + bt =
n∑

i=1

xi,tpi,t = x′tpt. (6)
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The VaR constraint for a given intradaily time interval and probability of occurrence α is

Pt[Wt+1(wt) ≤ Wt − V aR∗] ≤ α, (7)

where Pt is the probability given all the information available at time t, and V aR∗ is the the

dealer’s desired VaR level.

The intradaily portfolio optimization problem is solved by the maximization of the ex-

pected return, Equation (5), subject to the budget constraint, Equation (6), the VaR-constraint,

Equation (7), and the simplex constraint (
∑

wi,t = 1). The objective is to determine the

weights that maximize the expected return subject to those constraints, i.e.

w∗t ≡ arg max
wt

(Wt + bt)(1 + Etrt+1(wt))− bt(1 + rf ). (8)

Substituting the budget constraint (6) in the objective function (5) yields

EtWt+1(wt) = x′tpt(Etrt+1(wt)− rf ) + Wt(1 + rf ). (9)

Equation (9) shows that a risk-averse dealer is ready to invest a fraction of his wealth in

foreign currencies if the expected return of the portfolio is bigger than the risk free rate.

Substituting (9) (before taking the expectation) in (7) gives

Pt[x′tpt(rt+1(wt)− rf ) + Wt(1 + rf ) ≤ Wt − V aR∗] ≤ α, (10)

such that

Pt

[
rt+1(wt) ≤ rf −

V aR∗ + Wtrf

x′tpt

]
≤ α (11)

defines the quantile qt(wt, 1− α) of the distribution of the portfolio return at the confidence

level α. Using this result, the investment value can be written as

x′tpt =
V aR∗ + Wtrf

rf − qt(wt, α)
. (12)

Finally, substituting (12) in (9) and dividing by the initial wealth Wt we obtain

Et(Wt+1(wt))
Wt

=
V aR∗ + Wtrf

Wtrf −Wtqt(wt, α)
(Etrt+1(wt)− rf ) + (1 + rf ). (13)

Thus, the optimal set of weights is given by

w∗t ≡ arg max
wt

Etrt+1(wt)− rf

Wtrf −Wtqt(wt, α)
. (14)
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The well-known two fund separation theorem1 applies in this case, i.e. the investor’s initial

wealth and desired V aR∗ do not affect the maximization result. Dealers first allocate the

currencies and then the amount of borrowing or lending. The latter reflects by how much the

VaR of the portfolio, (Wtqt(wt, α)), differs from the desired V aR∗ that represents the dealers’

degree of risk aversion. The amount of money that a given dealer borrows or lends is obtained

by substituting (6) in (12), which gives

b∗t =
V aR∗ + Wtqt(w∗t , α)

rf − qt(w∗t , α)
. (15)

We use this model to compute intradaily portfolio allocations for trading in FX markets.

In this context, the time interval during which the optimization is conducted is supposed to

be short. This fact introduces some high-frequency data aspects that must be considered in

the econometric implementation to estimate the optimal portfolio allocations. An important

aspect to consider is the seasonal component present in high frequency data. In the next

section we explain in detail the econometric implementation of the model and how we deal

with the high-frequency features of the data.

3 Econometric Implementation

We want to compute w∗t and b∗t as defined in Equations (14) and (15), respectively. To

implement this, we need to estimate Etrt+1(wt) and qt(w∗t , α) from historical data (i.e. until

date t− 1 inclusive), using an econometric model of the portfolio return distribution. We can

do this sequentially for a sequence of periods and evaluate the ex-post performance of the

investments recommended by the econometric procedure.

Our methodology for the estimation of the optimal portfolio allocation and its evaluation

comprise five steps that we describe below.

3.1 Adjustment of each currency return for intradaily seasonality

We start by estimating the intradaily component, φi(t), which characterizes the second

moment of the returns of currency i at time t of the day. Following Andersen and

Bollerslev (1997) and Bauwens, Ben Omrane, and Giot (2005), this intradaily seasonal

(or diurnal) component is defined as the expected volatility conditioned on time-of-day,
1See for example Huang and Litzenberger (1988).

5



where the expectation is computed by averaging the squared observed returns over the

cross-sectional time intervals for each day of the week.

In order to get rid of the diurnal pattern of the volatility of intradaily returns, we

adjust the returns by dividing them by the square root of φi(t) for i = 1, . . . , n, to get

”deseasonalized” returns. If ri,t is the observed return of currency i at time t, and Ri,t is

the deseasonalized one, then Ri,t = ri,t/
√

φi(t). Actually, the function φi(t) is different

for each day of the week (see Section 4.1).

3.2 Specification and estimation of an econometric model of portfolio returns

For the specification of an econometric model of portfolio returns we distinguish two

cases: the univariate and multivariate cases. In the univariate case, we model the

deseasonalized portfolio returns Rp,t as follows:

Rp,t = µp,t + εt, (16)

where µp,t is the conditional mean and εt an error term.

In the multivariate setting, we replace Rp,t by a n × 1 vector Rt which contains the

returns Ri,t, i = 1, . . . , n, of the n foreign currencies at time t:

Rt = µt + εt, (17)

where µt and εt are n× 1 vectors.

3.2 a). Specification of the conditional mean

We specify the conditional mean of Ri,t, with i = p in the univariate case, and

i = 1, . . . , n in the multivariate case, as the AR(1) process

µi,t = µi + ρiRi,t−1, (18)

or as a slowly changing parameter that is estimated by the mean of the observations

until time t− 1:

µi,t = Et−1(Ri,t), µ̂i,t =
1
t

t−1∑

s=0

Ri,s. (19)

3.2 b). Specification of the conditional variance

In the univariate case, Equation (16), the error term εt is decomposed as σp,tzt

where zt is an IID process with zero mean unit variance. In this case, given a
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portfolio allocation, we compute the deseasonalized portfolio returns to estimate

the conditional variance σ2
p,t using two univariate specifications:

(a) A ”non-parametric” model in which we assume that σ2
p,t is slowly evolving in

time and is estimated at time t by the empirical variance of the data until

t− 1.

σ2
p,t = V art−1(Rp,t), σ̂2

p,t =
1
t

t−1∑

s=0

(Rp,s − µ̂p,t)2. (20)

(b) The GARCH(1,1) model of Bollerslev (1986), written

σ2
p,t = ωp + δpε

2
t−1 + βσ2

p,t−1. (21)

In the multivariate case, Equation (17), the error term εt equals Σ1/2
t zt, where

Σ1/2
t is, for example, the Cholesky factorization of the n× n conditional variance-

covariance matrix Σt, and where the n × 1 vector zt is an IID process with mean

zero and variance In (the identity matrix of order n). For this case we use two

multivariate GARCH models (see Bauwens, Laurent, and Rombouts, 2006, for a

detailed presentation of multivariate GARCH models):

(c) The dynamic conditional correlation (DCC) model of Tse and Tsui (2002),

defined by

Σt = DtΛtDt. (22)

The n×n matrix Dt is a diagonal matrix containing the conditional variances

σ2
i,t, for i = 1, 2, . . . , n, each specified as

σ2
i,t = ωi + δiε

2
i,t−1 + βiσ

2
i,t−1, (23)

i.e. a univariate GARCH(1,1) equation. The n×n matrix Λt is the conditional

correlation matrix, defined by

Λt = (1− θ1 − θ2)Λ + θ1Ψt−1 + θ2Λt−1, (24)

where Λ is a constant correlation matrix, θ1 and θ2 are non-negative parameters

satisfying θ1 + θ1 < 1, and Ψt−1 is the n × n correlation matrix of ετ for

τ = t−M, t−M + 1, . . . , t− 1. Its i, j-th element is given by

Ψij,t−1 =
∑M

m=1 ui,t−muj,t−m√
(
∑M

m=1 u2
i,t−m)(

∑M
m=1 u2

j,t−m)
, (25)
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where ui,t = εit/σi,t. The scalar M must be greater than or equal to n to

ensure that Ψt is semi-positive-definite. Notice that the right-hand side of

(24) is such that the diagonal elements of Λt are equal to one for all i and t

(assuming that Λ0 is a correlation matrix).

(d) The BEKK(1,1,1) model of Engle and Kroner (1995), where the conditional

variance-covariance matrix is defined by

Σt = C ′C + A′εt−1ε
′
t−1A + G′Σt−1G, (26)

where A and G are n× n matrices, and C is upper triangular.

We assume two parametric distributions for zt: the standard Gaussian distribution

and the standard Student-t distribution, each univariate or multivariate depending

on whether the model is for Rp,t or Rt. With the Student-t distribution we allow

for fat tails in the distribution of zt. We have also tried the skewed-t distribution,

proposed by Hansen (1994) and extended to the multivariate case by Bauwens

and Laurent (2005), in order to allow for asymmetry in the return distribution. It

turned out that asymmetry is not needed for the data we used, so that the empirical

results in that case are almost identical to those obtained using the (symmetric)

Student-t distribution.

Following Mittnik and Paolella (2000), we use the weighted maximum likelihood

(WML) procedure in order to give more weight to recent data, i.e.. we multiply

the log-likelihood contributions of the observation of period t by ρT−t, where ρ

(≤ 1) is an exponential decay factor and T is the total number of observations

used for estimation. If ρ = 1 we are back to usual ML estimation. We choose ρ

as one minus the minimum of the failure rate (defined later in this section) for a

given VaR confidence level (see Rengifo and Rombouts (2004) for more details).

3.3 Estimation of the VaR

To estimate the VaR we need to go back from the adjusted returns to the original ones.

In the univariate case in which we work directly on the portfolio return, we simply

multiply the estimated conditional means and standard deviations by the square root

of the diurnal component φ(t) of the portfolio. The Value-at-Risk for time t at the
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Table 1: Summary of models

Model name Mean Variance
equation equations

Univariate
Emp-Emp (19) (20)
Emp-GARCH (19) (21)
AR-GARCH (18) (21)

Multivariate
Emp-DCC (19) (22)-(25)
AR-DCC (18) (22)-(25)
Emp-BEKK (19) (26)
AR-BEKK (18) (26)

Numbers in parenthesis denote equation numbers in the paper.

confidence level α is calculated as

V aRp
t,α = (µ̂p,t + σ̂p,tqα)

√
φ(t), (27)

where µ̂p,t and σ̂p,t are the forecasted conditional mean and standard deviation, and qα

is the (α)-th quantile of the distribution of zt.

For the multivariate setting, once we have estimated the parameters of the model, we

compute the forecast Σ̂t of the matrix Σt using one of the multivariate GARCH models.

After that, we introduce the diurnal factors by the following transformation:

Σ̄t = diag(
√

φ1(t), . . . ,
√

φn(t) ) Σ̂t diag(
√

φ1(t), . . . ,
√

φn(t) )′ (28)

where φi(t), for i = 1, . . . , n, are the diurnal factors corresponding to each currency.

With this matrix we can compute the conditional variance of the portfolio return as

σ̄2
t = w′t Σ̄t wt, (29)

where wt is n× 1 vector of portfolio weights. We also reintroduce the seasonality factor

in each forecasted conditional mean: µ̄i,t = µ̂i,t

√
φi(t), for i = 1, . . . , n, where µ̂i,t is

defined either as in (19) or, following (18), as µ̂i+ ρ̂iRi,t−1 (µ̂i and ρ̂i denoting the WML

estimates). Thus, the forecasted conditional mean of the portfolio return is

µ̄t = w′t µ̂t. (30)
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Once we have computed µ̄t and σ̄2
t , the Value-at-Risk for time t at the confidence level

α is given by

V aRt,α = µ̄t + σ̄tqα. (31)

3.4 Determination of the optimal risky investment and amount to borrow or to lend

We compute the portfolio weights that maximize the expected return subject to the

VaR constraint according to Equation (14). Once we have determined the optimal

weights for the investments in the risky currencies, and given the value of the desired

VaR (V aR∗), we determine the amount borrowed or lent by using Equation (15).

3.5 Evaluation of the models

We use four criteria to evaluate the models: two statistical tests and two economic tests.

The first statistical test is the failure rate test proposed by Kupiec (1995). According

to this test, the model is correctly specified if the observed portfolio return at time t is

bigger than the VaR predicted at t − 1 for time t in 100α percent of the predictions.

The failure rate for the long trading positions is defined as

f =
1
m

T∑

t=T−m+1

1[rt < −V aRt,α], (32)

where, m is the number of out-of-sample days, T is the total number of observations, rt is

the observed return at time t, V aRt,α is the threshold value and 1 denotes the indicator

function. Correspondingly, the failure rate for short trading positions is defined as the

percentage of positive returns larger than the one-step-ahead VaR for short positions.

Let η be the number VaR violations in the out-of-sample interval of m points. Then, η

has a binomial distribution with parameters α and m. Ideally, the failure rate should

be equal to α. Thus, the null hypothesis is H0 : f = α. The corresponding likelihood

ratio statistic,

LR = 2 log[fη(1− f)m−η]− 2 log[αη(1− α)m−η], (33)

is asymptotically distributed as a χ2(1) random variable.

A property that the VaR should have, besides respecting the VaR level, is that the VaR

violations should not be serially correlated. In order to test this property, we use the

dynamic conditional quantile test proposed by Engle and Manganelli (2004). The basic
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idea is that this property can be tested by defining the sequence

ht = 1[rt < −V aRt,α]− α, (34)

such that the expected value of ht is zero. The dynamic quantile test is an (OLS)

Fisher test under the null that all regression coefficients, including the intercept, are

zero in a regression of the variable ht on its own past, on the current VaR and on any

other regressors. We perform the test using the current VaR and five lags of the VaR

violations as explanatory variables.

The first economic test we use is based on the comparison of the wealth evolution

provided by implementing the recommendations of the different models. Accordingly,

the best model is the one that provides the highest wealth (or return) at the end

of a forecast period, for a given risk level. The second economic test is based on the

comparison of the results through a performance ratio. This performance ratio is defined

as the ratio in (14), where the expected return is replaced by the realized return. With

this ratio we can compare the results of the different models. The preferred model is

the one with the highest performance ratio.

4 Empirical Illustration

The foreign exchange market is a market maker based trading system, where dealers interact

around the clock (i.e. in successive time zones). The most active trading centers are New

York, London, Frankfurt, Sydney, Tokyo and Hong Kong. We consider two portfolio allocation

problems: one in which the dealer, located in the US, considers only two currencies (EUR

and GBP) and one in which the dealer considers three currencies (EUR, GBP and JPY).

In this section, after describing the data, we present the portfolio recommendations of

different econometric implementations, and the results of their statistical and economic eval-

uations.

4.1 Data Description

The database (provided by Olsen and Associates) consists of five-minute quotes for the

EUR/USD, GBP/USD, and JPY/USD over the period ranging from January 1st, 1999 until
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December 31st, 2003, i.e. five years. These currency quotes are market makers’ quotes and not

transaction prices, as should be preferably used. Since Danielsson and Payne (2002) showed

that the statistical properties of five-minute US dollar/Deutsche Mark quotes are similar to

those of transaction quotes, and transaction quotes are not widely available, we have resorted

to using quotes. The database also contains the date, the time-of-day stamped to the five

minutes in Greenwich mean time (GMT), and the mid-quotes.

From the five-minute mid-quotes, we compute thirty-minute returns, since we assume that

the dealers re-balance their portfolios every thirty minutes. The return at time t is computed

as the difference between the logarithms of the mid-quotes at times t and t− 1. We consider

only data for the continuous trading period that goes from 12:00 GMT to 20:00 GMT (8

hours per day). We exclude from the sample all the US holidays and control for the day

light-saving-time (the time change between the winter and the summer). Finally, to avoid

the trade opening noise, we eliminate the first return of the day. The total number of returns

of our sample is equal to 20,144.

As explained in Section 3, we adjust the returns for the diurnal component of volatility.

The seasonally adjusted (SA) returns are obtained by dividing the returns by the square root

of their cross-sectional intradaily average volatility. Figure 1 displays the intradaily diurnal

functions for each day of the week for the EUR/USD, as an example.

Each curve corresponds to one day of the week.

Figure 1: Diurnal patterns of the EUR/USD volatility

Volatility is generally at its highest level one hour after the US market opening, due to the
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simultaneous activity of the American and the European markets. It decreases around 20h

GMT when the New York trading session ends. The profiles of the GBP/USD and USD/JPY

diurnal functions are very similar to the ones shown in Figure 1.

Table 2 presents summary statistics of the thirty-minute returns for the three exchange

rates, before and after seasonal adjustment. The means of the SA returns are almost equal to

zero and their distributions have fatter tails than the normal, but they are almost symmetric.

The distributions of the unadjusted returns are more leptokurtic and still close to being sym-

metric except for the JPY/USD. In the series of SA returns, there is a small but significantly

(at the 2.5 percent level) negative autocorrelation of order one and a smaller positive auto-

correlation of order two, which is not so much significant. The negative autocorrelation in FX

returns has been discussed in the academic literature. According to Goodhart and Figliuli

(1991), the negative autocorrelation stems from constraints in the control of positions, while

according to Bollerslev and Domowitz (1993) and Lo and MacKinlay (1990), this feature

comes from the computation of asynchronous price series at the interval endpoints.

Table 2: Descriptive statistics of thirty-minute returns

EUR/USD GBP/USD JPY/USD

Returns SA returns Returns SA returns Returns SA returns
Mean 0.002 0.025 0.002 0.030 -0.00005 0.002
SD 0.116 0.999 0.086 0.999 0.102 1.000
Max 1.115 9.707 0.788 9.667 0.994 9.756
Min -0.845 -7.403 -0.562 -6.696 -1.343 -9.363
Skew 0.038 0.067 0.086 0.087 -0.345 -0.168
Kurt 8.558 7.429 6.667 6.008 13.250 8.900
ρ1 -0.006 -0.016 -0.017 -0.026 -0.034 -0.041
ρ2 0.013 0.008 0.009 0.006 0.005 0.003
Q(1) 0.69 5.09 5.51 13.48 23.32 34.12

(0.105) (0.024) (0.019) (0.0) (0.0) (0.0)
Q(2) 4.07 6.50 7.25 14.39 23.84 34.32

(0.131) (0.039) (0.027) (0.001) (0.0) (0.0)
The SA returns are the returns adjusted for the diurnal component of volatility (see Sec-
tion 3.1). SD is the standard deviation, Skew and Kurt are the skewness and kurtosis
coefficients, ρ1 and ρ2 the autocorrelation coefficients of order 1 and 2, Q(1) and Q(2) the
corresponding Ljung-Box statistics, with their p-values below them (between brackets).
The number of observations is 20,144 (period from 04/01/1999 until 31/12/2003).
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4.2 Example of Investment Recommendations

To illustrate our procedure, we present in detail the investment recommendations of a partic-

ular multivariate model. These recommendations specify the amount of US dollars to borrow

or to lend and, if applicable, the allocation of this amount to each currency of the risky

portfolio. The example is based on a portfolio of three risky currencies (EUR, GBP and

JPY). The initial wealth is assumed to be one million USD. For the risk-free interest rate we

use the overnight rate in November 2003, equal to 4.47% (annually). We assume that the

dealers re-balance their positions every 30 minutes (16 times per day). At the end of the day,

corresponding to the usual practice in FX trading, they close their positions, i.e. they buy

(sell) the currencies on which they are short (long), and they lend the remaining USD at the

overnight interest rate. However, the effect of this overnight rate has almost no impact on

their wealth evolution.

The particular model we consider for this example has a changing conditional mean vector

estimated by the sample mean of the observations until time t − 1. For the the conditional

variance-covariance matrix, we use the BEKK specification of Engle and Kroner (1995) cou-

pled with a trivariate Student-t-distribution and we estimate it by WML (setting ρ equal to

0.994, one minus the value that minimizes the failure rate for the specified confidence level).

We fix the confidence level (α) for the estimation of the VaR at 10% and the desired VaR

(VaR*) at 5%. This means that the VaR level associated with the risky portfolio allocation is

smaller than the desired VaR, i.e. this position is less risky than desired. Accordingly, in order

to obtain the desired VaR, the investor should borrow a given amount of US dollars and invest

it in the risky currencies. We use an estimation sample of 250 days (from 18/11/2002 until

16/11/2003), with 16 observations per day, and then forecast during 30 days out-of-sample

(from 17/11/2003 until 31/12/2003).

Figure 2 shows the evolution of the recommended amount of borrowed US dollars as a

fraction of the initial wealth. For this specific example, and given that the assumed desired

level of risk (VaR*) is larger than the the portfolio VaR, the model always suggests to borrow

at the risk-free rate and to invest the borrowed money in the risky currency portfolio. The

average fraction of the investor’s wealth that is borrowed is equal to 61% over the forecast

period, but there is clearly a positive trend in the fraction.

The model recommendations concern also the the percentages of the funds (own and bor-
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This figure displays the fraction of wealth to be borrowed over 30 trading days of 8 hours, with 30-minutes

re-balancing, for the out-of-sample forecast period from 17/11/2003 until 31/12/2003. Portfolios made of three

currencies: EUR, GBP and JPY. Model: changing mean and BEKK specification with a Student-t distribution.

Figure 2: Recommended fraction of wealth to borrow

rowed) to invest in each of the three risky currencies. Figure 3 presents the weight evolution

of one of the currencies, the euro. The weights fluctuate in three intervals of values: approx-

imately 0.63-0.68 (most frequently), 0.75-0.80, and 0.45-0.50 (least frequently). On average,

the model suggests to invest 67% of the investor’s total funds in EUR. The corresponding

averages for GBP and JPY are 58% and 36%, respectively.

These model recommendations are coherent with the return evolution of the currencies

during the out-of-sample period. Table 3 presents the descriptive statistics for this period.

The average return of the EUR/USD is almost 45% and 160% larger than for the GBP/USD

and the JPY/USD, respectively. Therefore, it is not surprising that the investor invests more

in EUR and in GBP than in JPY, as recommended by the model.

Finally, Figure 4 presents the wealth evolution of five investment strategies for an initial

wealth of one million dollars. Three strategies correspond to investments in a single currency

at a time (EUR, GBP, JPY), one corresponds to the optimal portfolio of the three currencies

(PORT) derived from the model, and the last one (Rf) consists of investing the initial wealth

at the risk-free interest rate. It emerges firstly that the riskless strategy (Rf) generates a

smaller final wealth than the other strategies. Secondly, the wealth obtained by the intradaily

optimal portfolio allocation model is always larger than the wealth obtained by investing only

in GBP or in JPY, and most of the time also larger than the wealth obtained by investing

only in EUR. As already pointed out, the results can be explained by the observation that,
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This figure displays the recommended evolution of the euro share over 30 trading days of 8 hours, with 30-

minutes re-balancing, for the out-of-sample forecast period from 17/11/2003 until 31/12/2003. Portfolios made

of three currencies: EUR, GBP and JPY. Model: changing mean and BEKK with a Student-t distribution.

Figure 3: Evolution of the euro weight in the portfolio

Table 3: Descriptive statistics of the
forecast period returns (first sample)

EUR/USD GBP/USD JPY/USD

Mean 0.013 0.009 0.005
SD 0.108 0.079 0.080
Max 0.704 0.524 0.311
Min -0.510 -0.275 -0.447
Skew 0.515 0.811 -0.517
Kurt 8.005 6.989 7.002
ρ1 0.080 0.003 -0.035
ρ2 -0.042 -0.030 -0.027
Q(1) 3.11 0.003 0.56

(0.078) (0.958) (0.450)
Q(2) 3.95 0.39 0.98

(0.139) (0.822) (0.610)
SD is the standard deviation, Skew and Kurt are the
skewness and kurtosis coefficients, ρ1 and ρ2 the autocor-
relation coefficients of order 1 and 2, Q(1) and Q(2) the
corresponding Ljung-Box statistics, with their p-values
below them (between brackets). The number of obser-
vations is 480, corresponding to the forecast period from
17/11/2003 until 31/12/2003.
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This figure displays the wealth evolution of investing the initial wealth at the risk-free interest rate (Rf), of

ingle currency portfolios (EUR, GBP or JPY), and of optimal portfolios (PORT) of the three currencies for

the 30-day out-of-sample forecast period from 17/11/2003 until 31/12/2003 (with 8 hours trading per day and

30-minutes re-balancing). Model: changing mean and BEKK specification with a Student-t distribution.

Figure 4: Wealth evolution of five investment strategies

during the forecast period, the returns generated by the euro are most of the time positive.

4.3 Economic and Statistical Evaluation

In this part we present the economic and statistical evaluation of the models presented in

Section 2. The economic evaluation criteria are the total return (R) and the performance

ratio (PR) at the end of the investment period (i.e. an out-of-sample forecast period). The

statistical criteria are the failure rate test (FR) and the dynamic quantile test (Dq). These

criteria and tests are explained in detail at the end of Section 3.

In Table 4 we present the results for portfolios made of two currencies (EUR and GBP),

and in Table 5 the results for portfolios made of three currencies (EUR, JPY, and GBP).

The out-of-sample period goes from 17/11/2003 until 31/12/2003 (30 trading days). For the

failure rate test, we report the test statistic, and values in bold indicate significance at the

5% level. For the Dq test, we report the p-value of the F-statistic. From these results we

draw the following conclusions:

1. Most failure rate tests are significant at the 5% level for multivariate models, but the

reverse is true for univariate models. However, we observe that the models are conser-

vative, since most of the failure rates are below the desired α.
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Table 4: Evaluation criteria of models for two currencies (EUR and GBP)

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.056 0.048 0.080 0.082 0.104 0.111
PR 13.56 10.19 27.55 29.08 46.08 55.34

Emp-Emp FR 0.023 0.020 0.081 0.085 0.117 0.135
Dq 0.03 0.94 0.33 0.07 0.79 0.57
R 0.062 0.048 0.089 0.081 0.117 0.109
PR 10.66 8.82 21.94 24.05 37.77 43.68

Emp-GARCH FR 0.004 0.012 0.019 0.017 0.038 0.046
Dq 0.54 0.62 0.03 0.06 0.42 0.07
R 0.053 0.047 0.075 0.078 0.096 0.095
PR 9.40 12.12 18.68 20.47 31.19 52.29

AR-GARCH FR 0.010 0.008 0.029 0.029 0.065 0.087
Dq 0.99 0.93 0.71 0.04 059 0.01
R 0.048 0.038 0.068 0.063 0.084 0.096
PR 4.28 2.98 8.67 8.38 13.77 15.51

Emp-DCC FR 0.017 0.010 0.054 0.056 0.096 0.116
Dq 0.29 0.99 0.31 0.62 0.23 0.47
R 0.038 0.032 0.054 0.066 0.066 0.091
PR 3.31 2.88 6.76 9.76 16.74 18.22

AR-DCC FR 0.015 0.008 0.048 0.042 0.079 0.081
Dq 0.99 0.99 0.23 0.29 0.06 0.91
R 0.045 0.044 0.063 0.072 0.081 0.099
PR 3.94 3.47 7.90 9.43 13.09 17.50

Emp-BEKK FR 0.017 0.010 0.050 0.052 0.081 0.104
Dq 0.99 0.99 0.10 0.40 0.18 0.34
R 0.049 0.043 0.088 0.071 0.101 0.093
PR 4.20 3.73 10.72 10.18 15.77 18.28

AR-BEKK FR 0.015 0.010 0.040 0.031 0.060 0.069
Dq 0.99 0.99 0.09 0.05 0.58 0.55

This table presents the statistic and economic criteria for evaluating the models over the out-
of-sample 30-day forecast period from 17/11/2003 until 31/12/2003. R denotes the total return
of the investment over the 30-day period. PR is the performance ratio computed according to
Equation (14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the
F-statistic for the dynamic quantile test (see Section 3). For a definition of the models, see
Table 1.

18



Table 5: Evaluation criteria of models for three currencies

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.032 0.028 0.045 0.045 0.058 0.061
PR 1.66 1.26 3.38 3.56 5.62 6.73

Emp-Emp FR 0.027 0.023 0.094 0.106 0.113 0.144
Dq 0.48 0.98 0.38 0.48 0.73 0.97
R 0.027 0.027 0.039 0.042 0.050 0.052
PR 3.58 2.99 4.75 5.26 7.49 9.20

Emp-GARCH FR 0.005 0.009 0.039 0.043 0.082 0.089
Dq 0.41 0.23 0.14 0.23 0.56 0.38
R 0.020 0.016 0.040 0.039 0.047 0.049
PR 2.26 1.65 6.57 6.61 6.44 7.87

AR-GARCH FR 0.003 0.012 0.039 0.041 0.091 0.094
Dq 0.13 0.09 0.51 0.07 0.47 0.12
R 0.026 0.023 0.044 0.048 0.060 0.070
PR 15.17 11.40 30.95 31.78 50.46 58.75

Emp-DCC FR 0.010 0.008 0.045 0.043 0.089 0.093
Dq 0.99 0.99 0.32 0.35 0.37 0.42
R 0.026 0.023 0.040 0.041 0.056 0.067
PR 14.13 13.78 26.58 27.59 51.23 63.27

AR-DCC FR 0.008 0.007 0.044 0.047 0.081 0.086
Dq 0.99 0.99 0.26 0.36 0.78 0.31
R 0.029 0.022 0.043 0.045 0.062 0.070
PR 15.26 11.34 30.93 31.29 62.46 77.12

Emp-BEKK FR 0.017 0.008 0.033 0.043 0.091 0.094
Dq 0.99 0.99 0.73 0.67 0.25 0.09
R 0.029 0.020 0.044 0.044 0.055 0.061
PR 14.23 12.59 32.27 38.51 59.34 73.29

AR-BEKK FR 0.008 0.008 0.035 0.034 0.091 0.099
Dq 0.95 0.94 0.72 0.65 0.12 0.09

This table presents the statistic and economic criteria for evaluating the models over the out-
of-sample 30-day forecast period from 17/11/2003 until 31/12/2003. R denotes the total return
of the investment over the 30-day period. PR is the performance ratio computed according to
Equation (14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the
F-statistic for the dynamic quantile test (see Section 3). For a definition of the models, see
Table 1.
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2. Almost all the models pass the dynamic quantile test at the 5% significance level, the

exceptions being a few univariate models for two currencies. It appears that most models

are correctly specified in the sense that the VaR violations are not serially correlated.

3. Compared to the the Student-t distribution, the normal one produces in all cases a

higher return and performance ratio when α = 1%, while the reverse conclusion is true

in most cases at 5% and especially at 10%.

4. The returns obtained by estimating the conditional mean using the empirical mean of

the data until time t − 1 are in a large majority of cases not smaller than the returns

obtained by estimating the mean using an autoregressive process. For the performance

ratios, no specification of the mean dominates the other. In terms of the statistical

tests, the two approaches deliver similar results.

5. The results obtained by the BEKK or the DCC models are very similar but it takes

almost 50% more CPU time to use the BEKK model than the DCC model.

6. The returns and the performance ratios obtained by the ‘Emp-Emp’ model are almost

as good as those obtained by the use of the GARCH models. Nevertheless, the ‘Emp-

Emp’ model has higher failure rates, which indicates that it is not as correctly specified

and that the risk is higher than the target one.

Bauwens, Laurent, and Rombouts (2006) state that whether ”the univariate repeated

approach is more adequate than the multivariate one” is an open question. According to

our results, using a multivariate GARCH model (either the BEKK or the DCC) provides

better results in the statistic and economic sense. Moreover, the multivariate approach is

more economical in CPU time than the repeated univariate one: for example, the computing

time is reduced by 33 per cent for two currencies and by 50% for three when using the DCC

model, compared to a univariate GARCH model (since the latter has to be estimated many

times, when searching for the optimal weights of the portfolio).

In order to ensure that the results presented above are not driven by a sequence of ‘ab-

normal’ positive returns for some currency, we compute a second set of portfolio allocations

for another sample. The estimation period goes from 19/06/2002 until 17/06/2003 and the

out-of-sample forecast period from 18/06/2003 until 31/07/2003 (30 days). Figure 5 shows
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Figure 5: Wealth evolution of EUR portfolios for two different samples

the wealth evolution in both samples if everything is invested in EUR. Table 6 presents the

descriptive statistics of the second sample.

Comparing the statistics in Tables 6 and 3, we see that the returns for the second 30-day

forecast sample are smaller than for the first one, especially for the EUR/USD, while the

standard deviations are about the same. Moreover, during the second period, the currency

that has the largest mean return is the GBP, and not the EUR. If we look at Tables 7 and

8, we see that the forecasted returns (R) are considerably smaller than those obtained for

the first out-of-sample period (see Tables 4 and 5). These differences are consistent with the

smaller returns observed during the second period. However, we draw the same conclusions

as from the first forecasting experience: the multivariate GARCH models perform better than

the univariate GARCH model; the Student distribution gives better results than the normal

when 1− α increases; the ‘Emp-Emp’ model yields returns that are about the same as those

provided by the multivariate GARCH models, but it has higher failure rates, and so on.
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Table 6: Descriptive statistics of the
forecast period returns (second sample)

EUR/USD GBP/USD JPY/USD

Mean 0.002 0.005 0.004
SD 0.103 0.090 0.084
Max 0.391 0.314 0.316
Min -0.497 -0.441 -0.589
Skew 0.056 -0.171 -0.434
Kurt 5.654 5.076 8.916
ρ1 0.115 -0.010 -0.067
ρ2 -0.075 -0.003 -0.030
Q(1) 6.35 0.043 2.16

(0.012) (0.84) (0.142)
Q(2) 8.14 0.046 2.47

(0.017) (0.97) (0.291)
SD is the standard deviation, Skew and Kurt are the
skewness and kurtosis coefficients, ρ1 and ρ2 the autocor-
relation coefficients of order 1 and 2, Q(1) and Q(2) the
corresponding Ljung-Box statistics, with their p-values
below them (between brackets). The number of obser-
vations is 480, corresponding to the forecast period from
18/06/2003 until 31/07/2003.
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Table 7: Evaluation of models for two currencies (EUR and GBP), second sample

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.015 0.013 0.020 0.020 0.025 0.027
PR 6.82 5.15 13.73 14.49 22.72 27.30

Emp-Emp FR 0.021 0.019 0.068 0.075 0.133 0.131
Dq 0.49 0.53 0.66 0.32 0.12 0.10
R 0.013 0.010 0.017 0.016 0.020 0.023
PR 33.20 30.44 9.54 10.36 17.40 22.60

Emp-Garch FR 0.003 0.006 0.071 0.052 0.101 0.100
Dq 0.20 0.05 0.06 0.56 0.21 0.05
R 0.011 0.009 0.014 0.016 0.017 0.020
PR 24.13 21.58 10.19 11.15 15.17 23.59

AR-Garch FR 0.004 0.007 0.053 0.055 0.089 0.094
Dq 0.08 0.09 0.12 0.41 0.38 0.29
R 0.011 0.009 0.016 0.016 0.020 0.022
PR 11.50 11.24 13.05 13.32 15.06 16.08

Emp-DCC FR 0.010 0.011 0.052 0.049 0.089 0.101
Dq 0.15 0.41 0.26 0.28 0.29 0.41
R 0.011 0.010 0.014 0.015 0.019 0.020
PR 10.12 9.23 11.56 12.29 13.29 16.25

AR-DCC FR 0.005 0.007 0.054 0.051 0.085 0.095
Dq 0.05 0.38 0.56 0.36 0.19 0.35
R 0.011 0.010 0.016 0.016 0.022 0.023
PR 11.69 11.29 13.43 13.43 15.69 16.30

Emp-BEKK FR 0.009 0.008 0.050 0.051 0.090 0.097
Dq 0.05 0.07 0.51 0.48 0.35 0.09
R 0.009 0.009 0.014 0.013 0.020 0.021
PR 11.75 11.15 14.01 14.38 14.98 16.29

AR-BEKK FR 0.008 0.007 0.046 0.045 0.087 0.090
Dq 0.12 0.09 0.46 0.35 0.26 0.12

This table presents the statistic and economic criteria for evaluating the models over the out-
of-sample 30-day forecast period from 18/06/2003 to 31/07/2003. R denotes the total return
of the investment over the 30-day period. PR is the performance ratio computed according to
Equation (14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the
F-statistic for the dynamic quantile test (see Section 3). For a definition of the models, see
Table 1.
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Table 8: Evaluation criteria of models for three currencies (second sample)

Models α = 1% α = 5% α = 10%
Normal Student Normal Student Normal Student

R 0.016 0.0130 0.021 0.021 0.020 0.021
PR 10.16 7.66 20.51 21.63 23.83 28.52

Emp-Emp FR 0.038 0.029 0.075 0.079 0.126 0.133
Dq 0.07 0.04 0.25 0.29 0.09 0.12
R 0.009 0.009 0.012 0.012 0.016 0.016
PR 58.70 43.71 15.93 19.98 21.11 28.66

Emp-GARCH FR 0.006 0.003 0.049 0.050 0.095 0.096
Dq 0.44 0.23 0.71 0.72 0.27 0.48
R 0.009 0.007 0.011 0.011 0.015 0.016
PR 47.89 41.29 18.97 19.39 22.64 32.52

AR-GARCH FR 0.007 0.001 0.046 0.052 0.094 0.095
Dq 0.26 0.38 0.75 0.79 0.31 0.45
R 0.016 0.015 0.022 0.023 0.022 0.024
PR 8.48 6.75 17.11 18.28 28.52 35.19

Emp-DCC FR 0.016 0.010 0.048 0.054 0.094 0.094
Dq 0.22 0.05 0.05 0.09 0.15 0.27
R 0.015 0.015 0.019 0.018 0.020 0.021
PR 7.42 6.12 18.23 18.46 32.56 38.59

AR-DCC FR 0.005 0.007 0.045 0.049 0.092 0.096
Dq 0.32 0.09 0.16 0.21 0.24 0.38
R 0.017 0.016 0.022 0.025 0.020 0.024
PR 7.07 7.40 14.94 18.18 24.29 33.27

Emp-BEKK FR 0.013 0.016 0.038 0.052 0.091 0.093
Dq 0.09 0.35 0.23 0.10 0.58 0.37
R 0.015 0.014 0.020 0.019 0.018 0.020
PR 9.05 6.97 16.19 19.15 27.85 36.34

AR-BEKK FR 0.014 0.016 0.035 0.041 0.087 0.090
Dq 0.10 0.29 0.25 0.18 0.45 0.29

This table presents the statistic and economic criteria for evaluating the models over the out-
of-sample 30-day forecast period from 18/06/2003 to 31/07/2003. R denotes the total return
of the investment over the 30-day period. PR is the performance ratio computed according to
Equation (14), where the expected return is replaced by the actual return. FR is the empirical
failure rate, with bold numbers indicating significance at the 5% level. Dq is the p-value of the
F-statistic for the dynamic quantile test (see Section 3). For a definition of the models, see
Table 1.
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5 Conclusion

We design a model for maximizing the expected return of a basket of currencies, subject to a

VaR constraint. Based on an econometric implementation using intradaily data, we compute

the optimal portfolio at regular time intervals during a sequence of trading days. For the

estimation of the conditional variance from which the VaR is computed, we use the standard

univariate GARCH model of Bollerslev (1986), and two multivariate GARCH models, the

BEKK model of Engle and Kroner (1995), and the DCC model of Tse and Tsui (2002).

We evaluate the models by two economic criteria and two statistical tests. The procedure

we have developed could be a useful tool to help foreign exchange dealers to control the

accomplishment of a daily VaR level while maximizing their profits.

Our results show that estimating the VaR from multivariate GARCH models improves

the results of the optimal portfolio allocation, compared to using a univariate model. There

is no substantial difference between the results obtained by using the BEKK and the DCC

models, but the latter is preferable since it takes much less computing time. The Student-t

distribution performs better than the normal when the risk level used to define the VaR is

large (5 or 10%), while the reverse holds at 1%.

Future research includes to test other multivariate GARCH models and competitors of

this kind of models, such as stochastic volatility models and Wishart autoregressive process

proposed by Gourieroux, Jasiak, and Sufana (2004). The latter is a dynamic model for realized

volatility matrices. An interesting property of this model is that it is invariant with respect

to the choice of the numeraire. Another possible line of study is to work with time-varying

re-balancing periods.
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