Networks of manufacturers and retailers

A. Mauleon, J. Sempere-Monerris and V. Vannetelbosch

Discussion Paper 2005-36

Département des Sciences Économiques de l'Université catholique de Louvain

Networks of Manufacturers and Retailers∗

Ana Mauleon¹, Jose Sempere-Monerris² and Vincent J. Vannetelbosch³

¹ FNRS, CEREC, Facultés Universitaires Saint-Louis and CORE, Boulevard du Jardin Botanique 43, 1000 Brussels, Belgium (e-mail: mauleon@fusl.ac.be)

² Department of Economic Analysis, University of Valencia, Campus dels Tarongers, Avd. dels Tarongers s/n, 46022 Valencia, Spain (e-mail: Jose.J.Sempere@uv.es)

³ FNRS and CORE, Université catholique de Louvain, Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium (e-mail: vannetelbosch@core.ucl.ac.be)

Abstract. We study the endogenous formation of networks between manufacturers of differentiated goods and multi-product retailers who interact in a successive duopoly. Joint consent is needed to establish and/or maintain a costly link between a manufacturer and a retailer. We find that only three distribution networks are stable for particular values of the degree of product differentiation and link costs: (i) the non-exclusive distribution & non-exclusive dealing network in which both retailers distribute both products is stable for intermediate degree of product differentiation and small link costs; (ii) the exclusive distribution & exclusive dealing network in which each retailer distributes a different product is stable for low degrees of product differentiation; (iii) the mixed distribution network in which one retailer distributes both products while the other retailer sells only one is stable for high degrees of product differentiation and large link costs. We show that the distribution networks that maximize social welfare are not necessarily stable. Thus, a conflict between stability and social welfare is likely to occur, even more if the degree of product differentiation is either low or high.

JEL Classification: C70, L13, L20, J50, J52

Key words: Networks, Retailers, Manufacturers.

[∗]Ana Mauleon and Vincent Vannetelbosch are Research Associates of the National Fund for Scientific Research (FNRS), Belgium. Vincent Vannetelbosch is Associate Fellow of CEREC, Facultés Universitaires Saint-Louis.

In various industries, such as e.g. automobiles, clothing, electronics, pharmaceuticals, and food, manufacturers develop networks of exchange both with input suppliers and retailers or wholesalers. Moreover, in the last few decades the importance of spot exchange in input or output procurement has decreased in favor of other methods such as manufacturer-supplier long-term contracting and manufacturer-retailer exchange networks. For automobiles, Nishiguchi (1994) has presented wide ranging evidence on the ways in which the Japanese industrial model has evolved from the traditional bargainingoriented manufacturer-supplier relationship to the current problem-solving-driven strategic industrial outsourcing. Firms rely more and more on a subset of suppliers with whom they maintain closed business ties. The number of direct suppliers to Japanese car manufacturers in 1988 was roughly one half of what it was for American or European manufacturers, for similar volumes of production. The manufacturer-retailer relationship for the European motor vehicle industry has also evolved over the last years. Until October 2002, only one type of distribution (a system of exclusive territories and selectivity) was permitted. The European Commission was not satisfied with the unexplained differences in prices across European countries and this motivated a legal change. The new regulation recently issued¹ is seeking for a change in the car distribution industry. As Commissioner Monti said: "The new rules that will become effective as of 1 October 2003 open the way to new distribution techniques, such as Internet sales and multi-branding - introducing more competition between different retail channels".2 Then it is expected that multi-branding dealers will appear and coexist with exclusive ones.

The literature on network formation has focused on the upstream part of the vertical chain, neglecting the analysis of the downstream part where manufacturers and retailers enter in long-term relationships.³ Kranton and Minehart $(2000a)$ have examined the emergence of buyer-seller networks when sellers have an outsourcing motivation in order to see whether networks of buyers and sellers can perform better than vertically integrated markets or spot exchange markets. Manufacturers can decide to build a dedicated

 1^1 Regulation 1400/2002 on the application of Article 81(3) of the Treaty to categories of vertical agreements and concerted practices in the motor vehicle sector.

²Extracted from "New rules for car sales and servicing" (September 2003) and European Commissioner Monti's speech "The new legal framework for car distribution" (February 2003). See http://www.europa.eu.int/comm/competition/ for more details.

³The data in Betancourt (2004) suggests that there has been substantial forward vertical integration by manufacturers in the form of internalizing the wholesale function by selling directly to retailers. This process is most pronounced in the durable sectors: automobiles and other motor vehicles, 95.5 percent of sales; electronics, 70.9 percent of sales; toys and hobby goods, 95.6 percent of sales (US retail sector in 1987).

asset to produce their own inputs or, alternatively, they can invest in links to external sellers from which they will buy specialized inputs. They have established a connection between industrial structure and uncertainty in demand: outsourcing networks appear to be more efficient than vertically integrated structures when uncertainty in demand is substantial. Kranton and Minehart (2001) have focused on when the noncooperative formation of buyer-seller networks leads to the formation of efficient networks, while Kranton and Minehart (2000b) have examine the competitive equilibrium prices in buyer-seller networks. Wang and Watts (2003) have analyzed the formation of buyer-seller links when sellers can produce products of different quality.⁴ In this paper, we are first to examine the emergence of manufacturer-retailer networks when both manufacturers and retailers decide the bilateral links they want to establish among them.

The literature on distribution systems initially addressed two questions: (i) whether manufacturers would prefer having a single common retailer rather than separate exclusive retailers;⁵ and (ii) whether a manufacturer's brand is excluded from the market by use of exclusive contracts.⁶ A series of papers have studied the distribution systems that arise when there is market power at both the manufacturing and retailing levels.⁷ In particular, for the successive duopoly case, Chang(1992) and Dobson and Waterson (1997) have analyzed the distribution systems that arise by the joint maximization of the manufacturerretailer pair profits, allowing for side-payments if an exclusive contract is signed. Chang (1992) has found that manufacturer-retailer pairs always choose exclusive dealing. Once manufacturers and retailers are differentiated, Dobson and Waterson (1997) have shown

⁴There is a vast literature devoted to analyze the important role played by network structures in determining the outcome of many other economic situations. For example, Hendricks, Piccione and Tang (1997) have shown that the structure of airline connections influences competition. Belleflamme and Bloch (2004), Goyal and Moraga (2001) and Goyal and Joshi (2003) have studied the formation of research and development networks and collusive alliances among corporations. Calvó-Armengol (2004) and Calvó-Armengol and Jackson (2004) have examined the role played by personal contacts in obtaining information about job opportunities.

⁵An exclusive dealing agreement is a restriction of the retailer's behavior under which the retailer agrees not to buy from any other manufacturer. Similarly, an exclusive distribution agreement is a manufacturer's behavior restriction under which the manufacturer agrees not to sell to any other retailer. Lin (1990) and O'Brien and Shaffer (1993) have shown that exclusive dealership rather than common dealership is chosen to dampen competition between the manufacturers.

 6 In a setting with two manufacturers and only one retailer, O'Brien and Shaffer (1997) and Bernheim and Whinston (1998) have shown that vertical foreclosure is not an equilibrium. We refer to Rey and Tirole (2003) for a complete survey on vertical foreclosure.

 7 The possibility of a manufacturer hiring more than one retailer has been considered out of the successive duopoly structure. See Rey and Stiglitz (1995) for the case where manufacturers can hire several retailers in a perfect competition setting, and Besanko and Perry (1994) for the case of spatially differentiated retailers whose number is endogenously determined by free entry.

that the manufacturer-retailer pairs prefer non-exclusive dealing contracts when products and retailers are sufficiently differentiated. Moner-Colonques, Sempere-Monerris and Urbano (2004) have analyzed a successive duopoly where two manufacturers with asymmetric and differentiated brands choose strategically how many undifferentiated retailers to employ. When product differentiation is strong and brand asymmetry is moderate, both manufacturers distribute through both retailers. However, when both product differentiation and brand asymmetry are weak, exclusive dealing through a single retailer is used. There are also asymmetric equilibria in which one manufacturer distributes through both retailers but the other manufacturer distributes through one retailer. These equilibria can arise when both product differentiation and brand asymmetry are strong. Finally, Mycielski, Riyanto and Wuyts (2000) have studied manufacturers' choice of two types of vertical arrangement with retailers; exclusive dealing and exclusive territory. When products are less substitutable, in other words, the interbrand rivalry is weak, manufacturers prefer to sell brands to a large number of competitive retailers. When the interbrand rivalry is strong, exclusive territory with exclusive dealing is adopted by manufacturers.

In this paper we address the following questions:

- (i) What are the incentives of manufacturers and retailers to link and what is the architecture of "stable" networks of distribution when both manufacturers and retailers decide the bilateral links they want to establish among them?
- (ii) Are individual incentives to link adequate from a social welfare point of view?

In order to answer these questions we develop a three-stage game in a successive duopoly. Each manufacturer produces a differentiated product (brand) which is sold to retailers at a constant per unit price and retailers can be multiproduct sellers. In the first stage, the two manufacturers and the two retailers decide about bilateral relationships (or links) they want to establish among them. A link between a manufacturer and a retailer is necessary in order to sell the manufacturer's brand to consumers. The cost of a link is shared equally between the manufacturer and the retailer.⁸ The collection of pairwise links between manufacturers and retailers defines a distribution network. In the second stage, both manufacturers choose simultaneously the terms of trade of their good to retailers (transfer prices). In the third stage, both retailers compete by setting simultaneously the quantity of each brand they are going to market.

⁸ In the motor vehicle industry the "just-in-time" philosophy has been present for decades. It requires the coordination and collaboration across organizations and throughout the supply chain. This means that there should be a permanent relationship among them and this is costly. Also, it is becoming more common to find a supply channel management approach in different industries where independent members of the supply chain coordinate in the management of such a chain.

A simple way to analyze the networks that one might expect to emerge in the long run is to examine a sort of equilibrium requirement that agents not benefit from altering the structure of the network. A weak version of such condition is the pairwise stability notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent benefits from severing one of their links and no other two agents benefit from adding a link between them, with one benefiting strictly and the other at least weakly. While pairwise stability is natural and quite easy to work with, there are some limitations of the concept. First, it is a weak notion in that it only considers deviations on a single link at a time. For instance, it could be that an agent would not benefit from severing any single link but would benefit from severing several links simultaneously, and yet the network would still be pairwise stable. Second, pairwise stability considers only deviations by at most a pair of agents at a time. It might be that some group of agents could all be made better off by some complicated reorganization of their links, which is not accounted for under pairwise stability. A strongly stable network, whose definition is due to Jackson and van den Nouweland (2005), is a network which is stable against changes in links by any coalition of agents.9

Stable networks obtained from the joint consent of the agents involved might result in distribution networks that coincide with those resulting from both manufacturers and retailers signing exclusive dealing or exclusive distribution contracts. Thus, this model might be used by the competition authorities to distinguish whether exclusive dealing is agreed by all agents in the market (i.e. not imposed by one kind of agent), whether it is efficient and whether it is socially optimal. Exclusive dealing as many as other nonprice vertical restraints is challenged by competition authorities. The legal treatment of nonprice vertical restraints has not been uniform along the years. In the U.S. vertical restraints were initially considered as not per se illegal, then per se illegal and now a rule of reason is applied. The analytical justification for a rule of reason is the twofold effect of nonprice vertical restraints in general and exclusive dealing in particular.¹⁰ Vertical restraints have a procompetitive effect when they are used to avoid the double marginalization inefficiency or to reduce the underprovision of services that affect the demand of the good. Vertical restraints have an anticompetitive effect when they are used to reduce or eliminate intrabrand competition (same brand is sold at different outlets), to dampen competition at the upstream levels, or to foreclose market access and prevent entry. The procompetitive effect is more likely to dominate the anticompetitive effect provided interbrand competition

 9 Jackson (2003, 2005) provides surveys of models of network formation.

 10^1 Caballero-Sanz and Rey (1996) and Dobson and Waterson (1997) have provided a detailed analysis of the economic evaluation of vertical restraints and the implications for competition policy.

is sufficiently strong.11

Figure 1: The six qualitatively different distribution networks.

In a successive duopoly, there are fifteen possible network architectures. But given the symmetry of products and retailers, there are only six qualitatively different distribution networks which are depicted in Figure 1. Depending on the distribution network, two kinds of competition may be eventually at place: interbrand competition and intrabrand competition. Therefore, the distribution network that will emerge is the result of the interplay of two effects: first, the one associated to the cost of implementing a particular network which depends on both the link cost size and the number of links; and a second one which is associated to the combination of inter and intrabrand competition that arises in each particular network. Given that agents act strategically and in their self-interest, the stable distribution network might differ from the one preferred by consumers or the
¹¹This point has been included in the EC Guidelines on vertical restraints: "The market position of

 11 This point has been included in the EC Guidelines on vertical restraints: "The market position of This point has been included in the EO Guidelines on vertical restraints. The market position of
the supplier and his competitors is of major importance, as the loss of intrabrand competition can be
problematic if interbra serious is the loss of intrabrand competition is limited. The stronger the position of the supplier, the more
serious is the loss of intrabrand competition...." (see Official Journal of the European Communities, C serious is the loss of intrabrand competition..." (see Official Journal of the European Communities, C distribution agreements between Telenor and Canal + Nordic, under which Telenor will have the exclusive
distribution agreements between Telenor and Canal + Nordic, under which Telenor will have the exclusive r_{251} , 19/10/2000). Recently, the European Commission has exempted for hve years certain exclusive
distribution agreements between Telenor and Canal + Nordic, under which Telenor will have the exclusive
wish to dist television platform Canal + Nordic's premium pay-TV channels in the Nordic region through its satellite
television platform Canal Digital. The argument of this exemption was the presence of a second satellite pay-TV distributor in the Nordic region, MTG/Viasat and that consumers would have available two distinct
pay-TV distributor in the Nordic region, MTG/Viasat and that consumers would have available two distinct pay-TV distributor in the Nordic region, MTG/Viasat and that consumers would have available two distinct
pay-TV brands at competitive prices, i.e., sufficient interbrand competition (see the IP/04/2, January 5, pay-TV brands at competitive prices, i.e. sufficient interbrand competition (spay-TV brands at competitive prices, i.e. sufficient interbrand competition (space). 2004 and the EC Commission Competition Policy Newsletter, Summer 2004).

one that maximizes social welfare.

We find that only three distribution networks are strongly stable for particular values of the degree of product differentiation and link costs. A first distribution network with four links, referred as *non-exclusive distribution* & *non-exclusive dealing*, in which both non-exclusive distribution & non-exclusive dealing, in which both
hydrotics is strongly stable for intermediate degree of product
all limit os its strangly stable for intermediate degree of product
all limit os test stran retailers distribute both products is strongly stable for intermediate degree of product differentiation and small link costs. In this distribution network, both interbrand and intrabrand competition are present in the market. A second distribution network with two links, referred as *exclusive distribution* & *exclusive dealing*, in which each retailer exclusive distribution & exclusive dealing, in which each recaller
nodes is strongly stable for low degrees of product differentiation.
work, no intrabrand competition appears in the market. A third
out differentiation an distributes a different product is strongly stable for low degrees of product differentiation. In this distribution network, no intrabrand competition appears in the market. A third distribution network with three links, referred as *mixed distribution system*, in which one mixed distribution system, in which one
tailer sells only one is strongly stable for
nk costs. Finally, for some values of the
olistribution network is strongly stable for
olistribution in the mough or intermediate,
ling retailer distributes both products while the other retailer sells only one is strongly stable for high degrees of product differentiation and large link costs. Finally, for some values of the degree of product differentiation and link costs, no distribution network is strongly stable. In particular, when the degree of product differentiation is high enough or intermediate, the non-exclusive distribution & non-exclusive dealing system will not emerge in the "longrun" while Mycielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-Monerris and Urbano (2004) have shown that it is a "short-run" equilibrium.¹²

non-exclusive distribution & non-exclusive dealing system will not emerge in the "non-
"which Myclooki, Riyanto and Wayus (2000) and Moner-Colongues, Sempere-Monerris
Urbano (2004) have shown that it is a "short-run" equi We also wonder whether the stable distribution network is efficient, in the sense that it generates the greatest surplus for the agents that integrate the network. We find that the three stable distribution networks can be efficient for particular values of the degree of product differentiation and link costs, but not necessarily for the values under which they are stable. Moreover, the distribution network, referred as *exclusive distribution* & non*exclusive dealing*, in which two manufacturers distribute their products using a single and identical retailer is never stable but it is efficient for low degrees of product differentiation. Thus, a conflict between stability and efficiency may occur.

exclusive distribution & non-
ir products using a single and
rees of product differentiation.
exclusive distribution & non-
, consumers are better off the
f in a market with interbrand
are is maximized by either of
gree of exclusive dealing, in which two manufacturers distribute their products using a single and
identical retailer is never stable but it is efficient for low degrees of product differentiation.
Thus, a conflict between stabil Since consumers do not account for link costs, the *non-exclusive distribution* & *non*non-exclusive distribution & non-
Thus, consumers are better off the
er off in a market with interbrand
welfare is maximized by either of
e degree of product differentiation
th, two distribution networks may
ers choose sim *exclusive dealing* system maximizes consumer surplus. Thus, consumers are better off the highest the level of competition. That is, they are better off in a market with interbrand and intrabrand competition in both produ *exclusive dealing* system maximizes consumer surplus. Thus, consumers are better off the highest the level of competition. That is, they are better off in a market with interbrand and intrabrand competition in both products. Social welfare is maximized by either of the four efficient distribution networks depending on the degree of product differentiation and on the link costs. When link costs are small enough, two distribution networks may

and on the link costs. When link costs are small enough, two distribution networks may
 $\frac{12 \text{ In Mycielski, Riyanto and Wuyts (2000), the two manufacturers choose *simultaneously* among combi-
ration of vertical approachs; evaluating distribution, non-exclusive distribution, excluding the
equation of the two-dimensional system.$ non-exclusive dealing. In Moner-Colonques, Sempere-Monerris and Urbano (2004), two manufacturers
nations of vertical arrangements; exclusive distribution, non-exclusive distribution, exclusive dealing, and
non-exclusive de simultaneously whether to employ retailer one, retailer two, both or neither of them. Both papers
e *simultaneously* whether to employ retailer one, retailer two, both or neither of them. Both papers choose simultaneously whether to employ retailer one, retailer two, both or neither of them. Both papers use the subgame perfect Nash equilibrium to solve the game and assume that links are costless.

maximize social welfare. The non-exclusive distribution $\&$ non-exclusive dealing system maximizes social welfare if the degree of product differentiation is high enough; otherwise, the *mixed distribution system* maximizes social welfare. When link costs become large, two other distribution networks may maximize welfare. The exclusive distribution $\&$ exclusive *dealing* system maximizes welfare if the degree of product differentiation is high enough; otherwise, the exclusive distribution & non-exclusive dealing system maximizes welfare. Thus, a conflict between stability and social welfare is likely to occur, even more if the degree of product differentiation is either low or high. 13

The paper is organized as follows. The model is presented in Section 2. In Section 3 we analyze the stable distribution networks. In Section 4 we analyze the efficient networks and the networks that maximize consumer surplus and social welfare. Finally, Section 5 concludes.

non-exclusive distribution & non-exclusive dealing system
cologre of product differentialities in high coungle; otherwise,
axximizes social welfare. The exclusive distribution is exclusive
axximizes social welfare. The ex ment distribution system maximizes social welfare. When link costs become large, two movies and distribution system maximizes socialize the maximizes welfare. The exclusion distribution is sign emotion system maximizes we exclusive distribution & exclusive
etcluster differentiation is high enough;
ading system maximizes welfare.
likely to occur, even more if the
med in Section 2. In Section 3 we
we analyze the efficient networks
social wel dealing system maximizes settlement if the degree of product differentiation is high enough;
the reached system maximizes welfare in the degree of product differentiation is high enough.
Thus, a couldic between stelleilit exclusive distribution k non-exclusive distribution decays and the two controllers between each time of the two controllers and welfare is likely to occur, even more if the between eaching rand order when the system of We develop a three-stage game to study the formation of networks among manufacturers and retailers in a successive duopoly. To reach consumers manufacturers and retailers should form a product distribution network consisting of different bilateral relationships (or links) between them. In an initial stage, manufacturers and retailers decide the links they want to establish among them. A link between a manufacturer and a retailer is necessary in order to sell the manufacturer's brand to consumers. In the second stage, once the distribution network has been formed, manufacturers decide simultaneously the transfer prices to retailers. Finally, retailers decide simultaneously the quantity of each brand they are going to market.

The two manufacturers $(M_1 \text{ and } M_2)$ produce their own branded good under constant returns to scale and incur a common unit cost c. The retailers $(R_1 \text{ and } R_2)$ are supplied by the manufacturers at a constant unit price, the transfer price.¹⁴ Let w_i denote the transfer

The two manufacturers $(M_1 \text{ and } M_2)$ produce their own branded good under constant
rms to scale and incur a common unit cost c. The retailers $(R_1 \text{ and } R_2)$ are supplied by
manufacturers at a constant unit price, the tran returns to scale and incur a common unit cost c. The retailers $(R_1 \text{ and } R_2)$ are supplied by
the manufacturers at a constant unit price, the transfer price.¹⁴ Let w_i denote the transfer
¹³Mycielski, Riyanto and Wuy the manufacturers at a constant unit price, the transfer price.¹⁴ Let w_i denote the transfer 13 Mycielski, Riyanto and Wayts (2000) have studied the welfare implications of manufacturers' choices
of vertical arrang 13 Mycielski, Riyanto and Wuyts (2000) have studied the welfare implications of manufacturers' choices of vertical arrangements and its policy implications in a setting where retailers compete à la Bertrand. They have shown that, for a high degree of product differentiation, any policy measure to restrict vertical restraints is unnecessary. However, we get that such policies become necessary once retailers compete à la Cournot. Then, restricting exclusive distribution and exclusive dealing arrangements might have a positive impact on social welfare.

 14 We limit attention to linear contracts. Although the superiority of two-part tariff contracts over linear ones is usually established because with the former manufacturers have two instruments (the transfer price used to give the right incentives to retailers and the fixed fee used to extract all the rent generated by the selling of the good), linear contracts may turn appropriate if there are observability or renegotiation problems (see chapter 4 in Tirole 1988). Linear contracts are used in several industries. Iyer and Villas-Boas (2003) have reported that in sectors such as grocery retailing or department stores retailers do not

price set by manufacturer *i* for supplying brand *i*, $i = 1, 2$. We assume that retailers may be multi-product, in the sense that they are allowed to carry both products. We also assume that retailers are not differentiated in the sense that consumers get the same utility for consuming a brand no matter which retailer sells the brand to them. We denote by $N = \{M_1, M_2, R_1, R_2\}$ the set of agents which are connected in a distribution network.

Let q_{ij} be the quantity of brand i that retailer j sells to consumers. In case both retailers distribute brand i, let $Q_i = q_{i1} + q_{i2}$ denote the total amount produced of brand i. The retailing costs supported by the retailers are assumed to be zero. Inverse demand functions are given by

$$
p_1 = a - Q_1 - dQ_2
$$

$$
p_2 = a - Q_2 - dQ_1
$$

where $a > c$ and $0 < d < 1$ (own effects on prices are greater than cross effects). So, brands 1 and 2 are imperfect substitutes and parameter d measures the degree of interbrand rivalry, that is, how similar the brands are perceived by consumers. When d approaches ¹ brands become closer substitutes (interbrand rivalry increases). Intrabrand rivalry, that is how similar retailers' services are perceived by consumers to be when selling the same brand, is maximal since retailers are not differentiated, they are perfect substitutes. Since retailers can be multi-product sellers, there may be in-store competition, which means interbrand rivalry in a retailer selling the two products.

i for supplying brand i, $i = 1, 2$. We assume that readients
he seare that the same that the same of that in they are allowed to carry both products. We
note the some of the forestial in the sease that consumes get the sa N= {M₁, M₂, R₂, R₂, R₂, R₂, R₂ the set of agents which are counted in a distribution network.
Let q_2 be the quantity of brand *x* that connect μ set to consumers. In case both
shee distribute brand *i* Let q_u be the quantity of brand i data realizer γ sells to consumers. In each both that retailer given the quantity of brand is that realizes are resumed to be zero. Inverse denand the distinction are given by
The re recallers distribute brand is let $Q_1 = q_1 = q_2$ denote the total amount produced of brand inferious are given by
 $p_1 = a - Q_2 = dQ_2$
 $p_2 = -Q_2 = dQ_3$

where $a > c$ and $0 < d < c$ (own effects on prices are greater than errors e i. The retailing costs supported by the retailers are use unred to be zero. Inverse demand
functions are given by
 $y_1 = a - Q_1 - dQ_2$
 $y_2 = a - Q_2 - dQ_1$
where $a > c$ and $0 < d < 1$ (own effects on priors are generate than erces e $p_1 = a - q_1 - a q_2$
 $p_2 = a - Q_2 - dQ_1$

Fects on prices are grees

s and parameter d n

rands are perceived b,

s (interbrand rivalry is

re perceived by consure not differentiated,

llers, there may be is

ling the two produ p2 = $a - \sqrt{2}$ = $a - \sqrt{2}$ = $a\sqrt{2}$

Fects on prices are greating

fects on prices are greating

s and parameter d m

rands are perceived by consure

not differentiated,

llers, there may be it

ling the two products

o a > c and 0 < d < 1 (own effects on prices are greater than cross effects). So, brands
a c are imperfect substitutes and parameter d measures the degree of interburad
12 are imperfect substitutes and parameter d measures d measures the degree of interbrand
d by consumers. When d approaches
ry increases). Intrabrand rivalry, that
msumers to be when selling the same
ed, they are perfect substitutes. Since
e in-store competition, which means d approaches

i rivalry, that

ing the same

titutes. Since

which means

ent is needed

The cost of

distribution

cate different

simply a list

is linked with

re considering

i *j* are linked

ing network

m an existi The distribution network cannot be enforced. We assume that joint consent is needed to establish and/or maintain a link between a manufacturer and a retailer. The cost of maintaining such a distribution link for each agent is denoted by $k \geq 0$. In a distribution $k \geq 0$. In a distribution
d links indicate different
etwork g is simply a list
ner. If M_1 is linked with
ral, if we are considering
that i and j are linked
to an existing network
 κ (i, j) from an existing
stribut network, manufacturers and retailers are the nodes in the graph and links indicate different bilateral relationships between the agents. Then, a distribution network g is simply a list g is simply a list
 M_1 is linked with

e are considering

and j are linked

existing network

from an existing

ion networks.

ch retailer R_1 is
 $1, 12$) represents

beer industry as a

unit prices for beer

tly se of which pair of manufacturers and retailers are linked to each other. If M_1 is linked with of which pair of manufacturers and retailers are linked to each other. If M_1 is linked with R_1 and with R_2 , we write $(M_1, R_1) \in g$ and $(M_1, R_2) \in g$. In general, if we are considering a pair of agents *i* and *j* R_1 and with R_2 , we write $(M_1, R_1) \in g$ and $(M_1, R_2) \in g$. In general, if we are considering *R*₁ and with *R*₂, we write $(M_1, R_1) \in g$ and $(M_1, R_2) \in g$. In general, if we are considering a pair of agents *i* and *j*, with *i*, *j* ∈ *N*, then $(i, j) \in g$ indicates that *i* and *j* are linked under the networ a pair of agents i and j, with $i, j \in N$, then $(i, j) \in g$ indicates that i and j are linked i and j, with $i, j \in N$, then $(i, j) \in g$ indicates that i and j are linked

che g . The network obtained by adding link (i, j) to an existing network
 (i, j) and the network obtained by deleting link (i, j) from an existi under the network g. The network obtained by adding link (i, j) to an existing network g is denoted $g + (i, j)$ and the network obtained by deleting link (i, j) from an existing network g is denoted $g - (i, j)$. Let G be the set of all possible distribution networks.

In what follows, $g(12,0)$ represents the distribution network in which retailer R_1 is selling brand 1 and brand 2 and retailer R_2 sells no brand, while $g(1,12)$ represents

g. The network obtained by adding link (i, j) to an existing network

i, j) and the network obtained by deleting link (i, j) from an existing

d $g - (i, j)$. Let G be the set of all possible distribution networks.

g (12,0) g is denoted $g + (i, j)$ and the network obtained by deleting link (i, j) from an existing
network g is denoted $g - (i, j)$. Let G be the set of all possible distribution networks.
In what follows, $g(12, 0)$ represents the d g is denoted g − (i, j). Let G be the set of all possible distribution networks.
hat follows, $g(12,0)$ represents the distribution network in which retailer R
rand 1 and brand 2 and retailer R_2 sells no brand, while $g(12,0)$ represents the distribution network in which retailer R_1 is
brand 2 and retailer R_2 sells no brand, while $g(1,12)$ represents
fees to manufacturers. Sass (2005) has described the U.S. beer industry as a
s selling brand 1 and brand 2 and retailer R_2 sells no brand, while $g(1, 12)$ represents
seem to pay lump-sum fees to manufacturers. Sass (2005) has described the U.S. beer industry as a
three-tier system (brewers, dist seem to pay lump-sum fees to manufacturers. Sass (2005) has described the U.S. beer industry as a three-tier system (brewers, distributors and retailers) where brewers set constant per-unit prices for beer and do not charge distributors explicit franchise fees. Distributors in turn independently set simple linear wholesale prices to retailers.

the distribution network in which R_1 is selling brand 1 and R_2 sells brands 1 and 2; the distribution network in which R₁ is selling brand. Land R₂ sellin brands 1 and 2;
i.e., $g(12,0) = \frac{1}{2}(M_1/R_1)$, $M_2 R_2$) and $g(11,2) = \frac{1}{2}(M_1/R_1)$, $M_2 R_2$ is brands 1 and 2;
i.e., $g(12,0) = \frac{1}{2}(M_1/R_1)$, i.e., $g(12,0) = \{(M_1, R_1), (M_2, R_1)\}\$ and $g(1,12) = \{(M_1, R_1), (M_1, R_2), (M_2, R_2)\}\.$ Given the symmetry of products and retailers, there are only six qualitatively different distribution networks out of fifteen. The six distribution networks we are going to analyze are $g(1,0), g(1,1), g(12,0), g(1,2), g(12,1)$ and $g(12,12)$ and are depicted in Figure 1. The distribution network $g(1,0)$ is symmetric to $g(0,1)$, $g(0,2)$ and $g(2,0)$; $g(1,1)$ is symmetric to $g(2,2)$; $g(12,0)$ is symmetric to $g(0,12)$; $g(1,2)$ is symmetric to $g(2,1)$; and $g(12,1)$ is symmetric to $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$.

g(12, 0) = {(M1, R1), (M2, R1), (M1, R1), (M1, R1), (M1, R1), (M1, R2), (M1, R2), (M1, R2), (M1, R2)). (M4, R2)

between the symmetry of strokets and reasting, there are only at equalitatively different
theirs networks ca g(1, 0), g(1, 1), g(1, 2), g(2, 1)) and g(12, 12) and g(12, 12) and g(12, 12) and g(12, 12) and g(1, 2), g(1, 1) and g(1, 2), g(1, 1) is symmetric or g(1, 12); g(1, 2) is and g(1, 2); g(1, 2) is gymmetric or g(1, 2); g(1, $g(1, 0)$ is symmetric to $g(0, 1)$, $g(0, 2)$ and $g(2, 0)$; $g(1, 1)$ is symmetric to $g(2, 1)$; and $g(1, 2)$ is symmetric to $g(2, 1)$; and $g(1, 2)$ is tymmetric to $g(2, 1)$; and $g(1, 2)$ is the equilibrium transfe g(2, 2); g(1, 2); g(1, 2)); g(1, 2) is symmetric to g(2, 1); and g(1, 2); g(1, 2); g(1, 2) is symmetric to g(2, 1); and g(1, 2); g(1, 2) is symmetric to g(2, 1); and g(1, 12); Hefore looking for the stability and effelome $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$.

king for the stability and effinate explore the stability and effinate work architecture, the equencer surplus and aggregate wet $\Phi(g)$ be the sum of the intertwork $g(12, 12) = \{(M_1$ Before looking for the stability and efficiency of distribution networks, we derive for each possible network architecture, the equilibrium transfer prices, quantities produced, profits, consumer surplus and aggregate welfare. We denote by $\Pi_i(q)$ the profit of i in profits, consumer surplus and aggregate welfare. We denote by Πi(g) the profit of in
herewith g . Let $\Phi(g)$ be the sum of the individual payoffs or profits. That is, $\Phi(g) = \ln g_0(g) + \ln g_0(g) + \ln g_1(g)$, for the sake of the network g. Let $\Phi(g)$ be the sum of the individual payoffs or profits. That is, $\Phi(g)$ = g. Let $\Phi(g)$ be the sum of the individual payoffs or profits. That is, $\Phi(g) = \Box_{\text{Mg}}(g) + \Box_{\text{Mg}}(g)$, For the suke of the expotition we pose
tion network $g(2, 12) = \{(M_1, R_1), (M_2, R_1), (M_2, R_2), (M_2, R_3)\}$, in which ea $\Pi_{M_1}(g) + \Pi_{M_2}(g) + \Pi_{R_1}(g) + \Pi_{R_2}(g)$. For the sake of the exposition we present here the Π_{M1} (g) + Π_{M2} (g) + Π_{M2} (g) + Π_{M2} (g). For the sake of the exposition we present here the distribution network $g(2, 12) = \{ \langle M_1, R_1 \rangle, \langle M_2, R_2 \rangle, \langle M_2, R_2 \rangle \}$, in which exchines in the
word $g(2, 12) = \{ \langle M_1,$ distribution network $g(12, 12) = \{(M_1, R_1), (M_2, R_1), (M_1, R_2), (M_2, R_2)\}\$, in which each $g(12, 12) = \{(M_1, R_1), (M_2, R_1), (M_3, R_2), (M_2, R_2)\}$, in which each

and 2, referred as the *non-exclusive distribution* & *non-exclusive*

functions in $g(12, 12)$ are:
 $(g(12, 12)) = (w_1 - c)(q_{11} + q_{12}) - 2k$ (1)
 $(g(12, 12)) = ($ retailer sells brands 1 and 2, referred as the non-exclusive distribution & non-exclusive dealing system.
Agents objective functions in $g(12, 12)$ are: dealing system.

$$
\Pi_{M_1}(g(12, 12)) = (w_1 - c)(q_{11} + q_{12}) - 2k \tag{1}
$$

$$
\Pi_{M_1}(g(12, 12)) = (w_1 - c)(q_{11} + q_{12}) - 2k
$$
\n
$$
\Pi_{M_2}(g(12, 12)) = (w_2 - c)(q_{21} + q_{22}) - 2k
$$
\n
$$
\Pi_{R_1}(g(12, 12)) = (p_1 - w_1)q_{11} + (p_2 - w_2)q_{21} - 2k
$$
\n(3)

$$
\Pi_{R_1}(g(12,12)) = (p_1 - w_1)q_{11} + (p_2 - w_2)q_{21} - 2k \tag{3}
$$

$$
\Pi_{R_1}(g(12, 12)) = (w_2 - c)(q_{21} + q_{22}) - 2k
$$
\n
$$
\Pi_{R_1}(g(12, 12)) = (p_1 - w_1)q_{11} + (p_2 - w_2)q_{21} - 2k
$$
\n
$$
\Pi_{R_2}(g(12, 12)) = (p_1 - w_1)q_{12} + (p_2 - w_2)q_{22} - 2k.
$$
\n(4)

In the last stage of the game, links and transfer prices are given. Under Cournot competition the retailers compete by choosing simultaneously the quantity of each brand they are going to market. The unique Nash equilibrium of this stage game is

First, the unique Nash equilibrium of this stage game is

\n
$$
q_{11}(g(12, 12)) = q_{12}(g(12, 12)) = \frac{a(1-d) - w_1 + dw_2}{3(1-d^2)}
$$
\n
$$
q_{21}(g(12, 12)) = q_{22}(g(12, 12)) = \frac{a(1-d) + dw_1 - w_2}{3(1-d^2)}.
$$

In the second stage, manufacturers decide simultaneously the transfer prices to retailers.
The unique Nash equilibrium of this stage game is
 $w_1(g(12, 12)) = w_2(g(12, 12)) = w(g(12, 12)) = a - \frac{(a - c)}{(2 - d)}$. The unique Nash equilibrium of this stage game is

sh equilibrium of this stage game is
\n
$$
w_1(g(12, 12)) = w_2(g(12, 12)) = w(g(12, 12)) = a - \frac{(a - c)}{(2 - d)}
$$

Then, one can easily obtain the equilibrium profits:

$$
\Pi_{M_1}(g(12, 12)) = \Pi_{M_2}(g(12, 12)) = \frac{2(1-d)(a-c)^2}{3(1+d)(2-d)^2} - 2k
$$
\n
$$
\Pi_{R_1}(g(12, 12)) = \Pi_{R_2}(g(12, 12)) = \frac{2(a-c)^2}{9(1+d)(2-d)^2} - 2k.
$$
\n(6)

$$
\Pi_{R_1}(g(12,12)) = \Pi_{R_2}(g(12,12)) = \frac{2(a-c)^2}{9(1+d)(2-d)^2} - 2k.
$$
 (6)

To determine the efficient distribution network, we compute the sum of the individual equilibrium payoffs, $\Phi(g(12, 12))$. Then,

at distribution network, we compute the sum of the individual
12, 12)). Then,

$$
\Phi(g(12, 12)) = \frac{4(4-3d)(a-c)^2}{9(1+d)(2-d)^2} - 8k.
$$
 (7)

Let $C(g(12, 12))$ denote the consumer surplus in case $g(12, 12)$ is formed. The corresponding consumer surplus for this system of inverse linear demands is given by the expression Let $C(g(12, 12))$ denote the consumer surplus in case $g(12, 12)$ is formed. The corres
ing consumer surplus for this system of inverse linear demands is given by the expre
 $\frac{1}{2}[(q_{11} + q_{12})^2 + (q_{21} + q_{22})^2]$. Substitu

$$
\frac{1}{2}[(q_{11} + q_{12})^2 + (q_{21} + q_{22})^2].
$$
 Substituting for the equilibrium quantities, we obtain

$$
C(g(12, 12)) = \frac{4(a-c)^2}{9(1+d)^2(2-d)^2}.
$$
(8)
For any distribution network *g*, social or aggregate welfare is defined as the sum of con-

For any distribution network g, social or aggregate welfare is defined as the sum of consumer surplus and total equilibrium profits. Let $W(g(12, 12))$ denote aggregate welfare in For any distribution network g (12, 12). Then,

m,
\n
$$
W(g(12, 12)) = \frac{4(5+d-3d^2)(a-c)^2}{9(1+d)^2(2-d)^2} - 8k
$$
\n(9)

In the appendix we give the equilibrium profits, the sum of the individual equilibrium profits, the consumer surplus and the social welfare for each possible distribution network among the two manufacturers and the two retailers. The other relevant equilibrium variables q 's and w 's are available from the authors upon request.

3 Stable distribution networks

A simple way to analyze the networks that one might expect to emerge in the long run is to examine a sort of equilibrium requirement that agents not benefit from altering the structure of the network. A weak version of such condition is the pairwise stability notion defined by Jackson and Wolinsky (1996). A network is pairwise stable if no agent benefits from severing one of their links and no other two agents benefit from adding a link between them, with one benefiting strictly and the other at least weakly.

Definition 1 A network g is pairwise stable if

(i) for all $(i, j) \in g$, $\Pi_i(g) \geq \Pi_i(g - (i, j))$ and $\Pi_j(g) \geq \Pi_j(g - (i, j))$, and

(ii) for all $(i, j) \notin g$, if $\Pi_i(g) < \Pi_i(g + (i, j))$ then $\Pi_i(g) > \Pi_i(g + (i, j))$.

Let us say that g' is adjacent to g if $g' = g + (i, j)$ or $g' = g - (i, j)$ for some (i, j) . A Let us say that g' is adjacent to g if $g' = g + (i, j)$ or $g' = g - (i, j)$ for some (i, j) . A network g' defeats g if either $g' = g - (i, j)$ and $\Pi_i (g') \ge \Pi_i (g)$, or if $g' = g + (i, j)$ with Let us say that g' is adjacent to g if $g' = g + (i, j)$ or $g' = g - (i, j)$ for some (i, j) . A network g' defeats g if either $g' = g - (i, j)$ and $\Pi_i (g') \ge \Pi_i (g)$, or if $g' = g + (i, j)$ with $\Pi_i (g') \ge \Pi_i (g)$ and $\Pi_j (g') \ge \Pi_j (g)$ stability is equivalent to saying that a network is pairwise stable if it is not defeated by another (necessarily adjacent) network.

While pairwise stability is natural and quite easy to work with, it is a concept with some limitations. First, it is a weak notion in that it only considers deviations on a single link at a time. For instance, it could be that an agent would not benefit from severing any single link but would benefit from severing several links simultaneously, and yet the network would still be pairwise stable. Second, pairwise stability considers only deviations by at most a pair of agents at a time. It might be that some group of agents could all be made better off by some complicated reorganization of their links, which is not accounted for under pairwise stability. The definition of strong stable networks is in that spirit, and is due to Jackson and van den Nouweland (2005). A strongly stable network is a network which is stable against changes in links by any coalition of agents.

A network $g' \in G$ is obtainable from $g \in G$ via deviations by $S \subset N$ if

- (i) $ij \in g'$ and $ij \notin g$ implies $ij \subset S$, and
- (i) $ij \in g'$ and $ij \notin g$ implies $ij \subset S$, and
(ii) $ij \in g$ and $ij \notin g'$ implies $ij \cap S \neq \emptyset$. (ii) $ij \in g$ and $ij \notin g'$ implies $ij \cap S \neq \emptyset$.
The above definition identifies changes in a network that can be made by a coalition

S,
ew nt
my mand
of
of
b-te The above definition identifies changes in a network
without the need of consent of any agents outside of without the need of consent of any agents outside of S . Part (i) requires that any new hat can be made by a coalition S ,
 S . Part (i) requires that any new

This reflects the fact that consent

ires that at least one agent of any

gent in a link can unilaterally sever
 $S \subset N$, g' that is obtainable fr The above definition identifies changes in a networ
without the need of consent of any agents outside
links that are added can only be between agents in s that can be made by a coalition S,
of S. Part (i) requires that any new
S. This reflects the fact that consent
quires that at least one agent of any
r agent in a link can unilaterally sever
 $\text{sup } S \subset N$, g' that is obtai without the need of consent of any agents outside of S . Part (i) requires that any new
links that are added can only be between agents in S . This reflects the fact that consent
of both agents is needed to add a link. links that are add
of both agents is
deleted link be in deleted link be in S . This reflects the fact that either agent in a link can unilaterally sever ed can only be between agents in S. This reflects the fact that consent
needed to add a link. Part (ii) requires that at least one agent of any
S. This reflects the fact that either agent in a link can unilaterally sever
 of both agents is
deleted link be in the relationship.

Definition 2 A network g is strongly stable if for any $S \subset N$, g' that is obtainable from g is strongly stable if for any $S \subset N$, g' that is obtainable from

d $i \in S$ such that $\Pi_i(g') > \Pi_i(g)$, there exists $j \in S$ such that

les a powerful refinement of pairwise stability. The concept of

also sense in smaller n g via deviations by S, and $i \in S$ such that $\Pi_i(g') > \Pi_i(g)$, there exists $j \in S$ such that $\Pi_j(g') < \Pi_j(g).$ g') $\langle \Pi_j(g) \rangle$
Strong stability provides a powerful refinement of pairwise stability. The concept of

g via deviations by S, and $i \in S$ such that $\Pi_i(g')$
 $\Pi_j(g') < \Pi_j(g)$.

Strong stability provides a powerful refineme:

strong stability mainly makes sense in smaller ne

stantial information about the overall structure a

1 $> \Pi_i(g)$, there exists $j \in S$ such that
of pairwise stability. The concept of
ork situations where agents have sub-
objectual payoffs and can coordinate
objectual payoffs and can coordinate n_j (*g*)
S:
stron
stant $\langle \Pi_j(g).$

ong stab

stability

l informa strong stability provides a powerful refinement of pairwise stability. The concept of
strong stability mainly makes sense in smaller network situations where agents have substrong stability mainly makes sense in smaller network situations where agents have substantial information about the overall structure and potential payoffs and can coordinate

their actions. 15 That is, it makes sense to study the stability of distribution networks their actions.¹⁵ That is, it makes sense to study the stabilers have a successive duopoly. between manufacturers and retailers in a successive duopoly. In order to characterize the strongly stable distribution networks
ween manufacturers and retailers in a successive duopoly.
In order to characterize the strongly stable distribution networks we first derive the

between manufacturers and retailers in a successive duopoly.
In order to characterize the strongly stable distribution networks we first derive the
pairwise stable network since a strongly stable network is pairwise stable In order to characterize the strongly stable distribution networks we first derive the pairwise stable networks since a strongly stable network is pairwise stable while the reverse is not true. To make meaningful compariso is not true. To make meaning
 k so that for each possible dis-
positive. The upper bound on positive. The upper bound on k is given in the next lemma and displayed in Figure 2^{16}

Figure 2: Bounds on the link cost

Lemma 1 All agents' equilibrium payoffs are positive in each possible distribution network if the link cost k is bounded above as follows, $k \leq \frac{(a-c)^2}{36}$ if 0

pairwise stable network since a convertely stable to some is pairwise stable while the two stable distribution network any equilibrium output and payoffs are stable distribution network any equilibrium output and payoffs c/ عدد المساور المساور
المساور المساور المساو k is bounded above as follows, $k \leq \frac{(a-c)^2}{36}$
facilitated through industry associations which reg
dustry. For instance, the agri-food industry in Ca
ie Brewers Association of Canada whose role is to
generally between b $< d \leq 0.779$ and
ms having some com-
as 31 industry associ-
and improve business
and the public in the
n provides services to
ssues, and the promo-
ucts Manufacturers of
er products manufac-
inada's independently
.agr.gc 15 Coordination may be facilitated through industry associations which regroup firms having some common interest within an industry. For instance, the agri-food industry in Canada has 31 industry associations. One of them is the Brewers Association of Canada whose role is to foster and improve business relations and cooperation generally between brewers in Canada and between them and the public in the furtherance and protection of their respective interests and welfare. The assocation provides services to industry including statistics on beer consumption, monitoring government and policy issues, and the promotion of responsible consumption. Another association is the Food and Consumer Products Manufacturers of Canada whose aim is to enhance growth and competitiveness of the food and consumer products manufacturing industry. There is also the Canadian Association of Independent Grocers which is a non-profit trade association founded in 1962 with the purpose of furthering the unique interests of Canada's independently owned and franchised supermarkets. More information can be found at http://www.agr.gc.ca/

¹⁶In all figures that appear in the paper we have considered the case where $(a - c) = 1$.

12

$$
k \le \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2}
$$
 if $0.779 < d < 1$.
All proofs can be found in the

_{3(1+d)(2−d)}-
2Ω
2Ω proofs All proofs can be found in the appendix. Denote the upper bound on

$$
\overline{k} \equiv \min \left\{ \frac{(a-c)^2}{36}, \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2} \right\}.
$$

The first term corresponds to the constraint on k that implies that $\Pi_{R_1}(g(1,1))$ is positive while the second is the one that ensures $\Pi_{M_1}(g(12, 12)) > 0$. The following remarks are useful in understanding Figure 3 which displays the pairwise stable distribution networks.

- a) The distribution network $g(12,12)$ is pairwise stable if and only if $k < \min\{k_{(12,12)}^M, k_{(12,12)}^M, k_{(12,12)}$ $\{k_{(12,12)}^R\}$ since no agent wants to sever a link.
- b) The distribution network $q(1,2)$ (and $q(2,1)$) is pairwise stable if and only if $k >$ $\{1,2\}$, $k_{(1,2)}^R$ since no pair manufacturer-retailer wants to create a link and no agent wants to destroy a link.
- c) The distribution network $g(12,1)$ (and $g(12,2)$, $g(1,12)$) and $g(2,12)$) is pairwise stable if and only if $k > \min\{k_{(12,12)}^M, k_{(12,12)}^R\}$ and $k < \min\{k_{(1,2)}^M, k_{(1,2)}^R\}$ since no agent wants to sever a link and the pair manufacturer-retailer with only one link does not want to create another link.

Therefore, in the area C the only pairwise stable distribution network is $g(1,2)$; in the area B both $q(1,2)$ and $q(12,12)$ are pairwise stable; in the area A only $q(12,12)$ is pairwise stable; and in the area D $q(12,1)$ is the only pairwise stable distribution network. The following proposition summarizes pairwise stability among distribution networks.

if \overline{k} is the one that
 \overline{k} is the one that
 \overline{k} is the one that

anding Figure 3

oution network govee no agent wan

bution network govee no agent wan

bution network govee the $k_{(1,2)}^R$ since no s

s to de k as k, where

1,1)) is positi

ng remarks a

ution network
 $<$ min{ $k_{(12,1)}^M$

and only if k

e a link and 1

12)) is pairwi
 $k_{(1,2)}^R$ since 1
 $k_{(1,2)}^R$ since 1
 $k_{(1,2)}^R$ since 1
 $k_{(1,2)}^R$ since 1
 $k_{(1,2$ \overline{k} = min $\begin{cases} \frac{(a-c)^2}{36} \\ \frac{(a-c)^2}{36} \end{cases}$
to the constraint
me that ensures Π
igure 3 which disp
twork $g(12,12)$ is
ent wants to sever
twork $g(12,1)$ (and
ince no pair manur
roy a link.
twork $g(12,1)$ (and
, $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$

on k that implie

on k that implie

on k that implie

pairwise stable if

a link.
 $g(2,1)$ is pairwise

pairwise stable if

a link.
 $g(2,1)$ is pairwise stable if

a link.

d $g(12,2)$, $g(1)$,
 . $3(1 + d)(2 - d)^2$

on k that implies
 $\frac{1}{2}(g(12, 12)) > 0$

on k that implies

invise stable if
 $\frac{1}{2}$ ink.
 $g(2, 1)$ is pairw

cturer-retailer w
 $\frac{1}{2}(12, 2), g(1, 1)$
 $\frac{1}{6}(12, 12), g(1, 1)$
 $\frac{1}{6}(12, 12), g(1, 1)$ k that implies that $\Pi_{R_1}(g(1,1))$ is positive $g(12, 12) > 0$. The following remarks are
the pairwise stable distribution networks.
wise stable if and only if $k < \min\{k_{(12,12)}^M\}$,
ink.
2,1)) is pairwise stable if and o while the second is the one that ensures $\Pi_{M_1}(q(2,12)) > 0$. The following remarks are
second is the one that ensures $\Pi_{M_1}(q(2,12))$ is pairwise stable directly and ensures are
all in understanding Figure 3 which displ $g(12, 12)$ is pairwise stable if and only if $k < \min\{k_{\text{II}}^M\}$
unts to sever a link.
 $g(1, 2)$ (and $g(2, 1)$) is pairwise stable if and only if
pair manufacturer-retailer wants to create a link an
ink.
 $g(12, 1)$ (and $k(1)$ Th mi age Th stage do for here is $(1, w)$ is n is tall r is k is tall r is n $g(1, 2)$ (and $g(2, 1)$) is pairwise stable if and only if $k >$
pair manufacturer-retailer wants to create a link and no
ink.
 $g(12, 1)$ (and $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$) is pairwise
 $\min\{k_{(12)}^{N}(2, 12), k_{(12,$ min{ $k_{(1)}^{3m}$
agent w.
The dis
stable if
agent w.
does not
fore, in h $g(1,2)$; and in
ing prop
osition
(1,2). *T*
w values
ideal ing prop
is the values
ideal in region
is the values
 $r \sinh \theta$ is the values
reare to Sand $k_{(1)}^{(1)}$ is divided in a reduce k is divided in the $\frac{1}{k}$ of $\frac{1}{k}$ and $\frac{1}{k}$ a $g(12, 1)$ (and $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$) is pairwise
 $\inf\{k_{(12,12)}^{M}, k_{(12,12)}^{R}\}$ and $k < \min\{k_{(1,2)}^{M}, k_{(1,2)}^{R}\}$ since no

k and the pair manufacturer-retailer with only one link

other link.

pairwis $k > \min\{k_{(1)}^{in}$

a link and

ate another 1

e only pairwi

2) are pairwi

2) are pairwi

2) are pairwi

2) is the marizes pairwise
 k distribution
 k space (k, d)

2) is the on

the values of

and low valu

stable ne kR $k < \min\{k_{(1)}^{ca}$

urer-retailer

on network is

rea A only g

able distribut

g distribution
 irwise stable.
 four regions.
 network. In
 inly pairwise

of *k close t.*
 nly pairwise

of *k close t.*
 igion, kR $g(1, 2)$; in the area
12, 12) is pairwise
ion network. The
networks.
 $g(12, 12)$, $g(12, 1)$
In the first region,
he second, for low
stable network. In
the upper bound,
rmediate values of
networks are pair-
stem $g(12, 1$ $g(1, 2)$ and $g(12, 12)$ are pairwise stable; in the area A only $g(12, 12)$ is pairwise
und in the area D $g(12, 1)$ is the only pairwise stable distribution network. The
groposition summarizes pairwise stability among $g(12, 1)$ is the only pairwise stable distribution network. The
aarizes pairwise stability among distribution networks.
distribution networks can be pairwise stable: $g(12, 12)$, $g(12, 1)$
space (k, d) is partitioned in **Proposition 1** Only three distribution networks can be pairwise stable: $g(12, 12)$, $g(12, 1)$
and $g(1, 2)$. The parameter space (k, d) is partitioned into four regions. In the first region, Only three distribution hectorics can be pairwise stable. $y(12, 12)$, $y(12, 11)$
parameter space (k, d) is partitioned into four regions. In the first region,
intermediate values of k, $g(12, 1)$ is the only pairwise st and y_1 , z_1 . The parameter space (k , α) is partitioned into four regions. In the first region, for low
values of d and intermediate values of k , $g(12, 1)$ is the only pairwise stable network. In
the third reg for low values of d, $g(12, 12)$ is the only pairwise stable network. In the second, for low for low values of a, $g(12, 12)$ is the only pairwise stable network. In the second, for low
values of d and intermediate values of k, $g(12, 1)$ is the only pairwise stable network. In
the third region, for high and low values of d and intermediate values of k, $g(12,1)$ is the only pairwise stable network. In values of d and intermediate values of k, g(12, 1) is the only pairwise stable network. In
the third region, for high and low values of d and values of k close to the upper bound,
 $g(1,2)$ is the only pairwise stable netw the third region, for high and low values of d and values of k close to the upper bound, $q(1,2)$ is the only pairwise stable network. In the fourth region, for intermediate values of d, there are two pairwise stable networks $g(12,12)$ and $g(1,2)$.

It is interesting to note that when $k = 0$, only two distribution networks are pairwise stable:¹⁷ the *non-exclusive distribution* & *non-exclusive dealing* system $g(12, 12)$ and $\frac{17}{17}$ For $k = 0$ (assumption made in Mycielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-

the third region, the third region, for intermediate values of d, there are two pairwise stable network. In the fourth region, for intermediate values of d, there are two pairwise stable networks $g(12,12)$ and $g(1,2)$.
 g(1, 2) is the only pairwise stable network. In the fourth region, for intermediate catals of
d, there are two pairwise stable networks $g(12, 12)$ and $g(1, 2)$.
It is interesting to note that when $k = 0$, only two distr d, there are two pairwise stable hetworks $g(12, 12)$ and $g(1, 2)$.
It is interesting to note that when $k = 0$, only two distri-
wise stable:¹⁷ the *non-exclusive distribution* & *non-exclusive* d
¹⁷For $k = 0$ (assum $k = 0$, only two distribution networks are pair-
tion & non-exclusive dealing system $g(12, 12)$ and
tiyanto and Wuyts (2000) and Moner-Colonques, Sempere-
le distribution networks coincide exactly with the subgame
f Mone non-exclusive distribution & non-exclusive dealing system $g(12, 12)$ and
ption made in Mycielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-
(2004)), the pairwise stable distribution networks coincide exactly ¹⁷ For $k = 0$ (assumption made in Mycielski, Rivanto and Wuyts (2000) and Moner-Colonques, Sempere $p_{\text{inter}} = 0$ (assumption made in Mycletski, rityanto and Wuyts (2000) and Moner-Colonques, Sempere-Monerris and Urbano (2004)), the pairwise stable distribution networks coincide exactly with the subgame perfect Nash equi when its and critical (2004)
perfect Nash equilibrium dis when brands are symmetric:

Figure 3: Pairwise stability of distribution networks.

the exclusive distribution & exclusive dealing system $g(1,2)$; $g(12,12)$ is stable when the exclusive distribution & exclusive dealing system $g(1, 2)$; $g(12, 12)$ is stable when the
luttes are sufficiently differentiated $d \in (0.692, 0.060)$, and $g(1, 2)$ is stable when products are
substitutes $d \in (0.692, 0.9$ products are sufficiently differentiated $d \in (0, 0.682)$, both $q(12, 12)$ and $q(1, 2)$ are stable $d \in (0, 0.682)$, both $g(12, 12)$ and $g(1, 2)$ are stable
9), and finally, $g(1, 2)$ is stable when products are
ea absence of link costs, the pairwise stability of a
ives of manufacturers and retailers to introduce infor intermediate values $d \in (0.682, 0.909)$, and finally, $g(1,2)$ is stable when products are $d \in (0.682, 0.909)$, and finally, $g(1, 2)$ is stable when products are
909, 1).¹⁸ In the absence of link costs, the pairwise stability of a
strategic incentives of manufacturers and retailers to introduce in-
noe ther close substitutes $d \in (0.909, 1)$ ¹⁸ In the absence of link costs, the pairwise stability of a $d \in (0.909, 1).$

on the strategi

tion once ther

acturer and a 1

and rivalry is n

e distribution

ion network g

ould have no i

and rivalry, d
 $l \in (0, 0.682),$

2) is defeated

e values of inte

sent is needed th network depends on the strategic incentives of manufacturers and retailers to introduce intrabrand competition once there is interbrand competition. Take the distribution network $g(1,2)$. A manufacturer and a retailer would like to form a link between them only if the degree of interbrand rivalry is not too high; that is, if and only if $d \in (0, 0.682)$. Thus, for $d \in (0, 0.682)$, the distribution $q(1,2)$. A manufacturer and a retailer would like to form a link between them only if the degree of interbrand rivalry is not too high; that is, if and only if $d \in (0, 0.682)$. Thus, for $d \in (0, 0.682)$. Thus, for

entwork $g(12, 2)$. Take

stable, the pair formed

hem. But, given the low

stablish a link between

defeated by the network

) is defeated by $g(12, 12)$

682, 0.909).

ween a manufacturer an $d \in (0, 0.682)$, the distribution network $g(1,2)$ is defeated by the network $g(12,2)$. Take $d \in (0, 0.682)$, the distribution network $g(1, 2)$ is defeated by the network $g(12, 2)$. Take
now the distribution network $g(12, 2)$. In order for $g(12, 2)$ to be stable, the pair formed
by M_1 and R_2 should hav now the distribution network $g(12,2)$. In order for $g(12,2)$ to be stable, the pair formed $g(12, 2)$. In order for $g(12, 2)$ to be stable, the pair formed
interest in adding a link between them. But, given the low
 $l \in (0, 0.682)$, they also prefer to establish a link between
the distribution network $g(1, 2)$ by M_1 and R_2 should have no interest in adding a link between them. But, given the low by M_1 and R_2 should have no interest in adding a link between them. But, given the low
degree of interbrand rivalry, $d \in (0, 0.682)$, they also prefer to establish a link between
them. Thus, for $d \in (0, 0.682)$, the degree of interbrand rivalry, $d \in (0, 0.682)$, they also prefer to establish a link between them. Thus, for $d \in (0, 0.682)$, the distribution network $g(1,2)$ is defeated by the network $q(12,2)$ and $q(12,2)$ is defeated by $q(12,12)$. Observe that $q(12,2)$ is defeated by $q(12,12)$ ot only for these values of interbrand rivalry but also for $d \in (0.682, 0.909)$.
¹⁸When joint consent is needed to establish and/or maintain a link between a manufacturer and a not only for these values of interbrand rivalry but also for $d \in (0.682, 0.909)$.

 $d \in (0, 0.682)$, they also prefer to establish a link between
, the distribution network $g(1, 2)$ is defeated by the network
d by $g(12, 12)$. Observe that $g(12, 2)$ is defeated by $g(12, 12)$
terbrand rivalry but also $d \in (0, 0.682)$, the distribution network $g(1, 2)$ is defeated by the network

∴2) is defeated by $g(12, 12)$. Observe that $g(12, 2)$ is defeated by $g(12, 12)$

e values of interbrand rivalry but also for $d \in (0.682,$ $g(12,2)$ and $g(12,2)$ is defeated by $g(12,12)$. Observe that $g(12,2)$ is defeated by $g(12,12)$
not only for these values of interbrand rivalry but also for $d \in (0.682, 0.909)$.
¹⁸When joint consent is needed to est $d \in (0.682, 0.909)$.
ink between a manu
ble. In Moner-Colon
ifficiently large brand
ne when goods are str
n $g(12, 2)$ as pairwise ¹⁸When joint consent is needed to establish and/or maintain a link between a manufacturer and a retailer, the asymmetric distribution network $g(12, 2)$ is no more stable. In Moner-Colonques, Sempereretailer, the asymmetric distribution network $g(12,2)$ is no more stable. In Moner-Colonques, Sempere-Monerris and Urbano (2004) this network appears at equilibrium for sufficiently large brand asymmetry. In Mycielski, Riyanto and Wuyts (2000), $g(12, 2)$ is an equilibrium outcome when goods are strong substitutes Mycielski, Riyanto and Wuyts (2000), $g(12, 2)$ is an equilibrium outcome when goods are strong subut not perfect ones. Here only for positive link costs, one can sustain $g(12, 2)$ as pairwise stable.

Once the formation of links is costly, the pairwise stability of a given distribution network also depends on the size of link costs. In such case, the incentives to add a link between a manufacturer and a retailer when the degree of interbrand rivalry is low can be offset by the negative effect of the costly link on profits. When it happens, the distribution networks $g(12,2)$ and $g(1,2)$ can be pairwise stable for low values of interbrand rivalry; see Figure 3.

Now, we turn to the characterization of strongly stable distribution networks. We already know that the only pairwise stable distribution networks are $g(1,2)$, $g(12,1)$ and $g(12,12)$. To check for strong stability we have to examine the incentives that a coalition of agents have to move from the pairwise stable networks to other networks. Specifically,

- a) In considering the strong stability of $g(1,2)$, we have to check for the incentives to move from $g(1,2)$ to $g(12,12)$, next to $g(12,0)$, and then to $g(1,1)$.
- b) In considering the strong stability of $q(12,12)$, we have to check for the incentives to move from $g(12, 12)$ to $g(1, 2)$, next to $g(12, 0)$, and then to $g(1, 1)$.
- c) In considering the strong stability of $q(12,1)$, we have to check for the incentives to move from $g(12, 1)$ to $g(1, 0)$.

Proposition 2 The distribution network $g(1,2)$ is always strongly stable when it is pairwise stable. However, the distribution networks $g(12,1)$ and $g(12,12)$ are not necessarily strongly stable when they are pairwise stable.

g(12, 2) can be pairwise stable for low values of interbrand rivalry;
see tim to the characterizador of strongly stable distribution networks. We
we tim to the characterizador of strongly stable distribution intervalues. $g(1, 2)$, $g(12, 1)$ and
tives that a coalition
etworks. Specifically,
for the incentives to
 $(1, 1)$.
Ck for the incentives to
 $g(1, 1)$.
for the incentives to
table when it is pair-
i) are not necessarily
ibution netwo g(12, 12). To check for strong stability we have to examine the incentives that a coalition
of sgenths have to move from the pairwise stabile nearched to check for the incensives that a coalition
a) in considering the str $g(1, 2)$, we have to check for the incentives to $o g(12, 0)$, and then to $g(1, 1)$.
 $g(12, 12)$, we have to check for the incentives

to $g(12, 0)$, and then to $g(1, 1)$.
 $g(12, 1)$, we have to check for the incentiv g(1, 2) to g(12, 12), next to g(12, 0), and then to g(1, 1).

ing the strong stability of g(12, 12), we have to check for

mg(12, 12) to g(1, 2), next to g(12, 0), and then to g(1,

ing the strong stability of g(12, 1), w $g(12, 12)$, we have to check for the incentives
to $g(12, 0)$, and then to $g(1, 1)$.
 $r(12, 1)$, we have to check for the incentives to
 $(1, 2)$ is always strongly stable when it is pair-
orks $g(12, 1)$ and $g(12, 12)$ $g(12, 12)$ to $g(1, 2)$, next to $g(12, 0)$, and then to $g(1, 1)$,
the strong stability of $g(12, 1)$, we have to check for the
12, 1) to $g(1, 0)$.
e distribution network $g(1, 2)$ is always strongly stable wh
r, the d g (12, 1), we have to check for the incentives to
 $y(1, 2)$ is always strongly stable when it is pair-

vorks $g(12, 1)$ and $g(12, 12)$ are not necessarily
 $y(e,$
 k, d where the three distribution networks are

restin $g(12, 1)$ to $g(1, 0)$.
The distribution ne
ever, the distributi
hen they are pairwi
ays the areas in the
repairwise stable. It
in-exclusive dealing
entiated $d \in (0.20$
 $(1, 2)$ is strongly sta
re some values of pr
been $g(1, 2)$ is always strongly stable when it is pair-
works $g(12, 1)$ and $g(12, 12)$ are not necessarily
le.
(k, d) where the three distribution networks are
resting to note that for $k = 0$, the non-exclusive
 $n g(12, 12)$ $g(12, 1)$ and $g(12, 12)$ are not necessarily
where the three distribution networks are
g to note that for $k = 0$, the non-exclusive
, 12) is strongly stable when the products
d the *exclusive distribution* & *exclusive* Figure 4 displays the areas in the space (k, d) where the three distribution networks are Figure 4 displays the areas in the space (k, d) where the three distribution networks are
relative to pairwise stable. It is interesting to note that for $k = 0$, the non-crobisive
relative of anon-crobisine dealing system strongly stable or pairwise stable. It is interesting to note that for $k = 0$, the non-exclusive $k = 0$, the non-exclusive
table when the products
distribution & exclusive
y to the case of pairwise
h no network is strongly
r when the products are
f product differentiation
entiated, $d \in (0, 0.202)$,
n each manufacture distribution & non-exclusive dealing system $g(12, 12)$ is strongly stable when the products $g(12, 12)$ is strongly stable when the products
, and the *exclusive distribution* & *exclusive*
 $\in (0.682, 1)$. Contrary to the case of pairwise
fferentiation for which no network is strongly
feated by $g(1, 2)$ either are rather differentiated $d \in (0.202, 0.510)$, and the *exclusive distribution* & *exclusive* $d \in (0.202, 0.510)$, and the *exclusive distribution* & *exclusive*
rongly stable for $d \in (0.682, 1)$. Contrary to the case of pairwise
alues of product differentiation for which no network is strongly
use $g(12, 12)$ is dealing system $g(1,2)$ is strongly stable for $d \in (0.682,1)$. Contrary to the case of pairwise $g(1,2)$ is strongly stable for $d \in (0.682, 1)$. Contrary to the case of pairwise
are some values of product differentiation for which no network is strongly
ppens because $g(12, 12)$ is defeated by $g(1, 2)$ either when stability, there are some values of product differentiation for which no network is strongly stable. This happens because $q(12, 12)$ is defeated by $q(1, 2)$ either when the products are $g(12, 12)$ is defeated by $g(1, 2)$ either when the products are 0.202)) or for intermediate levels of product differentiation act, when products are very differentiated, $d \in (0, 0.202)$, prefers to delete two links, one $d \in (0, 0.202)$ or for intermediate levels of product differentiation

In fact, when products are very differentiated, $d \in (0, 0.202)$,

ailers prefers to delete two links, one with each manufacturer, in

ntiated duopoly very differentiated (for $d \in (0, 0.202)$) or for intermediate levels of product differentiation (for $d \in (0.510, 0.682)$). In fact, when products are very differentiated, $d \in (0, 0.202)$. d ∈ (0.510, 0.682)). In fact, when products are very differentiated, $d \in (0, 0.202)$, coalition of two retailers prefers to delete two links, one with each manufacturer, in to form a differentiated duopoly without intrabr the coalition of two retailers prefers to delete two links, one with each manufacturer, in order to form a differentiated duopoly without intrabrand rivalry (a situation close to two successive monopolies). For intermediate levels of $d \in (0.510, 0.682)$ the coalition of $d \in (0.510, 0.682)$ the coalition of
th each retailer, in order to form
d avoiding introducing intrabrand
n is high enough or intermediate, two manufacturers prefers to delete two links, one with each retailer, in order to form a differentiated duopoly in the distribution market and avoiding introducing intrabrand rivalry. Thus, when the degree of product differentiation is high enough or intermediate,

Figure 4: Strongly stable and pairwise stable distribution networks.

the non-exclusive distribution & non-exclusive dealing system will not emerge in the "longrun" while Mycielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-Monerris and Urbano (2004) have shown that it is a "short-run" equilibrium.

Once the formation of links is costly, the stability of a given distribution network also depends on the size of link costs. In such a case, the incentives to delete links by the coalition of two retailers when the degree of interbrand rivalry is very low, or by the coalition of the two manufacturers when the degree of interbrand rivalry is intermediate can be reinforced by the negative effect of the costly links on profits. There is a size of link $g(12, 12)$ is no longer strongly stable. Higher size

l rivalry make the distribution networks $g(12, 1)$

to the case of pairwise stability, the possibility

links with R_2 and M_2 moving to $g(1, 0)$, makes

ne val costs from which the distribution network $q(12, 12)$ is no longer strongly stable. Higher size of link costs and low degree of interbrand rivalry make the distribution networks $g(12,1)$ $g(12, 1)$
ssibility
, makes
pairwise
vent the
at least
and link
etworks
ould be and $g(1,2)$ strongly stable. But contrary to the case of pairwise stability, the possibility $g(1, 2)$ strongly stable. But contrary to the case of pairwise stability, the possibility M_1 and R_1 delete respectively their links with R_2 and M_2 moving to $g(1, 0)$, makes $, 1$) no longer strongly stable f that M_1 and R_1 delete respectively their links with R_2 and M_2 moving to $g(1,0)$, makes that M_1 and R_1 delete respectively their links with R_2 and M_2 moving to $g(1, 0)$, makes $g(12, 1)$ no longer strongly stable for some values of d and k for which it was pairwise stable. For high degree of $g(12,1)$ no longer strongly stable for some values of d and k for which it was pairwise $g(12, 1)$ no longer strongly stable for some values of d and k for which it was pairwise
stable. For high degree of interbrand rivalry, the fact of costly links does not prevent the
strong stability of $g(1, 2)$. In Figu stable. For high degree of interbrand rivalry, the fact of costly links does not prevent the strong stability of $g(1,2)$. In Figure 4, one can observe that while there are always at least $g(1, 2)$. In Figure 4, one can observe that while there are always at least
etwork, for some values of the degree of product differentiation and link
trongly stable network.
Ork is strongly stable we will observe a seque a pairwise stable network, for some values of the degree of product differentiation and link costs there is no strongly stable network.

When no network is strongly stable we will observe a sequence of distribution networks due to continuously profitable deviations. In terms of competition policy, it would be interesting to know which networks are likely to be visited by such sequence of profitable deviations. In fact we will show that some distribution networks will be visited at most once, while others will belong to a closed cycle and will be visited regularly. We now define what is meant by a closed cycle. A network g' strongly defeats g if (i) g' is obtainable from g via deviations by $S \subset N$ and (ii) $\Pi_i(g') \geq \Pi_i(g)$ for all $i \in S$ and $\Pi_j(g') > \Pi_j(g)$ for some $j \in S$. An improving path from a network g to a network g' is a finite sequence of graphs $g_1, g_2, ..., g_K$ with $g_1 = g$ and $g_K = g'$ such that for any $k \in \{1, ..., K-1\}$ we have g_{k+1} strongly defeats g_k . A set of networks \overline{G} form a cycle if for any $g \in \overline{G}$ and $g' \in \overline{G}$ there exists an improving path connecting g to g' . A cycle in \overline{G} lies on an improving path leading to a network that is not in \overline{G} . In characterizing the closed cycles (whose proof is given in the appendix) we distinguish two cases:

- ${R \choose (12,12)}, {k_{(1,2)}^M}, \ \max\{k_{s(12,1)}^M, k_{s(12,1)}^R\} > k > \min\{k_{s(1,2)}^M, {k_{s(1,2)}^R}\},$ then there is a unique closed cycle which consists of networks $g(12, 12)$, $g(1, 2)$, $g(2, 1)$, $q(12,1), q(12,2), q(1,12)$ and $q(2,12)$.
- $\{1,2\}, k_{(1,2)}^M\} > k > \max\{k_{s(12,1)}^M, k_{s(12,1)}^R\}$, then there is a unique closed cycle which consists of all possible distribution networks.

g' strongly defeats g if (i) g' is obtainable from
 $\geq \Pi_i(g)$ for all $i \in S$ and $\Pi_j(g') > \Pi_j(g)$ for
 \sqrt{x} worth g to a network g' is a finite sequence of

y' such that for any $k \in \{1, ..., K - 1\}$ we have
 \sqrt{x} form a cycl g via deviations by $S \subset N$ and (ii) Π_i(g'
some $j \in S$. An improving path from a n
graphs $g_1, g_2, ..., g_K$ with $g_1 = g$ and $g_K = g_{k+1}$ strongly defeats g_k . A set of networ
there exist an improving path connecting
in \overline) ≥ Π_i(g) for all $i \in S$ and Π_j(g'
etwork g to a network g' is a finit
etwork g to a network g' is a finit
g' such that for any $k \in \{1, ..., K$
ks \overline{G} form a cycle if for any $g \in \{g$ to g'. A cycle \overline{G} is a c $> \Pi_j(g)$ for
sequence of
 $\cdot 1$ } we have
and $g' \in \overline{G}$
f no network
aracterizing
asse:
 $R_{s(1,2)}$ }, then
 \cdot ,2), $g(2,1)$,
closed cycle
the network
ble network
ly stable. In
ich consists
In area E
onsists of all
 $g(1,$ j ∈ S. An improving path from a network g to a network g is a finite vequence of η . An improving g to a network g is a network g is a finite vequence of η , η , graphs g₂, $y_1,..., y_N$ with gn – p and $g_K = g'$ such that for any k $\in [1,...,K-1]$ we have done as the sumply defect s g_k . A set of networks G form a cycle if for any $g \in G$ and $g' \in G$ also an improving puth connecting g gk-14 strongly defacts gk. A set of inclusions (E form a cycle if for any g ∈ G and g ∈ C and g ∈ G g to g'

a net

the ap

d'a net

the ap

d'a net

d'a consi

(k, d)

re dis

dis

d'a dis

d'a dis

ngly s

ink co

there n gstem,

gy tem,

in 17 G is a closed cycle if no network
t is not in \overline{G} . In characterizing
ve distinguish two cases:
 $k > \min\{k_{s(1,2)}^M, k_{s(1,2)}^R\}$, then
works $g(12, 12), g(1, 2), g(2, 1),$
n there is a unique closed cycle
ere is no strongly G lies on an improving path leading to a network that is not in G. In characterizing closed cycles (where proof is given in the appendix) we discinguish two cases:

If min/min/left/2123, $\kappa_{112}^{H}(2)$, max($\kappa_{212}^{H}(2$ **a)** If $\min\{\min\{k_{(1)}^R\}$ there is a un $g(12,1), g(12)$
b) If $\min\{k_{(1,2)}^R, k$ which consist Figure 5 displa; (areas A and E) area A no strongly of networks $g(12, 1)$ area, respective the degree of differentiation is ob $\binom{M}{1,2}$, max { $k_{s(1,2)}^{M}$ }, max { $k_{s(2)}^{M}$ osed cycle which $1, 12$ and $g(2, 1)$.
 $k > \max \{k_{s(1)}^{M}$ possible distril reas in the space some of the the network exists $1, 2$, $g(2, 1)$, $g(2, 1)$, $g(2, 1)$, $g($ $k_{(1)}^{ex}$ and $k_{(2)}^{ex}$ and $(1, 1)$ is a proportional part of $(1, 1)$ and k are k and k are k and k are k and $s(12,1), k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, there distand the distribution 1
is and the distant parameter is a D the distrongly set on the distrib $> k > \min{\kappa_{\delta(i)}^{\kappa_{\text{tot}}}}$
tworks $g(12, 12)$
then there is a unique dosed cy
n networks are s
unique closed cy
n networks $g(1, 12)$ and $g(1, 12)$
is networks $k_s^{rel}(1,$ e chabely which is a chappen of l is a chappen of $g(12, 12), g(1, 2), g(2, 1),$
is a unique closed cycle
o strongly stable network
ks are strongly stable. In
osed cycle which consists
and $g(2, 12)$. In area E
ycle which consists of all
rks $g(12, 12), g(1, 2)$ and
m network. $g(12, 1)$, $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$.
 $\min\{k_{(1,2)}^R, k_{(1,2)}^M\} > k > \max\{k_{s(12,1)}^M\}$

which consists of all possible distributive

gure 5 displays the areas in the space (
 Λ and E) and where some of the b) If $\min\{k_{(1)}^R$ which c

Figure 5 d

(areas A and

area A no strongly st

possible netw

possible netw
 $g(12, 1)$ are, if

the degree of

of differentiat

observe a cycl
 dealing will succeed t
 system will si

c $k_{(1)}^{ex}$ sts ays nd y s 12 and y s 12 and 1 a $> k > \max\{k_{s(1)}^{out}\}$
areas in the spa
areas in the spa
areas in the spa
areas ome of the t
e network exists
(1,2), $g(2,1)$, g
ork exists and tl
reas B, C and D
r, the unique st
tion is high and
mediate and li
bution n $s_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, $k_{s(12,1)}^{R}$, there distand the *g*(12, 1), there is a D the distrongly nd link cost is where *i* point *system* is and the distrongly nd link cost is where *i* point *sys* Figure 5 displays the areas in the space (k, d) where there is no strongly stable network Figure 5 displays the areas in the space (k, d) where there is no strongly stable network
set A and E) and where some of the three distribution networks are strongly stable. In
A A to strongly stable network exists and th (areas A and E) and where some of the three distribution networks are strongly stable. In area A no strongly stable network exists and there is a unique closed cycle which consists of networks $g(12, 12)$, $g(1, 2)$, $g(2, 1)$, $g(12, 1)$, $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$. In area E $g(12, 12)$, $g(1, 2)$, $g(2, 1)$, $g(12, 1)$, $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$. In area Etable network exists and there is a unique closed cycle which consists of all orbes. In areas B, C and D the distributions net no strongly stable network exists and there is a unique closed cycle which consists of all possible networks. In areas B, C and D the distributions networks $g(12, 12)$, $g(1, 2)$ and $g(12, 12), g(1, 2)$ and
etwork. Thus, when
or when the degree
in Figure 5) we will
tion & non-exclusive
n & exclusive dealing
nd mixed distribution
Moreover, there is no
ill be visited at most
table deviations long $g(12,1)$ are, respectively, the unique strongly stable distribution network. Thus, when $g(12,1)$ are, respectively, the unique strongly stable distribution network. Thus, when
the degree of differentiation is high and link costs are not too high or when the degree
of differentiation is intermediate and link the degree of differentiation is high and link costs are not too high or when the degree of differentiation is intermediate and link costs are small (area A in Figure 5) we will observe a cycle of distribution networks where non-exclusive distribution & non-exclusive dealing will succeed to mixed distribution system, exclusive distribution & exclusive dealing will succeed to *non-exclusive distribution* & *non-exclusive dealing*, and *mixed distribution* system will succeed to exclusive distribution & exclusive dealing. Moreover, there is no cycle beside the closed one and networks outside the closed cycle will be visited at most once. So, from any other distribution networks all sequences of profitable deviations long enough go to the closed cycle.

Figure 5: Cycles and strongly stable networks.

4 Efficiency, consumer surplus and social welfare

Some of the very central questions about network formation concern the conditions under which the networks which are formed by the players turn out to be efficient from an overall societal perspective. In order to discuss these issues we need to define what is meant by efficiency. The network structure is the key determinant of the level of productivity or utility to the society of players involved. In our case, a manufacturer's expected profit and a retailer's expected profit from establishing a link among them in order to sell the manufacturer's brand to consumers depend on how many links each of them has formed and on how many links the other manufacturer and retailer have established. Remember that Φ is a function that assigns to each network q a value $\Phi(q)$ that represents the overall total value of network g which is the sum of the equilibrium profits of the four agents.

g which is the sum of the equilibrium profits of the four agents.

of efficiency is simply maximizing the overall total value ame

This notion was referred to as strong efficiency by Jackson a

ve will simply refer to it An obvious notion of efficiency is simply maximizing the overall total value among all possible networks. This notion was referred to as strong efficiency by Jackson and Wolinsky (1996), but we will simply refer to it as efficiency.

Definition 3 A network g is efficient relative to Φ if $\Phi(g) \ge \Phi(g')$ for all

g a value $\Phi(g)$ that represents the overall
equilibrium profits of the four agents.
aximizing the overall total value among
to as strong efficiency by Jackson and
s efficiency.
 $\Phi \text{ if } \Phi(g) \ge \Phi(g') \text{ for all } g' \in G.$
st one effi g is efficient relative to Φ if $\Phi(g) \ge \Phi(g)$
vill always exist at least one efficient net
orks. A starting point is to examine efficient
18 $g' \in G$.
ven that
nen the It is clear that there will always exist at least one efficient network, given that there is only a finite set of networks. A starting point is to examine efficiency when the cost of the links is negligible.

Proposition 3 Suppose that links are costless, $k = 0$. Then, the efficient distribution network is $g(12, 12)$ for $0 < d \le 0.735$, $g(12, 1)$ for $0.735 < d \le 0.863$, and $g(12, 0)$ for $0.863 < d < 1$.

In the absence of costly links, the degree of product differentiation determines the stable networks but also the more profitable network from the manufacturers and retailers point of view. A low degree of product differentiation implies a more competitive environment and thus manufacturers (and retailers) prefer a distribution network without intrabrand competition. Since the transfer price under $g(12,0)$ is smaller than the transfer price under $q(1,2)$, the distribution network with a unique multiproduct retailer $q(12,0)$ is more efficient than the distribution network with two differentiated retailers $g(1,2)$. Higher degrees of product differentiation will give incentives to one manufacturer to use two retailers making $q(12, 1)$ the new efficient network. Further increases in the degree of product differentiation will now give incentives to the second manufacturer to use two retailers too. Since the output expansion effect dominates the competition effect, $q(12, 12)$ becomes the new efficient distribution network.

 $k = 0$. Then, the efficient distribution
for 0.735 $< d \leq 0.863$, and $g(12,0)$ for
the that differentiation determines the stable
mplies a more competitive environment
multi-manufacturers and retailers point
multi-sup m g(12, 12) for 0 < d ≤ 0.735, g(12, 1) for 0.735 < d ≤ 0.863, and g(12, 0) for
1.1.

1.1.

1.1.

there are product differential in the main control in the stable main of the main comparison of the main control for the mai $0.863 < d < 1$.

In the abse

networks but a

of view. A low

and thus manu

competition. S

under $g(1,2)$, t

efficient than

degrees of prc

retailers makii

product differ

retailers too. S

becomes the n

We now an

ne $g(12, 0)$ is smaller than the transfer price
mique multiproduct retailer $g(12, 0)$ is more
two differentiated retailers $g(1, 2)$. Higher
necentives to one manufacturer to use two
vary. Further increases in the degree o $g(1, 2)$, the distribution network with a unique multiproduct retailer $g(12, 0)$ is more than the distribution network with two differentiated retailers $g(1, 2)$. Higher the distribution network with two differentiate $g(1, 2)$. Higher
urer to use two
n the degree of
urer to use two
effect, $g(12, 12)$
adds a second
pution networks
bnly $g(1, 2)$ and
t differentiation
ll lead to higher
network $g(12, 0)$
rices is compen-
uses is compen $g(12,1)$ the new efficient network. Further increases in the degree of
attain will now give increasives to the second manufacturer to use two
ethican will now give increasives to the second manufacturer to use two
effici $g(12, 12)$
a second
networks
1, 2) and
entiation
to higher
 $g(12, 0)$
compen-
efficient
 $g(1, 2)$ is
a B; and
the main
The com-
7 of the
narketing
entiation
 $\frac{1}{2}$ of the
interaction
is a degree
is the com-
 $\frac{1}{2}$ We now analyze efficiency for positive link costs. Positive link costs adds a second negative effect to the formation of a new link. For that reason, the distribution networks $g(12, 12)$ and $g(12, 1)$ are no more efficient for high enough link costs. Only $g(1, 2)$ and $g(12, 12)$ and $g(12, 1)$ are no more efficient for high enough link costs. Only $g(1, 2)$ and $g(12, 0)$ are efficient for high sizes of link costs. As the degree of product differentiation compensions diary increases, $g(12,0)$ are efficient for high sizes of link costs. As the degree of product differentiation $g(12,0)$ are efficient for high sizes of link costs. As the degree of product differentiation
increases, the excharic distribution & excharic dedity network $g(1,2)$ will lead to higher
eagregate profits than the cretion increases, the *exclusive distribution* & *exclusive dealing* network $q(1, 2)$ will lead to higher $g(1, 2)$ will lead to higher
 i dealing network $g(12, 0)$

ransfer prices is compen-
 e 6 displays the efficient
 i in the area A; $g(1, 2)$ is

work in the area B; and

ion summarizes the main

nks are costly. Th aggregate profits than the exclusive distribution & non-exclusive dealing network $q(12,0)$ $g(12, 0)$

ompen-

efficient
 $(1, 2)$ is
 B ; and

ne main

ne com-
 7 of the
 $\frac{d}{dt}$
 $\frac{d$ with in-store interbrand competition. Indeed, the difference in transfer prices is compensated by the increased degree of product differentiation. Figure 6 displays the efficient $g(12, 12)$ is the efficient one in the area A; $g(1, 2)$ is $g(12, 1)$ is the efficient network in the area B; and e area D. The next proposition summarizes the main stribution networks when links are costly. The comdist distribution networks. The network $q(12, 12)$ is the efficient one in the area A; $q(1, 2)$ is the efficient network in the area C; $g(12,1)$ is the efficient network in the area B; and $g(12, 1)$ is the efficient network in the area B; and
area D. The next proposition summarizes the main
stribution networks when links are costly. The com-
distribution networks is given in Proposition 7 of the
rease cost $g(12,0)$ is the efficient network in the area D. The next proposition summarizes the main g(12,0) is the efficient network in the area D. The next proposition summarizes the main
interesting features about efficient distribution networks when links are costly. The com-
plete characterization of the efficient d interesting features about efficient distribution networks when links are costly. The complete characterization of the efficient distribution networks is given in Proposition 7 of the appendix.

Proposition 4 Suppose that links are costly, $k > 0$. Any distribution network marketing $k > 0$. Any distribution network marketing
tions on the degree of product differentiation
for low enough link cost and enough degree
ee the efficient distribution network is either
roduct differentiation, or $g(12,1)$ for two products is efficient under particular conditions on the degree of product differentiation and the size of link costs.

The distribution network $g(12, 12)$ is efficient for low enough link cost and enough degree $g(12, 12)$ is efficient for low enough link cost and enough degree
As link costs increase the efficient distribution network is either
mediate degrees of product differentiation, or $g(12, 1)$ for lower
19 of product differentiation. As link costs increase the efficient distribution network is either $g(1,2)$, for high and intermediate degrees of product differentiation, or $g(12,1)$ for lower g(1,2), for high and intermediate degrees of product differentiation, or $g(12,1)$ for lower
19

degrees of product differentiation. Further increases in link costs and intermediate degrees of product differentiation imply that the efficient distribution network is either $q(1,2)$ or $g(12,0)$. Finally, for small enough degrees of product differentiation the efficient network is $g(12,0)$.

Figure 6: Efficient distribution networks.

There is no coincidence between the set of efficient networks and that of pairwise or strongly stable distribution networks. We find that the three stable networks can be efficient for particular values of the degree of product differentiation and link costs, but not necessarily for the values under which they are stable. Moreover, the network $g(12,0)$ is efficient for large enough link costs and low enough product differentiation but it is never stable.

 $g(12, 0)$
ut it is
stworks,
ibution
f intra-
network
ribution
 u Before analyzing the social welfare implications of the different distribution networks, it is worthy to study how consumer surplus is affected. Depending on the distribution network, one or two products are present in the market. Different combinations of intrabrand, interbrand and in-store competition can be present. Which distribution network will give the highest consumer surplus?

Proposition 5 The highest level of consumer surplus is achieved when the distribution network $q(12, 12)$ is formed. Moreover, consumer surplus is increasing with the introduc $g(12, 12)$ is formed. Moreover, consumer surplus is increasing with the introduc-
roduct items in the outlets.
20 tion of product items in the outlets.

Consumers prefer that the three types of competition are present in both outlets, that is two product items in the two outlets. If this is not possible, they prefer one retailer with in-store competition and the other not, but with the presence of both inter and intrabrand competition, that is one outlet with one product item and the other with two products. If the latter two options are not possible, consumers prefer at least two product items, either two different products concentrated in one outlet for low enough product differentiation, for $0.8597 < d < 1$, or the same product item in each of the outlets for $0.2826 < d < 0.8597$. for $0.4 \leq t \leq 4$, or the same product item in each of the outlets for 0.2826 < $d \leq 6 \leq 8597$. The consumer varying for the same product item in each of the outlier degree and its distribution of the outlier the outli or finally, two different product items each one in a different outlet, for $0 < d < 0.2826$. $\langle u \rangle \langle 0.2626\rangle$.

ts distribution also

for example,

rivalry among

e in a network

ontrast, in the

e former. The

r surplus than

for consumers

aracterization

social welfare.

elegated to the

e are $g(1,2)$ or

d The consumer surplus depends on both the number of product items and its distribution among outlets. When the number of product items is the same, then its distribution also affects the degree of competition among manufacturers and among retailers. For example, in the distribution network $g(12,0)$ although there is only one retailer the rivalry among $g(12,0)$ although there is only one retailer the rivalry among
the transfer price is lower than the transfer price in a network
cecent in the market, as for example $g(1,1)$. In contrast, in the
the rivalry among retaile manufacturers implies that the transfer price is lower than the transfer price in a network where only one product is present in the market, as for example $q(1,1)$. In contrast, in the latter distribution network the rivalry among retailers is higher than in the former. The combination of both effects explains why $g(12,0)$ generates a higher consumer surplus than $g(1,1)$ when d is large enough.¹⁹ Finally, the worst distribution network for consumers is the one with only one product item in a unique outlet. The complete characterization of consumers preferences over distribution networks at equilibrium can be found in the appendix.

 $g(1, 1)$. In contrast, in the
than in the former. The
term consumer surplus than
non network for consumers
complete characterization
ium can be found in the
etworks on social welfare.
rization is relegated to the
ocial w $g(12, 0)$ generates a higher consumer surplus than
y, the worst distribution network for consumers
a unique outlet. The complete characterization
on networks at equilibrium can be found in the
different distribution netw $g(1, 1)$ when d is large enough.¹⁹ Finally, the worst distribution network for consumers
is the one with only one product item in a unique outlet. The complete characterization
of of consumers preferences over distribu of consumers preferences over distribution networks at equilibrium can be found in the appendix.

Finally, we analyze the effects of the different distribution networks on social welfare

We give in the text the main feat appendix.

Finally, we analyze the effects of the different distribution networks on social welfare.

We give in the text the main feature while the complete characterization is released to the
experdix. The distribution Finally
We give in
appendix.
 $g(12,0)$ on
and the si
can achiev
desirable
not necess
Proposit
always on
with
a) $g(12,1$
Rege
 $\frac{19}{19}$ The equ
 $w(g(1,2))$ Finally, we analyze the effects of the different distribution networks on social welfare. give in the text the main features while the complete characterization is relegated to the
endix. The distribution networks that attain the maximum social welfare are $g(1,2)$ or
2,0) or $g(12,11)$ or $g(12,12)$, dependin We give in the text the main features while the complete characterization is relegated to the appendix. The distribution networks that attain the maximum social welfare are $g(1,2)$ or $g(12,0)$ or $g(12,1)$ or $g(12,12)$, depending on both the degree of product differentiation and the size of the link costs. Thus appendix. The distribution networks that attain the maximum social welfare are $g(1,2)$ or appendix. The userstochand networks that attain the maximum social veltate g(1, 2) or $g(12, 1)$ or $g(12, 12)$, depending on both the degree of product differentiation and the size of the link costs. Thus, only distribut $q(12,0)$ or $q(12,1)$ or $q(12,12)$, depending on both the degree of product differentiation g(12, 0) or g(12, 1) or g(12, 12), depending or local value differentiation
and the size of the link costs. Thus, only distribution networks that market both products
can achieve the highest social welfare. That is, inter and the size of the link costs. Thus, only distribution networks that market both products can achieve the highest social welfare. That is, interbrand competition is always socially
desirable in the market. However, intrabrand competition and in-store competition are
not necessarily socially desirable.
Proposi can achieve the highest social welfare. That is, interbrand competition is always socially desirable in the market. However, intrabrand competition and in-store competition are not necessarily socially desirable.

desirable in the market. However, intrabrand competition and in-store competition are
not necessarily socially desirable.
Proposition 6 The distribution network that attains the highest level of social welfare is
always o not necessarily socially desirable.
 Proposition 6 The distribution network that attains the highest level of social welfare is always one that markets both products. In particular the highest social welfare is obtained **Proposition 6** The distribution
always one that markets both pro-
with
a) $g(12, 12)$ for high enough degrifiers are necessary and the size of k,
 $\frac{19}{19}$ The equilibrum transfer price rank
 $w(g(1,2)) < w(g(1,1)) = w(g(1,0)).$ **Proposition 6** The distribution network that attains the highest level of social welfare is that the distribution of the highest social welfare is obtained
high enough degrees of product differentiation and low enough link costs.
of the size of k, $g(12, 12)$ maximizes social welfare for $0 < d \le 0.0326$.
transfer always one that markets both products. In particular the highest social welfare is obtained $with$

with
a) $g(12,12)$ for high enough degrees of product differentiation and low enough link costs.
Regardless of the size of k, $g(12,12)$ maximizes social welfare for $0 < d \le 0.0326$.
¹⁹The equilibrum transfer price ranki a) g
 $\frac{19\pi}{1}$
 $w(g)$ a) $g(12, 12)$ for high enough degrees of product differentiation and low enough link costs. Regardless of the size of k, $g(12, 12)$ maximizes social welfare for $0 < d \leq 0.0326$.

 $g(12, 12)$ for high enough degrees of product digerentiation and low enough link costs.
 $Regardless of the size of k, g(12, 12) maximizes social welfare for 0 < d \le 0.0326$.

The equilibrum transfer price ranking is: $w(g(12, 12)) = w(g(12, 0)) < w_2(g(12, 1)) < w_1(g(12, 1)) <$
 Regardless of the size of k, $g(12, 12)$ maximizes social weight for $0 < a \le 0.0326$.

ie equilibrum transfer price ranking is: $w(g(12, 12)) = w(g(12, 0)) < w_2(g(12, 1)) < w_1(g(12, 1))$

2) $> w(g(1, 1)) = w(g(1, 0)).$

21 ¹⁹The equilibrum transfer price ranking is: $w(g(12, 12)) = w(g(12, 0)) < w_2(g(12, 1)) < w_1(g(12, 1)) <$ $w(g(1, 2)) < w(g(1, 1)) = w(g(1, 0))$

- b) $g(12,1)$ for low enough degrees of product differentiation and intermediate sizes of link costs. Regardless of the size of k, $g(12,1)$ maximizes social welfare for $d \geq 0.954$.
- c) $g(1,2)$ for intermediate acgress of product afferentiation, $0.0520 \leq a \leq \frac{1}{3}$ sizes of link costs.
- α) $g(12, 0)$ for intermediate acyrecs of product afferentiation, $\frac{1}{3}$ sizes of link costs.

Figure 7 displays the distribution networks that maximize social welfare. The area A corresponds to the range of parameters where $g(12, 12)$ maximizes social welfare; in the area C $g(1,2)$ maximizes social welfare; in the area D $g(12,0)$ maximizes social welfare, and in the area B $q(12, 1)$ maximizes social welfare. Comparing Figure 5 with Figure 7 we observe that the distribution networks that firms will endogenously form following their own interest enter, in general, in contradiction with those that maximize welfare.

Figure 7: Social welfare maximizing distribution networks.

, and high For the particular case $k = 0$, we find that: (i) when $g(12, 12)$ is strongly stable it is $k = 0$, we find that: (i) when $g(12, 12)$ is strongly stable it is
ial welfare, but the reverse is not true; (ii) $g(12, 1)$ maximizes
54,1) but it is not strongly stable. Once the formation of links
) also maximize soci the one that maximizes social welfare, but the reverse is not true; (ii) $q(12,1)$ maximizes $g(12, 1)$ maximizes

i formation of links

ies of the degree of

rongly stable when

r stable when they social welfare when $d \in (0.954, 1)$ but it is not strongly stable. Once the formation of links $d \in (0.954, 1)$ but it is not strongly stable. Once the formation of links

l $g(12,0)$ also maximize social welfare for some values of the degree of

ion and of the link costs. While $g(1,2)$ could be strongly stable whe is costly, $g(1,2)$ and $g(12,0)$ also maximize social welfare for some values of the degree of $g(1, 2)$ and $g(12, 0)$ also maximize social welfare for some values of the degree of differentiation and of the link costs. While $g(1, 2)$ could be strongly stable when they izes social welfare, the networks $g(12, 0)$ product differentiation and of the link costs. While $g(1,2)$ could be strongly stable when $g(1, 2)$ could be strongly stable when
d $g(12, 1)$ are never stable when they it maximizes social welfare, the networks $g(12,0)$ and $g(12,1)$ are never stable when they $g(12, 0)$ and $g(12, 1)$ are never stable when they
22

reach the maximum welfare. Moreover, costly links increase the conflict between social welfare and strong stability with respect to the network $q(12, 12)$.

 $g(12, 12)$.
2, 12), $g($
2, 12), $g($
ibution r
ibution r
ie sociall;
cations of
setting v
of interbi
h policies
contrast
or costless
differentia
ts might
both ret.
work $g(12)$
work $g(12)$
is of proces in stable for
t In general, there are distribution networks like $g(12,12)$, $g(12,0)$ and $g(12,1)$ that $g(12, 12)$, $g(12, 0)$ and $g(12, 1)$ that
ees on their own, as compared with
listribution network $g(1,2)$ appears
ld be socially desirable. Mycielski,
mplications of manufacturers' choices
in a setting where retailers are less likely to arise when leaving the market forces on their own, as compared with $g(1, 2)$ appears
ble. Mycielski,
cturers' choices
tailers compete
alry, any policy
necessary once
ones we obtain
 ve get that such
hen, restricting
positive impact
om $g(12, 12)$ to
hich is the one
are values of the
work the socially desirable outcome. By contrast, the distribution network $g(1,2)$ appears to be stable under more situations than what would be socially desirable. Mycielski, Riyanto and Wuyts (2000) have studied the welfare implications of manufacturers' choices of vertical arrangements and its policy implications in a setting where retailers compete à la Bertrand. They have shown that, for a low degree of interbrand rivalry, any policy measure to restrict vertical restraints is unnecessary. Such policies become necessary once there is a high degree of interbrand rivalry. Their results contrast with the ones we obtain in a setting where retailers compete à la Cournot. Even for costless links, we get that such policies are also necessary for high degrees of product differentiation. Then, restricting exclusive distribution and exclusive dealing arrangements might have a positive impact on social welfare. Impeding the profitable deviation of both retailers from $g(12, 12)$ to $q(1,2)$ would make strongly stable the distribution network $q(12,12)$, which is the one that maximizes social welfare.

5 Conclusion

 $g(12, 12)$ to
 μ is the one
 μ is the one
 μ
 μ is the *non*-
 μ
 $g(1, 2)$ would make strongly stable the distribution network $g(12, 12)$, which is the one
that maximizes social welfare.

The that maximizes social welfare.

The have analyzed the networks between two manufacturers of d We have analyzed the networks between two manufacturers of differentiated goods and two multi-product retailers that one might expect to emerge in the long run. We have found that only three distribution networks are strongly stable for particular values of the degree of product differentiation and link costs. A first distribution network, the nonexclusive distribution & non-exclusive dealing system, in which both retailers distribute exclusive distribution & non-exclusive dealing system, in which both retailers distribute
both products is strongly stable for intermediate degrees of product differentiation and
small link costs. In this distribution net both products is strongly stable for intermediate degrees of product differentiation and small link costs. In this distribution network, both interbrand and intrabrand competition are present in the market. A second distribution network, the exclusive distribution $\&$ exexclusive distribution & ex-
ifferent product is strongly
ribution network, no intra-
ion, the *mixed distribution*
the other retailer sells only
tion and large link costs.²⁰
stry. The analysis made by Slade
FU.K. Monop *clusive dealing* system, in which each retailer distributes a different product is strongly *clusive dealing* system, in which each retailer distributes a different product is strongly stable for low degrees of product differentiation. In this distribution network, no intra-
brand competition appears in the mark stable for low degrees of product differentiation. In this distribution network, no intrabrand competition appears in the market. A third distribution, the mixed distribution system, in which one retailer distributes both products while the other retailer sells only one is strongly stable for high degrees of product differentiation and large link costs.20

retailer sells only
large link costs.²⁰
nalysis made by Slade
nopolies and Mergers
ic-house chains which
94, 54% of the public system, in which one retailer distributes both products while the other retailer sells only
one is strongly stable for high degrees of product differentiation and large link costs.²⁰
²⁰The mixed distribution system se 20 The mixed distribution system seems quite common in the beer industry. The analysis made by Slade (1998) for the U.K. beer industry reveals that one of the effects of the U.K. Monopolies and Mergers Commission report and the Beer Orders passed after 1989 was the formation of public-house chains which most often operate under exclusive purchasing contracts with major brewers. In 1994, 54% of the public

Finally, for some values of the degree of product differentiation and link costs, no distribution network is strongly stable. In particular, when the degree of product differentiation is high enough or intermediate and link costs are moderate, the *non-exclusive distribution* & non-exclusive dealing system will not emerge in the "long-run" in contrast with Mycielski, Riyanto and Wuyts (2000) and Moner-Colonques, Sempere-Monerris and Urbano (2004). However, we will observe a cycle among the above three distribution networks. This is consistent with the observation that the distribution chains organization differs across markets and industries over time.²¹

un" in contrast with My-
ere-Monerris and Urbano
vee distribution networks.
hains organization differs
thains organization differs
trabrand competition in
on & non-exclusive deal-
stribution network, when
enough, two dist non-exclusive dealing system will not emerge in the "long-run" in contrast with My-
Rhap and Wuye (2000) and Morecc-Golosquer, Samper-Moneris and Tchan
60). However, we will observe a cycle among the absent line of signif Consumers are better off in a market with interbrand and intrabrand competition in both products. Thus, they prefer the *non-exclusive distribution* & *non-exclusive deal*non-exclusive distribution & non-exclusive deal-
whether the stable distribution network, when
en link costs are small enough, two distribution
The non-exclusive distribution & non-exclusive
if the degree of product diffe ing system. We have also investigated whether the stable distribution network, when ing system. We have also investigated whether the stable distribution network, when the stable distribution intervals, when the stable distribution is the stable distribution intervals in exact the stable distribution int it exists, maximizes social welfare. When link costs are small enough, two distribution non-exclusive distribution & non-exclusive
e degree of product differentiation is high
tem maximizes social welfare. When link
tworks may maximize welfare. The exclu-
maximizes welfare if the degree of product
exclusive d networks may maximize social welfare. The non-exclusive distribution & non-exclusive *dealing* system maximizes social welfare if the degree of product differentiation is high dealing system maximizes social welfare if the degree of product differentiation is high
enough; oberwise, the wated distribution system maximizes social welfare. When link
osts become large, we oscher distribution networ mixed distribution system maximizes social welfare. When link
other distribution networks may maximize welfare. The ezelu-
usive dealing system maximizes welfare if the degree of product
coupl; otherwise, the exclusive di enough; otherwise, the *mixed distribution system* maximizes social welfare. When link costs become large, two other distribution networks may maximize welfare. The exclusive distribution & exclusive dealing system maximizes welfare if the degree of product differentiation is high enough; otherwise, the exclusive distribution $\&$ non-exclusive deal*ing* system maximizes welfare. Thus, a conflict between stability and social welfare is likely to occur, even more if the degree of product differentiation is either low or high. This conflict is crucial from a competition policy perspective and is summarized in Table 1.

Acknowledgments

We wish to thank Paul Belleflamme, Rafael Moner-Colonques and Xavier Wauthy for helpful comments and discussion. This research started when Ana Mauleon was at LABORES

sive distribution & exclusive dealing system maximizes welfare if the degree of product differentiation is high enough; otherwise, the exclusive distribution & non-serietisted deal
ing system maximizes welfare. Thus, a co exclusive distribution & non-exclusive deal-
flict between stability and social welfare is
roduct differentiation is either low or high.
cy perspective and is summarized in Table 1.
pare-Colonques and Xavier Wauthy for hel ing system maximizes welfare. Thus, a conflict between stability and social welfare is
likely to occur, even more if the degree of product differentiation is either low or high.
This conflict is crucial from a competition houses were owned by either national or regional and local brewers, 27% corresponded to free pubs while the new formed public-chains accounted for the 19% of 56675 total number of public houses. The free pubs sell the beer of several brewers while the tied pubs are exclusive. Thus, there is evidence that exclusive retailers compete with multi-brand ones in the U.K. beer industry. For the U.S. beer industry, Sass (2005) has found evidence of a mixed pattern of distribution. All major U.S. brewers employ a mix of exclusive and non-exclusive distributors for their products. In particular, 38.7%. of Anheuser-Busch distributors were exclusive, while 98,3% of Miller and Coors distributors were non-exclusive. So, U.S. beer industry is another example of coexistence of exclusive retailers with multi-brand ones.

²¹ Examples of industries where products are differentiated and are sold by several multi-product retailers are books, TV sets, cola carbonated drinks; where products are differentiated but sold mainly by exclusive retailers are cars; where products are not very differentiated and sold by exclusive retailers are gas; and where products are differentiated and sold by both exclusive and multi-brand retailers are beer, industrial machinery/equipment and electronic and electric equipment.

Table 1: The conflict between stable distribution networks and social welfare

(URA 362 CNRS). Financial support from Spanish Ministerio de Ciencia y Tecnología under the projects BEC2000-1429 and BEC 2003-02084, support from Spanish Ministerio de Educación y Ciencia under the project SEJ2004-07554/ECON, support fron the Generalitat Valenciana under the project GRUPOS04/13, support from the Belgian French Community's program Action de Recherches Concertée 03/08-302 (UCL), support of a SSTC grant from the Belgian Federal government under the IAP contract 5/26 (FUSL), and support from the CNRS under the project GW/SCSHS/SH/2003-41 are gratefully acknowledged.

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.

Appendix

Manufacturers and retailers payoffs \mathbf{A}

We give the payoffs of the different possible distribution networks between two manufacturers and two retailers. Given the symmetry of the model, only six different distribution networks are at play. Apart from the distribution network $g(12, 12)$ already examined in Section 2, the other distribution networks are as follows.

 $g(12, 12)$ already examined in
distribution networks $g(0, 1)$,
the market: one manufacturer
offs, its sum, consumer surplus
 $u_2(g(0, 2))$ (10)
 $u_2(g(0, 2))$ (11)
 $y) = \frac{3(a - c)^2}{16} - 2k$ (12)
 $y) = \frac{(a - c)^2}{32} - 2k$ (13)
 $y,$ a) The distribution network $q(1,0)$ is symmetric to the distribution networks $q(0,1)$, $g(1, 0)$ is symmetric to the distribution networks $g(0, 1)$,

is a successive monopoly in the market: one manufacturer

a single retailer. Agents' payoffs, its sum, consumer surplus
 $(g(2, 0)) = \Pi_{M_2}(g(0, 1)) = \Pi_{M_2}(g(0,$ $g(2,0)$ and $g(0,2)$. There is a successive monopoly in the market: one manufacturer sells its product through a single retailer. Agents' payoffs, its sum, consumer surplus and social welfare are:

$$
\Pi_{M_1}(g(1,0)) = \Pi_{M_1}(g(2,0)) = \Pi_{M_2}(g(0,1)) = \Pi_{M_2}(g(0,2))
$$

=
$$
\frac{(a-c)^2}{8} - k
$$
 (10)

$$
g(2,0) \text{ and } g(0,2). \text{ There is a successive monopoly in the market: one manufacturer\nsells its product through a single retailer. Agents' payoffs, its sum, consumer surplus\nand social welfare are:\n
$$
\Pi_{M_1}(g(1,0)) = \Pi_{M_1}(g(2,0)) = \Pi_{M_2}(g(0,1)) = \Pi_{M_2}(g(0,2))
$$
\n
$$
= \frac{(a-c)^2}{8} - k
$$
\n
$$
\Pi_{R_1}(g(1,0)) = \Pi_{R_1}(g(2,0)) = \Pi_{R_2}(g(0,1)) = \Pi_{R_2}(g(0,2))
$$
\n
$$
= \frac{(a-c)^2}{16} - k
$$
\n
$$
\Phi(g(1,0)) = \Phi(g(2,0)) = \Phi(g(0,1)) = \Phi(g(0,2)) = \frac{3(a-c)^2}{16} - 2k
$$
\n
$$
C(g(1,0)) = C(g(2,0)) = C(g(0,1)) = C(g(0,2)) = \frac{(a-c)^2}{32}
$$
\n
$$
W(g(1,0)) = W(g(2,0)) = W(g(0,1)) = W(g(0,2)) = \frac{7(a-c)^2}{32} - 2k
$$
\n(14)
\n26
$$

$$
= \frac{(a-c)^2}{16} - k \tag{11}
$$
\n
$$
\Phi(g(1,0)) = \Phi(g(2,0)) = \Phi(g(0,1)) = \Phi(g(0,2)) = \frac{3(a-c)^2}{16} - 2k \tag{12}
$$
\n
$$
C(g(1,0)) = C(g(2,0)) = C(g(0,1)) = C(g(0,2)) = \frac{(a-c)^2}{32} \tag{13}
$$
\n
$$
W(g(1,0)) = W(g(2,0)) = W(g(0,1)) = W(g(0,2)) = \frac{7(a-c)^2}{32} - 2k \tag{14}
$$
\n
$$
26
$$

$$
C(g(1,0)) = C(g(2,0)) = C(g(0,1)) = C(g(0,2)) = \frac{(a-c)^2}{32}
$$
\n(13)

$$
\Phi(g(1,0)) = \Phi(g(2,0)) = \Phi(g(0,1)) = \Phi(g(0,2)) = \frac{3(a-c)}{16} - 2k \qquad (12)
$$

\n
$$
C(g(1,0)) = C(g(2,0)) = C(g(0,1)) = C(g(0,2)) = \frac{(a-c)^2}{32} \qquad (13)
$$

\n
$$
W(g(1,0)) = W(g(2,0)) = W(g(0,1)) = W(g(0,2)) = \frac{7(a-c)^2}{32} - 2k \qquad (14)
$$

\n
$$
26
$$

b) The distribution network $g(1,1)$ is symmetric to $g(2,2)$.

$$
\Pi_{M_1}(g(1,1)) = \Pi_{M_2}(g(2,2)) = \frac{(a-c)^2}{6} - 2k
$$
\n
$$
\Pi_{M_1}(g(1,1)) = \Pi_{M_2}(g(1,1)) = \Pi_{M_1}(g(2,2)) = \Pi_{M_2}(g(2,2)) = \Pi_{M_1}(g(2,2))
$$
\n(15)

bution network
$$
g(1,1)
$$
 is symmetric to $g(2,2)$.
\n
$$
\Pi_{M_1}(g(1,1)) = \Pi_{M_2}(g(2,2)) = \frac{(a-c)^2}{6} - 2k
$$
\n
$$
\Pi_{R_1}(g(1,1)) = \Pi_{R_2}(g(1,1)) = \Pi_{R_1}(g(2,2)) = \Pi_{R_2}(g(2,2))
$$
\n
$$
= \frac{(a-c)^2}{36} - k
$$
\n
$$
\Phi(g(1,1)) = \Phi(g(2,2)) = \frac{2(a-c)^2}{9} - 4k
$$
\n
$$
C(g(1,1)) = C(g(2,2)) = \frac{(a-c)^2}{18}
$$
\n
$$
W(g(1,1)) = W(g(2,2)) = \frac{5(a-c)^2}{18}
$$
\n
$$
W(g(1,1)) = W(g(2,2)) = \frac{5(a-c)^2}{18} - 4k
$$
\n
$$
\Phi(g(1,2)) = \Pi_{M_2}(g(1,2)) = \Pi_{M_1}(g(2,1)) = \Pi_{M_2}(g(2,1))
$$
\n
$$
= \frac{2(2-d)(a-c)^2}{(2+d)(1-d)^2} - k
$$
\n
$$
\Pi_{R_1}(g(1,2)) = \Pi_{R_2}(g(1,2)) = \Pi_{R_1}(g(2,1)) = \Pi_{R_2}(g(2,1))
$$
\n
$$
= \frac{4(a-c)^2}{(2+d)^2(4-d)^2} - k
$$
\n
$$
\Phi(g(1,2)) = \Phi(g(2,1)) = \frac{4(6-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k
$$
\n
$$
C(g(1,2)) = C(g(2,1)) = \frac{4(6-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k
$$
\n
$$
C(g(1,2)) = \Phi(g(2,1)) = \frac{4(7-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k
$$
\n
$$
W(g(1,2)) = \Pi_{M_2}(g(1,0)) = \Pi_{M_1}(g(0,12)) = \Pi_{M_2}(g(0,12))
$$
\n
$$
= \frac{(1-d)(a-c
$$

$$
\Phi(g(1,1)) = \Phi(g(2,2)) = \frac{2(a-c)^2}{9} - 4k
$$
\n
$$
C(g(1,1)) = C(g(2,2)) = \frac{(a-c)^2}{18}
$$
\n(18)

$$
C(g(1,1)) = C(g(2,2)) = \frac{(a-c)^2}{18}
$$
\n(18)

$$
W(g(1,1)) = W(g(2,2)) = \frac{5(a-c)^2}{18} - 4k
$$
\n(19)

) The distribution network

$$
\Pi_{M_1}(g(1,2)) = \Pi_{M_2}(g(1,2)) = \Pi_{M_1}(g(2,1)) = \Pi_{M_2}(g(2,1))
$$
\n
$$
2(2-d)(a-c)^2
$$
\n(20)

$$
= \frac{2(2-a)(a-b)}{(2+d)(4-d)^2} - k
$$

\n
$$
= \Pi_{\text{D}}(a(1,2)) - \Pi_{\text{D}}(a(2,1)) - \Pi_{\text{D}}(a(2,1)) \tag{21}
$$

$$
\Pi_{R_1}(g(1,2)) = \Pi_{R_2}(g(1,2)) = \Pi_{R_1}(g(2,1)) = \Pi_{R_2}(g(2,1))
$$
\n
$$
= \frac{4(a-c)^2}{(2+d)^2(4-d)^2} - k
$$
\n(21)

$$
= \frac{(a-c)}{36} - k \qquad (16)
$$
\n
$$
\Phi(g(1,1)) = \Phi(g(2,2)) = \frac{2(a-c)^2}{9} - 4k \qquad (17)
$$
\n
$$
C(g(1,1)) = C(g(2,2)) = \frac{(a-c)^2}{18} \qquad (18)
$$
\n
$$
W(g(1,1)) = W(g(2,2)) = \frac{5(a-c)^2}{18} - 4k \qquad (19)
$$
\n
$$
W_1(g(1,2)) = W_{1/2}(g(1,2)) = \Pi_{M_1}(g(2,1)) = \Pi_{M_2}(g(2,1)) \qquad (20)
$$
\n
$$
= \frac{2(2-d)(a-c)^2}{(2+d)(4-d)^2} - k
$$
\n
$$
\mu_1(g(1,2)) = \Pi_{R_2}(g(1,2)) = \Pi_{R_1}(g(2,1)) = \Pi_{R_2}(g(2,1)) \qquad (21)
$$
\n
$$
= \frac{4(a-c)^2}{(2+d)^2(4-d)^2} - k
$$
\n
$$
\Phi(g(1,2)) = \Phi(g(2,1)) = \frac{4(6-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (22)
$$
\n
$$
C(g(1,2)) = C(g(2,1)) = \frac{4(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (23)
$$
\n
$$
W(g(1,2)) = W(g(2,1)) = \frac{4(7-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (24)
$$
\n
$$
W(g(1,2)) = W(g(2,0)) = \frac{4(7-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (24)
$$
\n
$$
W(g(1,2)) = \Pi_{M_2}(g(12,0)) = \Pi_{M_1}(g(0,12)) = \Pi_{M_2}(g(0,12)) \qquad (25)
$$
\n
$$
= \frac{(1-d)(a-c)^2}{2(1+d)(2-d)^2} - k
$$
\n
$$
(g(12,0)) = \Phi(g(0,12)) = \frac{(3-2d)(a-c)^2}{2(1+d)(2-d)^2} - 4k
$$

$$
C(g(1,2) = C(g(2,1)) = \frac{4(a-c)^2}{(2+d)^2(4-d)^2}
$$
\n(23)

$$
W(g(1,2) = W(g(2,1)) = \frac{4(7-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k
$$
\n(24)

d) The distribution network $g(12,0)$ is symmetric to $g(0,12)$.

$$
\Pi_{M_1}(g(12,0)) = \Pi_{M_2}(g(12,0)) = \Pi_{M_1}(g(0,12)) = \Pi_{M_2}(g(0,12))
$$
\n
$$
= \frac{(1-d)(a-c)^2}{2(1+d)(2-d)^2} - k
$$
\n(25)

$$
H_{R_1}(y(1,1)) = H_{R_2}(y(1,1)) - H_{R_3}(y(2,2)) - H_{R_2}(y(2,2))
$$
\n
$$
= \frac{(a-c)^2}{36} - k \qquad (17)
$$
\n
$$
G(g(1,1)) = \Phi(g(2,2)) = \frac{2(a-c)^2}{18} - 4k \qquad (17)
$$
\n
$$
G(g(1,1)) = U(g(2,2)) = \frac{5(a-c)^2}{18} - 4k \qquad (19)
$$
\n
$$
W(g(1,1)) = W(g(2,2)) = \frac{5(a-c)^2}{18} - 4k \qquad (19)
$$
\n
$$
= \frac{2(2-d)(a-c)^2}{18} - k \qquad (19)
$$
\n
$$
= \frac{2(2-d)(a-c)^2}{(2+d)(4-d)^2} - k
$$
\n
$$
\Pi_{R_1}(g(1,2)) = \Pi_{R_2}(g(1,2)) = \Pi_{R_1}(g(2,1)) = \Pi_{R_2}(g(2,1)) \qquad (20)
$$
\n
$$
= \frac{4(a-c)^2}{(2+d)^2(4-d)^2} - k
$$
\n
$$
\Phi(g(1,2)) = \Phi(g(2,1)) = \frac{4(6-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (22)
$$
\n
$$
G(g(1,2)) = C(g(2,1)) = \frac{4(6-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (22)
$$
\n
$$
W(g(1,2)) = U(g(2,1)) = \frac{4(7-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (23)
$$
\n
$$
W(g(1,2)) = W(g(2,1)) = \frac{4(7-d^2)(a-c)^2}{(2+d)^2(4-d)^2} - 4k \qquad (24)
$$
\n
$$
H_{\text{
}}(g(12,0)) = \Pi_{M_2}(g(12,0)) = \Pi_{M_1}(g(0,12)) = \Pi_{M_2}(g(0,12)) \qquad (25)
$$
\n
$$
= \frac{(1-d)(a-c)^2}{2(1+d)(2-d)^2} - k
$$

$$
\Pi_{R_1}(g(12,0)) = \Pi_{R_2}(g(0,12)) = \frac{(a-c)^2}{2(1+d)(2-d)^2} - 2k
$$
\n
$$
\Phi(g(12,0)) = \Phi(g(0,12)) = \frac{(3-2d)(a-c)^2}{2(1+d)(2-d)^2} - 4k
$$
\n
$$
C(g(12,0)) = C(g(0,12)) = \frac{2(a-c)^2}{8(1+d)^2(2-d)^2}
$$
\n
$$
W(g(12,0)) = W(g(0,12)) = \frac{(7+2d-4d^2)(a-c)^2}{4(1+d)^2(2-d)^2} - 4k
$$
\n
$$
27
$$
\n(29)

$$
C(g(12,0)) = C(g(0,12)) = \frac{2(a-c)^2}{8(1+d)^2(2-d)^2}
$$
\n(28)

$$
\Phi(g(12,0)) = \Phi(g(0,12)) = \frac{(5-2a)(a-c)}{2(1+d)(2-d)^2} - 4k
$$
\n
$$
C(g(12,0)) = C(g(0,12)) = \frac{2(a-c)^2}{8(1+d)^2(2-d)^2}
$$
\n
$$
W(g(12,0)) = W(g(0,12)) = \frac{(7+2d-4d^2)(a-c)^2}{4(1+d)^2(2-d)^2} - 4k
$$
\n
$$
27
$$
\n(29)

e) The distribution network $g(12, 1)$ is symmetric to $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$.

$$
\Pi_{M_1}(g(12,1)) = \Pi_{M_1}(g(1,12)) = \Pi_{M_2}(g(12,2)) = \Pi_{M_2}(g(2,12))
$$

=
$$
\frac{(1-d)(2-d)(2+d)(8+5d)^2(a-c)^2}{6(1+d)(16-7d^2)^2} - 2k
$$
 (30)

$$
\Pi_{M_2}(g(12,1)) = \Pi_{M_2}(g(1,12)) = \Pi_{M_1}(g(12,2)) = \Pi_{M_1}(g(2,12))
$$

=
$$
\frac{(1-d)(8+4d-d^2)^2(a-c)^2}{2(1+d)(16-7d^2)^2} - k
$$
 (31)

$$
\Pi_{R_1}(g(12,1)) = \Pi_{R_1}(g(12,2)) = \Pi_{R_2}(g(1,12)) = \Pi_{R_2}(g(2,12))
$$

=
$$
\frac{(52 + 28d - 7d^2 - d^3)(a - c)^2}{36(1 + d)(16 - 7d^2)} - 2k
$$
 (32)

$$
\Pi_{R_2}(g(12,1)) = \Pi_{R_2}(g(12,2)) = \Pi_{R_1}(g(1,12)) = \Pi_{R_1}(g(2,12))
$$

=
$$
\frac{(8+3d-2d^2)^2(a-c)^2}{9(16-7d^2)^2} - k
$$
 (33)

$$
\Phi(g(12,1)) = \Phi(g(12,2)) = \Phi(g(1,12)) = \Phi(g(2,12))
$$

=
$$
\frac{(a-c)^2}{36(1+d)(16-7d^2)^2}(3776+1280d-3232d^2 -1192d^3+509d^4+155d^5) - 6k
$$
 (34)

ribution network
$$
g(12,1)
$$
 is symmetric to $g(12,2)$, $g(1,12)$ and $g(2,12)$.
\n
$$
\Pi_{M_1}(g(12,1)) = \Pi_{M_2}(g(1,12)) = \Pi_{M_2}(g(12,2)) = \Pi_{M_2}(g(2,12))
$$
\n
$$
= \frac{(1-d)(2-d)(2+d)(16-7d)^2}{6(1+d)(16-7d^2)^2} - 2k \qquad (30)
$$
\n
$$
\Pi_{M_2}(g(12,1)) = \Pi_{M_2}(g(1,12)) = \Pi_{M_1}(g(12,2)) = \Pi_{M_1}(g(2,12))
$$
\n
$$
= \frac{(1-d)(8+4d-d^2)^2(a-c)^2}{2(1+d)(16-7d^2)^2} - k \qquad (31)
$$
\n
$$
\Pi_{R_1}(g(12,1)) = \Pi_{R_1}(g(12,2)) = \Pi_{R_2}(g(1,12)) = \Pi_{R_2}(g(2,12))
$$
\n
$$
= \frac{(52+28d-7d^2-d^2)(a-c)^2}{36(1+d)(16-7d^2)} - 2k \qquad (32)
$$
\n
$$
\Pi_{R_2}(g(12,1)) = \Pi_{R_2}(g(12,2)) = \Pi_{R_1}(g(1,12)) = \Pi_{R_1}(g(2,12))
$$
\n
$$
= \frac{(8+3d-2d^2)^2(a-c)^2}{9(16-7d^2)^2} - k \qquad (33)
$$
\n
$$
\Phi(g(12,1)) = \Phi(g(12,2)) = \Phi(g(1,12)) = \Phi(g(2,12))
$$
\n
$$
= \frac{(a-c)^2}{36(1+d)(16-7d^2)^2}(3776+1280d-3232d^2 -1192d^3 +509d^4 +155d^5) - 6k \qquad (34)
$$
\n
$$
C(g(12,1)) = C(g(1,22)) = C(g(1,12)) = C(g(2,12))
$$
\n
$$
= \frac{(a-c)^2}{72(1+d)^2(16-7d^2)^2}(1600
$$

$$
W(g(12,1)) = W(g(12,2)) = W(g(1,12)) = W(g(2,12))
$$

=
$$
\frac{(a-c)^2}{72(1+d)^2(16-7d^2)^2}(9152+11968d-4016d^2 -9560d^3 -1493d^4 +1408d^5 +335d^6) -6k
$$
 (36)

\bf{B} Several results and proofs

B.1 Bounds on
Proof of Lemma 1

Proof of Lemma 1

C(g(12, 1)) = C(g(1, 12)) = C(g(1, 12)) = C(g(2, 12))

= $\frac{(a-c)^2}{72(1+d)^2(16-7d^2)^2}(1600+1856d-$
 $-712d^3-127d^4+80d^5+25d^6)$
 $W(g(12, 1)) = W(g(12, 2)) = W(g(1, 12)) = W(g(2, 12))$

= $\frac{(a-c)^2}{72(1+d)^2(16-7d^2)^2}(9152+11968d-$
 -956 = $\frac{(a-c)}{72(1+d)^2(16-712d^3-127d)}$

= $W(g(12,2)) =$

= $\frac{(a-c)^2}{72(1+d)^2(16-72d^3-149d^2)}$

5 and proofs

tion networks $g(1)$

nost binding const
 $k < \frac{(a-c)^2}{36}$. Simila

oses $\Pi_{R_1}(g(1,2))$

2. $72(1 + d)^2(16 - 7d^2)^2$ (1600 + 1850a - 112d²
 $-712d^3 - 127d^4 + 80d^5 + 25d^6$)
 $W(g(12,2)) = W(g(1,12)) = W(g(2,12))$
 $(a - c)^2$
 $72(1 + d)^2(16 - 7d^2)^2$ (9152 + 11968d - 4016
 $-9560d^3 - 1493d^4 + 1408d^5 + 335d^6) - 6k$
 nd proofs
 $-712d^3 - 127d^4 + 80d^5 + 25d^6$ (35)
 $W(g(12,2)) = W(g(1,12)) = W(g(2,12))$
 $(a-c)^2$
 $\overline{72(1+d)^2(16-7d^2)^2}(9152+11968d-4016d^2$
 $-9560d^3 - 1493d^4 + 1408d^5 + 335d^6) - 6k$ (36)
 nd proofs

and **proofs**

an networks $g(1,0)$ an W(g(12, 1)) = W(g(12, 2)) = W(g(1, 12)) = W(g(2, 12))

= $\frac{(a-c)^2}{72(1+d)^2(16-7d^2)^2}(9152+11968d-4$

-9560d³ - 1493d⁴ + 1408d⁵ + 335d⁶) - 6.
 ral results and proofs

mds on k

emma 1

st the distribution networks $=\frac{(a-c)^2}{72(1+d)^2(16-c)}$
 $-9560d^3 - 149$
 s and proofs

and **proofs**

and **proofs**
 $g(1)$

and $k < \frac{(a-c)^2}{36}$. Simila

oses $\Pi_{R_1}(g(1,2))$
 2 $72(1+d)^2(16-7d^2)^2(9152+11968d-4016d^2-9560d^3-1493d^4+1408d^5+335d^6)-6k$
 nd proofs

11 networks $g(1,0)$ and $g(1,1)$. From direct is

binding constraint for k is the one which
 $\frac{(a-c)^2}{36}$. Similarly, for $g(1,2)$ −9560 d^3 − 1493 d^4 + 1408 d^5 + 335 d^6) − 6k (36)
 nd proofs (36)
 nd proofs (1,0) and $g(1,1)$. From direct inspection of

binding constraint for k is the one which ensures that
 $\frac{(a-c)^2}{36}$. Similarly, for Consider first the distribution networks $g(1,0)$ and $g(1,1)$. From direct inspection of $g(1,0)$ and $g(1,1)$. From direct inspection of
onstraint for k is the one which ensures that
milarly, for $g(1,2)$ the most binding constraint
()) > 0, that is $k < \frac{4(a-c)^2}{(4-d)^2(2+d)^2}$. For $g(12,0)$,
28 the agents' profits, the most binding constraint for k is the one which ensures that k is the one which ensures that

(1,2) the most binding constraint

is $k < \frac{4(a-c)^2}{(4-d)^2(2+d)^2}$. For $g(12,0)$, $\Pi_{R_1}(g(1,1)) > 0$, that is, $k < \frac{(a-c)^2}{36}$
for k is the one that imposes $\Pi_{R_1}(g)$ for k is the one that imposes $\Pi_{R_1}(g(1,2)) > 0$, that is $k < \frac{4(a-c)^2}{(4-d)^2(2+d)^2}$. For
28 . Similarly, for $g(1,2)$ the most binding constraint
 $(1,2)$) > 0, that is $k < \frac{4(a-c)^2}{(4-d)^2(2+d)^2}$. For $g(12,0)$,

28 k is the one that imposes $\Pi_{R_1}(g(1,2)) > 0$, that is $k < \frac{4(a-c)^2}{(4-d)^2(2+c)}$
28 $g(12,0),$ $\Pi_{R_1}(g(12,0)) > 0$ or equivalently $k < \frac{(a-c)^2}{4(2-d)^2(1+d)}$ is the most binding constraint. Comparing $\frac{(a-c)^2}{36}$ with $\frac{4(a-c)^2}{(4-d)^2(2+d)^2}$ and with $\frac{(a-c)^2}{4(2-d)^2(1+d)}$, it follows that the former expression is smalle paring $\frac{(a-c)^2}{36}$ with $\frac{4(a-c)^2}{(4-d)^2(2+1)}$
is smaller than each of the
it follows that $k < \frac{(a-c)^2}{36}$
 $\Pi_{R_1}(g(12,1)) > 0, \Pi_{R_2}(g(1$ paring $\frac{(a-c)^2}{36}$ with $\frac{4(a-c)^2}{(4-d)^2(2+d)^2}$ and with $\frac{(a-c)^2}{4(2-d)^2(1+d)}$
is smaller than each of the other two expressions is
it follows that $k < \frac{(a-c)^2}{36}$ is a more binding con
 $\Pi_{R_1}(g(12,1)) > 0$, $\Pi_{R_2}(g(12,1$ is smaller than each of the other two expressions for $1 > d$. For $g(12, 1)$ and $g(12, 12)$, it follows that $k < \frac{(a-c)^2}{36}$ is a more binding condition for $\frac{(1-a)(a-c)^2}{3(2-d)^2(1+d)}$, is more binding
0. Therefore, by comparing
on k as a function of d preexpressions $\frac{(a-c)^2}{36}$ and $\frac{(1-d)(a-c)^2}{3(2-d)^2(1+d)}$ we have the upper bound on
sented in Lemma 1.■
B.1.1 Pairwise stable distribution networks. sented in Lemma 1.

B.1.1 Pairwise stable distribution networks. **B.1.1** Pairwise stable
Proof of Proposition 1

Proof of Proposition 1

Remember that the link cost parameter is bounded above as indicated by Lemma 1. We proceed by steps.

- First, the distribution networks where one manufacturer and one retailer are out of the market (i.e. $q(1,0), q(2,0), q(0,1)$ and $q(0,2)$) are not pairwise stable since the manufacturer present in the market and the retailer selling no product would have incentives to create a link between them (i.e., $g(1,0)$ is defeated by $g(1,1)$).
- $\Pi_{R_1}(g(12,0)) > 0$ or equivalently $k < \frac{16.26}{32.26}$

paring $\frac{(4c-2)^2}{362.21}$ with $\frac{4(4c-2)^2}{14.29^2(21,6)^2}$ and with $\frac{12.66}{32.26^2}$

is maller than each of the other two expression

it follows that $k < \frac$, it follows that the former expression
for $1 > d$. For $g(12, 1)$ and $g(12, 12)$,
dition for k than those imposed by
2,12) > 0 for $1 > d$. Similarly, the
t is $k < \frac{d(2-d)(q-c)^2}{3(1+d)}$, is more binding
12,1) > 0. Therefore, > d. For $g(12, 1)$ and $g(12, 12)$,
1 for k than those imposed by

> 0 for 1 > d. Similarly, the
 $c < \frac{(1-d)(e-c)^2}{3(2-d)^2(1+d)}$, is more binding

> > 0. Therefore, by comparing

> > 0. Therefore, by comparing

1 > 0. Therefo $k < \frac{(a-c)^2}{36}$
 $0, \Pi_{R_2}(g($

that ensures
 $\text{ring } \Pi_{M_1}(g)$
 $\frac{(1-\alpha)^2}{2}$ and $\frac{(1-\alpha)^2}{3(2-\alpha)}$
 $1. \blacksquare$

se stable (

osition 1

the link co

s.

stribution 1

the link co

s.

stribution 1

the link co
 $\frac{(1-\alpha)^2}{3$ k than those imposed by

for $1 > d$. Similarly, the
 $\frac{-d}{(a-c)^2}$, is more binding
 $\frac{-d}{(a-c)^2}$, is more binding
 \therefore Therefore, by comparing

n k as a function of d pre-

and one retailer are out of

to pairwise stab ΠR₁ (g(12, 1)) > 0) H_{R2} (g(12, 1)) > 0 so and ΠR₂ (g(12, 12)) > 0 (ex 1) o for 1 > d. Similarly, the constrained the more binding the expectation constrained in the constrained in the similar constrained in the sim k that ensures $\Pi_{M1}(g(12, 12)) > 0$, that is $k < \frac{(1-6)(\alpha-1)^2}{8(2-\alpha)(1+\alpha)}$
surving $\Pi_{M1}(g(12, 1)) > 0$ and $\Pi_{M2}(g(12, 1)) > 0$. Therefore $\frac{1}{36}$ and $\frac{(1-d)(\alpha-1)^2}{4(2-\alpha)^2(1+\alpha)}$ we have the upper bound on k as a ma 1. that those ensuring ΠM₁ (g(12, 1)) > 0 and Π_{M2}(g(12, 1)) > 0. Therefore, by comparing
happensions $\frac{E_{\text{rad}}(2)}{2}$ and $\frac{1}{32\pi\pi^2/(1+\alpha)}$ we have the upper bound on *k* as a function of *d* pre-
sented in Lemma 1 icated by Lemma 1. We

done retailer are out of

pairwise stable since the

graphy interaction of d pre-

eated by $g(1,1)$).

nere is one manufacture

that no retailer wants to

with two links wants to

stable manufactur $g(1,0)$, $g(2,0)$, $g(0,1)$ and $g(0,2)$) are not pairwise stable since the
seent in the market and the retailer selling no product would have
to saint between them (i.e., $g(1,0)$ is defeated by $g(1,1)$).
distribution $g(1, 0)$ is defeated by $g(1, 1)$).

and $g(2, 2)$ there is one manuf

nks. Note that no retailer w.

mufacturer with two links with

contradicts the restriction of

s to check whether any retailes

f the market. Take fo b) Second, in case of distribution networks $g(1,1)$ and $g(2,2)$ there is one manufacturer $g(1, 1)$ and $g(2, 2)$ there is one manufacturer

at two links. Note that no retailer wants to

the manufacturer with two links wants to
 $\frac{3}{2}$ which contradicts the restriction on $k <$

remains to check whether any out of the market and the other with two links. Note that no retailer wants to break its unique link. Furthermore, the manufacturer with two links wants to break one link if and only if $k > \frac{(a-c)^2}{24}$ which contradicts the restriction on $k > \frac{(a-c)^2}{24}$
Then, it results that it is
unifactured $\frac{((a-c)^2)}{7d^2} - 2$
vays holds (2, 2) are rout of the
tworks $g(1)$
with two lie retailer
 $\frac{c)^2}{2}$. Since
Now we shot the marke 29 ants R_1 .
ly if hen, and α out α its α its α its α its α is α its α i $k \equiv \min\left\{\frac{(a-c)^2}{36}\right\}$
to create a lin
 $\Pi_{R_1}(g(12, 1)) = \frac{(6+2d+d^3)(a-c)^2}{6(1+d)(16-7d^2)}$
we conclude th
retailer and the
ird, in case of
of the market
unique link. If
and only if k
tailer never brea link with the $\overline{k} \equiv \min\{\frac{(a-c)^2}{36}, \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2}\}\.$ Then, it remains to check whether any retailer wants to create a link with the manufacturer out of the market. Take for example R_1 . , $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$
k with the

 $\frac{(52+28d-7d^2-36(1+d))}{36(1+d)}$
> k, which
at $g(1, 1)$ are manufacture distribution
and the oth urthermore
> $\frac{(4+3d^2-d^3-16(1+d))}{16(1+d)}$
eaks one line $\frac{(1-a)(a-c)^2}{3(1+d)(2-d)^2}$. Then, it remains to check whether any retailer wants
with the manufacturer out of the market. Take for example R_1 .
 $\frac{(52+28d-7d^2-d^3)(a-c)^2}{36(1+d)(16-7d^2)} - 2k > \Pi_{R_1}(g(1,1)) = \frac{(a-c)^2}{36} - k$ if and $\frac{36}{10}$ − $\frac{(6+2d+d^3)(a-c)^2}{6(1+d)(16-7d^2)}$
we conclude the tailer and the irretailer and the irred, in case of $\frac{6+2d+a^2}{6(1+d)(16-7d^2)}$ > k, which always holds since $\frac{(6+2d+d^2)(d-c)^2}{6(1+d)(16-7d^2)}$ > $\frac{(1-d)(d-c)^2}{3(1+d)(2-d)^2}$. Then,
we conclude that $g(1,1)$ and $g(2,2)$ are not pairwise stable since one link between a
etailer and we conclude that $g(1,1)$ and $g(2,2)$ are not pairwise stable since one link between a retailer and the manufacturer out of the market will always be created.
- to create a link with the manufacturer out of the market. Take for example R_1 .
 $\Pi_{R_1}(g(12,1)) = \frac{(52+28d-7d^2 d^2)}{36(1+d)(16-7d^2)} 2k > \Pi_{R_1}(g(1,1)) = \frac{(a-c)^2}{36} k$ if and only if $\frac{(6+2d+d^2)(a-c)^2}{6(1+d)(16-7d^2)} > k$, whic $\Pi_{R_1}(g(12, 1)) = \frac{(52+28d-7d^2-d^3)(a-c)^2}{36(1+d)(16-7d^2)}$
 $\frac{(6+2d+d^3)(a-c)^2}{6(1+d)(16-7d^2)} > k$, which always hwe conclude that $g(1, 1)$ and $g(2, 2)$ retailer and the manufacturer out of ird, in case of distribution network $\frac{2(28a - (a^2 - a^2)(a-c)^2}{36(1+d)(16-7d^2)} - 2k > \Pi_{R_1}(g(1, 1)) = \frac{(a-c)^2}{36}$
which always holds since $\frac{(6+2d+d^3)(a-c)^2}{6(1+d)(16-7d^2)} > \frac{1}{3}$
1, 1) and $g(2, 2)$ are not pairwise stable since conufacturer out of the market will k if and only if
 $\frac{d}{d}(a-c)^2$. Then,
 $\frac{d}{d}(2-d)^2$. Then,

link between a

ed.

one retailer out

tts to break its

eak one link if

than \overline{k} this re-

vants to create
 $I_{M_1}(g(12,1)) =$ > k, which always holds since $\frac{(6+2d+d^3)(a-c)^2}{6(1+d)(16-7d^2)}$
at $g(1,1)$ and $g(2,2)$ are not pairwise stable si
emanufacturer out of the market will always
distribution networks $g(12,0)$ and $g(0,12)$ tl
and the other $> \frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$

nce one link b

e created.

ere is one ret

ere is one ret

ere wants to

s to break or

reater than \overline{k}

turer wants
 M_1 . $\Pi_{M_1}(g)$ $g(1, 1)$ and $g(2, 2)$ are not pairwise stable since one link between a
anufacturer out of the market will always be created.
stribution networks $g(12, 0)$ and $g(0, 12)$ there is one retailer out
d the other with two l c) Third, in case of distribution networks $g(12,0)$ and $g(0,12)$ there is one retailer out $g(12, 0)$ and $g(0, 12)$ there is one retailer out
o links. No manufacturer wants to break its
er with two links wants to break one link if
nce this expression is greater than \overline{k} this re-
show that one manufacturer of the market and the other with two links. No manufacturer wants to break its unique link. Furthermore, the retailer with two links wants to break one link if and only if $k > \frac{(4+3a^2-d^2)(a-c)^2}{16(1+d)(2-d)^2}$. Since this expression is greater than tailer never breaks one link. Now we show that one manufacturer want a link with the retailer out of the market. Take for example M_1 . $k > \frac{(4+3d^2-d^3)(a-c)^2}{16(1+d)(2-d)^2}$
breaks one link. No
che retailer out of the k this re-
to create
 $(12, 1)$ = tailer never breaks one link. Now we show that one manufacturer wants to create a link with the retailer out of the market. Take for example M_1 . $\Pi_{M_1}(g(12, 1)) =$
29

 $\frac{(1-d)(2-d)(2+d)(8+5d)^2(a-c)^2}{6(1+d)(16-7d^2)^2}$
 $\frac{(1-d)(256-208d^2+64d^3+45d^4-c^2)}{6(2-d)^2(16-7d^2)^2}$

hand side of the inequali

networks $g(12,0)$ and $g(0)$ 6(1) and $\frac{d}{2\pi} \frac{\cos(\alpha - \alpha)}{\sin(\alpha - \alpha)}$ and α (12, 2)) = $\frac{d}{2\pi} \frac{\cos(\alpha - \alpha)}{\sin(\alpha - \alpha)}$

(6) and $\frac{\cos(\alpha - \alpha)}{\cos(\alpha - \alpha)}$ and $\frac{d}{2\pi} \frac{\cos(\alpha - \alpha)}{\cos(\alpha - \alpha)}$ and α (12, 0)) are not particle with \bar{k} . We conclude the ineq $2(1+d)(2-d)^2$
ality always heconclude that
express the cone line
ays be created *k* if and only if

lds since the left

the distribution

between a man-

ote that no agent

mder which both

y R_1 if and only
 R_1 if and only
 $\frac{2(2-d)(a-c)^2}{(2+d)(4-d)^2} - k$
 $\frac{2(2-d)(a-c)^2}{(2+d)(4-d)^2} - k$
 $\frac{25d^7}{(a-c)^2$ $\frac{(1-d)(256-208d^2+64d^3+45d^4-25d^5)(a-c)^2}{6(2-d)^2(16-7d^2)^2}$
hand side of the inequality is greatworks $g(12,0)$ and $g(0,12)$ are represented that the retailer out of the suffacturer and the retailer out of the $6(2-d)^2(16-7d^2)^2$
of the inequal
 $q(12,0)$ and $q($
and the retaile hand side of the inequality is greater than networks $g(12,0)$ and $g(0,12)$ are not pairwise stable since one link between a manufacturer and the retailer out of the market will always be created.

d) Fourth, consider the distribution networks $g(1,2)$ and $g(2,1)$. First, note that no agent wants two break a link. Therefore we have to find the conditions under which both one manufacturer and one retailer want to create a link.

A manufacturer, say M_2 , wants to create a link with a retailer, say R_1 if and only $\frac{(2+d)(4-d)^2}{(7)(a-c)^2}$
is negative formation $\equiv k_{(1,2)}^M$. It is easy to check that $k_{(1,2)}^M$

which is equivalent to $k < \frac{(2-a)(1024-1088a^2-1120a^3-128a^3-52a^3+45)}{6(1+d)(2+d)(4-d)^2(16-7d^2)^2}$
 $\equiv k_{(1,2)}^M$. It is easy to check that $k_{(1,2)}^M > \overline{k}$ for $d \in (0,0.265)$
 $d \in (0.682, 1)$.

Similarly, R_1 wants to cre

 $\frac{(2+d)^2(4-d)^2}{(a-c)^2} \equiv k_{(1,2)}^R$

able if and on is equivalent to $k < \frac{(1024+1152d+832d^2+176d^3-8d^3+68d^3-3d^3-d^3)(a-c)^2}{36(1+d)(16-7d^2)(2+d)^2(4-d)^2} \equiv k_{(1,2)}^R$, where $k_{(1,2)}^R > \overline{k}$ for $d \in (0.295, 1)$.
 d.i) Thus, the distribution network $g(1,2)$ and $g(2,1)$ are $k_{(1,2)}^R > \overline{k}$ for $d \in (0.295, 1)$.

d.i) Thus, the distribution network $g(1,2)$ and $g(2,1)$ are stable if and only if $k >$ ${R \choose (1,2)}$, where $k^{R}_{(1,2)} < k^{M}_{(1,2)}$ if

e) Fifth, consider distribution network $q(12,12)$. Note that the only way to break the stability of this distribution network is by breaking a link.

A manufacturer, say M_1 , wants to break a link if and only if $\Pi_{M_1}(g(12,2)) =$ $\frac{(1-d)(8+4d-d^2)^2(a-c)^2}{2(1+d)(16-7d^2)^2}$
to $k > \frac{(1-d)(256-32)}{6}$
d ∈ (0,0.344) and is
Similarly, a retailer
(8+3d-2d²)²(a-c)² $2(1+d)(16-7d^2)^2$
 $k > \frac{(1-d)(256-320d^2)}{6(1+6)}$
 $2(0, 0.344)$ and is not

allarly, a retailer, s
 $\frac{3d-2d^2)^2(a-c)^2}{9(16-7d^2)^2} - k > 0$ to $k > \frac{(1-a)(256-320a^2-96a^2+86a^2+36a^2-3a^2)(a-c)^2}{6(1+d)(2+d)^2(16-7d^2)^2} \equiv k_{(12,12)}^M$, where $k_{(12,12)}^M$

> k. This inequality always holds since the left

or than \overline{k} . We conclude that the distribution

then invistes stable since one link hetween a man-

narket will always be created.

Since the since one link hetween a k. We conclude that the distribution

e stable since one link between a man-

will always be created.

2) and $g(2,1)$. First, note that no agent

find the conditions under which both

cate a link.

ink with a retailer, s $g(12,0)$ and $g(0, 12)$ are not pairwise stable since one link between a man-

and the could of the mate will dowly to constel.

Sistem the distribution networks $g(1, 2)$ and $g(2, 1)$. First, note that no agent

betwee $g(1, 2)$ and $g(2, 1)$. First, note that no agent
we to find the conditions under which both
to create a link.
to create a link.
 $\approx a$ link with a retailer, say R_1 if and only
 $\frac{1-c)^2}{2} - 2k > N_1 M_2(g(1, 2)) = \frac{2(2-d)(a-d)^$ A manufacturer, say M_2 , wants to create a link with a retailer, say R_1 if and only if $\prod_{i=1}^{\infty} \frac{d_i}{2}$ ($\prod_{i=1}^$ if Π_{M2} (g(12, 2)) = $\frac{(1-d)(2-d)(2+d)(8+5d)/(4-d)^2}{6(1+d)(16-7d^2)^2}$
which is equivalent to $k < \frac{(2-d)(1024-108d^2-164)}{(11+4)(18-7d^2)^2}$
 $d \in (0.682,1).$
Similarly, R_1 wants to create a link with M_2
 $d \in (0.682,1).$
Similarly, $-\frac{\partial Q+4(0)^{1.4}(\sin^2\theta_0^2 - \cos^2\theta_0^2 - 2k \cos^2\theta_0^2$ or he we he int or me also he can be a series of the contraction of α is contracted to the contraction of $k < \frac{(2-\alpha)(1024-1088d-1120d^3-728d^2-16d-6)^2}{6(1+\alpha)(2+\alpha)(1-\alpha)^2(16-\alpha)^2}$

check that $k_{1,2}^{M} > \bar{k}$ for $d \in (0,0.265)$ and is nega

create a link with M_2 if and only if
 $\frac{a-\pi a^2-a^2}{4(1+\alpha)(1+\alpha)^2}(\frac{a-\alpha)^2}{2} - 2k > \Pi_{R_1}(g$ $k_{(1,1)}^M$ = (0 mila k_1 = (0 mila k_2 = (0 mila k_3 = (0 mila $\frac{d}{2}$ = (0 mila $\frac{d}{2}$ = (0 mila $\frac{d}{2}$ = (0 mila $\frac{3d-6}{9}$ = 1 y, ex dc alw $k_{(1,1)}^M$ is written in the same of $k_{(1,2)}^M$ is $\frac{32d^2}{1+d}$ is g of $(1,2)$ is $\frac{6d^5}{d^2)^2}$ if k is $(1,2)$ is $d \in \text{C}$ in M_2 is M_2 in M_2 in M_2 > *k* for $d \in (0, 0.265)$ and is negative for M_2 if and only if $k > \Pi_{R_1}(g(1,2)) = \frac{4(a-c)^2}{(2+d)^2(4-d)^2} - k$ which $\frac{6a^3 - 8d^4 + 68d^6 - 3d^6 - a^7/(a-c)^2}{(2+d)^2(4-d)^2} = k_{(1,2)}^R$, where $2)$ and $g(2, 1)$ are stable if and on $d \in (0.682, 1).$

Similarly, R_1
 $\Pi_{R_1}(g(12, 2))$

is equivalent
 $k_{(1,2)}^R > \overline{k}$ for d
 d.i) Thus, the

min{ $k_{(1,2)}^M$, $k_{(1)}^R$

f(th, consider of

stability of th

A manufacture $\frac{(1-d)(8+4d-d^2)^2}{2(1+d)(16-7d)}$ Similarly, R_1 wants to create a link with M_2 if and only if $\Pi_{R_1}(g(12,2)) = \frac{(52+286-7d^2 - d^2)(6-1)^2}{36(1+d)(16-7d^2)^2} - 2k > \Pi_{R_1}(g(1,2))$
is equivalent to $k < \frac{(1024+1152d+9)^2d^2+176d^2 - 8d^4 + 368d^2 - 3d^6 - 3d^6 - 3d^$ $\Pi_{R_1}(g(12, 2)) = \frac{(52+28d-d-d^2)(a-c)^2}{36(1+d)(16-7d^2)}$

is equivalent to $k < \frac{(1024+1152d+832-36(1+d)(16-7d^2))}{36(1+d)(16-7d^2)}$
 $k_{(1,2)}^R > \overline{k}$ for $d \in (0.295, 1)$.
 d.i) Thus, the distribution network

min{ $k_{(1,2)}^M$, $\frac{4(2-2)dx}{36(1+d)(16-7d^2)} - 2k > \Pi_{R_1}(g(1,2)) = \frac{4(2-6)^2}{(2+d)^2(4-6)^2}$
 $\leq \frac{(1024+1152d+832d^2+176d^3-8d^4+68d^3-3d^6-d^6)(1a-c)^2}{36(1+d)(16-7d^2)(2+d)^2(4-d)^2}$ = 295, 1).

Bibution network $g(1,2)$ and $g(2,1)$ are stable i k which
, where
y if $k >$
reak the
2,2)) =
uivalent
 $> \overline{k}$ for
 $> \overline{k}$ for
 $\langle k_{(12,12)}^M \rangle$
alent to
 $< \overline{k}$ for
 $\iota \{k_{(12,12)}^M \rangle$
2). Take
que link.
at there out want $k < \frac{(1024+1152d+832d^2+176d^2-8d^2+168d^2-3d^0-d^t)(a-6)^2}{36(1+d)(16-7d^2)(2+d^2)(4-d)^2}$

(0.295, 1).

Sistribution network $g(1,2)$ and $g(2,1)$ are stable i

, where $k_{(1,2)}^R < k_{(1,2)}^M$ if $d \in (0,0.269)$.

ribution network $k_{(1)}^R$ do to $(g$ is $n_{(2)}^R$ and $(2, 2)$ are $(2, 2)$ are $(2, 2)$ $k_{(1)}^R$ d.i mi th sta $A_{(1-\text{ to } d\text{ s} \text{ is }k)$ all e.i $k_{(1-\text{ cal } k)}^R$ is > k for $d \in (0.295, 1)$.

Thus, the distribution

c^M_(1,2), $k_{(1,2)}^R$, where $k_{(2)}^R$

onsider distribution n

ity of this distribution

mufacturer, say M_1 ,
 $\frac{8+4d-d^2}{d^2(a-c)^2} - k$

> $\frac{(1-d)(256-320d^2-96d^3-6($ $g(1, 2)$ and $g(2, 1)$ are stable if and only if $k >$
 g_1 if $d \in (0, 0.269)$.

(12, 12). Note that the only way to break the

is by breaking a link.

break a link if and only if $\Pi_{M_1}(g(12, 2)) =$
 $2, 12$)) = $\frac{2(1$ min{ $k_{(1)}^M$
fth, cons
stability
A manu
 $\frac{(1-d)(8+d)}{2(1+d)}$
to $k > d \in (0,0$
Similarl
 $\frac{(8+3d-2d)}{9(16-d)}$
 $k > \frac{(1-d)}{4(12,12)}$
hall $d \in ($
e.i) The
 $k_{(12,12)}^R$
hally, co:
for exan
 M_1 does $M_{(1,2)}, k_{(1,3)}^R$

onsider

ty of the nufactu
 $\frac{1+4d-d^2}{d(16-7)}$
 $> \frac{(1-d)}{d(16-7)}$
 $\frac{2d^2}{d^2}$
 $\frac{(1-d)}{6-7d^2}$
 $\frac{2}{d^2}$
 $\frac{1}{2}$
 $\frac{d^2}{d^2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{$ $k_{(1)}^R$ and $k_{(2)}$ and $k_{(3)}$ and $k_{(4)}$ and $k_{(5)}$ and $k_{(6)}$ and $k_{(7)}$ and $k_{(8)}$ and $k_{(9)}$ and $k_{(10)}$ and $k_{(11)}$ and $k_{(12)}$ and $k_{(13)}$ and $k_{(14)}$ and $k_{(15)}$ and $k_{(16)}$ and $k_{(17)}$ and $k_{(18)}$ $\langle k_{(1)}^M \rangle$
ork g
twork g
twork to
 $t_1(g(1))$
 $t_4(g(1))$
 $t_4(g(1))$
 $t_4(g(1))$
 $t_5(g(1))$
 $t_6(g(1))$
 $t_6(g(1))$
 $t_7(g(1))$
 $t_7(g(1))$
 $t_8(g(1))$
 $t_7(g(1))$
 $t_8(g(1))$
 $t_8(g(1))$
 $t_8(g(1))$
 $t_7(g(1))$
 $t_8(g(1))$
 $t_8(g(1))$
 $t_8(g(1))$
 t_8 d ∈ (0, 0.269).

12). Note tha

y breaking a l

ak a link if ε

(i) = $\frac{2(1-d)(a-1)}{3(1+d)(2-1)}$ = $k_{(1)}^{M}$

(09, 1).

reak a link if

= $\frac{2(a-c)^2}{9(1+d)(2-d)^2}$ = $k_{(12,1)}^R$

pairwise stable

pairwise stable

(12, 1) $g(12, 12)$. Note that the only way to break the

k is by breaking a link.

(o break a link if and only if $\Pi_{M_1}(g(12,2)) =$
 $(12, 12)) = \frac{2(1-d)(a-c)^2}{3(1+d)(2-d)^2} - 2k$ which is equivalent
 $\frac{6a^5 - 3a^6)(a-c)^2}{3(1+d)(2-d)^2} \equiv k_{($ A manufacturer, say M_1 , wants to break a link if and only if Π_{M1} (g(12, 2)) = $\frac{(1-\alpha)(8+4d-\alpha^2)^2(6-\alpha^2)^2}{2(1+\delta)(16-\pi d^2)^2} = k$ iii $\frac{1}{3(1+\delta)(2+\delta^2)^2} = k$ which is equivalent to $k > \frac{(1-\delta)(2\delta-32\alpha^2-96d^2)(8\alpha^2+36\alpha^2$ $k > \Pi_{M_1}(g(12, 12)) = \frac{2(1-d)(a-c)^2}{3(1+d)(2-d)^2}$
 $-\frac{96d^3+88d^4+36d^5-3d^6)(a-c)^2}{4(1+d)(2-d)^2} \equiv k_{(12, 12)}^{M(2+d)^2(16-7d^2)^2} = k_{(12, 12)}^{M(2)}$

gative for $d \in (0.909, 1)$.

by R_1 wants to break a link if an
 $\cdot \Pi_{R_1}(g(12, 1$ $\frac{2(1-a)(a-c)}{3(1+d)(2-d)^2} - 2k$ which is equivalent
 $\frac{2(1-a)(a-c)^2}{2(12,12)},$ where $k_{(12,12)}^M > \overline{k}$ for
 \therefore link if and only if $\Pi_{R_1}(g(2,12)) =$
 $\frac{(a-c)^2}{d(12-4)^2} - 2k$ which is equivalent to
 $\equiv k_{(12,12)}^R$, where $k > \frac{(1-d)(256-320d^2-96d^3+88d^4+36d^3-3d^6)(a-c)^2}{6(1+d)(2+d)^2(16-7d^2)^2}$

(0,0.344) and is negative for $d \in (0.909, 1)$.

iilarly, a retailer, say R_1 wants to break a
 $\frac{3d-2d^2}{9(16-7d^2)^2} - k > \Pi_{R_1}(g(12, 12)) = \frac{2(k-1)^$ 6(1+d)(2+d)²(16-7d²)² ≡

is negative for $d \in (0.909, 1)$.

r, say R_1 wants to break a lin
 $k > \Pi_{R_1}(g(12, 12)) = \frac{2(a-c)}{9(1+d)(2-a)}$
 $\frac{00d^2+28d^3-7d^4-20d^5+4d^6)(a-c)^2}{+d(2+d)^2(16-7d^2)} \equiv k$ $k_{(1)}^M$ if $\frac{1}{(1)^2}$ if $\frac{1}{(1)^2}$ ble $2, 2$ wis ph. $k_{(1)}^M$
 Π_R is $k_{(1)}^M$
 \vdots $k_{(k)}^M$
 \vdots $k_{(k)}$
 \vdots $k_{(k)}$
 \vdots $k_{(k)}$ > k for
 $k = 12$) =

alent to
 $\langle k_{(12,12)}^M \rangle$

2). Take

que link.

at there

oot want $d \in (0, 0.344)$ and is negative for $d \in (0.909, 1)$.

Similarly, a retailer, say R_1 wants to break a
 $\frac{(8+3d-2d^2)^2(a-c)^2}{9(1+2)^2} - k > \Pi_{R_1}(g(12, 12)) = \frac{2(1+d)(256+64d-100d^2+28d^3-7d^4-20d^5+4d^6)(a-c)^2}{9(1+d)(2+d)^2(16-7d^2$ Similarly, a retailer, say R_1 wants to break a link if and only if $\Pi_{R_1}(g(2, 12)) = \frac{g(a-e)^2}{9(1+e^{-2t})^2} - k > \Pi_{R_1}(g(12, 12)) = \frac{g(a-e)^2}{9(1+d)(2-d)^2} - 2k$ which is equivalent to $k > \frac{(1-d)(256+64d-100d^2+28d^9-7d^4-20d^5+4d^$ $\frac{(8+3d-2d^2)^2(a-c)^2}{9(16-7d^2)^2}$
 $k > \frac{(1-d)(256+64d-1)}{9(1)}$

all $d \in (0, 1)$.

e.i) The distribution $\binom{R}{(12,12)}$, where $0 < k^{R}_{(12,12)}$ all $d \in (0,1)$. $k >$

9(1+d)(2+d)²(16-7d²) ≡

tion network $g(12, 12)$ is pairwise
 $k_{(12,12)}^R < k_{(12,12)}^M$ if $d \in (0, 0.480)$.

c distribution networks $g(12, 1)$ The distribution network $g(12,12)$ is pairwise stable if and only if $k < \min\{k_{(12,12)}^M,$ $\{ \begin{array}{l} R\\(12,12) \end{array} \}$, where $k^R_{(12,12)} < k^M_{(12,12)}$ if

 $k > \Pi_{R_1}(g(12, 12)) = \frac{2(a-c)^2}{9(1+d)(2-c)}$
 $\omega a^2 + 28a^3 - 7a^4 - 20a^5 + 4a^6)(a-c)^2 \equiv k \frac{1}{2}$
 $(k \to a)(2+d)^2(16-7a^2) \equiv k \frac{1}{2}$
 $k \to a \to b \to b \to b \to c \to a \to b \to c \to a \to b \to c \to c \to a \to b \to b \to b \to c \to c \to a \to b \to b \to b \$ $\frac{2(a-c)^2}{9(1+d)(2-d)^2} - 2k$ which is equivalent to
 $\frac{-c)^2}{2} \equiv k_{(12,12)}^R$, where $0 < k_{(12,12)}^R < \overline{k}$ for

irwise stable if and only if $k < \min\{k_{(12,12)}^M\}$.

1.480).

2, 1), $g(12,2)$, $g(1,12)$ and $g(2,12)$. Take
 $k > \frac{(1-d)(256+64d-100d^2+28d^3-7d^4-20d^3+4d^6)(a-c)^2}{9(1+d)(2+d)^2(16-7d^2)}$
all $d \in (0,1)$.
e.i) The distribution network $g(12,12)$ is pairw:
 $k_{(12,12)}^R$, where $k_{(12,12)}^R < k_{(12,12)}^M$ if $d \in (0,0.48$
nally, consider the $k_{(1)}^R$
tal $(12$
ver it iddl $\langle k_{(1)}^R \rangle$
if $k \langle k_{(1)} \rangle$
nd $g(k)$
its abov $\langle k \rangle$ for $\{k_{(12,12)}^M\}$. Take ue link.
at there want $d \in (0, 1)$.

) The distribution of the distribution of the distribution of the example does not always and the distribution of the distribut $g(12, 12)$ is pairwise stable if and only if $k < \min\{k_{(1:1)}^M\}$ if $d \in (0, 0.480)$.

1 networks $g(12, 1), g(12, 2), g(1, 12)$ and $g(2, 12)$. T case M_2 and R_2 never want to break its unique lie link with R_2 since $k_{(1)}^R$ nal for M is $k_{(1)}^R$ are $(2, 1)$ and k_{en} $\langle k_{(1)}^M \rangle$
bution this eak the create to create the create the create the create the create the create the create that $\frac{1}{2}$ $d \in (0, 0.480)$.

orks $g(12, 1)$, g
 M_2 and R_2 ne

with R_2 since

link between b

30 **f**) Finally, consider the distribution networks $q(12,1)$, $q(12,2)$, $q(1,12)$ and $q(2,12)$. Take hally, consider the distribution networks $g(12, 1), g(12, 2), g(1, 12)$ and $g(2, 12)$. Take
for example $g(12, 1)$. In this case M_2 and R_2 never want to break its unique link.
 M_1 does not want to break the link wit $g(12, 1), g(12, 2), g(1, 12)$ and $g(2, 12)$. Take
nd R_2 never want to break its unique link.
 R_2 since it is proved in **c**) above that there
between both. Similarly, R_1 does not want for example $g(12, 1)$. In this case M_2 and R_2 never want to break its unique link. g(12, 1). In this case M_2 and R_2 never want to break its unique link.
want to break the link with R_2 since it is proved in c) above that there
incentive to create a link between both. Similarly, R_1 does not wa M_1 does not want to break the link with R_2 since it is proved in c) above that there is always an incentive to create a link between both. Similarly, R_1 does not want is always an incentive to create a link between both. Similarly, R_1 does not want $$\,30$

to break the link with M_2 since it is proved in b) above that there is always an incentive to create a link between both. Considering the link between M_1 and R_1 it happens that M_1 will break the link if and only if $k > k_{(1,2)}^M$ while R_1 will do it if and only if have incentives to do it, that is if and only if $k < \min\{k_{(12,12)}^M, k_{(12,12)}^R\}$.

f.i) Thus, the distribution network $g(12,1)$ (and $g(12,2)$, $g(1,12)$) and $g(2,12)$) is pairwise stable if and only if $k > \min\{k_{(12,12)}^M, k_{(12,12)}^R\}$ and $k < \min\{k_{(1,2)}^M, k_{(1,2)}^R\}$. **f.i)** Thus, the distribution network $g(12, 1)$ (and g) pairwise stable if and only if $k > \min\{k_{(12,12)}^M, k_{(12,12)}^R\}$. Combining **d.i)**, **e.i)** and **f.i)** yields the proposition.

B.1.2 Strong stable distribution networks **B.1.2** Strong stable d

Proof of Proposition 2

to break the link with M_2 since it is proved in b) above that there is always an introduction to mean a link break the link (food only if $k > \frac{16}{12}$, with R_1 will have the link of some that the link of some that c a link between both. Considering the link between M_1 and M_1 is the link if and only if $k > k_{1/2}^2$, while R_2 will do is if M_1 and R₂ will create a link if both of it, that is if and only if $k < \min\{k_{1/2}^$ incentive to create a link between both. Considering the link between M1 and R1 it is easily proved the link between M1 and R1 it is easily respect to the link between M1 and R1 it is easily respect to do the link if so w happens that M_1 will break the link if and only if $k > k_1^M$
and only if $k > k_1^M$, see d) above). Finally, M_2 and Ra
have intentives to do it, that is if and only if $k <$ min(k_1^M ,
fi) Thus, the distribution ne $\binom{M}{1,2}$ while R_1 will do it if
 $\binom{1}{1,2}$ while R_1 will do it if
 $\binom{1}{2,12}, k_{(12,12)}^R$,
 $\binom{1}{1,2}$ and $g(2,12)$ is
 $\binom{1}{2}$ $\binom{1}{1,2}$ and $g(2,12)$ is
 $\binom{1}{2}$ $\binom{1}{2}$ and $g(2,12)$ is
 $k > k_{(1)}^R$

(ves to $k_{(1)}^R$

(ves to $k_{(1)}^R$)

(he dist

ble if a

d.i), e.

stable

sition

at $g(1)$

(ht to be

facture
 \cdot off wi
 $\cdot d^2$)($a-c$)
 $\cdot d^2$)($a-c$)

and mo
 \cdot The s
 $\cdot k_{s(1,2)}^R$

and by 0
 $k < \min\{k_{(1)}^M\}$

(and $g(12, 2)$, $k_{(12,12)}^R$ and $g(12, 2)$, $k_{(12,12)}^R$ and osition. \blacksquare

ble when it if ect to $g(12)$, ust benefit f

if $k < \min\{k_{s(1,2)}^M\}$ hold is decreased here the shold for wo links and
 $\begin{array}{c}\nM & 0.44 \\
(12,12), k^2\n\end{array}$
 $g(1,1)$
 $g(1,1)$
 $g(1,1)$
 $h(k)$
 $h(k)$
 $h(\frac{4(4-10a)}{3(1+10)})$
 $h(k)$ $g(12, 1)$ (and $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$) is
 $1{k_{(12, 12)}^N$, $k_{(12, 12)}^R$, $k_{(12, 13)}^R$ and $k < \min\{k_{(1, 2)}^R, k_{(1, 2)}^R\}$.
the proposition. \blacksquare
works
maly stable when it is pairwise stable. In or-
w $k > \min\{k_{(1)}^M\}$
yields the p
yields the p
ion networ!
uys strongly
stable with
two retailer
2) if and on
irst term of
und such that
, 12). This t
m above is t
want to crea
g zero at $d =$
in $\{k_{s(1,2)}^M, k_{s(1,2)}^R\}$, $\frac{M}{(12,12)}, \frac{R}{(12,12)}, \frac{R}{(12,12)}, \frac{R}{(12,12)}, \frac{R}{(12,12)}, \frac{R}{(12,12)}$ or proposition the about for k intersted two $k = 0.202$.
 $\frac{kR}{s(1,2)}$ der for g ($\frac{kR}{s(1,2)}$ der for g (ion $S = \{R_2 \text{ and prefers} \}$ strongly w $k < \min\{k_{(1)}^M\}$
pairwise sta
2), the coali
om the move
 $\frac{4(4-10d+6d^2-4)}{3(1+d)(2+d)}$
sion corresp
e manufactu
sing with d
: denoted by
move to g(1
it is easy to
ersect the r
b be strongly
must gain wi
new link bet
ce $\$ $\frac{M}{(1,2)}, k_{(1,2)}^R$
stable.
alition f
we. Therefore and the sponds
curers we and r
by $k_{s(1,2)}^R$
(12, 12)
to chec region
ly stabl with the setween
 $\frac{-c)^2}{+d}$ is a o $g(12,$
nember
with the setween
 $\frac{-c)^2}{+d}$ is a First we show that $g(1,2)$ is always strongly stable when it is pairwise stable. In or $g(1,2)$ is always strongly stable when it is pairwise stable. In orcolonismed with respect to $g(1,2,1)$, the condition formed between the four strongly stable with respect to $g(1,12)$ if and only if $k < \min\{\frac{4(4-1)(4-4d$ der for $q(1,2)$ not to be strongly stable with respect to $q(12,12)$, the coalition formed $g(1,2)$ not to be strongly stable with respect to $g(12, 12)$, the coalition formed
two manufactures and the two retailers must benefit from the move. The four
tre-better off with $g(12, 12)$ if und only if $k < \min(\frac{32-10$ by the two manufacturers and the two retailers must benefit from the move. The four agents are better off with $g(12, 12)$ if and only if $k < \min\{\frac{4(4-10d+6d^2-4d^3+d^4)(a-c)^2}{3(1+d)(2+d)(8-6d+d^2)}\}$ g (12, 12) if and only if $k < \min\{\frac{4(4-6)^{4}+d^{2}-10d+6d^{2}-4d^{2}+d^{2}V_{0}(-c)^{2}}{4d(1+6)(2+4d)(8-6d+2)}\}$.
The first term of the above expression corresponds to the $M_{\epsilon}(1,2)$, and such that for $k \leq k_{\delta(1,2)}^{M}$ the manufa $\frac{-10a+6a^2-4a^3+a^3}{3(1+d)(2+d)(8-6d+d^2)},$
3 $(1+d)(2+d)(8-6d+d^2),$
on corresponds to the
manufacturers want to
mg with d and reaches
lenoted by $k_{s(1,2)}^R$, and $\frac{-2(4-20d+d^2)(2+2d-d^2)(a-c)^2}{9(1+d)(2+d)^2(8-6d+d^2)^2}$
threshold for k denoted by
create two links and move
zero at $d = 0.510$. The se $\frac{1}{2\pi(2+\alpha)(2+\alpha)}$. The first term of the above expression corresponds to the saloid for k denoted by $k_{\alpha(1,2)}^M$, and such that for $k \leq k_{\alpha(1)}^M$, and such that for $k \leq k_{\alpha(1)}^M$, and such that for $k \leq k_{\alpha(1)}^M$ threshold for k denoted by $k_{s(1,2)}^M$, and such that for $k \leq k_{s(1,2)}^M$ the manufacturers want to k denoted by $k_{s(1)}^{M}$
liks and move to
.510. The second
 $k \leq k_{s(1,2)}^{R}$ retai
reases with d rea
fined by $0 \leq k$
wise stable (see I
12,0), each meml
evering the link b
s easily proved t
 $\frac{(1-d)(a-c)^{2}}{2(2-d)^{2}(1+d)}$, an $\frac{M}{s(1,2)}$, and such that for $k \leq k_{s(1,2)}^{M}$, and such that for $k \leq k_{s(1,2)}^{M}$ and term above is the threshold ailers want to create two links eaching zero at $d = 0.202$. How $k \leq \min\{k_{s(1,2)}^{M}, k_{s(1,2)}^{R}\}$ doe $g(12, 12)$. This threshold is decreasing with d and reaches
term above is the threshold for k denoted by $k_{s(1,2)}^R$, and
lers want to create two links and move to $g(12, 12)$. This
ching zero at $d = 0.202$. However, it create two links and move to $g(12, 12)$. This threshold is decreasing with d and reaches zero at $d = 0.510$. The second term above is the threshold for k denoted by $k_{s(1,2)}^R$, and $d = 0.510$. The second term above is the threshold for k denoted by k_{δ}^{R}
the for $k \leq k_{\delta(1,2)}^{R}$ retailers want to create two links and move to $g(12, 1)$;
dincreases with d reaching zero at $d = 0.202$. However $\frac{R}{s(1,2)}$, and
12). This
theck that
ion where
table with
the move
een them.
is always
(12,0). In
oer of the
k between
d that R_2
 $\downarrow g(1,2)$ is
ough that
ballition of $k \nleq k_{s}^{R}$
eases w
ined by
wise sta
2,0), ea
vering t
easily
 $\frac{(1-d)(a-2)(1-d)^{2}(1$ such that for $k \leq k_{s(1,2)}^R$ retailers want to create two links and move to $g(12, 12)$. This
y to check that
ne region where
ngly stable with
n with the move
 $\frac{(a-c)^2}{(2+d)}$ is always
ito $g(12,0)$. In
member of the
he link between
proved that R_2
d then $g(1,2)$ is
is enough that
any coalition threshold increases with d reaching zero at $d = 0.202$. However, it is easy to check that d reaching zero at $d = 0.202$. However, it is easy to check that $\leq k \leq \min\{k_{\text{sl}(1,2)}^M, k_{\text{sl}(1,2)}^R\}$ does not intersect the region where (see Figure 4). In order for $g(1,2)$ not to be strongly stable with member o $k \n\leq \min\{k_{s(i)}^M\}$
e Figure 4). I
mber of the c
s between M_2
d that M_2 also
nd then $g(1, 2)$
strongly stabs
ist gain with
new link betw
 $\frac{4(a-c)^2}{(4-d)^2(2+d)^2}$ i
to $g(1, 1)$.
tability of g (
a link each (
e, w $\frac{M}{s(1,2)}, k_{s(}^{R}$
In orde
coalitio
 I_2 and I_3
always p
, 2) is st
able with the metrue the is always
 $g(12, 12)$
(the co
nde that
31 the region defined by $0 \leq k \leq \min\{k_{s(1,2)}^M, k_{s(1,2)}^R\}$ does not intersect the region where $g(1, 2)$ is pairwise stable (see Figure 4). In order for $g(1, 2)$ not to be strongly stable with
respect to $g(12, 0)$, each member of the coalition $S = \{M_2, R_1\}$ must gain with the move
that entails severing the link respect to $g(12,0)$, each member of the coalition $S = \{M_2, R_1\}$ must gain with the move $g(12, 0)$, each member of the coalition $S = \{M_2, R_1\}$ must gain with the move
s severing the link between M_2 and R_2 and creating a new link between them.
t is easily proved that M_2 always prefers $g(1, 2)$ sin that entails severing the link between M_2 and R_2 and creating a new link between them. that entails severing the link between M_2 and R_2 and creating a new link between them.
However, it is $(\frac{1-\theta}{2})e^{-2}$ is always prefers $g(1,2)$ since $\frac{2(2-\theta)(a-c)^2}{(4-a)^3(2+a)^2}$ is always
greater than $\frac{f(1-\theta)(a-c)^$ However, it is easily proved that M_2 always prefers $g(1, 2)$ since $\frac{2(2-d)(a-c)^2}{(4-d)^2(2+d)}$
greater than $\frac{(1-d)(a-c)^2}{2(2-d)^2(1+d)}$, and then $g(1, 2)$ is strongly stable with respect to g order for $g(1, 2)$ not to be $\frac{(2-4)(d-c)^2}{(4-d)^2(2+d)}$ is always
spect to $g(12,0)$. In
each member of the
ing the link between
asily proved that R_2 greater than $\frac{(1-d)(a-c)^2}{2(2-d)^2(1+d)}$
order for $g(1,2)$ not to
coalition $S = \{M_1, R_2\}$
 M_2 and R_2 and creating greater than $\frac{1(-d)(d-c)^2}{2(-d)^2(1+d)}$, and then $g(1, 2)$ is strongly stable with respect to $g(1, 1)$, each memh
coalition $S = \{M_1, R_2\}$ must gain with the move that entails severing the linh
 M_2 and R_2 and creatin $g(1, 2)$ is strongly stable with respect to $g(12, 0)$. In
stable with respect to $g(1, 1)$, each member of the
with the move that entails severing the link between
between them. However, it is easily proved that R_2
order for $g(1,2)$ not to be strongly stable with respect to $g(1,1)$, each member of the $g(1, 2)$ not to be strongly stable with respect to $g(1, 1)$, each member of the $S = \{M_1, R_2\}$ must gain with the move that entails severing the link between R_2 and creating a new link between them. However, it is e coalition $S = \{M_1, R_2\}$ must gain with the move that entails severing the link between $S = \{M_1, R_2\}$ must gain with the move that entails severing the link between R_2 and creating a new link between them. However, it is easily proved that R_2 efers $g(1,2)$ since $\frac{4(a-c)^2}{(4-d)^2(2+d)^2}$ is always grea M_2 and R_2 and creating a new link between them. However, it is easily proved that R_2
always prefers $g(1,2)$ since $\frac{4(a-e)^2}{(4-a^2)^2+d)^2}$ is always greater than $\frac{(a-e)^2}{36}$, and then $g(1,2)$ is
strongly stabl strongly stable with respect to $q(1,1)$.

g (1, 2) since $\frac{4(a-c)^2}{(4-d)^2(2+)}$
with respect to g(1, 1
g the strong stability dide to break a link each.). Therefore, we con $g(1,2)$ is
ugh that
alition of
for $k >$ $g(1, 1)$.
ility of
nk each
re conc Considering the strong stability of $g(12, 12)$ with respect to $g(1,2)$ it is enough that g (12, 12) with respect to $g(1,2)$ it is enough that (the coalition S that deviates is any coalition of ude that $g(12, 12)$ is not strongly stable for $k >$ 31 two agents decide to break a link each (the coalition S that deviates is any coalition of S that deviates is any coalition of 12) is not strongly stable for $k >$ cardinality two). Therefore, we conclude that $q(12,12)$ is not strongly stable for $k >$ $g(12, 12)$ is not strongly stable for $k >$ $\min\{k_{s(1,2)}^M, k_{s(1,2)}^R\}$. To see if $g(12, 12)$ is strongly stable we have to check if the coalition $S = \{M_1, M_2\}$ wants to move to $g(12, 0)$. This happens for k greater than $\frac{(1-d)(a-c)^2}{6(2-d)^2(1+d)}$. 6(2-d)²(1+d)

ans that the

<u>-d)(a-c)²</u>

2-d)²(1+d) i

(1, 1). The

2. Retailer This later threshold is always greater than $k_{(12,12)}^M$ (see Figure 3), which means that the intersection between the region where $\frac{(1-a)(a-c)^2}{6(2-d)^2(1+d)}$ is
 $g(1,1)$. The
 M_2 . Retailers
 $\frac{c)^2}{a}$. But this

rongly stable empty. Finally, we check the strong stability of $g(12,12)$ with respect to $g(1,1)$. The coalition to be considered is $S = \{R_1, R_2\}$ which has to break the links with M_2 . Retailers gain in the move from $g(12, 12)$ to $g(1, 1)$ if and only if $k > \frac{(4+3a^2-a^2)(a-c)^2}{36(2-a)^2(1-d)}$. But this inequality is never satisfied since $\overline{k} < \frac{(4+3d^2-d^3)(a-c)^2}{36(2-d)^2(1-d)}$. Thus, $g(12, 12)$ is strongly stable aga against $g(1,1)$. Summarizing, $g(12,12)$ is strongly stable for $k \le \min\{k_{s(1,2)}^M,$

min{ $k_{s(i)}^M$
 $S = \{M$

This lat

intersect

empty.

coalition

gain in

inequali

against

Cons

consider

link with R_2

threshol

Similarl

We denoted and t
 $= \{M_1, g(12, 1) \}$
 $k <$ mir

the relat

that imp

theref $\frac{M}{s(1,2)}, \frac{R}{s(s+1,2)}, \frac{R}{s(s+2,2)}, \frac{R}{s(s+1,2)}$
ater three ection be
 \therefore Finall on to be
 \therefore Finall on to be
 \therefore Finall on to be
 $\frac{1}{s}$ at $g(1,1)$ msiderin
ered is $\frac{R}{s}$
 $\frac{R}{s}$ if k is
 $\frac{R}{s}$ if k g (12, 12) is strongly stable we have to check if the coalition
is to g (12, 0). This happens for k granter than $\frac{5}{62}$ -a)
is greater than $k_{1/2}^{1/2}$ is jointwise stable and $k > \frac{(41)(10-6)^2}{62-2(11+2)}$ is strong st S = {M₁, M₂} wants to move to g (12, 0). This happens for k greater than $\frac{1}{2}$ wants to move to g (12, 0). This happens for k greater than $\frac{1}{2}$ with $\frac{1}{2}$ with the set of the set of the set of k greater t . $k_{(1)}^M$ and $k_{(2)}^M$ and $k_{(3)}^M$ and $k_{(4)}^M$ and $k_{(5)}^M$ and $k_{(6)}^M$ and $k_{(7)}^M$ and $k_{(8)}^M$ a g (12, 12) is pairwise stable and $k > \frac{1-q_1}{6(2-\alpha)(2-\alpha)}$
tability of $g(12, 12)$ with respect to $g(1, 1)$. V_2 by V_3 which as to break the limits with M_2 . Retail
1, 1, 1) if and only if $k > \frac{(4+3\theta^2-\alpha^2)(1-\alpha^2)}{$ g (12, 12) with respect to g (1, 1). The
ss to break the links with M_2 . Retailers
only if $k > \frac{(4\pi 3d^2 - d^3)(a - c)^2}{36(2 - d)^2(1 - d)}$. But this
only if $k > \frac{(4\pi 3d^2 - d^3)(a - c)^2}{36(2 - d)^2(1 - d)}$. But this
 $\frac{c}{d\rho}$. Thus, g $S = \{R_1, R_2\}$ which has to break the links with M_2 . Retailers
 $\sin 2x$, 12 for $\sin 2x$ is $\sin 2x$ is $\cos 2x$
 $\sin 2x$ is $\cos 2x$, $\sin 2x$ is $\sin 2x$ is $\cos 2x$, $\sin 2x$ is $\sin 2x$
 $\sin x$, $\int (12, 12)$ is $\sin x \cos 2x\$ g (12, 12) to g (1, 1) if and only if k > (4+3d2−d3)(a−c)2 inequality is never satisfied since $k < \frac{(4+3a^2-a^2)(a-c)^2}{36(2-d)^2(1-d)}$. Thus,
against $g(1,1)$. Summarizing, $g(12,12)$ is strongly stable for
Considering the strong stability of $g(12,1)$ with respect to
considered is $S =$ $\overline{k} < \frac{(4+3d^2-d^3)(a-c)^2}{36(2-d)^2(1-d)}$

2, 12) is strongly sta

y of $g(12,1)$ with r

h agent in the coali

y. It is easy to sho

y. It is easy to sho

y. It is easy to sho

112d-464d²+208d³+73d⁴

24(16-7d²)²(1 $g(12, 12)$ is strongly stable
 $\leq \min\{k_{s(1,2)}^M, k_{s(1,2)}^R\}$.
 $g(1,0)$, the coalition to be

to sever simultaneously its
 I_1 prefers to sever the link
 I_1 prefers to sever the link
 I_2 prefers to sever the l g(1, 1). Summarizing, g(12, 12) is strongly stable for $k \leq \min\{k_{\text{eff}}^M\}$
ideiring the strong stability of g(12, 1) with respect to g(1, 0), the
ded is $S = \{M_1, H_1\}$. Each agent in the coalition has to sever simple
 k_{s}^{R} and we due to the set of k_{s} and $s(1,2)^f$.
ition to
ition to
neously
er the ethe l
 $l = 0.3$
 s s d^3 $(a-1)$
 s asing $\frac{s}{(1+d)}$
gents is mind
satisf
and tl
satisf
and tl
 $g(1,0)$,
tersec
sists
sists
 $s^R_{s(1,2)}$
de for pair
 $g(1,2)$
of pair
 $g(1,2)$
 Considering the strong stability of $g(12,1)$ with respect to $g(1,0)$, the coalition to be g (12, 1) with respect to g (1, 0), the coalition to be
nt in the coalition has to sever simultaneously its
is $\frac{1}{24(16-rd^2)^2(4+2)}$. Let us denote the link
 $\frac{1}{64(16-rd^2)^2(4+2)}$. Let us denote the later
 $\frac{1}{24(16-rd$ considered is $S = \{M_1, R_1\}$. Each agent in the coalition has to sever simultaneously its $S = \{M_1, R_1\}$. Each agent in the coalition has to sever simultaneously its and M_2 , respectively. It is easy to show that M_1 prefers to sever the link graps that M_2 and M_3 is greater than $\frac{8M}{2(123)}$. Firs link with R_2 and M_2 , respectively. It is easy to show that M₁ prefers to sever the link
with R₂ if k is greater than $228-128+288+288+11n$
for the 64 there is the three index
Similarly, R_2 profers to seve with R_2 if k is greater than $\frac{(256-512d-464d+2488d+248d-42d^2)(\alpha-0)^2}{24(16-7d^2)^2(1+d)}$
threshold by $k_{2(12,1)}^M$. This threshold is decreasing with d and re
Similarly, R_1 prefers to sever the link with M_2 if k link with R_2 and M_2 , respectively. It is easy to show that M_1 prefers to sever the link
with R_2 if k is greater than $\frac{(256-512d-464d^2+208d^3+73d^4-47d^5)(a-c)^2}{24(16-7d^2)^2(1+d)}$. Let us denote the later
thres threshold by $k_{s(12,1)}^M$. This threshold is decreasing with $k_{s(1)}^M$ prediction in the properties of $k_{s(1)}^R$ and $k_{s(1)}^R$ at independent values of α or α or α or α or β or $g(0)$ d and reaches zero at $d = 0.3892$.

ater than $\frac{(63-32d+35d^2+59d^3)(a-c)^2}{144(16-i7d,1)(i+7d)}$,

positive, initially decreasing with

conclude that both agents in S
 $x{k_{s(12,1)}^M, k_{s(12,1)}^R}$. Remind that

e intersection Similarly, R₁ prefers to sever the link with M₂ if k is greater than $\frac{163-35d-35d-1}{144(36-76)(11-6)}$
We denote the later threshold by $k_{a}^{(2)}(2,3)$. It is always positive, initially decreasing with the move to g 144(16-7d²)(1+d)

lly decreasing

t both agents
 $\{a_{2,1}\}$. Remind

of the k satis We denote the later threshold by $k_{s(12,1)}^R$. It is always positive, initially decreasing with k_{s}^{R} at to reg atis and it reduces are more that k_{s}^{R} at to be asset in the same r at $(1, s_{s})$ and $(1, s_{s})$ and $(1, s_{s})$ and $(1, s_{s})$ $k_{s(1,1)}^{R}$. It is always positive, initially decreasing with $t d = 0.7490$. We conclude that both agents in S $g(1,0)$ if $k > \max\{k_{s(12,1)}^{R}, k_{s(12,1)}^{R}\}$. Remind that gion defined by the intersection of the k sati $S_{s(12,1)}^{R}$. Remind that $\binom{R}{(1,2)}$ and those satisfying $k > k_{(12,12)}^R$ (see Figure 3). Figure 4 displays the relationship between the thresholds under which $g(12, 1)$ is pairwise stable and those that imply that the agents in the coalition $S = \{M_1, R_1\}$ gain with the move to $g(1,0)$. We therefore conclude that $g(12, 1)$ is strongly stable in the region defined by the intersection of $k < \min \{k_{(1,2)}^R, k_{s(12,1)}^M\}$ and $k > k_{(12,12)}^R$.

Characterization of closed cycles when no strongly stable network exists We should consider two different cases.

. d and then increasing reaching k at d = 0.7490. We conclude that both agents in S

= (N_1, N_1) gain with the move to $g(1,0)$ if k > max(k²₀t₀, $n_2R_{N_1}^{(1)}$). Fermind that
 $g(12,1)$ is pairwise stable in the re $= {M_1, R_1}$ gain with the move to $g(1, 0)$ if $k > \max\{k_{\delta}^M(z, 1)\}$ is pairwise stable in the region defined by the inte $k < \min\{k_{(1,2)}^M, k_{(1,2)}^R\}$ and those satisfying $k > k_{(12,12)}^R$ (see Ithe relationship betwee $\frac{M}{s(12,1)}, k_{s(12,1)}^R$
tersection
Figure :
Figure :
(1) is pair
n with the stable n
stable n
 $\Rightarrow k > \text{mi}$
observe a
 $j(12,2),$
twork $g(1)$
the coali
wo links n
know by $g(12,1)$ is pairwise stable in the region defined by the intersection of the k satisfying $k \leq k_{\text{min}}(k_{\text{H},2},k_{\text{min}}^2)$ and those satisfying $k \geq k_{\text{H},2,1}^2$ (see Figare 3). Figure 4 displays $k \geq k_{\text{H},2,1}^2$ ($k < \min\{k_{(1)}^M\}$
the relations:
that imply therefore con
of $k < \min$ {
Characteriz
We should co
1. When mi this are
by the For suc
stable or both
 $g(2, 1)$)
and str
 $g(2, 0)$, $\frac{M}{(1,2)}, k_{(1)}^R$

aship be

that th

onclude
 $\{k_{(1,2)}^R, \text{zatio} \}$
 $\cdot \text{ization}$

conside

min{mir

nirea the

ne netw

uch vali

e becau

th coal

()). Ond

trong s

(), g(0, $k > k_{(1)}^R$
ler whic
= { M_1
table ir
 \blacksquare
no st
no st
no st
no st
(12,1), g
now tha
anufact
ives to
een reads
ince the st
(2,2)), 3
32 $g(12, 1)$ is pairwise stable and those
 $\{c_1\}$ gain with the move to $g(1, 0)$. We

the region defined by the intersection
 mgly stable network exists
 $\{a_{r,1}\}\}\n> k > \min\{k_{s(1,2)}^M, k_{s(1,2)}^R\}$. In

a we observe a $S = \{M_1, R_1\}$ gain with the move to $g(1, 0)$. We

stable in the region defined by the intersection
 \cdot **=**
 en no strongly stable network exists
 $\frac{M}{s(12,1)}, \frac{R}{s(12,1)}, \frac{R}{s(12,1)}\} > k > \min\{k_{s(1,2)}^{M}, k_{s(1,2)}^{$ $g(12, 1)$ is strongly stable in the region defined by the intersection
 $g(12, 1)$ and $k > k_{(12,12)}^R$. \blacksquare

closed cycles when no strongly stable network exists

different cases.
 $h^{(12,12)}$, $h^{(12,13)}$, $h^{(12,11)}$ $k < \min \{k_{(1)}^R\}$

aracterizat

e should cons

When $\min\{\text{this area} \text{ by the net for such a table }$

for such stable bee

or both c
 $g(2,1))$. (and stron
 $g(2,0)$, g $\frac{R}{(1,2)}, k_{s(1)}^M$
ation o:
asider tv
asider tv
 $\{\min\{k\}\}$
a there i
networks
ecause t
coalitio
Once gl
ng stab:
 $g(0,1)$, $k > k_{(1)}^R$
 $\{xyz\}$, ycles
 $k_{(2)}^R$, ma
 $k_{(2)}^R$, ma
 $k_{(2)}^R$ and $k_{(2)}^R$
 $\{z\}$ costs
 $\{z, 1\}$ and $\$ When min{min{ $k_{(1)}^R$
this area there is
by the networks
For such values α
stable because th
or both coalition
 $g(2,1)$). Once $g(\alpha)$
and strong stabil
 $g(2,0)$, $g(0,1)$, g $\{^{R}_{(12,12)}, \, k^{M}_{(1,2)}\}, \, \max\{k^{M}_{s(12,1)}, \, k^{R}_{s(12,1)}\}\} > k > \min\{k^{M}_{s(1,2)}, \, k^{R}_{s(1,2)}\}.$ In $k_{(1)}^M$
troi 12
lin liti
liti
uld or α
at $\binom{M}{(1,2)}$, max $\{k_{s(i)}^{M}$

congly stable no

(2), $g(1,2)$, $g(2)$

ink costs we knot

ink costs we knot

link of two main

link of two main

ink of two main
 $\lfloor g(2,1) \rfloor$ has be

t no coalition l
 $g(1,1)$ (or g $\frac{M}{s(12,1)}, \frac{k_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,2)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \frac{R_s}{s(12,1)}, \$ > k > min{ $k_{s(i)}^M$
observe a close
 $g(12, 2)$, $g(1, 12)$
etwork $g(12, 12)$
r the coalition of
wo links movin
know by the pr
io move to netw
0) (or $g(0, 12)$) k_{s}^{R}
 gcd and det det det det det det det det det this area there is no strongly stable network and we observe a closed cycle formed by the networks $g(12, 12)$, $g(1, 2)$, $g(2, 1)$, $g(12, 1)$, $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$. $g(12, 12)$, $g(1, 2)$, $g(2, 1)$, $g(12, 1)$, $g(12, 2)$, $g(1, 12)$ and $g(2, 12)$.

f the link costs we know that the network $g(12, 12)$ is not strongly

e coalition of two manufacturers, or the coalition of two retai For such values of the link costs we know that the network $q(12, 12)$ is not strongly $g(12, 12)$ is not strongly
palition of two retailers,
ss moving to $g(1,2)$ (or
by the proofs of pairwise
e to networks $g(1,0)$ (or
 $g(0,12)$). However, the stable because the coalition of two manufacturers, or the coalition of two retailers, or both coalitions, would have incentives to break two links moving to $q(1,2)$ (or $g(1,2)$ (or
of pairwise
 $g(1,0)$ (or
wever, the $g(2,1)$). Once $g(1,2)$ (or $g(2,1)$) has been reached, we know by the proofs of pairwise $g(2, 1)$). Once $g(1, 2)$ (or $g(2, 1)$) has been reached, we know by the proofs of pairwise
and strong stability that no coalition has incentives to move to networks $g(1, 0)$ (or
 $g(2, 0)$, $g(0, 1)$, $g(0, 2)$), $g(1,$ and strong stability that no coalition has incentives to move to networks $g(1,0)$ (or $g(1,0)$ (or
wever, the $g(2,0), g(0,1), g(0,2), g(1,1)$ (or $g(2,2)$), or $g(12,0)$ (or $g(0,12)$). However, the $g(2, 0), g(0, 1), g(0, 2)), g(1, 1)$ (or $g(2, 2)),$ or $g(12, 0)$ (or $g(0, 12)$). However, the
32 coalition formed by a manufacturer and a retailer would have incentives to form a link between them moving to $g(12,2)$ (or $g(12,1)$, $g(1,12)$, $g(2,12)$). Then, from $g(12,2)$, the coalition $S = \{M_1, R_2\}$ would like to form the link between them moving to $g(12, 12)$. From $g(12, 2)$ no coalition wants to move to any other network structure.

 $\{1,2\}, k_{(1,2)}^M\} > k > \max\{k_{s(12,1)}^M, k_{s(12,1)}^R\}$. In this area there is no strongly stable network and we observe a closed cycle formed by all possible networks; i.e., there exists an improving path connecting any two network structures. For such values of the link costs we know that neither the network $g(12,12)$ nor the network $g(12,1)$ (or $g(12,2)$, $g(1,12)$, and $g(2,12)$) is strongly stable.

 $g(12, 2)$ (or $g(12, 1)$, $g(1, 12)$, $g(2, 12)$). Then, from
 M_1, R_2) would like to form the link between them
 $(1, R_2)$ would like to form the link between them
 $(2, 2)$ no coalition wants to move to any other networ g(12, 2), the coalition $S = \{M_1, R_2\}$ would like to form the link between them
graving to $y(12,12)$. From $y(12,2)$ are outhout wants to move to any other notwork
structure.
New min $\{k_{1,21}^R, k_{1,21}^R\} > k > \max\{k_{1,1$ $g(12, 12)$. From $g(12, 2)$ no coalition wants to move to any other network
 $\binom{2}{12}$, k_{121}^2), $> k > \max\{k_{211}^N, k_{1221}^N\}$. In this area there is no strongly

with and we observe a closed cycle formed by all po When min{ $k_{(1)}^R$
stable netwo
there exists
values of th
 $g(12,1)$ (or
For $k < k_{(1)}^R$
facturers, or
to break tw
reached, the
tives to forr
From $g(12,1)$
moving to g
ously its lin
networks g
 $g(2,2)$, $g(12)$
 $g(12,$ $k_{(1)}^M$ and implies $2, 2$, g_1 and $k \in \{2, 2, g_2\}$, g_2 and $k \in \{2, 2, g_3\}$ and $k \in \{2, 2, g_4\}$ and $k \in \{1, 2, 2\}$ and $> k > \max\{k_{s(i)}^M\}$

be observe a clos

ving path conn

s we know that
 $(1, 12)$, and $g(2, 12)$ is not stror

ion of two retai

ving to $g(1, 2)$

formed by a m

tween them mo

lition $S = \{M_1, \text{ut also coalition} \}$

(1, also coalit $\frac{M}{s(12,1)}, \frac{R}{s(s(12,1)}, \frac{R}{s(s(s))})$
osed cycl
mecting at neither
it neither
(2, 12)) is
ongly station (or $g(2,$ manufac
noving to
(1, R_2 } we on $S = \{$
ng to $g(2)$ defeat t
ited by on
2), $g(1, 1)$
would lil
e $g(1,$ $g(12, 12)$ nor the network
le.
ne coalition of two manu-
ns, would have incentives
1, 2) (or $g(2, 1)$) has been
etailer would have incen-
 $(12, 1)$, $g(1, 12)$, $g(2, 12)$).
m the link between them
d like to sever simul $g(12, 1)$ (or $g(12, 2)$, $g(1, 12)$, and $g(2, 12)$) is strongly stable.
For $k < k_{(12, 21)}^{(12, 12)}$ is not strongly stable because the
facturers, or the cosition of two residers, or both cositions;
facturers, or the co For $k < k_{(12,12)}^R$, $k < k_{(1)}^R$
urers, o
reak tw
hed, th
is to form $g(12)$,
is to form $g(12)$,
is in got its line
 2), $g(12)$,
 $k > k_{(1)}^R$
 $k > k_{(2)}^R$
is the nd M_2
 $(0, 1, 2)$,
 $(2, 12)$,
 $(2, 12)$,
 $(2, 12)$,
 $(2, 12)$,
 \therefore
fficie $g(12, 12)$ is not strongly stable because the coalition of two manu-
coalition of two retailers, or both coalitions, would have incentives
s moving to $g(1, 2)$ (or $g(2, 1)$). Once $g(1, 2)$ (or $g(2, 1)$) has been
fiti facturers, or the coalition of two retailers, or both coalitions, would have incentives to break two links moving to $q(1,2)$ (or $q(2,1)$). Once $q(1,2)$ (or $q(2,1)$) has been $g(1, 2)$ (or $g(2, 1)$). Once $g(1, 2)$ (or $g(2, 1)$) has been
by a manufacturer and a retailer would have incen-
new into the g(12, 2) (or $g(12, 1)$, $g(1, 12)$, $g(2, 12)$).
 $= \{M_1, R_2\}$ would like to form the link reached, the coalition formed by a manufacturer and a retailer would have incentives to form a link between them moving to $g(12,2)$ (or $g(12,1)$, $g(1,12)$, $g(2,12)$). From $g(12, 2)$, the coalition $S = \{M_1, R_2\}$ would like to form the link between them moving to $g(12, 12)$, but also coalition $S = \{M_2, R_1\}$ would like to sever simultaneously its link with R_2 and M_1 moving to $g(2,0)$. Once $g(2,0)$ has been reached, the networks $g(2,2)$, $g(12,0)$ and $g(2,1)$ defeat the network $g(2,0)$. Next, the networks $g(2,2), g(12,0)$ and $g(2,1)$ are defeated by one of the asymmetric networks $g(12,2)$. $g(12,1), g(1,12),$ or $g(2,12)$. And so on.

 $g(12, 2)$ (or $g(12, 1), g(1, 12), g(2, 12)$).

uld like to form the link between them
 M_2, R_1 } would like to sever simultane-

0). Once $g(2, 0)$ has been reached, the

ne network $g(2, 0)$. Next, the networks $g(12, 2)$ $g(12, 2)$, the coalition $S = \{M_1, R_2\}$ would like to form the link between them
g to $g(12, 12)$, but also coalition $S = \{M_2, R_1\}$ would like to sever simultanes
its link with H_2 and M_1 moving to $g(2, 0)$. Onc $g(12, 12)$, but also coalition $S = \{M_2, R_1\}$ would like to sever simultane-
ik with R_2 and M_1 moving to $g(2, 0)$. Once $g(2, 0)$ has been reached, the
2, 2), $g(12, 0)$ and $g(2, 1)$ deread the network $g(2, 0)$ onsly its link with H_2 and M_1 moving to $g(2, 0)$. Once $g(2, 0)$ has been reached, the
networks $g(2, 2)$, $g(12, 0)$ and $g(2, 1)$ decat the network $g(2, 0)$. Next, the networks
 $g(12, 1)$, $g(1, 12)$, or $g(2, 1$ $g(2, 2)$, $g(12, 0)$ and $g(2, 1)$ defeat the network $g(2, 0)$. Next, the networks $2(2, 0)$ and $g(2, 1)$ are defeated by one of the asymmetric networks $g(12, 2)$, $g(1, 2)$, M s ot on.
 $V_1^5(1, 2, 1)$ or $g(1, 2,$ $g(2, 2)$, $g(12, 0)$ and $g(2, 1)$ are defeated by one of the asymmetric networks $g(12, 2)$, $g(12, 1)$, $g(1, 12)$, or $g(2, 12)$. And so on.
 $g(12, 1)$, $g(12, 1)$, $g(12, 1)$, $(g(12, 2)$, $g(1, 1)$, $(g(12))$, is not $g(12,1)$, $g(1, 12)$, or $g(2, 12)$. And so on.
For $k > k_{(12,12)}^R$, $g(12,1)$ (or $g(12,2)$, g
because the coalition $S = \{M_1, R_1\}$ wou
 R_2 and M_2 moving to $g(1,0)$. Once $g(1$
 $g(12,0)$ and $g(1,2)$ defeat the $k > k_{(1)}^R$
use the
ind M_2
,0) and
 $g(1,2)$ a
 $(g(1,2)$.
 $(2,12)$.
 $(2,12)$.
ifficient
ully change follow
signal contract 3
 $\frac{1}{2}$ follow
 $d \leq 0$ For $k > k_{(12,12)}^R$, $g(12, 1)$ (or $g(12, 2)$, $g(1, 12)$, and $g(2, 12)$) is not strongly stable
ion $S = \{M_1, R_1\}$ would like to sever simultaneously its link with
g to $g(1, 0)$. Once $g(1, 0)$ has been reached, the networks $g(1, 1)$,
2 because the coalition $S = \{M_1, R_1\}$ would like to sever simultaneously its link with $S = \{M_1, R_1\}$ would like to sever simultaneously its link with
 $g(1,0)$. Once $g(1,0)$ has been reached, the networks $g(1,1)$,
 g feat the network $g(1,0)$. Next, the networks $g(1,1)$, $g(12,0)$

d by one of the asy R_2 and M_2 moving to $g(1,0)$. Once $g(1,0)$ has been reached, the networks $g(1,1)$, R_2 and M_2 moving to $g(1,0)$. Once $g(1,0)$ has been reached, the networks $g(1,1)$, $g(12,0)$ and $g(1,2)$ defeat the network $g(1,0)$. Next, the networks $g(1,1)$, $g(12,0)$ and $g(1,2)$ are defeated by one of the $g(12,0)$ and $g(1,2)$ defeat the network $g(1,0)$. Next, the networks $g(1,1)$, $g(12,0)$ g(12, 0) and $g(1, 2)$ defeat the network $g(1, 0)$. Next, the networks $g(1, 1)$, $g(12, 0)$ and $g(1, 2)$ are defeated by one of the asymmetric networks $g(12, 2)$, $g(12, 1)$, $g(1, 12)$, or $g(2, 12)$ is defeated by a and $g(1,2)$ are defeated by one of the asymmetric networks $g(12,2), g(12,1), g(1,12)$. $g(1, 2)$ are defeated by one of the asymmetric networks $g(12, 2), g(12, 1), g(1, 12),$
 $(2, 12)$. But the networks $g(1, 1)$ and $g(12, 0)$ are also defeated by $g(12, 12)$, and
 $(1, 12)$ is defeated by any of the asymmetr or $g(2, 12)$. But the networks $g(1, 1)$ and $g(12, 0)$ are also defeated by $g(12, 12)$, and $g(2, 12)$. But the networks $g(1, 1)$ and $g(12, 0)$ are also defeated by $g(12, 12)$, and $2, 12$) is defeated by any of the asymmetric networks $g(12, 2)$, $g(12, 1)$, $g(1, 12)$, $g(2, 12)$. And so on.
 Efficient dis $g(12,12)$ is defeated by any of the asymmetric networks $g(12,2), g(12,1), g(1,12)$. $g(12, 12)$ is defeated by any of the asymmetric networks $g(12, 2)$, $g(12, 1)$, $g(1, 12)$,
or $g(2, 12)$. And so on.
Efficient distribution networks
st fully characterize the efficient distribution networks. See Figure or $g(2, 12)$. And so on.

B.1.3 Efficient distribution networks

Efficient distribution networks

We first fully characterize the efficient distribution networks. See Figure 6. We first fully check that the proposition 7

 $g(2, 12)$. And so on.
 Efficient distribut

fully characterize the tition 7 The efficien

as follows
 $0 < d \leq 0.2156$ and **Proposition 7** The efficient distribution network with positive link costs depends on both Proposition 7 *T*
d and k as follows
a) $For 0 < d \leq 0.2$ d and k as follows s follows
 $\langle d \leq 0.2156 \text{ and}$

a) For $0 < d \le 0.2156$ and

a.1)
$$
0 < k < k^B(d) < \frac{(a-c)^2}{36}
$$
 is $g(12, 12)$
\n**a.2)** $0 < k^B(d) < k < \frac{(a-c)^2}{36}$ is $g(1, 2)$
\nfor $0.2156 < d \le \frac{2}{3}$ and

 \overline{a} .

\n- (a) For
$$
0.2156 < d \leq \frac{2}{3}
$$
 and
\n- (b.1) $0 < k < k^A(d) < k^C(d) < \frac{(a-c)^2}{36}$ is $g(12, 12)$
\n- (c) $k^A(d) < k < k^C(d) < \frac{(a-c)^2}{36}$ is $g(12, 1)$
\n- (d) $k^A(d) < k^C(d) < k < \frac{(a-c)^2}{36}$ is $g(1, 2)$
\n- (e) For $\frac{2}{3} < d \leq 0.735$ and
\n

 $\ddot{}$

For
$$
\frac{2}{3} < d \le 0.735
$$
 and
\nc.1) $0 < k < k^A(d) < k^E(d) < \frac{(a-c)^2}{36}$ is $g(12, 12)$
\nc.2) $0 < k^A(d) < k < k^E(d) < \frac{(a-c)^2}{36}$ is $g(12, 1)$
\nc.3) $0 < k^A(d) < k^E(d) < k < \frac{(a-c)^2}{36}$ is $g(12, 0)$

d) For $0.735 < d \le 0.863$ and

$$
or\ 0.735 < d \le 0.863 \ and
$$
\n
$$
d.1) \ 0 < k < k^E(d) < \min\{\frac{(a-c)^2}{36}, \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2}\} \text{ is } g(12, 1)
$$
\n
$$
d.2) \ 0 < k^E(d) < k < \min\{\frac{(a-c)^2}{36}, \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2}\} \text{ is } g(12, 0)
$$
\n
$$
or\ 0.863 < d < 1 \text{ and } 0 < k < \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2} \text{ is } g(12, 0)
$$
\n
$$
for \text{ Proposition 7 and Proposition 4 (main text)}
$$

Proof of Proposition 7 and Proposition 4 (main text).

< k < k^B(d) < k < $\frac{(a-c)^2}{36}$

< k^B(d) < k < $\frac{(a-c)^2}{36}$

6 < d ≤ $\frac{2}{3}$ and

< k < k^A(d) < k < k^C(d)

< k^A(d) < k ≤ k^C(d)

< $\frac{(a-c)^2}{36}$ is $\frac{(1-d)(a-c)^2}{3(1+d)}$, $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$ sition 4 < $k^B(d) < k < \frac{(a-c)^2}{36}$

6 < $d \leq \frac{2}{3}$ and
 $k < k^A(d) < k^C(d)$
 $k^A(d) < k^C(d)$
 $k^A(d) < k^C(d) < k^C(d)$
 $k^A(d) < k^C(d) < k^C(d)$
 $k^A(d) < k^C(d) < k^E(d)$
 $k^A(d) < k^A(d) < k^E(d)$
 $k^A(d) < k^A(d) < k^E(d) < k^A(d) < k^A(d) < k^A(d) < k^A(d) < k^B(d) < k^A(d) < k$ $\frac{(a-c)^2}{36}$
 $\frac{(1-d)(a-c)}{36}$
 $\frac{(1-d)(a-c)}{3(1+d)(2-c)}$

sition
 >0 ii
 $\frac{(1-d)(c-c)}{3(1+d)}$
 $g(1, 1)$

me nur
 $g(1, 2$ **a.2)** $0 < k^B(d)$
 $For 0.2156 < d \leq \frac{2}{3}$
 b.1) $0 < k < k^A(d)$
 b.2) $0 < k^A(d)$
 b.3) $0 < k^A(d)$
 c) $For \frac{2}{3} < d \leq 0.75$
 c.1) $0 < k < k^A(d)$
 c.2) $0 < k^A(d)$
 c.2) $0 < k^A(d)$
 c.3) $0 < k^A(d)$
 c.3) $0 < k^A(d)$
 c.3 < k < k^A(d) < k^C(d) < k^a=0²

< k^A(d) < k < k^C(d) < $\frac{(a-c)^2}{36}$

< k^A(d) < k < k^C(d) < k < $\frac{(a-c)^2}{36}$

< k^A(d) < k^C(d) < k < $\frac{(a-c)^2}{36}$

< k < k^A(d) < k^C(d) < k < $\frac{(a-c)^2}{36}$

< k < k^A($g(12, 12)$
 $g(12, 1)$
 $g(12, 1)$
 $g(12, 12)$
 $g(12, 1)$
 $g(12, 0)$
 $\frac{a-c)^2}{(2-a)^2}$ } is
 $\frac{a-c)^2}{(2-a)^2}$ } is
 $\frac{a-c)^2}{(2-a)^2}$ } is
 $\frac{(a-c)^2}{(2-a)^2}$ } since
 $\left(\frac{(a-c)^2}{a}\right)$
 $\frac{2}{(1+a)^2}$
 $\frac{(11-18d-18d)}{$ $k < k^A(d) < k < k^C(d) < \frac{(a-c)^2}{36}$
 $k < k^A(d) < k^C(d) < k < \frac{(a-c)^2}{36}$
 $k < k^A(d) < k^C(d) < \frac{(a-c)^2}{36}$
 $k < k^A(d) < k < k^B(d) < \frac{(a-c)^2}{36}$
 $k < k^A(d) < k < k^E(d) < \frac{(a-c)^2}{36}$
 $k < k^A(d) < k^E(d) < k < \frac{(a-c)^2}{36}$
 $k < k^E(d) < \min\{\frac{(a-c)^2}{36}, \frac{(a-c)^2}{36}\}$ $g(1, 2)$
 $g(1, 2)$
 $g(12, 1)$
 $g(12, 0)$
 $\frac{(a-c)^2}{(2-a)^2}$
 $\frac{(a-c)^2}{(2-a)^2}$
 $\frac{(a-c)^2}{(2-a)^2}$
 $\frac{(a-c)^2}{(a-c)^2}$
 $\frac{(a-c)^2}{(a-c)^2}$
 $\frac{(a-c)^2}{(a-c)^2}$
 $\frac{(a-c)^2}{(a-c)^2}$
 $\frac{(a-c)^2}{(a-c)^2}$
 $\frac{(a-c)^2}{(a-c)^2}$
 $\frac{(a-c)^2}{(a-c)^$ < k^A(d) < k^C(d) < k < $\frac{(a-0)^2}{36}$

< d ≤ 0.735 and

< k < k^A(d) < k^E(d) < $\frac{(a-e)^2}{36}$

< k^A(d) < k < k^E(d) < $\frac{(a-e)^2}{36}$

< k^A(d) < k < k^E(d) < k < $\frac{(a-e)^2}{36}$

< k^A(d) < k ≤ k^E(d) < k < $\frac{($ $g(12, 1)$
 $g(12, 1)$
 $g(12, 1)$
 $g(12, 0)$
 $\frac{a-c)^2}{(2-a)^2}$
 $\frac{a-c}{(2-a)^2}$
 $\frac{a-c}{(2-a)^2}$
 $\frac{a}{(2-a)^2}$
 $\frac{(a-c)^2}{(2-a)^2}$
 $\frac{1}{(2-a)^2}$
 $\frac{(11-1)^2}{2}$
 $\frac{d(-2+1)^2}{2}$
 $\Phi(g(12, 9)(12, 9)(12, 9)(12, 9)(12, 9)(12, 9)(1$ $k^A(d) < k^C$
 $d \leq 0.735$ and
 $d \leq k^A(d) < k^C$
 $d \leq k^A(d) < k^C$
 $d \leq k^A(d) < k^E$
 $d \leq 0.863$ an
 $d \leq k^C(d) < k^C$
 $d \leq 0.863$ an
 $d \leq k^C(d) < k^C$
 $d \leq 1$ and 0
 $d \leq k^E(d) < k^C$
 $d \leq 1$ and 0
 $d \leq k^C(d)$
 $d \leq$ < k < k^A(d) < k^E(d) < k^E(d) < $\frac{(a-c)^2}{36}$

< k^A(d) < k < k^E(d) < $\frac{(a-c)^2}{36}$

< k^A(d) < k ≤ (d) < k < $\frac{(a-c)^2}{36}$

i < d ≤ 0.863 and

< k < k^E(d) < min{ $\frac{(a-c)^2}{36}$, $\frac{(a-c)^2}{36}$

< k < k^E(d) < mi g(12, 12) < k^A(d) < k < k^E(d) < k [∈] c⁰ = ^{(a} = 0²)

< k^A(d) < k^E(d) < k < $\frac{(a-c)^2}{36}$

i < d ≤ 0.863 and

< k < k^E(d) < min{ $\frac{(a-c)^2}{36}$, $\frac{(10-c)^2}{36}$, $\frac{(10-c)^2}{36}$, $\frac{(10-c)^2}{36}$, $\frac{(10-c)^2}{36}$, $\frac{(10-c$ $g(12, 1)$
 $g(12, 0)$
 $\frac{(a-c)^2}{(2-d)^2}$ }
 $\frac{(a-c)^2}{(2-d)^2}$ }
 $is \ g(12)$

(main $\lt \frac{(a-c)^2}{(a-c)^2}$ } sin
 $\lt \frac{(a-c)^2}{a^2}$ } sin

Therefo
 $=\frac{(11-18)}{1}$

er of lir
 $\frac{d(-2+3)}{2(1)}$

efore, w
 $\Phi(g(12, 1))$ $k^A(d) < k^E(d) < k < \frac{(a-c)^2}{36}$
 $i < d \le 0.863$ and
 $k < k^E(d) < \min\left\{\frac{(a-c)^2}{36}, \frac{1}{36}\right\}$
 $k < k^E(d) < k < \min\left\{\frac{(a-c)^2}{36}, \frac{1}{36}\right\}$
 $k < d < 1$ and $0 < k < \frac{(1-d)(a-c)^2}{3(1+d)(2)}$
 oposition 7 and Propositio
 $\Phi(g(12,0)) - \Phi(g(1,0)) > 0$ $\frac{(a-c)^2}{(2-d)^2}$ }
 $\frac{(a-c)^2}{(2-d)^2}$ }
 $is \ g(12)$
 $(s \ g(12)$
 $(s \ g(12)$
 $\frac{(a-c)^2}{(d)^2}$ } sin
Therefo
 $= \frac{(11-18)}{1}$
 $= \frac{d(-2+3)}{2(1)}$
 $= 6$ for ey $\Phi(g(12)$
 $= g(12, 1)$ **c.3)** $0 < k^A(d) < k^E(d)$

For $0.735 < d \le 0.863$ and
 d.1) $0 < k < k^E(d) < 1$
 d.2) $0 < k^E(d) < k < 1$
) For $0.863 < d < 1$ and $0 <$
 roof of Proposition 7 and

first note that $\Phi(g(12,0)) - 4$

on on k milder than $\overline{k} \equiv \text{min$ $k < k^E(d) < \min\{\frac{(a-c)^2}{36}\}\n$ $\lt k^E(d) < k < \min\{\frac{(a-c)^2}{36}\}\n$ $\lt d < 1 \text{ and } 0 < k < \frac{(1-q)^2}{3(1+1)}\n$ oposition 7 and Proposition 7 ($\text{d}P(q(12,0)) - \Phi(q(1,0))$) is der than $\overline{k} \equiv \min\{\frac{(a-c)^2}{36}, \frac{(a-c)^2}{36}\}\n$ solow that , $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$,

, $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$,

, $\frac{(1-d)(a-c)^2}{4(2-d)}$ is g
 $\frac{(1-d)(a-c)^2}{4(2-d)^2}$ is g

tion 4 (ma

> 0 if k < $\frac{(a-c)^2}{1+d(2-d)^2}$ } is

tive. Therefore

1, 1)) = $\frac{d(-2)}{1+d(2)}$. Therefore

inates $\Phi(g(1$ $g(12, 1)$
 $g(12, 0)$
 \Rightarrow **xt)**.
 $\frac{2-16d+9}{2-d}$
 $\frac{2-16d+9}{4d}$
 $\Phi(g(12, 12d^2-4d^3))$
 \Rightarrow and $(1$
 $\frac{16-14d-2}{(4-d)^2(2)}$

will pro

) and tl

or $g(12)$ $k \leq k^E(d) < k < \min\{\frac{(a-c)^2}{36}\}$
 $d < d < 1$ and $0 < k < \frac{(1-d)^2}{3(1+d)}$

oposition 7 and Proposition $\Phi(g(12,0)) - \Phi(g(1,0))$

der than $\overline{k} \equiv \min\{\frac{(a-c)^2}{36}, \frac{(a-c)^2}{36}\}$

now that $\Phi(g(12,0)) - \Phi(g(10))$

now that $\Phi(g(12,0)) - \Phi(g(10))$
 , $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$
 $\frac{(b)(a-c)^2}{d)(2-d)^2}$ is g

tion 4 (ma

> 0 if k < $\frac{(d-a)(a-c)^2}{1+d)(2-d)^2}$ } s

tive. There

1, 1)) = $\frac{(11-c)^2}{(1+d)(2-d)^2}$

∴ Therefore

inates $\Phi(g(1,2))$, or g(1:

34 xt).

xt).
 $\frac{(-16d+9d)}{(d-1)^2(1+d)}}$

he diffe
 $\Phi(g(12, \frac{2d^2-4d^3)}{(d-1)^2(2-d)^2)}$

and (11
 $\frac{6-14d-3d}{(d-1)^2(2-d)}$

and th

or $g(12, \frac{d}{2})$ **d.2)** $0 < k^E(d) < k < \min\left\{\frac{(a-c)^2}{36}, \frac{(1-d)}{3(1+d)(2-d)}\right\}$

For 0.863 < $d < 1$ and $0 < k < \frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$
 Proof of Proposition 7 and Proposition 4

first note that $\Phi(g(12,0)) - \Phi(g(1,0)) > 0$ if *l* on on *k* milder than $\frac{(a-c)^2}{36}, \frac{(1-d)(a-c)^2}{3(1+d)(2-d)^2}$ is

3(1+d)(2−d)² is
 position 4 (r

(0)) > 0 if k < $g(12, 0)$
 ain te
 $\frac{(a-c)^2(12)}{32(2)}$

since t

refore $\frac{1-18d+12}{18(1+1)}$

of links
 $\frac{-2+3d}{2(1+d)}$

e, we w
 $g(12, 0)$
 $12, 1$, c First note that Φ(g(12, 0)) − Φ(g(1, 0)) > 0 if k < (a−c)2(12−16d+9d2−3d3) $\frac{2(12-16a+9a^2-3a^2)}{32(2-d)^2(1+d)}$ which is a condi-

ce the difference $(12-16d+9d^2-$

re $\Phi(g(12,0)) > \Phi(g(1,0))$ for all
 $\frac{d+12d^2-4d^3}{8(1+d)(2-d)^2} > 0$ for all k since tion on k milder than $k \equiv \min\{\frac{(a-\epsilon)}{36}\}$

k milder than $\overline{k} \equiv \min\left\{\frac{(a-c)^2}{36} - \frac{(a-c)^2}{-d^2(1+d)} - \frac{(a-c)^2}{36}\right\}$ is always $\left[\cdot\right]$.
we show that $\Phi(g(12,0)) - \Phi$
tribution networks have the s
d.
he difference $\Phi(g(12,0)) - \Phi$
k and positive as long as d:
 $0 < d < \frac{2$, $\frac{(1-d)(a-c)^2}{3(1+d)(2-d)}$;
 \cositive . Tl
 $(g(1,1)) = \frac{3}{2}$

ame number
 $(g(1,2)) = \frac{2}{3}$. Theref

lominates Φ
 $g(1,2)$, or $\frac{2}{3}$. ($\frac{(1-2)(a-c)^2}{3(1+d)(2-d)^2}$) since the difference $(12-16d+9d^2-3d)(d-16d+9d^2-3d)(d-16d+16d^2-4d^2)(d-16d^2-4d^2)(d-16d^2-4d^2)(d-16d^2-4d^2)(d-16d^2-4d^2) > 0$ for all k since me number of links and $(11-18d+12d^2-4d^3) > 0$
((1 $3d^3$) $\frac{(a-c)^2}{32(2-d)^2(1)}$
 $k \in [0, \overline{k}]$.

Second, we si

both distribu

for $1 > d$.

Third, the di

dent of k ancases:

case a) 0 < distribu $\frac{(a-c)^2}{32(2-d)^2(1+d)} - \frac{(a-c)^2}{36}$

[0, \overline{k}].

Ind, we show that Φ (

distribution network

> d. ²⁶ is always positive. Therefore $\Phi(g(12,0)) > \Phi(g(1,0))$ for all $\Phi(g(12,0)) - \Phi(g(1,1)) = \frac{(11-18d+12d^2-4d^3)(a-c)^2}{18(1+d)(2-d)^2} > 0$ for all *k* since vorks have the same number of links and $(11-18d+12d^2-4d^3) > 0$
 $\Phi(g(12,0))$ $k \in [0, k]$.
Second, w
both disti
for $1 > d$.
Third, th
dent of k
cases:
case a) (dist 18(1+*d*)(2−*d*)²
nks and (11
 $\frac{3d}{(16-14d-3)}$
 $\frac{1+d}{(4-d)^2(2-4d)}$
we will prod for $1 > d$.

Second, we show that $\Phi(g(12, 0)) - \Phi(g(1, 1)) = \frac{(11-18d+12d^2-4d^2)(a-c)^2}{18(1+d)(2-d)^2}$
both distribution networks have the same number of links and $(11 - 18$
for $1 > d$.
Third, the difference $\Phi(g(12, 0)) - \Phi(g(1, 2)) = \frac{d(-2+3d)(16 > 0$ for all k since
 $(4+12d^2-4d^3) > 0$
 $\frac{((a-c)^2)}{d^2}$ is indepen-

y considering two

e possible efficient

e possible efficient both distribution networks have the same number of links and $(11 - 18d + 12d^2 - 4d^3) > 0$
for $1 > d$.
Third, the difference $\Phi(g(12, 0)) - \Phi(g(1, 2)) = \frac{d(-2+3d)(16-14d-3d^2+2d^3)(a-c)^2}{2(1+d)(4-d^2(2-d)^2(2-d)^2)^2+ d^2}$ is independent of $> d.$
 \downarrow , th of k
 \downarrow
 \downarrow Third, the difference $\Phi(g(12, 0)) - \Phi(g(1, 2)) = \frac{d(-2+3d)(16-14d-3d^2+2d^3)(a-c)^2}{2(1+d)(4-d)^2(2-d)^2(2+d)^2}$
dent of k and positive as long as $d > \frac{2}{3}$. Therefore, we will proceed by con
cases:
case a) $0 < d < \frac{2}{3}$ where $\Phi(g($ Third, the difference $\Phi(g(12,0)) - \Phi(g(1,2)) = \frac{d(-2+3d)(16-14d-3d^2+2d^3)(a-c)^2}{2(1+d)(4-d)^2(2-d)^2(2+d)^2}$ is independent of k and positive as long as $d > \frac{2}{3}$. Therefore, we will proceed by considering two cases: cases:

k and positive as long as $d > \frac{2}{3}$
 $0 < d < \frac{2}{3}$ where $\Phi(g(1, 2))$ dom

stribution networks are either $g($ $\frac{2}{3}$. Therefore, we will proceed by considering two
ninates $\Phi(g(12,0))$ and then, the possible efficient
(1,2), or $g(12,1)$, or $g(12,12)$.
34 \overline{a} $\langle d \rangle \leq \frac{2}{3}$
bution 1 $\frac{2}{3}$ where $\Phi(g(1, 2))$ dominates $\Phi(g(12, 0))$ and then, the possible efficient networks are either $g(1, 2)$, or $g(12, 1)$, or $g(12, 12)$.
34 distribution networks are either $g(1,2)$, or $g(12,1)$, or $g(12,12)$. $g(1, 2)$, or $g(12, 1)$, or $g(12, 12)$.
34

- case b) $\frac{2}{3}$ \overline{a} distribution networks are either $q(12,0)$, or $q(12,1)$, or $q(12,12)$. $\frac{1}{\sin \theta}$ and $\frac{1}{\sin \theta}$
- $0 < d < \frac{2}{3}$ and $0 \le k < \frac{(a 6)}{36}$
- c d 1 where $\Phi(g(1,2))$ dominates $\Phi(g(1,2))$ and the possible efficient
 $x \, d \leq 1$ where $\Phi(g(1,0), \alpha \cdot g(12,1), \alpha \cdot g(12,12)$ is more $g(12,12)$ is more $g(12,12)$ by the $g(12,12)$ by the $g(12,12)$ by the $g(12,12)$ by th $g(12, 0)$, or $g(12, 1)$, or $g(12, 12)$.
 \therefore
 $g(10, 24)$. The distribution network $\frac{80-1024d+14d^8+128d^4+14d^8+128d^4+14d^8+128d^4+14d^8+128d^4+14d^8+128d^4+14d^8+128d^4+128d^4+128d^4+128d^4+128d^4+128d^4+128d^4$ $d < d < \frac{2}{3}$

ompare
 $d = 4$
 $d = 2$

ompare
 $d = 4$
 $d = 4$
 $e = 4$
 $e = 4$
 $f = 4$
 $g = 2$
 $g = 2$
 $h = 2$ $k < \frac{(a-c)^2}{36}$
with $g(1$
if $\frac{(1-d)(12)}{36}$
with $g(12)$
y when $\frac{72}{72}$
> k. We
 $k^A(d)$ is po
 $k^A(d)$ is po
 $k^A(d)$
 $\Phi(g(12, 12))$ is and $0 < d$
with $g(1, 2)$
and $0 < d$
with $g(1, 2)$
 $\Rightarrow \Phi(g(1, 2))$
 $\Rightarrow \Phi(g(1, 2))$
 $\Rightarrow \$. **a.1)** We compare $g(12, 12)$ with $g(12, 1)$. The distribution network $g(12, 12)$ is more $g(12, 12)$ with $g(12, 1)$. The distribution network $g(12, 12)$ is more $\frac{(\sqrt{12}, 1)^2}{86(15\sqrt{3} - 2\sqrt{3})}$ ($\frac{(\sqrt{12}, 1)^2}{8(15\sqrt{3} - 2\sqrt{3})}$ ($\frac{(\sqrt{12}, 1)^2}{8(15\sqrt{3} - 2\sqrt{3})}$ is more $\frac{1}{2}$ ($\frac{(\sqrt{12}, 1)^2}{8(15\$ efficient than $g(12, 1)$ if $\frac{(1-d)(1280-1024d-1088d^2+224d^3-212d^4+44d^5+155d^6)(a-c)^2}{36(1+d)(2-d)^2(16-7d^2)^2}$ - 2k is positive, or equivalently when $\frac{(1-d)(a-c)^2}{72(1+d)(2-d)^2(16-7d^2)^2}$ (1280 - 1024d - 1088d² + 224d³ $g(12, 1)$ if $\frac{(1-d)(1280-10842-12847-21867+15667)(2-67924-168867-16216467-16216867-16216867-16216867-16216867-16216867-16216867-16216867-16216867-16216867-16216867-16216867-1621688-1621688-1621688-1621688-1621688-1621688$ positive, or equivalently when $\frac{(1-d)(a-c)^2}{72(1+d)(2-d)^2(16-7d^2)^2}(1280-1024d-1088d^2+224d^3-212d^4+44d^5+155d^6) > k$. We denote the left part of the previous expression by $k^A(d)$. It follows that $k^A(d)$ is positive for $0 <$ (ii) $\Phi(g(12,1)) > \Phi(g(12,12))$ if and only if $k^A(d) < k < \frac{(a-c)^2}{36}$. Thus, for the particular case, $k = 0$ and $0 < d < \frac{2}{3}$, we have $\Phi(g(12, 12)) > \Phi(g(12, 1)).$
- 1008^{a-1}/2140²-114a⁴ +14a⁴ +14a⁴ +14a⁴ +14a⁴ +14a⁴ +14a⁴ +14a⁴ +14a⁴ +16b (a-td)²
(a-td)² +14a⁴ +14a⁴ +14a⁴ +16a⁴ +224d³ 46a⁴ +224d³ 46a⁴ +224d³ 46a⁴ +16a⁴ +16a⁴ +1 72(1+d)(2−d)2=d)(16−7d2)2 (1280 – 1024d – 1088d² + 224d² – 6

(ed chote the left part of the previous expression by

(ed chote the left part of the previous expression by

(of the first of the protous expression by 212d² + 44d² - 155d² > k. We denote the left part of the products expression by
 $212d^2 + 44d^3 - 15d^2$ ($\frac{1}{2}$, We denote the left part of the products of the previous expression by

1. We also have that $0 < k^4(d$ $k^A(a)$. It follows that $k^A(a)$ is positive for $0² \leq d < 0.735$ and negative for 0.735 $< d < 3$. We show that $0 < k \leq 1$. We show that $0 < k \leq 4$ conclusion follows: (i) $\Phi(q/(2, 2)) > \Phi(q/(2, 2))$ if and only if $a^A(a) < k$ $\langle k^A(d) \rangle \frac{(a-c)^2}{36}$
 $\Phi(g(12, 12)) > \Phi$
 $\Phi(g(12, 12)) > \Phi$
 $\Phi(g(12, 12))$ if and o
 $\Phi(d) < d < \frac{2}{3}$, we
 $\Phi(g(1, 2))$ if and
 $\Phi(g(1, 2))$. W $d < d < \frac{2}{3}$
if and c
if and c
 $d < k$
 $g(12, 12)$
 $g(12, 12)$
 \therefore the sar
 $\leq k < k$
where k^2
is posit:
 $\frac{(a-c)^2}{36}$ for that
plies the plies the plies the complex of $g\left(\frac{g(12, 1)}{2(2+d)^2(1)}\right)$
 $\frac{g(12, 1)}$ conclusion follows: (i) $\Phi(g(12,12)) > \Phi(g(12,1))$ if and only if $0 \le k < k^A(d)$ and $\Phi(g(2,1)) > \Phi(g(12,1)) > \Phi(g(12,1))$ if end only if $\Phi(\alpha|l \le k, k \le \frac{100}{340})$. Then, for the period period of $d \le \frac{1}{3}$, we have $\Phi(g(12,12)) > \Phi(g$ (ii) $\Phi(g(12, 1)) > \Phi(g(12, 12))$ if and only if $k^A(d) < k < \frac{(a-6)^2}{360}$
particular case, $k = 0$ and $0 < d < \frac{2}{3}$, we have $\Phi(g(12, 12)) > \Phi(g(12, 12))$ if and only if $0 < |g(12)$, $k = 0$ and $0 < d < \frac{2}{3}$

2, 12) with $g(1, 2)$.
 (12) $> \Phi(g(1, 2))$ if
 $\Phi(g(1, 2))$
 $\Phi(g(1, 2))$. It follows
 $\Phi(g(1, 2))$. It follows
 $\Phi(g(1, 2))$. Where ²₃, we have $\Phi(g(12, 12)) > \Phi(g(12, 1))$.

Proceeding in the same way as before fand only if $0 \le k < k^B(d)$ and (ii) Φ $k < \frac{(a-c)^2}{36}$, where $k^B(d) = (20 - 22)$ ws that $k^B(d)$ is positive for $0 < d < 0 < k^B(d) < \frac{(a-c)^2}{36}$ f **a.2)** We compare $q(12, 12)$ with $q(1, 2)$. Proceeding in the same way as before we have $g(12, 12)$ with $g(1, 2)$. Proceeding in the same way as before we have
 $g(12, 12)$) $\triangleright \Phi(g(1, 2))$ if and only if $k^2(d)$ and (ii) $\Phi(g(1, 2))$

if and only if $k^2(d)$ $\le k \le \frac{(k-\alpha)^2}{86}$, where $k^2(d) = (20 - 22d - 4d^2 +$ that: (i) $\Phi(g(12, 12)) > \Phi(g(1, 2))$ if and only if $0 \le k < k^B(d)$ and (ii) $\Phi(g(1, 2)) >$ that: (i) $\Phi(g(1,2, 12)) > \Phi(g(1,2))$ if and only if $\Phi \subseteq k < k^3(d)$ and (ii) $\Phi(g(1,2)) \ge \Phi(g(1,2, 2))$ if and only if $k^2(d)$ $\propto k < \frac{4a^2}{8a^2}$, where $k^2(d) = (20 - 22d - 4d^2 + 4d^2 + 8d^2 + 8d$ $\Phi(g(12, 12))$ if and only if $k^B(d) < k < \frac{(a-c)^2}{36}$, where $k^B(d) = (20 - 22d - 4d^2 + 3d^3)\frac{(2-d+2d^2)(a-c)^2}{9(1+d)(4-d)^2(2-d)^2(2+d)^2}$. It follows that $k^B(d)$ is positive for $0 < d < 0.861$ and $\Phi(g(12, 12))$ if and only if $k^B(d) < k < \frac{(a-c)^2}{36}$
 $3d^3 \frac{(2-a/42^B)(a-c)^2}{9(1+d)(4-d)^2(2-d)^2(2+d)^2}$. It follows that k^B

negative for $0.861 < d < 1$ and that $0 < k^B(d)$

the particular case, $k = 0$ and $0 < d < \frac{2}{3}$, it for

T $k^B(d) = (20 - 22d - 4d^2 +$
itive for $0 < d < 0.861$ and
for all $0 < d < \frac{2}{3}$. Thus, for
it $\Phi(g(12, 12)) > \Phi(g(1, 2))$,
that the efficient network is
 $g(12, 1)) > \Phi(g(1, 2))$ if and
1)) if and only if $k^C(d) <$
 $\frac{2}{(16-7d^2)^2} (20480$ $\frac{(2-a+2a^2)(a-c)^2}{9(1+d)(4-d)^2(2-d)^2(2+d)^2}$. It follows that
tive for $0.861 < d < 1$ and that $0 < k^L$
particular case, $k = 0$ and $0 < d < \frac{2}{3}$,
ther with the above conclusion for k
, 12) for $0 < d < \frac{2}{3}$. $\frac{-c_1}{36}$ for all $0 < d < \frac{2}{3}$. Thus, for the particular case, $k = 0$ and $0 < d < \frac{2}{3}$, it follows that $\Phi(g(12, 12)) > \Phi(g(1, 2)).$ Together with the above conclusion for $k = 0$ implies that the efficient network is $g(12,12)$ for $0 < d < \frac{2}{3}$
- $3d^3$) $\frac{(2-d+2d^2)(a-c)^2}{9(1+d)(4-d)^2(2-d)^2(2)}$
negative for $0.861 < d$
the particular case, k
Together with the about $g(12, 12)$ for $0 < d < \frac{2}{3}$
We compare $g(12, 1)$ w
only if $0 < k < k^C$
 $k < \frac{(a-c)^2}{36}$, where k^C
19200 $k^B(d)$ is positive for $0 < d < 0.861$ and
 $(d) < \frac{(a-c)^2}{36}$ for all $0 < d < \frac{2}{3}$. Thus, for

t follows that $\Phi(g(12, 12)) > \Phi(g(1, 2))$.

= 0 implies that the efficient network is

that: (i) $\Phi(g(12, 1)) > \Phi(g(1, 2))$ if and
 \Rightarrow negative for $0.861 < d < 1$ and that $0 < k^B(d) < \frac{(a-c)^2}{36}$
the particular case, $k = 0$ and $0 < d < \frac{2}{3}$, it follows th
Together with the above conclusion for $k = 0$ implies
 $g(12, 12)$ for $0 < d < \frac{2}{3}$.
We compare $g(12,$ $< d < \frac{2}{3}$, (12)) >
efficient
> $\Phi(g(1))$
 $\Phi(g(1))$
 $(20480 - 111d^8 + 0.893 <$
 $\Phi(g(20480 - 111d^8 + 0.893 < 2))$
 $\Phi(g(2))$, $\Phi(g(2))$, $\Phi(g(2))$ $k = 0$ and $0 < d < \frac{2}{3}$
bove conclusion for l
 $\frac{2}{3}$.
with $g(1, 2)$. We have $\frac{2}{3}$.
with $g(1, 2)$. We have $\frac{2}{3}$.
 $\frac{2}{3}$ with $g(1, 2)$. We have $\frac{2}{3}$.
 $\frac{2}{3}$ and $\frac{2}{3}$ are $\frac{2}{3}$ are $\frac{$ ²/₃, it follows that $\Phi(g(12, 12)) > \Phi(g(1, 2))$.
 $k = 0$ implies that the efficient network is

we that: (i) $\Phi(g(12, 1)) > \Phi(g(1, 2))$ if and

2)) $> \Phi(g(12, 1))$ if and only if $k^C(d) < \frac{(1-d)(a-c)^2}{(1+d)(4-d)^2(16-td)^2(16-td)^2}$ (20 $k = 0$ implies that the efficient network is

ve that: (i) $\Phi(g(12,1)) > \Phi(g(1,2))$ if and

2)) $> \Phi(g(12,1))$ if and only if $k^C(d) < \frac{(1-d)(a-c)^2}{(1+d)(4-d)^2(2+d)^2(16-7d^2)^2} (20480 - 18432d + \frac{1}{7}7444d^6 + 1968d^7 - 111d^8 + 155d^9)$. I $g(12, 12)$ for $0 < d < \frac{2}{3}$

We compare $g(12, 1)$ w

only if $0 < k < k^C$
 $k < \frac{(a-c)^2}{36}$, where k^C
 $19200d^2 + 20224d^3 - 6$

follows that $k^C(d)$ is p

that $0 < k^C(d) < \frac{(a-c)}{36}$

are final step before p
 $k^B(d)$, and **a.3)** We compare $g(12, 1)$ with $g(1, 2)$. We have that: (i) $\Phi(g(12, 1)) > \Phi(g(1, 2))$ if and g(12, 1) with g(1, 2). We have that: (i) $\Phi(g(12, 1)) > \Phi(g(1, 2))$ if and
 $k < k^C(d)$ and (ii) $\Phi(g(1, 2)) > \Phi(g(12, 1))$ if and only if $k^C(d) <$

where $k^C(d)$ is equal to $\frac{72(1+d)(4-d)^2(2+d)^2(16-7d^2)^2}{(20480-18432d} +$
 $2224d^3$ only if ⁰ $\langle k \rangle \langle k^C(d) \rangle$ and (ii) $\Phi(g(1, 2)) > \Phi(g(12, 1))$ if and only if $k^C(d) < \frac{1}{\epsilon}$, where $k^C(d)$ is equal to $\frac{(1-d)(a-c)^2}{72(1+d)^3(1d-c)^2(2+d)^3(16-cd^3)^2}$ (20480 – 18432*d* + 20224*d*⁸ – 42720*d*⁴ – 19872*d*⁵ + 7444*d*⁶ $\frac{-c_1}{36}$, where follows that $k^C(d)$ is positive for $0 < d < 0.893$ and negative for $0.893 < d < 1$ and that $0 < k^C(d) < \frac{(a-c)^2}{36}$ for all $0 < d < \frac{2}{3}$.

 $k < \frac{(a-c)^2}{36}$

19200 d^2 +

follows tha

that $0 < k^6$

ne final store
 $k^B(d)$, a

for $0 < d$

or $d = 0$ and

cor $d = 0$ an $k^C(d)$ is equal to $\frac{(1-d)(a-c)^2}{72(1+d)(4-d)^2(2+d)^2}$
 $- 42720d^4 - 19872d^5 + 7444d^6 + 19$

s positive for $0 < d < 0.893$ and neg:
 $\frac{-c)^2}{36}$ for all $0 < d < \frac{2}{3}$.

proving the proposition is to con

) for $0 < d < \frac{2}{3}$. It $72(1+d)(4-d)^2(2+d)^2(16-7d^2)^2(20+60) = 16452d + d^5 + 7444d^6 + 1968d^7 - 111d^8 + 155d^9)$. It $l < 0.893$ and negative for $0.893 < d < 1$ and $\frac{2}{3}$.

(b) $l < \frac{2}{3}$.

(c) 0.893 and negative for $0.893 < d < 1$ and $\frac{2}{3}$.

(c 19200 $d^2 + 20224d^3 - 42720d^4 - 19872d^5 + 7444d^6 + 1968d^7 - 111d^8 + 155d^9$). It
follows that $k^C(d)$ is positive for $0 < d < 0.893$ and negative for $0.893 < d < 1$ and
that $0 < k^C(d) < \frac{(a-c)^2}{36}$ for all $0 < d < \frac{2}{3}$.
ne fin $k^C(d)$ is positive for $0 < d < 0.893$ and negative for $0.893 < d < 1$ and
 $d/d < \frac{(a-c)^2}{36}$ for all $0 < d < \frac{2}{3}$.

before proving the proposition is to compare the three thresholds
 $k^C(d)$ for $0 < d < \frac{2}{3}$. It is easy to $k > k^C(d)$ $\leq \frac{(a-c)^2}{36}$
1 step before pr
2), and $k^C(d)$ for $d < 0.2156$ and 0 and $d = 0.215$
ends on the size
 $d < 0.2156$ and $d < k < k^C(d)$ $d < d < \frac{2}{3}$
c propos
 $\frac{2}{3}$. It
 $k^B(d)$ \leq
 $k^B(d)$
 \leq
 k^B
 $d)$ \leq k^B
 $k^A(d)$ th
35 The final step before proving the proposition is to compare the three thresholds $k^A(d)$, $k^B(d)$, and $k^C(d)$ for $0 < d < \frac{2}{3}$
 $k^C(d)$ for $0 < d < 0.2156$ and $k^A(d) < k^B$

that for $d = 0$ and $d = 0.2156$ all of them

network depends on the size of k and the
 case a.i) $0 < d < 0.2156$ and $0 < k^C(d) <$ $k^A(d)$, $k^B(d)$, and $k^C(d)$ for $0 < d < \frac{2}{3}$. It is easy to check that $k^A(d) > k^B(d) > k^C(d)$ for $0 < d < 0.2156$ and $k^A(d) < k^B(d) < k^C(d)$ for $0.2156 < d < \frac{2}{3}$. It also happens $k^A(d) > k^B(d) >$
 $\langle \frac{2}{3} \rangle$. It also happens

fficient distribution

(2), $\Phi(g(12, 12)) >$ $k^C(d)$ for $0 < d < 0.2156$ and $k^A(d) < k^B(d) < k^C(d)$ for $0.2156 < d < \frac{2}{3}$
that for $d = 0$ and $d = 0.2156$ all of them are equal. Therefore, the efficient
work depends on the size of k and the value of d as follows:
case a. that for $d = 0$ and $d = 0.2156$ all of them are equal. Therefore, the efficial . It also happens
ient distribution
), $\Phi(g(12,12)) >$ network depends on the size of k and the value of d as follows: network of

case a.i)

 $d = 0$ and $d = 0.2156$ all of them are equal. Therefore, the efficient distribution
depends on the size of k and the value of d as follows:
) $0 < d < 0.2156$ and $0 < k^C(d) < k^B(d) < k^A(d) < \frac{(a-c)^2}{36}$.
If $0 < k < k^C(d) < k^B(d) < k^$ k and the value of d as follows:
 $\langle k^C(d) \rangle \langle k^B(d) \rangle \langle k^A(d) \rangle \langle k^B(d) \rangle$
 $\langle k^A(d) \rangle$ then $\Phi(g(12, 1))$ $>$

35 0 36 0 366 0 366 0 366 1 370 1 386 1 386 1 386 1 386 1 386 $d < d < 0.2156$ and $0 < k^C(d) < k^B(d) < k^A(d) < \frac{(a-c)^2}{36}$
 $0 < k < k^C(d) < k^B(d) < k^A(d)$ then $\Phi(g(12, 1)) > \Phi(g)$
 35 (1) If $0 < k < k^C(d) < k^B(d) < k^A(d)$ then $\Phi(g(12,1)) > \Phi(g(1,2)), \Phi(g(12,12)) >$ $\langle k \times k^C(d) \times k^B(d) \times k^A(d) \text{ then } \Phi(g(12, 1)) > \Phi(g(1, 2)), \Phi(g(12, 12)) >$
35

 $\Phi(g(1,2))$, and $\Phi(g(12,12)) > \Phi(g(12,1))$. Therefore, $g(12,12)$ is the efficient distribution network.

(2) If $0 < k^C(d) < k < k^B(d) < k^A(d)$ then $\Phi(g(12,1)) < \Phi(g(1,2)), \Phi(g(12,12)) > \Phi(g(1,2)),$ and $\Phi(g(12,12)) > \Phi(g(12,1))$. As before, $g(12,12)$ is the efficient distribution network.

(3) If $0 < k^C(d) < k^B(d) < k < k^A(d)$ then $\Phi(g(12, 1)) < \Phi(g(1, 2))$, $\Phi(g(12, 12)) < \Phi(g(1, 2))$, and $\Phi(g(12, 12)) > \Phi(g(12, 1))$. Therefore, $g(1, 2)$ is the efficient distribution ution network.

(4) If $0 < k^C(d) < k^B(d) < k^A(d) < k < \frac{(a-c)^2}{36}$ then $\Phi(g(12,1)) < \Phi(g(1,2))$,
 $\Phi(g(12,12)) < \Phi(g(1,2))$, and $\Phi(g(12,12)) > \Phi(g(12,1))$. Hence, $g(1,2)$ is the efficient distribution network. $\frac{1}{9}$ cient

 $\frac{2}{3}$ and $0 < k^A(d) < k^B(d) < k^C(d) < \frac{(a-c)^2}{36}$. Following the same reasoning as before we have that either, $g(12, 12)$ is the efficient distribution network for $0 \lt k \lt k^A(d) \lt k^B(d) \lt k^C(d)$, or $g(12,1)$ for $0 \lt k^A(d) \lt k \lt k^C(d)$, or $g(1,2)$ for $0 < k^C(d) < k < \frac{(a-c)^2}{36}$.

Figure 8 summarizes the above result. The area A corresponds to the area where $q(12, 12)$ is the efficient distribution network, the area B is the one where $q(1, 2)$ is efficient, and the uncolored area corresponds to the area where $g(12, 1)$ is the efficient distribution network.

distr $\cose~\mathrm{b)}~\frac{2}{3}$ \cdot

- **b.1)** We compare $g(12, 12)$ with $g(12, 0)$. We conclude that: (i) $\Phi(g(12, 12)) > \Phi(g(12, 0))$ if and only if $0 < k < k^D(d)$ and (ii) $\Phi(g(12,0)) > \Phi(g(12,12))$ if and only if $k^D(d) < k < \overline{k}$, where $k^D(d) = \frac{(5-6d)(a-c)^2}{72(1+d)(2-d)^2}$. It follows that $k^D(d)$ is positive for $\frac{(5-6d)(a-c)^2}{72(1+d)(2-d)^2}$. It follows that
 $d < 1$, and that $0 < k^D(d) <$

(ii) are possible, while for $\frac{1}{6}$

(ii) are possible, while for $\frac{1}{6}$ $0 < d < \frac{5}{6}$ and negative for $\frac{5}{6}$ Therefore, for $\frac{2}{3} < d < \frac{5}{6}$ (i) and (ii) are possible, while for $\frac{5}{6}$ possible.
- $\Phi(g(t), 2))$, and $\Phi(g(t), 2))$). Therefore, $g(12, 12)$ is the efficient distribution distribution distribution distribution distribution distribution distribution distribution of $\Phi(g(t), 2))$, $\Phi(g(t), 2)$, $\Phi(g(t), 2)$, $\Phi(g(t),$ $\epsilon \, k^{C}(d) < k < \bar{h}^{d}(d) < k^{A}(d) \text{ then } \Phi(g(12, 1)) \leq \Phi(g(1, 2)), \Phi(g(12, 1)) \geq 0$

(a)), and $\Phi(g(12, 12)) \geq \Phi(g(12, 1)).$ As before, $g(12, 12) \geq 0$ in the efficient distribution $\epsilon k^{G}(d) < k < k^{A}(d)$ then $\Phi(g(12, 1)) \leq \$ φ(*n*(12)), and $\Phi(g(12,12))$ > Φ(g(12, 12)). As before, g(12, 12) is the efficient distribution of the effect of $\Phi(g(12,1))$, $\Phi(g(12,1))$, $\Phi(g(12,1))$, $\Phi(g(12,2))$, $\Phi(g(12,2))$, $\Phi(g(12,2))$, $\Phi(g(12,2))$, $\Phi(g(12,2))$, Φ $\langle k'(d) \leq k''(d) \leq k \leq k^{d}(d)$ then $\Phi(g(1,2)) \leq \Phi(g(1,2))$, $\Phi(g(1,2)) \geq 0$, $\langle k'(d) \leq k \leq k^{d}(d) \leq 0$, $\Phi(g(2,12)) \geq \Phi(g(12,1))$. Therefore, $g(1,2) \geq 0$ is the efficient distribution is event.
 $\langle k'(d) \leq k^{d}(d) \leq k^{d}(d) \le$ $\Phi(g(1, 2);$ and $\Phi(g(12, 12)) > \Phi(g(12, 1))$. Therefore, $g(1, 2)$ is the efficient distrib-
(i) If 0 < k^t(d) < k²(d) < k²(d) < k²(d) k is $\frac{\ln 2\alpha^2}{\ln 2}$ then $\Phi(g(12, 1)) ²$ θ $(g(12, 2))$), and $\Phi(g(12, 2)) >$ $\langle k^C(d) \rangle \langle k^B(d) \rangle \langle k^A(d) \rangle \langle k^C(d) \rangle$
 $\langle k^C(d) \rangle \langle k^C(d) \rangle$ and $\Phi(g(12,12))$ $\geq \Phi(g(1,2))$, and $\Phi(g(12,12))$ $\geq \Phi(g(1))$

tribution network.

156 $\langle d \rangle \langle k^B(d) \rangle \langle k^B(d) \rangle \langle k^C(d) \rangle$ as before we have that either, $g(12,1$ $\frac{2}{36}$ then Φ(g(12, 1)) < Φ(g(1, 2)),

(g(12, 1)). Hence, g(1, 2) is the effi-
 $k^C(d) < \frac{(a-c)^2}{36}$. Following the same

is the efficient distribution network

1) for 0 < $k^A(d) < k < k^C(d)$, or

a A corresponds to the $\Phi(g(12,12)) < \Phi(g(1,2))$, and $\Phi(g(12,12)) > \Phi(g(12,1))$. Hence, $g(1,2)$ is the efficient distribution network
circulation network $\Phi^A(g) < k^G(g) < k^G(g) < k^G(g) < \frac{(k-2)^2}{86}$. Editioning the same
massining as before we have that 0.2156 < $d < \frac{2}{3}$
soning as before v
0 < $k < k^A(d)$
and (2) for $0 < k^C(d)$
are 8 summarize
2,12) is the effici
cient, and the unceribution network
 $\frac{2}{3} < d < 1$ and 0
compare $g(12, 12)$
nd only if $0 <$
 $(d) < k < \overline{k}$, $\langle k^A(d) \rangle \langle k^B(d) \rangle \langle k^C(d) \rangle \langle \frac{(a-c)^2}{36}$
that either, $g(12, 12)$ is the efficient
 $l \rangle \langle k^C(d)$, or $g(12, 1)$ for $0 \langle k^A(\frac{(a-c)^2}{36})$
bove result. The area A correspon
tribution network, the area B is that
area corres $g(12, 12)$ is the efficient distribution network
or $g(12, 1)$ for $0 < k^A(d) < k < k^C(d)$, or
The area A corresponds to the area where
work, the area B is the one where $g(1, 2)$ is
nods to the area where $g(12, 1)$ is the ef $\langle k \rangle \langle k \rangle \langle d \rangle \langle k^B \langle d \rangle \langle k^B \langle d \rangle \langle k^C \langle d \rangle$, or $g(12,1)$ for $0 \langle k^A \rangle \langle d \rangle \langle k \rangle \langle k^C \langle d \rangle$, or
 $\langle k^C \rangle \langle d \rangle \langle k \rangle \langle k \rangle \langle d \rangle$
 $\langle k \rangle \langle k \rangle \langle d \rangle \langle k \rangle \langle k \rangle$
 $\langle k \rangle \langle d \rangle \langle k \rangle \langle d \rangle \langle k \rangle$
 $\langle k \rangle \langle d \rangle \langle d \rangle \langle d \rangle$ for $0 \$ $g(1, 2)$ for $0 < k^C(d) < k < \frac{(a-c)^2}{36}$

Figure 8 summarizes the above 1
 $g(12, 12)$ is the efficient distributi

efficient, and the uncolored area condistribution

absorbed area condistribution

b) $\frac{2}{3} < d < 1$ and $0 < k$ $g(12, 12)$ is the efficient distribution network, the area B is the one where $g(1, 2)$ is difficient distribution network.
 b) $\frac{2}{3} < d < 1$ and $0 < k < \overline{k}$.

We compare $g(12, 12)$ with $g(12, 0)$). We conclude that $g(12, 1)$ is the efficient
 $(12, 12)) > \Phi(g(12, 0))$
 $(2, 12))$ if and only if
 $k^D(d)$ is positive for
 $k^D(d)$ is positive for
 $k^E(d) <$
 $g(12, 1)) > \Phi(g(12, 0))$
 $\Phi(g(12, 0))$
 $\Phi(\Phi^{-1})$
 $\Phi(\Phi^{-1})$. It follows
 $(63 < d < 1$ a $d < d < 1$ and $0 < k < k$.

Sumpare $g(12, 12)$ with $g(1)$
 $d < k < \overline{k}$, where $k^D(d)$
 $d < k < \overline{k}$, where $k^D(d)$
 $d < \frac{5}{6}$ and negative for if

offore, for $\frac{2}{3} < d < \frac{5}{6}$ (i)
 $d < k$
 $d < k$
 $g(12, 12)$ with $g(12, 0)$). We conclude that: (i) $\Phi(g(12, 12)) > \Phi(g(12, 0))$

if $0 < k < k^D(d)$ and (ii) $\Phi(g(12, 0)) > \Phi(g(12, 12))$ if and only if
 $\overline{\kappa}$, where $k^D(d) = \frac{(5-6d)(6-6)^2}{72(1+d)(2-d)^2}$. It follows that $k^D(d)$ is $\langle k \rangle \langle k \rangle \langle k \rangle$ and (ii) $\Phi(g(12,0)) > \Phi(g(12,12))$ if and only if
where $k^D(d) = \frac{(5-6a)(a-c)^2}{72(1+d)(2-d)^2}$. It follows that $k^D(d)$ is positive for
egative for $\frac{5}{6} < d < 1$, and that $0 < k^D(d) < \overline{k}$ for all $0 < d < 1$.
 $\langle d \$ $k^D(d) < k < \overline{k}$, where $k^D(d) = \frac{(5-6d)(a-c)^2}{72(1+d)(2-d)^2}$
 $0 < d < \frac{5}{6}$ and negative for $\frac{5}{6} < d < 1$, and

Therefore, for $\frac{2}{3} < d < \frac{5}{6}$ (i) and (ii) are po

possible.

We compare $g(12,1)$ with $g(12,0)$). We conc $k^D(d)$ is positive for
 \overline{k} for all $0 < d < 1$.
 $< d < 1$ only (ii) is
 $(12, 1)) > \Phi(g(12, 0))$

f and only if $k^E(d) <$
 $\frac{5d^6|(a-c)^2}{3}$. It follows
 $3 < d < 1$ and that

and (ii) are possible, $< d < \frac{2}{6}$
herefore,
bssible.
le compa
and only
 $< \overline{k}$, wlat $k^E(d)$
 $< k^E(d)$
hile for 0
e **a.1**) for $d < d < 1$, and that $0 < k^D(d) < \overline{k}$ for all $0 < d < 1$.

and (ii) are possible, while for $\frac{5}{6} < d < 1$ only (ii) is

(ii) are possible, while for $\frac{5}{6} < d < 1$ only (ii) is

(ii) $\Phi(g(12,0)) > \Phi(g(12,1))$ if and only if $k^$ $\langle d \rangle \langle \frac{1}{6} \rangle$
2, 1) with $k \langle k^E(\frac{1}{6}) \rangle = 1$
sitive for all 0 $\langle d \rangle$ 1 or
comparis $d < d < 1$ only (ii) is
 $(12, 1)) > \Phi(g(12, 0))$

and only if $k^E(d) < \frac{d^6}{(a-c)^2}$. It follows
 $3 < d < 1$ and that

and (ii) are possible, **b.2)** We compare $g(12, 1)$ with $g(12, 0)$. We conclude that: (i) $\Phi(g(12, 1)) > \Phi(g(12, 0))$ $g(12, 1)$ with $g(12, 0)$). We conclude that: (i) $\Phi(g(12, 1)) > \Phi(g(12, 0))$
 $0 < k < k^E(d)$ and (ii) $\Phi(g(12, 0)) > \Phi(g(12, 1))$ if and only if $k^E(d) <$
 $e k^E(d) = \frac{(1280 - 2048d - 128d^2 + 1504d^3 - 578d^4 - 266d^5 + 155d^6)(a - c)^2}{72(2$ if and only if ⁰ $\langle k \times k^E(d) \rangle$ and (ii) $\Phi(g(12,0)) > \Phi(g(12,1))$ if and only if $k^E(d) < k^E(d) = \frac{(1280 - 2048d - 128d^2 + 1504d^3 - 578d^4 - 266d^5 + 155d^6)(a - c)^2}{72(2 - d)^2(16 - 7d^2)^2}$. It follows ositive for $0 < d < 0.863$ and negative for $0.863 < d <$ k < k, where kE(d) = $\frac{(1280-2048d-128d^2+1504d^3-578d^4-266d^3+155d^6)(a-c)^2}{72(2-d)^2(16-7d^2)^2}$
that kE(d) is positive for $0 < d < 0.863$ and negative for $0.863 < d < 0 < kE(d) < \overline{k}$ for all $0 < d < 1$. Then, for $\frac{2}{3} < d < 0.8$ $72(2-d)^2(16-7d^2)^2$. It follows

72(2−d)²(16−7d²)²

3 and negative for 0.863 < d < 1 and that

for $\frac{2}{3}$ < d < 0.863 (i) and (ii) are possible,

9.12) and $g(12, 1)$ that $kE(d)$ is positive for $0 < d < 0.863$ and negative for $0.863 < d < 1$ and that $x^E(d) < \overline{k}$ for all $0 < d < 1$. Then, for $\frac{2}{3} < d < 0.863$ (i) and (ii) are possible, for $0.863 < d < 1$ only (ii) is possible.

..1) for the comp $0 \lt \kappa$ $(u) \lt \kappa$ for all $0 \lt u \lt 1$. Then, for $\frac{1}{3}$ $\langle kE(d) \rangle \langle k\bar{k}$ for all $0 \langle d \rangle \langle 1$. Then, for $\frac{2}{3}$ hile for $0.863 \langle d \rangle \langle 1$ only (ii) is possible.

ee **a.1)** for the comparison between $g(12, 12)$

36 $< d < 0.863$ (i) and (ii) are possible, and $g(12, 1)$. while for $0.863 < d < 1$ only (ii) is possible.
 b.3) See **a.1)** for the comparison between $q(12, 12)$ and $q(12, 1)$.
- while for $0.863 < d < 1$ only (ii) is possible.
See **a.1)** for the comparison between $g(12, 13)$
36 $g(12, 12)$ and $g(12, 1)$.
36

Figure 8: Efficient distribution networks when $0 < d < \frac{2}{3}$.

Putting together b.1), b.2) and b.3) it follows that $k^A(d) < k^D(d) < k^E(d) < \overline{k}$ Four different cases can be distinguished:

- $d < d < \frac{2}{3}$
 $d < k^D$ (d)
 $g(12, 1)$ ion tha
 $g(12, 1)$ ion tha
 $g(12, 1)$ ion tha
 $g(12, 1)$ ion tha
 $g(12, 1)$ ion tha $k^A(d) < k^D(d) < k^E(d) < \overline{k}$.
 $> \Phi(g(12, 1)), \Phi(g(12, 12)) >$

sonclusion that $g(12, 12)$ is the
 $< \Phi(g(12, 1)), \Phi(g(12, 12)) >$

conclusion that $g(12, 1)$ is the
 $< \Phi(g(12, 1)), \Phi(g(12, 12)) <$

conclusion that $g(12, 1)$ is the
 $< \Phi(g($ (i) $0 < k < k^A(d) < k^D(d) < k^E(d) < \overline{k}$, where $\Phi(g(12, 12)) > \Phi(g(12, 1)), \Phi(g(12, 12)) >$ $\langle k < k^A(d) < k^D(d) < k^E(d) < \overline{k}, \text{ where } \Phi(g(12, 12)) > \Phi(g(12, 11)), \Phi(g(12, 12)) \geq \Phi(g(12, 0)) \text{ and } \Phi(g(12, 11)) > \Phi(g(12, 0)), \text{ with the conclusion that } g(12, 12) \text{ is the efficient distribution network.}$
 $A(d) < k < k^D(d) < k^E(d) < \overline{k}, \text{ where } \Phi(g(12, 12)) < \Phi(g(12, 1)), \Phi(g(12, 12))$ $\Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,12)$ is the efficient distribution network.
- (ii) $k^A(d) < k < k^D(d) < k^E(d) < \overline{k}$, where $\Phi(g(12, 12)) < \Phi(g(12, 1)), \Phi(g(12, 12)) >$ $\Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,1)$ is the efficient distribution network.
- $\Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,12)$ is the efficient distribution network.
 ${}^A(d) < k < k^D(d) < k^E(d) < \overline{k}$, where $\Phi(g(12,12)) < \Phi(g(12,1))$, $\Phi(g(12,12)) > \Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$ $k^A(d) < k < k^D(d) < k^E(d) < \overline{k}$, where $\Phi(g(12,12)) < \Phi(g(12,11))$, $\Phi(g(12,12)) > \Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,1)$ is the efficient distribution network.
 $k^A(d) < k^D(d) < k < k^E(d) < \overline{k}$, where $\Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,1)$ is the efficient distribution network.
 $k^A(d) < k^D(d) < k < k^E(d) < \overline{k}$, where $\Phi(g(12,12)) < \Phi(g(12,1))$, $\Phi(g(12,12)) < \Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$ (iii) $k^A(d) < k^D(d) < k < k^E(d) < \overline{k}$, where $\Phi(g(12, 12)) < \Phi(g(12, 1)), \Phi(g(12, 12))$ $k^A(d) < k^D(d) < k < k^E(d) < \overline{k}$, where $\Phi(g(12, 12)) < \Phi(g(12, 11))$, $\Phi(g(12, 12)) < \Phi(g(12, 0))$ and $\Phi(g(12, 1)) > \Phi(g(12, 0))$, with the conclusion that $g(12, 1)$ is the efficient distribution network.
 $k^A(d) < k^D(d) < k^E(d) < k < \overline{k}$, $\Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,1)$ is the efficient distribution network.
- $\Phi(g(12,0))$ and $\Phi(g(12,1)) > \Phi(g(12,0))$, with the conclusion that $g(12,1)$ is the efficient distribution network.
 $k^A(d) < k^D(d) < k^E(d) < k < \overline{k}$, where $\Phi(g(12,12)) < \Phi(g(12,1))$, $\Phi(g(12,12)) < \Phi(g(12,0))$ and $\Phi(g(12,1)) < \Phi(g(12,0))$ (iv) $k^A(d) < k^D(d) < k^E(d) < k < \overline{k}$, where $\Phi(g(12, 12)) < \Phi(g(12, 1)), \Phi(g(12, 12)) <$ $k^A(d) < k^D(d) < k^E(d) < k < \overline{k}$, where $\Phi(g(12, 12)) < \Phi(g(12, 11))$, $\Phi(g(12, 12)) < \Phi(g(12, 0))$ and $\Phi(g(12, 1)) < \Phi(g(12, 0))$, with the conclusion that $g(12, 0)$ is the efficient distribution network.
37 $\Phi(g(12,0))$ and $\Phi(g(12,1)) < \Phi(g(12,0))$, with the conclusion that $g(12,0)$ is the $\Phi(g(12,0))$ and $\Phi(g(12,1)) < \Phi(g(12,0))$, with the conclusion that $g(12,0)$ is the efficient distribution network.
37 efficient distribution network.

Figure 9 displays the efficient distribution networks for case b) $\frac{2}{3}$ B corresponds to the area where $g(12, 12)$ is efficient, the uncolored area corresponds to the area where $g(12, 1)$ is efficient, and finally the area A corresponds to the area where $g(12,0)$ is efficient.

Figure 9: Efficient distribution networks when $\frac{2}{3}$

 $d < d < 1.$

we have $d) < k^D$
 $d) < k^D$
 k for 0.7
 n nally $g(1)$
 d (**iv**) i
 d nd (**iv**) i
 d
 k *size* o
 k
 h , $1)$) $>$ C
 d , l , 1)) $>$ C As a corollary, for the particular case $k = 0$ and $\frac{2}{3} < d < 1$, we have that $g(12, 12)$ is As a corollary, for
the efficient distribution
and (i) above applies; $k = 0$ and $\frac{2}{3}$
 $l < 0.735$ sin

ent distribu

d (iii) above

1 since $k^E(d)$

Proposition

nking is a fu
 $0 > C(g(12,0))$
 $>C(g(1,1))$

38 $d < d < 1$, we have that $g(12, 12)$ is
 $\cos 0 < k^A(d) < k^D(d) < k^E(d) < \overline{k}$

(ion network for 0.735 $d < d < 0.863$

applies; finally $g(12, 0)$ is the effi-
 $d < 0 < \overline{k}$ and (iv) above applies.

(i) above applies.

(i) above app the efficient distribution network for $\frac{2}{3} < d < 0.735$ sin Heient distribution network for $\frac{2}{3} < d < 0.735$ since $0 < k^A(d) < k^B(d) < k^E(d) < \overline{k}$

(i) above applies; $g(12, 1)$ is the efficient distribution network for 0.735 $< d < 0.863$
 $k^A(d) < 0 < k^B(d) < k^E(d) < \overline{k}$ and (iii) above $d < d < 0.735$ since $0 < k^A(d) < k^D(d) < k^E(d) < \overline{k}$
flicient distribution network for 0.735 $d < d < 0.863$
and (iii) above applies; finally $g(12,0)$ is the effi-
 $d < 1$ since $k^E(d) < 0 < \overline{k}$ and (iv) above applies. \blacksquare
of P and (i) above applies; $g(12, 1)$ is the efficient distribution network for $0.735 < d < 0.863$ and (i) above applies; $g(12,1)$ is the efficient distribution network for 0.735 < $d < 0.8$
since $k^A(d) < 0 < k^B(d) < k^E(d) < \overline{k}$ and (iii) above applies; finally $g(12,0)$ is the electric distribution network for 0.863 < d $g(12, 1)$ is the efficient distribution network for $0.735 < d < 0.863$
 $d) < k^E(d) < \overline{k}$ and (iii) above applies; finally $g(12, 0)$ is the effi-

ork for $0.863 < d < 1$ since $k^E(d) < 0 < \overline{k}$ and (iv) above applies. \blacksquare
 since $k^A(d) < 0 < k^D(d) < k^E(d) < \overline{k}$ and (iii) above applies; finally $g(12,0)$ is the efficient distribution network for 0.863 < $d < 1$ since $k^E(d) < 0 < \overline{k}$ and (iv) above applies.

B.1.4 Consumer surplus analysisConsumer surplus analysis

We give the complete characterization of Proposition 5 in the main text and its proof. We give the complete characterization of Proposition 5 in the main text a
Proposition 8 The consumer surplus ranking is a function of the size of

Proposition 8 The consumer surplus ranking is a function of the size of d as follows.

- \mathbf{a} jor o 12)) > $C(g(12))$
 $d \leq 0.1413$,

12)) > $C(g(12))$

1413 < $d \leq 0$.
- d its proof.
 d as follows.
 $(g(1,0))$
 $(g(1,0))$ $C(g(12, 12)) > C(g(12, 1)) > C(g(1, 2)) > C(g(1, 2)) \geq C(g(1, 1)) > C(g(1, 0))$
for $0 < d \leq 0.1413$,
 $C(g(12, 12)) > C(g(12, 1)) > C(g(1, 2)) > C(g(1, 1)) \geq C(g(12, 0)) > C(g(1, 0))$
for $0.1413 < d \leq 0.2826$,
38 $(12, 12)$) > $C(g(12, 1))$
r 0.1413 < $d \le 0.2826$, **b)** $C(g(12, 12)) > C(g(12, 1)) > C(g(1, 2)) > C(g(1, 1)) \ge C(g(12, 0)) > C(g(1, 0))$ $C(g(12, 12)) > C(g(12, 1)) > C(g(1, 2)) > C(g(1, 1)) \le C(g(12, 0)) > C(g(1, 0))$
for 0.1413 < $d \le 0.2826$, for $0.1413 < d \leq 0.2826$,
- $\overline{}$ $\frac{1}{2}$, for $0.2826 < d \leq \frac{2}{3}$,
- $\ddot{}$ $for \frac{2}{3}$ $\ddot{}$
- e) $C(g(12, 12)) > C(g(12, 1)) > C(g(12, 0)) > C(g(1, 1)) > C(g(1, 2)) > C(g(1, 0))$ $for\,0.8597 < d < 1.$

Proof: All expressions of the consumer surplus corresponding to the different distribution networks are multiplied by the factor $(a-c)^2$. Then, the comparisons are independent of this factor and we will ignore it throughout this proof.

- $y \circ (y(1, 1)) > \circ (y(1, 0))$ is and only if $288b$ $\frac{1}{2}$
- $\ddot{}$ holds since $1 > d$.
- \mathbf{v} since $1 > d$.
- $\mathcal{L}(\cdot)$ 0, which always holds because $1 > d$.
- $\mathcal{O}(\mathcal{V})$ $45d^5 + 25d^6 > 0$, which always holds since $1 > d$.
- (vi) $C(g(12,1)) > C(g(1,2))$ if and only if $28672+22528d+23808d^2+51200d^3+15008d^4 16320d^5 - 5692d^6 - 364d^7 - 747d^8 - 20d^9 + 25d^{10} > 0$, which always holds given that $1 > d$
- (vii) $C(g(12, 12)) > C(g(12, 1))$ if and only if $1792 1024d 896d^2 + 544d^3 660d^4$ $116d^5 + 347d^6 + 20d^7 - 25d^8 > 0$, which always holds because $1 > d$.
Using (i) to (vii) we have that $C(g(1,0))$ is last in the ranking, and $C(g(12, 12))$ and

C(g(12, 12)) $> C(g(1,1))$ $> C(g(1,1))$ $> C(g(1,1))$ $> C(g(1,2))$ $> C(g(1,2))$ $> C(g(1,2))$ $> C(g(1,2))$ $)$ $(c(g(1,2)))$ $(c(g(1,2)))$ $> C(g(1,2)))$ $> C(g(1,2))$ $> C(g(1,2))$ $)$ $(c(g(1,2)))$ $(c(g(1,2)))$ $)$ $(c(g(1,2)))$ $c(g(1,2))$ $)$ $(c(g(1,2)))$ $(c(g(1,2)))$ $)$ $r \ 0.2826 < d \leq \frac{2}{3}$
 $(12, 12)) > C(g(1)$
 $r \frac{2}{3} < d \leq 0.8597$
 $(12, 12)) > C(g(1)$
 $r \ 0.8597 < d < 1$

All expressions c

is are multiplied

for and we will ig
 $(1, 1)) > C(g(1, 1))$
 $g(1, 2)) > C(g(1, 1))$
 $g(1, 2)) > C(g(1, 1))$
 12)) > C(g(12

< d ≤ 0.8597,

12)) > C(g(12

< d ≤ 0.8597,

12)) > C(g(12

8597 < d < 1.

expressions of

re multiplied b

and we will ig:

1)) > C(g(1, 0

2)) > C(g(1, 0

2)) > C(g(1, 0

12, 0)) > C(g(1

12, 0)) > C(g(1 C(g(12, 12)) $> C(g(1, 1))$ if and only if $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ b) $\frac{1}{2}$ c(g(12, 12)) $> C(g(1, 0))$ for $C(g(1, 1)) > C(g(1, 1)) > C(g(1, 2)) > C(g(1, 0))$ for $0.8597 < a < 1$.

Cfo (12, 12) $> C(g(1, 0)) > C(g(1, 0)) > C(g(1, 1)) > C$ $(12, 12)) > C(g(12, 12)) > C(g(12, 12)) > C(g(12, 12)) > C(g(12, 12))$
so are multiplied by an are multiplied by an are multiplied by an are multiplied by $(1, 1)) > C(g(1, 0, 12)) > C(g(1, 12, 0)) > C(g(12, 1)) > C(g(12, 1)) > C(g(12, 1)) > C(g(12, 12)) > C(g(12,$ C(g(12, 1)) > C(g(12, 1)) of the constant π and π and networks are multiplied by the factor (a − c)². Then, the comparisons are independent of
this factor and we will ignore it throughout this proof.

(i) $C(g(1,0)) > C(g(1,0))$ if and only if $\frac{1}{2880} > 0$ which always holds. $C(g(1, 1)) > C(g(1, 0))$ if and only if $\frac{1}{28}$
 $C(g(1, 2)) > C(g(1, 0))$ if and only if 6

holds since $1 > d$.
 $C(g(12, 0)) > C(g(1, 0))$ if and only if

since $1 > d$.
 $C(g(12, 1)) > C(g(1, 1))$ if and only if 1

0, which always holds beca > 0 which always holds.
 $-32d + 12d^2 + 4d^3 - d^4$
 $-4d + 3d^2 + 2d^3 - d^4 > 0$,
 $2-64d - 80d^2 + 360d^3 + 19$
 $92-768d - 1472d^2 + 928d$
 $ce 1 > d$.
 $372+22528d + 23808d^2 +$
 $9+25d^{10} > 0$, which always holds because 1

is last i C(g(1, 2)) > C(g(1, 0)) if and only if $(44 - 32d + 12d^2 + 4d^2 - d^4) > 0$, which always holds since $1 > d$.

looks since $1 > d$.

C(g(12, 0)) > C(g(1, 0)) if and only if $44 - 4d + 3d^2 + 2d^3 - d^4 > 0$, which always holds

since $> d.$
 $C(g \ C(g$
 $C(g \ s)$
 $C(g(\ s \cdot 0, \cdot))$
 $C(g \ a^6)$
 $>C(g \ a^6)$
 $C(g \$ $C(g(12, 0)) > C(g(1, 0))$ if and only if $1-4d-3d^2+2d^3-d^4>0$, which always holds

since $1>d$.
 $C(g(12, 1)) > C(g(1, 0))$ if and only if $192-64d-80d^2+360d^3+191d^4-104d^5-57d^6>0$, which always holds because $1 > d$.
 $U_g(t(2, 1)) > C$ $> d.$
1)) :
h alv
1)) >
25 d^6
1)) :
25 d^6
1) :
 -5
12) 347
to (e fir
 $(g(1 - C(g$
f 1 -
 $C(g$ $C(g(12, 1)) > C(g(1, 1))$ if and only if 192−64d–80d²+360d²+191d⁴−104d³−57d⁶ >
0, which always holds because $1 > d$.
7(g(12,1)) > $C(g(12, 0))$ if and only if 1792−768d−1472d²+928d²+418d⁴−3802d²
45d⁹+25d⁶ > $> d.$

aly if olds

ly if olds

ly if $s^3 - 2$

d on s , wh
 $g(1, s)$

anki
 $C(g - d^4)$

if 0
 $2d^4$

e co. $C(g(12, 1)) > C(g(12, 0))$ if and only if 1792–768d – 1472d²+928d³+418d⁴ – 302d⁵

45d⁵ + 25d⁶ > 0, which always holds since $1 > d$.
 $C(g(12, 1)) > C(g(1, 2))$ if and only if $28672+22528d+23808d^2+51200d^3+15008d^4-16320$ $45d^5 + 25d^6 > 0$, which always holds since $1 > d$.
 $C(g(12, 1)) > C(g(1, 2))$ if and only if $28672+2252$
 $16320d^5 - 5692d^6 - 364d^7 - 747d^8 - 20d^9 + 25d^{10}$
 $1 > d$.
 $C(g(12, 12)) > C(g(12, 1))$ if and only if $1792 - 116d^5 + 347d^$ $C(g(12, 1)) > C(g(1, 2))$ if and only if $28672+22528d+23808d^2+51200d^3+15008d^4-16320d^5-5692d^6-364d^7-747d^8-20d^9+25d^{10} > 0$, which always holds given that $1 > d$.
 $C(g(12, 12)) > C(g(12, 1))$ if and only if $1792 - 1024d - 896d$ 16320 d^5 − 5692 d^6 − 364 d' − 747 d^8 − 20 d^9 + 25 d^{10} > 0, which always holds given that

1 > d .
 $C(g(12, 12)) > C(g(12, 1))$ if and only if 1792 − 1024 d − 896 d^2 + 54 d^3 − 660 d^4 − 116 d^5 + 347 d^6 + $> d.$
 $\binom{r}{g(1 + 6d^5)}$
 $\begin{bmatrix} 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 \end{bmatrix}$
 $\begin{bmatrix} 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} 0 & 1 \end{bmatrix}$
 > 0
 $\begin{bmatrix} 2 & 1 \end{bmatrix}$
 > 0
 $\begin{bmatrix} 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $C(g(12, 12)) > C(g(12, 1))$ if and only if 1792 − 1024d – 896d² + 544d³ – 660d⁴ – 116d⁵ + 347d⁶ + 20d⁷ – 25d⁸ > 0, which always holds because 1 > d.

ing (i) to (vii) we have that $C(g(1, 0))$ is last in the rankin 116d⁵ + 347d⁶ + 20d⁷ - 25d⁸ > 0, which always holds because 1 > d.

sing (i) to (vii) we have that $C(g(1,0))$ is last in the ranking, and C

2, 1)) are first and second in the ranking, respectively. It remains to s $C(g(1, 0))$ is last in the ranking, and $C(g(12, 12))$ and

ae ranking, respectively. It remains to specify the rank-

and $C(g(1, 2))$. It follows that $C(g(1, 2)) > C(g(1, 1))$
 $B^3 - d^4 > 0$, that is for $0 < d < 0.2826$. Similarly,
 $C(q(12, 1))$ are first and second in the ranking, respectively. It remains to specify the rank- $C(g(12, 1))$ are first and second in the ranking, respectively. It remains to specify the ranking among $C(g(12, 0))$, $C(g(1, 1))$ and $C(g(1, 2))$. It follows that $C(g(1, 2)) > C(g(1, 1))$ if and only if $1 - 32d + 12d^2 + 4d^3 - d^4 > 0$ ing among $C(g(12,0)), C(g(1,1))$ and $C(g(1,2))$. It follows that $C(g(1,2)) > C(g(1,1))$ $C(g(12,0)), C(g(1,1))$ and $C(g(1,2))$. It follows that $C(g(1,2)) > C(g(1,1))$
if $1 - 32d + 12d^2 + 4d^3 - d^4 > 0$, that is for $0 < d < 0.2826$. Similarly,
 $> C(g(12,0))$ if and only if $0 < d < \frac{2}{3}$. Finally, $C(g(12,0)) > C(g(1,1))$
if $1 - 8d + 6d$ if and only if $1 - 32d + 12d^2 + 4d^3 - d^4 > 0$, that is for $0 < d < 0.2826$. Similarly, if and only if $1 - 32d + 12d^2 + 4d^3 - d^4 > 0$, that is for $0 < d < 0.2826$. Similarly,
 $C(g(1,2)) > C(g(12,0))$ if and only if $0 < d < \frac{2}{3}$. Finally, $C(g(12,0)) > C(g(1,1))$

if and only if $1 - 8d + 6d^2 + 4d^3 - 2d^4 > 0$, that is for bo $C(g(1,2)) > C(g(12,0))$ if and only if $0 < d < \frac{2}{3}$. Finally, $C(g(12,0)) > C(g(1,1))$
if and only if $1 - 8d + 6d^2 + 4d^3 - 2d^4 > 0$, that is for both $0 < d < 0.1413$ and $C(g(1, 2)) > C(g(12, 0))$ if and only if $0 < d < \frac{2}{3}$
if and only if $1 - 8d + 6d^2 + 4d^3 - 2d^4 > 0$, tha
0.8587 $< d < 1$. Combining the three conditions a
stance, for $0 < d \le 0.1413$, it follows that $C(g(1, 2)) >$
39 $C(g(1, 1))$
 $\text{ch } 0 < d < 0.1413 \text{ and}$

the proposition. For in-
 $C(g(1, 2)) > C(g(12, 0))$ if and only if $1 - 8d + 6d^2 + 4d^3 - 2d^4 > 0$, that is for both $0 < d < 0.1413$ and $0.8587 < d < 1$. Combining the three conditions above yields the proposition. For instance, for $0 < d \le 0.1413$, it follows that $C(g(1,2)) > C(g(1,1$ $0.8587 < d < 1$. Combining the three conditions above yields the proposition. For in-0.8587 $\lt d \lt 1$. Combining the three conditions above yields the proposition. For in-
stance, for $0 \lt d \le 0.1413$, it follows that $C(g(1,2)) > C(g(1,1)), C(g(1,2)) > C(g(12,0))$
39 stance, for $0 < d \le 0.1413$, it follows that $C(g(1,2)) > C(g(1,1)), C(g(1,2)) > C(g(12,0))$ $d < d \leq 0.1413$, it follows that $C(g(1, 2)) > C(g(1, 1)), C(g(1, 2)) > C(g(12, 0))$
39 and $C(g(12,0)) > C(g(1,1))$ yielding a) in the proposition.

B.1.5 Social welfare analysisSocial welfare analysis

We give the complete characterization of Proposition 6 in the main text and its proof. We give the complete characterization of Proposition 6 in the main text a
Proposition 9 The distribution network that maximizes social welfare is

- $\binom{q(12,1)}{q(12,1)}$
	- a.1*)* v
	- (12,12)−(1,2), or

	(12,12)−(1,2), or

	(12,12)−(1,2), or

	(13,184824 < d ≤ 0.9535 and $0 \le k < k_{(12,12)- (12,1)}^{sw}$, or
	-

 $\int q(12,1)$

- $\begin{split} k_{(12,12)-(1,2)}^{sw}\ s_w\ \frac{(12,12)-(12,1)}{(12,12)-(12,1)}\ \frac{k}{k} &< k_{(12,1)-1}^{sw}\ \end{split}$ $\frac{2}{3}$ and $k_{(12,12)-(12,1)}^{sw} \le k < k_{(12,1)-(1,2)}^{sw}$, or

and $k_{(12,12)-(12,1)}^{sw} \le k < k_{(12,1)-(12,0)}^{sw}$, or

9535 and $k_{(12,12)-(12,1)}^{sw} \le k < \overline{k}$, or

and $0 \le k < \overline{k}$. $k^{sw}_{(12,1)-(1,2)}, \omega$
 $\substack{sw\\(12,1)-(12,0)}, \omega$
 $k < \overline{k}, \omega r$ b.3)
- (12,12)−(12,1) [≤]
 w

(2,12)−(12,1) [≤]
 $d k_{(12,12)- (12,1)}$
 $k < \overline{k}$. b.2) $\frac{2}{3}$
- $\frac{3}{3}$ < $a \le 0.67395$ and $\kappa_{(12,12)-(12,1)}$ ≥
0.87953 < $d < 0.9535$ and $k_{(12,12)-(12)}^{sw}$
0.9535 < $d < 1$ and $0 \le k < \overline{k}$.
then either
-

 $q(1,2)$

b.4) 0.9535 < d < 1 and $0 \le k < \overline{k}$.

(1,2) when either
 c.1) 0.032569 < $d \le 0.184824$ and $k_{(12,12)-(1,2)}^{sw} \le k < \overline{k}$, or $(12,12)-(1,2)$ \leq
 $(2,2)$ \leq k $\lt k$ \overline{k} .
 $(2,1)-(12,0)$ \leq k

n networks g 0.1848
 $\frac{2}{3}$ and

 $3^{(--)}$

(12,1)−(1,2) ≤

and $k_{(12,1)-}^{sw}$

tribution ne

some other (12,1)−(12,0) ≤

ion networks

other distrib
 $\frac{7(a-c)^2}{288} - 2k$

i not attain **Proof:** We first show that the distribution networks $g(1,0)$ and $g(1,1)$ are always dominated in social welfare terms by some other distribution network. First note that the difference $\frac{17(a-c)^2}{576} > \overline{k}$, and therefore $g(1,0)$ does no
 $W(g(1,2)) - W(g(1,1)) = \frac{(184 - 160d - 12d^2 + 20d)}{18(4-d)^2(2)}$

fore the distribution network $g(1,1)$ does no

Next, the difference $W(g(1,2)) - W(g(1))$ 576 fore the distribution network $g(1,1)$ does not maximize social welfare.

 $C(g(12,0)) > C(g(1, 1))$ yielding a) in the proposition.

5 Social welffire analysis

give the complete characterization of Proposition 6 in t

position 9 The distribution network that maximizes s
 $(12, 12)$ when either

a.1) **oposition 9** The dis
 $g(12, 12)$ when either
 a.1) $0 < d \le 0.032$
 a.2) $0.032569 < d$
 a.3) $0.184824 < d$
 $g(12, 1)$ when either
 b.1) $0.184824 < d$
 b.2) $\frac{2}{3} < d \le 0.87$
 b.3) $0.87953 < d$
 b.4) $0.9535 < d <$ $\begin{split} & \textit{when either} \\ & < d \leq 0.032569 \ \textit{and} \ 0 \leq k < \overline{k}, \ \textit{or} \\ & 032569 < d \leq 0.184824 \ \textit{and} \ 0 \leq k \\ & 032569 < d \leq 0.9535 \ \textit{and} \ 0 \leq k \\ & 184824 < d \leq 0.9535 \ \textit{and} \ k_{\{12,12\}}^{\textit{sw}} - \{12,1\} \\ & < d \leq 0.87953 \ \textit{and} \ k_{\{12,12\}}^{\$ 0.032569 and 0 ≤ k < k, or

0.032569 < d ≤ 0.184824 and 0 ≤ k < k, 860

0.184824 < d ≤ 0.9535 and 0 ≤ k < k, 860

1) 0.184824 < d ≤ 0.9535 and 0 ≤ k < k, 860

1) when either

0.184824 < d ≤ $\frac{2}{3}$ and $k_{($ 0.032569 < d ≤ 0.052509 and 0 ≤ k < k, or

0.032569 < d ≤ 0.184824 and 0 ≤ k < k 80

1) uben either

1) when either

1) 0.184824 < d ≤ $\frac{2}{3}$ and k **a.3)** 0.184824 < e
 $g(12, 1)$ when either
 b.1) 0.184824 < e
 b.2) $\frac{2}{3} < d \le 0.8$
 b.3) 0.87953 < d
 b.4) 0.9535 < d
 e
 $g(1, 2)$ when either
 c.1) 0.032569 < e
 c.2) 0.184824 < e
 $g(12, 0)$ when $\frac{$ 0.184824 < $d \leq \frac{2}{3}$

1 $\frac{2}{3} < d \leq 0.87953$

1 $0.87953 < d < 0.9$

1 $0.9535 < d < 1$ a

1 when either

1 $0.032569 < d \leq 0$

1 $0.184824 < d \leq \frac{2}{3}$

1 $0.032569 < d \leq 0.8$

1 $0.184824 < d \leq \frac{2}{3}$

1 $0.0184824 < d \leq \frac$ $k^{sw}_{(12)}$
 $\begin{array}{l} 1 \leq w \leq k \ \frac{1}{2} \leq k$ $k < k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $> k < k$
 $>$
 $k < k$
 $>$
 $\leq k < k$
 $>$
 $\leq k < k$
 $>$
 $\leq k <$
 $\leq k$
 $>$
 $\leq k <$
 $\leq k$
 $>$
 $\leq k <$
 184824 < $d \leq \frac{2}{3}$ and $k_{(12)}^s$

< $d \leq 0.87953$ and $k_{(12)}^{sw}$

87953 < $d < 0.9535$ and

9535 < $d < 1$ and $0 \leq h$

en either

184824 < $d \leq \frac{2}{3}$ and $k_{(12)}^{ss}$

184824 < $d \leq \frac{2}{3}$ and $k_{(12)}^{ss}$

hen $k < k_{(12)}^{sw}$
 $k_{(12)} \leq k$
 $k_{(12)} \leq k$
 $k_{(13)} \leq k$
 $k_{(23)} \leq k$
 $k_{(30)} \leq k$
 $k_{(4)(a-c)^2}$
 $k_{(4)(a-c)^2$ 0.164824 < $a \leq \frac{2}{3}$ and $k_{(12,12)}^{ev}$

3 $\frac{2}{3} < d \leq 0.87953$ and $k_{(12,12)}^{ev}$

0.957953 $<$ d < 0.9535 and $k_{(12,12)}^{ev}$

0.9535 < d < 0.9535 and $k_{(12,12)}^{ev}$

0.9535 < d < 1 and $0 \leq k < \overline{k}$

when either
 $k^{exp}_{(12,1)-(1)}$
 $k^{sw}_{(12,1)-(12)}$,
 $k < \overline{k}$, or
 $k < \overline{k}$, or
 $k < \overline{k}$,
 $k < \overline{k}$,
 $g(1,0)$ and the highe
 $\frac{c)^2}{4} > 0$ si
 $\frac{d(2-3d)(48)}{4(4-\frac{2}{3})}$. Then

we will co

2) have t

analyzed b $\frac{1}{3}$ < a ≤ 0.67953 and k_(12,12)-(c)

0.87953 < d < 0.9535 and k_(12,12)-(c)

0.9535 < d < 0.9535 and k_(12,12)-(c)

0.9535 < d < 1 and 0 ≤ k < k.

when either

0.032569 < d ≤ 0.184824 and k

0.184824 < d ≤ $\$ **b.4)** $0.9535 < d$
 $g(1, 2)$ when either
 c.1) $0.032569 <$
 c.2) $0.184824 <$
 $g(12, 0)$ when $\frac{2}{3} <$
 oof: We first show

ted in social welfa:

erence $W(g(1, 1))$
 $\frac{u-c)^2}{76} > \overline{k}$, and the
 $g(1, 2)) - W(g(1, 1))$ 0.032569 < d ≤ 0.184824 and $k_{(12)}^{sw}$

0.032569 < d ≤ 0.184824 and $k_{(12,1)-(1,2)}^{sw}$

0.184824 < d ≤ $\frac{2}{3}$ and $k_{(12,1)-(1,2)}^{sw}$

0) when $\frac{2}{3}$ < d ≤ 0.87953 and $k_{(12,1)}^{sw}$

We first show that the distributio $k < \overline{k}$, or
 $< \overline{k}$.

(1,0) and

ion netwo

positive
 $\frac{1}{2}$ highest
 > 0 sinc

social we
 $\frac{2-3d}{4(4-d)^2}$. Then, V

will constant by will constant by Then, V

have to

nalyzed a 0.184824 < $d \leq \frac{2}{3}$

0) when $\frac{2}{3} < d \leq 0$.

We first show that 1

social welfare terr
 $\frac{1}{2}$ W($g(1,1)$) – W($\frac{1}{2}$
 $\frac{1}{2}$, and therefore
 $\frac{1}{2}$ M($g(1,1)$) = $\frac{1}{2}$

distribution networl

the d $k^{sw}_{(12)}$ and string on $k^{sw}_{(12)}$ and $k^{sw}_{(12)}$ and $k^{sw}_{(12)}$ and $k^{sw}_{(12)}$ and $k^{sw}_{(13)}$ and $k^{sw}_{(13)}$ and $k^{sw}_{(14)}$ and $(-1,2)$ \leq
 $k < \overline{k}$.

2,0) \leq

works

listribu
 $- 2k$

ttain t

aximiz

aximiz

(12, 12

(12, 12

to be c.2) 0.18482
 $g(12, 0)$ when $\frac{2}{3}$

pof: We first shed in social we

erence $W(g(1, 1-\frac{c)^2}{76}) > \overline{k}$, and
 $g(1, 2)) - W(g($

the distributio

Next, the diffesion

independent o
 $0 < d < \frac{2}{3}$; and
 $d < \frac{2}{3}$ where
 $d \leq \frac{2}{3}$ and $k_{(12,1)-(1)}^{sw}$
 $d \leq 0.87953$ and $k_{(12)}^{sw}$

ow that the distribution

fare terms by some ot
 $d = \frac{17(a)}{2}$
 $d = \frac{17(a$ $k < \overline{k}$.
 $g(1, 0)$

ition r

is posi

he hig
 $\frac{y^2}{2} > 0$

i.e socia
 $\frac{d(2-3d)}{4}$
 $\frac{2}{3}$. Th

we will

2) have

analy $g(1, 0)$ and $g(1, 1)$ are always dom-
tion network. First note that the
is positive for all $k \in [0, \overline{k})$ since
he highest social welfare. Second,
 $\frac{y^2}{4} > 0$ since $1 > d > 0$, and there-
e social welfare.
 $\frac{d(2-3d)(4$ $W(g(1,1)) - W(g(1,0)) = \frac{1/(a-c)^2}{288}$
 \overline{k} , and therefore $g(1,0)$ does not \overline{k}
 $-W(g(1,1)) = \frac{(184-160d-12d^2+20d^3-18(4-d)^2(2+d)^2)}{18(4-d)^2(2+d)}$

stribution network $g(1,1)$ does not r

che difference $W(g(1,2)) - W(g(12,2))$

e − 2k is positive for all $k \in [0, k)$ since
tain the highest social welfare. Second,
 $\frac{6d^4}{(a-c)^2} > 0$ since $1 > d > 0$, and there-
aximize social welfare.
(1))) = $\frac{d(2-3d)(48+10d-39d^2-2d^3-4d^4)(a-c)^2}{4(4-d)^2(2-d)^2(2+d)^2(1+d$ > k, and therefore $g(1,0)$ does not attain the highest social welfare. Second,

)) – $W(g(1,1)) = \frac{(184 - 160d - 12d^2 + 20d^3 - 5d^4)(a - c)^2}{18(4 - d)^2(2 + d)^2} > 0$ since $1 > d > 0$, and there-

distribution network $g(1, 1)$ does not W(g(1,2)) – W(g(1,1)) = $\frac{1.184-160d-12d^2+20d^2-5d^2+(20d^2-5d^2)(4-6)^2}{18(4-d)^2(2+d)^2}$
fore the distribution network $g(1, 1)$ does not maximize
Next, the difference $W(g(1, 2)) - W(g(12, 0)) = \frac{d}{d}$
also independent of k and $18(4-a)(2+a)$
2) does not m
 $-W(g(12,0))$
3 does not m > 0 since $1 > d > 0$, and there-
ocial welfare.
 $\frac{-3d}{(48+10d-39d^2-2d^3-4d^4)(a-c)^2}$ is
 $\frac{4(4-d)^2(2-d)^2(2+d)^2(1+d)^2}{4(bd-2d)(2d-2d)}$ is
Then, $W(g(1,2)) > W(g(12,0))$
will consider two cases: (a) for
nave to be considered, and (b)
a $g(1, 1)$ does not maximize social welfare.
 $(1, 2)$) – $W(g(12, 0)) = \frac{d(2-3d)(48+10d-36)}{4(4-d)^2(2-d)}$

sitive as long as $0 < d < \frac{2}{3}$. Then, $W(g(10))$

osite otherwise. Thus, we will consider

2), $g(12, 1)$ and $g(12, 12)$ Next, the difference $W(g(1,2)) - W(g(12,0)) = \frac{d(2-3d)(48+10d-39d^2-2d^2-4d^2)(d-d)^2}{4(4-d)^2(2-d)^2(2+d)^2(1+d)^2}$ is

b independent of k and positive as long as $0 < d < \frac{2}{3}$. Then, $W(g(1,2)) > W(g(12,0))$
 $0 < d < \frac{2}{3}$; and the opposite $W(g(1, 2)) - W(g(12, 0)) = \frac{a_{(2-3d)(48+10d-39d}-2d-2d-4d)(4d-6)}{4(4-d)^2(2-d)^2(2+d)^2(1+d)^2}}$ d positive as long as $0 < d < \frac{2}{3}$. Then, $W(g(1, 2)) > W(g(12, 0))$ posite otherwise. Thus, we will consider two cases: (a) $g(1, 2)$, $g(12, 1)$ also independent of k and positive as long as $0 < d < \frac{2}{3}$. Then, k and positive as long as $0 < d < \frac{2}{3}$
l the opposite otherwise. Thus, we
only $g(1,2)$, $g(12,1)$ and $g(12,12)$
e the distribution networks to be a
40 W($g(1, 2)$) > W($g(12, 0)$)
nsider two cases: (a) for
be considered, and (b)
are $g(12, 0)$, $g(12, 1)$ and for $0 < d < \frac{2}{3}$; and the opposite otherwise. Thus, we will consider two cases: (a) for $d < \frac{2}{3}$
 $d < \frac{2}{3}$ w
 $d < 1$
12). $0 < d < \frac{2}{3}$ where only $\langle d \rangle < \frac{2}{3}$
 $\langle \frac{2}{3} \rangle < d$
 $\langle 12, 12 \rangle$ $g(1, 2)$, $g(12, 1)$ and $g(12, 12)$ have to be considered, and (b) distribution networks to be analyzed are $g(12, 0)$, $g(12, 1)$ and 40 for $\frac{2}{3} < d < 1$ where the distribution networks to be analyzed are $g(12,0), g(12,1)$ and $g(12, 12)$. % < d < 1 where the distribution networks to be analyzed are $g(12,0)$, $g(12,1)$ and $g(12)$. $g(12, 12)$.

(a) $0 < d < \frac{2}{3}$.

We first define the thresholds on k that indicate which one of the three distribution networks $g(1,2)$, $g(12,1)$ and $g(12,12)$ is the one that achieves the greatest social welfare.

- The difference $W(g(12,1)) - W(g(1,2))$ is positive if $k < (69632 + 26624d +$ $25344d^{2} + 130048d^{3} - 29984d^{4} - 141504d^{5} - 30548d^{6} + 18460d^{7} + 2967d^{8} + 68d^{9} +$ $\frac{(d-\epsilon)^2}{144(4-d)^2(2+d)^2(1+d)^2(16-7d^2)^2}$. Denote by $k_{(12,1)-(1,2)}^{sw}$ the later expression, which estion of *d*, is always positive and intersects \overline{k} in the interval $0 < d < \frac{2}{3}$ at 296709, being $k_{(12,1)-(1,2)}^{sw} > \over$ $rac{2}{3}$ at $0.0296709 < d < \frac{2}{3}$

 $< d < \frac{2}{3}$

We first

defined $\frac{2}{3}$

We first

activorks

welfare.

The d

25344 d^2

335 d^{10})₁

is a func
 $d = 0.02$

329670

The di

3d⁴)_{9(4–}

is always
 $k_{(12,12)-1}^{sw}$

The di

(4352 –

The di

(435 k that indicate which one of the three distribution
 $\ell_1(2,12)$ is the one that achieves the greatest social
 $\ell_2(6(1,2))$ is positive if $k < (69632 + 26624d +$
 $141504d^5 - 30548d^6 + 18460d^7 + 2907d^8 + 68d^9 +$
 $\overline{\tau}$. g(1, 2), g(12, 1) and g(12, 12) is the one that achieves the greatest social
Verence $W(g(1,1)) - W(g(1,2))$ is positive if $k < (80832 + 20621d - 1300486^6 - 29084d^4 - 141694e^6 - 20084d^4 - 141694e^6 - 20084d^5 - 18046e^6 - 20084d^3 - 1$ W(g(12, 12)) − W(g(1,2)) is positive if $k < (69632 + 26624d + 2674d^2 + 6864d + 2141304d^2 + 20804d + 141304d^3 + 2087d^2 + 68d^4 + 2087d^2 + 68d^4 + 2087d^2 + 68d^2 + 208d^2 + 208$ 2534 $H^2 = 180086t^2 - 2988t^2t^2 - 141418t^2 - 3164t^2 - 1414t^2 - 296t^2 + 88t^2 - 144t^2 - 296t^2 + 84t^2 - 296t^2 + 84t^2 - 296t^2 + 84t^2 - 296t^2 - 84t^2 - 84t^2$ 335d¹⁰) $\frac{(u-c)}{144(4-d)^2(2+d)^2(1+d)^2}$

is a function of d, is alvearing the direct point of d, is alvearing to 0.0296709 < d < $\frac{2}{3}$.

The difference $W(g(123d^4)^{\frac{2}{2}(-d)^2(2-d)^2(2-d)^2(1+d)^2(1+d)^2(1+d)^2(2-d)^2(2-d)^2(2+d)^2(1+d)^$ $k_{(12)}^{\text{out}}$ sect d < osit and a sect d of $k_{(12)}^{\text{out}}$ and $k_{(1$ is a function of d, is always positive and intersects k in the interval $0 < d < \frac{1}{2}$

d – 0.0296709. Leting $k_{1,1,1}^{(n)} = 1.926709$ and the opposite

of 0.0296709 α d $\alpha \leq \frac{1}{2}$.

The difference IV ($p(1,2,1)$) i d = 0.0296709, being k_3^{sw}

0.0296709 < d < $\frac{2}{3}$.

The difference $W(g(12, 3d^4))\frac{(2-d+d^2)(a-c)^2}{9(4-d)^2(2-d)^2(2+d)^2(1+d)}$

is always positive and interview in the $k_{[12,12)-(1,2)}^{su} > \overline{k}$ for $0 < d$

- The difference $W(g($ $d = 0.0296709$, being $k_{(12,1)-(1,2)}^{sw} > \overline{k}$ for $0 < d < 0.0296709$ and the opposite for

0.0296709 < $d < \frac{2}{3}$.

- The difference $W(g(12, 12)) - W(g(1,2))$ is positive if $k < (34 + 3d - 30d^2 - d^3 + 3d^4)\frac{(2-d+d^2)(a-c)^2}{9(4-d)^2(2-d)^2$ > k for 0 < d < 0.0296709 and the opposite for $(g(1,2))$ is positive if $k < (34 + 3d - 30d^2 - d^3 +$

lenote by $k_{12,12j-1,12j}^{89}$ (he later expression, which

at $d = 0.0325694$ in the interval $0 < d < \frac{2}{3}$, being

6694 and 0.0296709 <d< 2 - The difference $W(g(12, 12)) - W(g(1, 2))$ is positive if $k < (34 + 3d - 30d^2 - d^3 + d^3)$ W(g(1,212)) – W(g(1,2)) is positive if $k < (34 + 3d - 30d^2 - d^3 + 9d^2 - 2d^2)$
 $W(g(1, 2, 2)) = W(g(1, 2) - 1, 2)$ the later expression, which $\frac{(6\pi - d)^2}{2(1^2d^2(1+2)^2 - 1)(2^2)}$ be later expression, which

for $0 < d < 0.0325694$ an 3d⁴) $\frac{u^{2}-a+{d}}{9(4-d)^{2}(2-d)^{2}(2+d)^{2}(2+d)^{2}(2+d)^{2}}$
is always positive and
 $k_{(12,12)-(1,2)}^{sw} > \overline{k}$ for 0
 $k_{(12,12)-(1,2)}^{sw} > \overline{k}$ for 0
- The difference $W(g($
(4352 - 3072d - 5632d
denote by $k_{(12,12)-(12,1)}^{sw}$ and in $\frac{(2-a+a^2)(a-c)^2}{9(4-d)^2(2-d)^2(2+d)^2(1+d)^2}$. We denote by $k_{(12,12)-(1,2)}^{sw}$ the later expression, which ways positive and intersects \overline{k} at $d = 0.0325694$ in the interval $0 < d < \frac{2}{3}$, being $\frac{12}{12}-(1,2) > \overline{k}$ for $k_{(12)}^{\text{sw}}$ the is p $-$ 4 w $k_{(12,1)}^{\text{sw}}$ the is p $-$ 4 w $k_{(12,1)}^{\text{sw}}$ or 0 while $k_{(12)}^{\text{sw}}$ at ($<$ $k_{(12)}^{\text{sw}}$) $>$ 0 \times is always positive and intersects k at $d = 0.0325694$ in the interval $0 < d < \frac{2}{3}$, being k at d = 0.0325694 in the interval 0 <d< 2 $k_{(12)}^{\text{sw}}$ - T (43 den and and $k_{(12)}^{\text{sw}}$ of $k_{(12)}^{\text{sw}}$ dis k distribution of $k_{(12)}^{\text{sw}}$ of $k_{(12)}^{\text{sw}}$ or $k_{(12)}^{\text{sw}}$ or $k_{(12)}^{\text{sw}}$ or $k_{(12)}^{\text{sw}}$ $(12,12)$ $(1,2)$
The different
 $4352 - 307$
enote by k
nd intersec > $> k$ for $0 < d < 0.0325694$ and the opposite for $0.0325694 < \epsilon < \frac{d}{8}$

nee $W(g(12,12)) - W(g(12,1))$ is positive if $k < \frac{1}{14422-39^2(1+\delta)^2(624)}$
 $2d - 5632d^2 + 3040d^3 + 1096d^4 - 476d^3 + 1081d^6 - 68d^2 - 335d^6)$
 2^8
 2^8 $k_{(12,12)-(1,2)}^{sw} > \overline{k}$ for $0 < d < 0.0325694$ and the opposite for $0.0325694 < d < \frac{2}{3}$. - The difference W(g(12, 12)) – W(g(12, 1)) is positive if $k < \frac{1}{144(2-\theta)^2(1+\theta)^2}$

5632 $d^2 + 3040d^3 + 1096d^4 - 476d^5 + 1081d^6 - 68d^7 - 335$
 $>_{0-1(x,1)}$ the later expression, which is positive for $0 < d <$

at $d = 0.0359544$, being $k_{\{$ 144(2−d) (1+d) (10−7d)

- 68d⁷ - 335d⁸). We

be for $0 < d < 0.953505$

for $0 < d < 0.0359544$

hat at $d = 0$ and at (4352 – 3072d – 5632d² + 3040d² + 1096d⁴ – 476d³ – 1081d² – 68d⁷ – 335d³). We
denote by $k_{\text{eff,1,2}}^{R}$, 102, 11¹ to kier expression, which is positive for $0 < d < d$ 0.03559544
and the opposite for 0.03595 denote by $k_{(12,12)-(12,1)}^{sw}$ the later expression, which is positive for $0 < d < 0.953503$ $k_{(12)}^{\text{sc}}$ and the contracts ppose of the contract of $(12,1)$ and term $(12,1)$ and term $(13,1)$ and term $(1569,1)$ and term $(1569,1)$ and term $(13,1)$ and term $(13,1)$ and term $(13,1)$ and term $(13,1)$ and po $\frac{sw}{(12,12)-(12,1)}$ the later expression, which is positive for 0

ts \overline{k} at $d = 0.0359544$, being $k_{(12,12)-(12,1)}^{sw} > \overline{k}$ for 0 <

posite for 0.0359544 < $d < \frac{2}{3}$. Further note that at

the three thresholds coi $d < 0.9359544$
 $d = 0$ and at

y are ranked as
 $\langle \frac{2}{3}$ the ranking

subcases can be
 $\langle k_{(12,12)-(12,1)}^{sw} \rangle$

are positive and
 $\langle k_{(12,12)-(1,2)}^{sw} \rangle$
 $\langle k_{(12,12)-(1,2)}^{sw} \rangle$
 $\langle k_{(12,12)-(1,2)}^{sw} \rangle$
 $g(12,12))$ is th and intersects k at $d = 0.0359544$, being $k_{(12)}^{sw}$
ite for $0.0359544 < d < \frac{2}{3}$.

three thresholds coincide; for
 $k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw}$, will $\langle k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw}$, will
 $k_{(12,12)-(1,2)}^{sw} < k_{(12,1)-(1,2)}^{$ (12,12)−(12,1)
Further
or $0 < d <$
while for 0.
e₂₎ Then, tl > k for $0 < d < 0.0359544$

note that at $d = 0$ and at

1.184824 they are ranked as

84824 < $d < \frac{2}{3}$ the ranking

e following subcases can be
 $k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(12,1)}^{sw}$

fined above are positive and
 $\sum_{j= (1$ and the opposite for $0.0359544 < d < \frac{2}{3}$. Further note that at $d = 0$ and at $d = 184824$ the three thresholds coincide; for $0 < d < 0.184824$ they are ranked as (12,1)−(1,2) (1,2)

is $k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-}^{sw}$

distinguished:

For $0 < d < 0.0296709$, it if $\frac{2}{3}$ the ranking distinguished:

- $\begin{aligned} \n\frac{sw}{(12,12)-(12,1)} < k^{sw}_{(12,12)-(1,2)} < k^{sw}_{(12,1)-(1,2)}. \n\end{aligned}$ Then, the following subcases can be inguished:
 $0 < d < 0.0296709$, it follows that $\overline{k} < k^{sw}_{(12,1)-(1,2)} < k^{sw}_{(12,12)-(1,2)} < k^{sw}_{(12,12)-(12,1)}.$

E $(a.i)$ For 0 $\begin{aligned} \sup_{(12,1)-(1,2)} < k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,1)}^{sw}. \end{aligned}$
differences defined above are positive and
 $\sup_{(12,1)-(1,2)} < \overline{k} < k_{(12,12)-(1,2)}^{sw} < \frac{1}{12} \end{aligned}$ Then, for all k belonging to $[0,\overline{k}]$ the three differences defined above are positive and then $q(12, 12)$ maximizes the social welfare.
- $\frac{S_{w}}{(12,12)-(12,1)}$. Then for all k belonging to $[0, \overline{k}]$ we have that both $W(g(12, 12))$
 $W(g(1,2))$ and $W(g(12, 12)) W(g(12,1))$ are positive and then $W(g(12, 12))$ is treatest. Items (a.i) and (a.ii) together prove part greatest. Items (a.i) and (a.ii) together prove part a.1) of the proposition.
- and the opposite for 0.0359544 < $d < \frac{2}{3}$
 $d = 184824$ the three thresholds coincide; $t \frac{20}{3}$
 $k_{(12,11)-(1,2)}^{8} \le k_{(12,12)-(1,2)}^{8} \le k_{(12,12)-(1,2)}^{8} \le k_{(12,12)-(1,2)}^{8} \le k_{(12,12)-(1,2)}^{8} \le k_{(12,12)-(1,2)}^{8} \le k_{(12,12)-(1$ $d = 0$ and at
 $d = 0$ and at
 $\frac{2}{3}$ the ranking
 $\frac{2}{3}$ the ranking
 $\frac{2}{3}$ the ranking
 $\frac{2}{3}$
 $\frac{2}{3}$
 d = 184824 the three thresholds coincide; for $0 < d < 0.184824$ they are ranked as $k_{12,11}^{(8)}$, $(1,2) < k_{12,121}^{(8)}$, $(1,2) < k_{12,122}^{(8)}$, while for $0.184824 < d < \frac{3}{3}$ the ranking $k_{12,122}^{(8)}$, $(1,2) < k_{12,122}^{$ $k_{(12}^{\text{su}}$ is k dist For The the Fo $k_{(12}^{\text{su}}$ $W($ gree $)$ Fe $k_{(12}^{\text{su}}$ $0 < W($ a. 2 $< k_{(12)}^{sw}$
 $(2,1)$ $<$
 (0.029)
 $1 k$ bel
 (12) ma
 (20) ma
 (20) mand W
 (12) (12)
 (12) (12)
 (W)
 (W) $\langle k_{(1,2)}^{ss} \rangle$
 $\langle k_{(1,2)}^{ss} \rangle$

bllows

blows

blows

blows

blows
 $\{0, \overline{k}\}$

he soc
 $\{2569, i \quad k \quad \text{bel}$
 $k \quad \text{bel}$
 $\{954, i \quad \leq k \quad \leq \{2, 12\} - (\text{and } V)$

prove $\frac{sw}{(12,12)-(12,1)},$ while for 0.184824 < $d < \frac{2}{3}$
 $\langle k_{(12,1)-(1,2)}^{sw} \rangle$. Then, the following sub
 $\sqrt{12,12-(1,2)}$ is that $\overline{k} \langle k_{(12,1)-(1,2)}^{sw} \rangle \langle k_{(12,1)-(1,2)}^{sw} \rangle \langle k_{(12,1)-(1,2)}^{sw} \rangle$
 \overline{k} the three difference $k_{(12)}^{\text{out}}$ and in an $\langle k_{(12)}^{sw}\rangle$
296709
elongi
aximi
 $\langle d \rangle$ then for $W(g(1))$
 $\langle d \rangle$
 $\langle d \rangle$ then, for $\langle k \rangle$
 $W(g(1))$
positic $\langle k_{(12)}^{sw}$
s that \vec{k} the \vec{k} the \vec{k}
ocial w, it foll elongit
 $W(g(1 \text{ together} \text{it} \text{it} \text{right}))$
 $\langle k_{(12)}^{sw}$
 $W(g($
red. B $d < d < 0.0296709$, it follows that $k < k_{(12)}^{sw}$
for all k belonging to $[0, \overline{k}]$ the three differe.
 $g(12, 12)$ maximizes the social welfare.
 $(12, 12)$ maximizes the social welfare.
 $(12, 12)$ Then for all k belonging t $< k_{(12)}^{\text{sw}}$
define
 $\frac{w}{(12,1)-(12,1)}$ on ave the and
 $\frac{w}{(12,1)-(1,2)}$
 $\frac{w}{(12,1)-(1,2)}$
 $\frac{w}{(12,1)-(1,2)}$ $< k_{(12)}^{sw}$
are pc
 $k_{(12)}^{sw}$
 $W(g(12, y))$
 $g(12, y)$
 $(12, 12)$
 $(12, 12)$
 $(12, 12)$
 $(12, 12)$
 (12)
 (12)
 (12) k belonging to [0, k] the three differences defined above are positive and

) maximizes the social welfare.
 $0.9 < d < 0.032569$, it follows that $0 < k_{(12,1)-(1,2)}^{sw} < \overline{k} < k_{(12,12)-(1,2)}^{sw} < 0$.

Then for all k belonging to $g(12, 12)$ maximizes the social welfare.

0.0296709 < d < 0.032569, it follows th

2)-(12,1). Then for all k belonging to [1,2)] and $W(g(12, 12)) - W(g(12, 1))$ is

est. Items (a.i) and (a.ii) together pro

0.032569 < d (a.ii) For 0.0296709 < d < 0.032569, it follows that $0 < k_{(12)}^{sw}$
 $k_{(12,12)-(12,1)}^{sw}$. Then for all k belonging to $[0, \overline{k}]$ we have $W(g(1,2))$ and $W(g(12,12)) - W(g(12,1))$ are positive greatest. Items (a.i) and (a.ii) toge $k < k$ is $\{k\}$
both $W(g(12))$
 $\text{in } W(g(12))$
 $\geq \text{propositi}$
 $\leq k_{(12,12)}^{sw}$
 $\geq k_{(12,12)}^{sw}$
following is satisfied.
 $k_{(12,12)-1}^{sw}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$ de $\frac{1}{\pi}$ or es rt $\frac{1}{\pi}$ $k_{(12)}^{sw}$
 $W($ gree $k_{(12)}^{sw}$
 $0 < W($
 $a.2$ k belonging to $[0, k]$ we have that both $W(g(12, 12)) -$
 $)-W(g(12, 1))$ are positive and then $W(g(12, 12))$ is the
 i.ii) together prove part **a.1)** of the proposition.

954, it follows that $0 < k_{(12, 1) - (1, 2)}^{sw} < k_{(12, 12$ W(g(1,2)) and W(g(12, 12)) – W(g(12, 11)) are positive and then W(g(12, 12)) is the
greatest. Items (a.i) and (a.ii) together prove part a.1) of the proposition.

) For 0.032569 < d < 0.035954, it follows that $0 < k_{(12,1$ (a.iii) For $0.032569 < d < 0.035954$, it follows that $0 < k_{(12)}^{sw}$
 $k_{(12,12)-(12,1)}^{sw}$. Then, for $0 \le k < k_{(12,1)-(1,2)}^{sw} < k_{(12,12)}^{sw}$
 $0 < k_{(12,1)-(1,2)}^{sw} < k < k_{(12,12)-(1,2)}^{sw} < k < k_{(12,12)-(12)}^{sw}$
 $W(g(12,12)) > W(g(1,2))$ and $W(g($ $\frac{1}{12,-1,-1,2}$ (12,12)−(1,2)
 $\frac{1}{12,-1,2}$ (12,12)−(1,2)

(12,1), the following ineq

(12,1)) are satisfied. The
 $\frac{1}{2,1,-1,2}$ ($k_{(12,12)-1,2}^{sw}$) $\langle k_{(12)}^{sw} \rangle$
 $\overline{k} \langle k \rangle$

follow

e satis
 $k_{(12)}^{sw}$ (k, k) , or
aalities
n part
 $k < k <$ $k_{(12)}^{\text{out}}$
0 < $W($
a.2 $\begin{aligned} \n\mathcal{L}_{(12,12)-(12,1)}^{sw} \text{ Then, for } & 0 \leq k < k_{(12,1)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k < k_{(12,12)-(1,1)}^{sw}, \text{ or } \\ \n& k_{(12,1)-(1,2)}^{sw} < k < k_{(12,12)-(1,2)}^{sw} < k < k_{(12,12)-(1,2)}^{sw} < k^{sw}, \text{ the following inequalities} \\ \n\mathcal{W}(g(12,12)) > W(g(1,2)) \text{$ $k < k_{(12)}^{s,w}$
2)-(1,2)
dd $W(g)$
oved. E $< k_{(12)}^{sw}$
sw
(12,12) $> W($
 $>$ $\left\langle k_{0}^{k}\right\rangle$
 $>$ $< k_{0}^{k}$ $k < k_{(12)}$
 $k \leq k_{(12)}$
 $k \leq k_{(12,12)}$
 $k \leq k_{(12,12)}$ $0 < k_{(12,1)-(1,2)}^{sw} < k < k_{(12,12)-(1,2)}^{sw} < k < k_{(12,12)-(1,1)}^{sw}$, the following inequalities
 $W(g(12,12)) > W(g(1,2))$ and $W(g(12,12)) > W(g(12,1))$ are satisfied. Then part
 a.2) in the proposition is proved. But for $0 < k_{(12,1)-(1,2)}$ $\langle k_{(12)}^{sgn} \rangle$
 $(g(12))$ in (12,12)−(1,2)
(12,12) > $W(g(1,2))$ and $W(g(n, 12))$ and $W(g(n, 12))$ and $W(g(n, 12))$ $\langle k \rangle \langle k_{(12)}^{sw}$
 $W(g(1,2))$ is position is $\langle k \rangle \langle k_{(12)}^{sw}(12,12) \rangle$
3ut for 0 $\langle k \rangle$
41 $W(g(12, 12)) > W(g(1, 2))$ and $W(g(12, 12)) > W(g(12, 1))$ are satisfied. Then part
 a.2) in the proposition is proved. But for $0 < k_{(12, 1)-(1, 2)}^{sw} < k_{(12, 12)-(1, 2)}^{sw} < k <$

41 a.2) in the proposition is proved. But for ⁰ $\langle k_{(12)}^{sw}$ (12,1)−(1,2) $\langle k_{(12)}^{sw} \rangle$ (12,12)−(1,2) <k<

- $\begin{align*}\n\text{(12,12)} (12,1), & \text{it follows that} \\
\text{(12,12)} (12,1), & \text{if follows that} \\
\text{(12,12)} (12,1), & \text{(12,13)} \leq k \leq 0.184824, \\
\text{(12,11)} \leq k. & \text{then, for } 0 \leq k \leq k \leq k. \n\end{align*}$ $\begin{aligned} \mathcal{H}^{(12,1)-1,2)} &\leq k^{sw}_{(12,12)- (1,2)} \ \mathcal{H}^{(12,12)-1,2)} &\leq k^{sw}_{(12,12)- (12,1)} \ \mathcal{H}^{(12,12)-1,2} &\leq k^{sw}_{(12,12)- (1,2)} \leq k^{sw}_{(12,12)- (12,1)} \leq k \ \mathcal{H}^{(12,12)-1,2} &\leq k \leq k, \ g(1) \end{aligned}$ (12,12)–(12,1)

or $0 < k^{sw}_{(12,12)-(1,2)} < k < k^{sw}_{(12,12)-(1,2)} < k^{sw}_{($ welfare is achieved by $g(12,12)$; while for $0 < k_{(12,12)-(12,1)}^{sw}$
 $k_{(12,12)-(12,1)}^{sw} < \overline{k}$ or $0 < k_{(12,1)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k_{(12)}^{sw}$

gives the highest social welfare. Items (a.iii) and (a.iv

proposition. $\begin{align} (12,1)^\perp(1,2) \ \times \left(\frac{12,12}{12,12} \right) < k < k \ \text{and} \ (\mathbf{a}.\mathbf{iv}) \ \text{prove part c.1} \ \times \left(k^{sw} \right) < k^{sw} \end{align}$ (12,12)−(12,1)

ives the highest social welfare. Items (**a.iii**) and (**a.iv**) prove

roposition.

For 0.184824 < $d < \frac{2}{3}$, we have $0 < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw}$ gives the highest social welfare. Items $(a.iii)$ and $(a.iv)$ prove part $c.1$) of the proposition.
- $k < k$, $k < k$, k , k , k , k , k , k , $W(g(1, 2)$ For 0.0
 $k^{sw}_{(12,12)-1}$ or 0 < $k^{sw}_{(12,12)-1}$ or 0 < $k^{sw}_{(12,12)-1}$ gives the propositi For 0.18

Then, for 0.18

Then, for 0.18

Then, for 0.18

Then, for 0.18

T $W(g(12, 12)) < W(g(1, 2))$ and $W(g(12, 1))
the highest social welfare. \nfollows that $0 < k_{11,11}^{(12)} - (k_{12}^{(12)}) < k_{12,12}^{(2)} - (k_{12}^{(2)})
 (k_{12,11}^{(2)} - (k_{12}^{(2)})
 (k_{12,12}^{(2)})
 (k_{12,12}^{(2)})
 (k_{12,12}^{(2)})
 (k_{12,12}^{(2)})
 (k_{12,12}^{(2)})
 (k_{12,1$$ W(g(1,2)). Then W(g(1,2)) gives the highest social welfare.

For 0.033954 < d < 0.154824, it follows that $0 < k_{1011}^{\text{NS}}$,
 $\hat{b}_{112123}^{\text{NS}}$, $\hat{b}_{12123}^{\text{NS}}$, $\hat{b}_{12133}^{\text{NS}}$, $\hat{b}_{12133}^{\text{NS}}$, \hat{b}_{1213 (a.iv) For 0.035954 $\leq d \leq 0.184824$, it follows that $0 \leq k_{\text{FB},111}^{(2)} - (3.1)$, $\leq k_{\text{FB},111}^{(2)} - (3.1$ $< k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $< k_{(12,12)}^{sw}$
 $< k_{(12,12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $\geq 304d$

ote by
 $2,0), g$
 $2304d$

ote by
 $2,0), g$
 $2304d$
 \overline{k} , al $<$ 2) ne \overline{k} . al $<$ 1) $<$ 1) dd $+$ 2, (in at \forall e as al re \overline{k} . t $<$ $k_{(12)}^{sw}$ well $k_{(12)}^{sw}$ pro Fo The well $k_{(12)}^{sw}$ and $< k$. Then, for 0 ≤ k < k^{sw}₍₁₂)-(1,2)
 0 = (1,2) < k < k'₍₁₂₎-(1,2); while $\leq k$ or 0 < k^{sw}₍₁₂₎-(1,2); while $\leq k$ or 0 < k^{sw}_{(12,1})-(1,2) < k hest social welfare. Items
 $1 < d < \frac{2}{4}$, we have 0 < k^{sw} $< k_{(12,1)}^{sw}$
 $< k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$

and (
 $\leq k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $\leq k_{(12)}^{s}$

We which $\leq k_{(12)}^{s}$
 $\leq k_{(12)}^{s}$

sp $< k_{(12,12)}^{sw}$
 $< k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $\frac{k_{(12,12)}^{sw}}{k}$
 $\frac{k}{k}$ the $< k < k < 1$
 $\frac{k}{k}$ the $< k < 1$
 $\frac{1}{14(2-i)}$
 $\frac{1}{144(2-i)}$
 $\frac{1}{144(2-i)}$
 $\frac{1}{144(2-i)}$
 $\frac{k_{(12,12)}^{sw}}{k}$
 $\frac{k_{(12,12)}^{sw}}{k}$ $< k$, $>$ cial
 $k < k$, $>$ cial
 $k < 1, 2$)
 $\geq k$. ≥ 1
 $\geq k$. $\geq 2, 1$)
 $\geq k$. $\geq 2, 1$
 $\geq k$. \geq $\langle k_{12}^{sw} \rangle$
 $\langle k_{12}^{sw} \rangle$ and k_{21}^{sw}
 $\langle k_{12}^{sw} \rangle$ and $\langle k_{12}^{sw} \rangle$ are by k
 $\langle k_{12}^{sw} \rangle$ and $\langle k_{12}^{sw} \rangle$ <k<ksw $< k_{(12)}^{so}$
 $< k_{(21)}^{so}$
 $k_{(12)}^{so}$
 $k_{(12)}^{so}$
 $k_{(12)}^{so}$
 $k_{(12)}^{so}$
 $k_{(2-d)}^{so}$
 $k_{(2-d)}^{so}$
 $k_{(12,1)}^{so}$
 $k_{(12,1)}^{$ < k the greatest social
 $0 \le k \le m$
 $0 \le k \le 1, 2, -1, 2, 2, \le k \le 2) - (12, 1) \le k \le k$
 $2) - (12, 1) \le k \le k$, $g(1, 2)$

prove part **c.1**) of the
 $-(1, 2) \le k \le m$
 \sqrt{k} the greatest social
 $\sum_{i=1}^{k} k \le k \frac{2w}{(12, 12) - (1, 2)}$ $g(12, 12)$; while for $0 < k_{(12, 12) - (1, 2)}^{sw}$
 $\leq k_{(12, 1) - (1, 2)}^{sw}$ $\leq k_{(12, 12) - (1, 2)}^{sw}$
 $\leq k_{(12, 12) - (1, 2)}^{sw}$
 $\leq k_{(12, 12) - (12, 1)}^{sw}$
 $\leq k_{(12, 12) - (12, 1)}^{sw}$
 $\leq k_{(12, 12) - (12, 1)}^{sw}$ $\leq k_{(12,$ $\langle k_{(12)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12,1)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12,1)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12,1)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12)}^{\text{sw}} | 2 \rangle$
 $\langle k_{(12)}^{\text{new}} | 2 \rangle$
 $\langle k_{(12)}^{\text{sw}} | 2 \rangle$ $g(1,2)$
of the
 $g(1,2) < \overline{k}$.
t social
 $-(1,2) < g(12,1)$
 $((1,2) < g(12,1))$
 $((1,2) <$
ts **b.1**)
1) and
 $324d^2 +$
 $(1,1) - (12,0)$
 $(1,2) < \overline{k}$.
ts \overline{k} in that
 $(2)^2$. We
ersects
follows
in case
nerval
ses are
 $\frac{1}{k}$. gr $k_{(12)}^{\text{sw}}$ pro Fo The well $k_{(12)}^{\text{sw}}$ we $k_{(12)}^{\text{sw}}$ and $\langle k \text{ or } 0 \rangle \langle k \rangle_{(12)}^{sw}$

hest social well
 $k \langle k \rangle_{(12,12)- (12)}^{sw}$
 $k \langle k \rangle_{(12,12)- (12)}^{sw}$

ained with $g(12)$
 \overline{k} or $0 \langle k \rangle_{(12,12)}^{sw}$

hest social well
 $k \langle k \rangle$ the grea

the proposition.

Le the threshold
 $< k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $d^7)$ $\frac{1}{144}$
 $\frac{1}{144}$ $< k_{(12)}^{sw}$
 $(k_{(12,1)}^{sw}$
 $(k_{(12,1)}^{sw})$
 $(k_{(12,12)}^{sw})$
 $< k$
 $(k_{(12,12)}^{sw})$
 $k_{(12,12)}^{sw}$
 $(k_{(12,12)}^{sw})$
 $(k \geq 2)$ $k \leq k < k$, $g(1, 2)$

bart **c.1)** of the
 $k_{(12,1)-(1,2)}^{sw} < \overline{k}$.

e greatest social
 $k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k_{(12,12)-(1,2)}^{sw}$

roves parts **b.1)**

(0), $g(12,1)$ (a.v) For 0.184824 < $d < \frac{2}{3}$

Then, for $0 \le k < k_1^{sw}$

welfare is attained with
 k_1^{sw} welfare is attained with
 k_2^{sw}

welfare is attained with
 k_3^{sw}
 $(k_{(12,1)-(1,2)}^{sw} < \overline{k}$ or $0 <$

gives the highest soci $\langle k_{(12,12)}^{sw} \rangle$
 $k_{(12,12)}^{sw}$ For ei
 $k_{(12,12)}^{sw}$ For ei
 $k_{(12,12)}^{sw}$ Finall with the gree $(12,0)$
 $(12,0)$
 $(12,0)$
 $(12,0)$
 $(k_{(12,12)}^{sw} \leq k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw} \leq k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $(k_{12,12)-(1,2)} < k_{(12,12)-(1,2)} < k$ (12,17)−(1,2)
 $(k_{(12,12)-(1,2)}< k < k$ (12,12)−(1,2)
 $k < k_{(12,12)-(1,2)}< k < k_{(12,12)-(1,2)}< k, g$
 $(k_{(12,12)-(1,2)}< k < k_{(12,1)-(1,2)}< k, g$
 $(k_{(12,12)-(1,2)-(1,2)-(1,2)}< k, s$ $\langle k^{sw}_{(12,1)} \rangle$
sw $\langle k^{sw}_{(12,1)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
which al wel:
 $\frac{c}{2}$
 $\frac{c}{3}$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw}_{(12,12)} \rangle$
 $\langle k^{sw$ $< k_{(12)}^{sw}$
 $k < k_{(12)}^{sw}$
 $k < k_{(22)}^{sw}$
 $< k_{(32)}^{sw}$
 $< k_{(42-d)}^{sw}$
 $= 2304$ $< k$. $\frac{1}{2}$ $<$ $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ and $d^2 + \frac{1}{k}$. $\frac{1}{k}$ and $d^2 + \frac{1}{k}$ in that We sects lows case erval s are $\frac{1}{k}$. $\frac{1}{k}$ reat- $k < k$ Then, for $0 \leq k < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(1,2)}^{sw} < k_{(12,1)-(1,2)}^{sw} < \overline{k}$ the greatest social $k < k_{(12)}^{sw}$

ined with \overline{k} or $0 <$

est socing is the proportion of $k < \overline{k}$ the proportion of $k < \overline{k}$ the proportion of $4-1990e$

est socing the $W(g(14-1990e))$
 $k = k$ the $W(g(112)-(12,02e))$
 $k = k$ or the k
 k (12,12) (12,11) (12,12) (1,2)

(12,11) (1,2)

(12,12)-
 $\langle k_{(12)}^{sw}\rangle$. For
 $(12,1)$ $\langle k_{(12)}^{sw}\rangle$. Fin

socia
 $\frac{1}{2}$ k the $\frac{1}{3}$
 $\frac{1}{3}$ $\frac{1}{3}$
 \frac $< k_{0.12}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $\leq k_{(12)}^{sw}$
 $\leq 0 < R$

is $W((a-c)^2)$

is $W((a-c)^2)$
 $\leq (a-c)^2$
 $\leq (1+d)$
 ≤ 3
 ≤ 795 ;

salwa

for $\frac{2}{3}$
 ≤ 795 ;

positive

then, i
 $d > 0$
 $-W((a-c)^2)$
 $\leq k$
 $\langle k \rangle \langle k \rangle \langle k \rangle \langle k \rangle \langle k \rangle$
 $\langle k \rangle \langle k \rangle \langle k \rangle \langle 12,12 \rangle - (1,2) \langle k \rangle \langle k \rangle \langle 12,12 \rangle - (1,2) \langle k \rangle \langle k \rangle \langle k \rangle \langle 12,12 \rangle - (1,$ welfare is attained with $g(12, 12)$. For either $0 < k_{(12, 12)-(12, 1)}^{sw} < k < k_{(12, 12)-(1, 2)}^{sw} <$ $(12,12)-(12,1)$ (12,12)−(1,2)
 $0 < k < k_{(12,12)-(12,1)}^{sw} < k, g(12,12)$
 $0 < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(1,2)}^{sw}$
 $V(g(1,2))$. This proves parts **b**. gives the highest social welfare. Finally, for $0 < k_{(12,12)-(12,1)}^{(12,12)-(12,1)} < k$
 $k_{(12,1)-(1,2)}^{sw} < k < \overline{k}$ the greatest social welfare is $W(g(1,2))$. This provand **c.2)** of the proposition. (12,12)−(12,1) (12,12)−(1,2)
(1,2)). This proves parts **b**
ch one of $g(12,0)$, $g(12,1)$ and c.2) of the proposition.
- (b) $\frac{2}{3} < d < 1$.

(12,1)−(1,2)

nd **c.2)** o:
 $d < 1$.

We now de 3 We now define the thresholds on

 $g(12, 12)$. For either $0 < k_{(12, 12)-(12, 1)}^{sw}$
 s_w^{sw}
 s_w^{sw}
 s_w^{sw}
 s_w^{sw} $(12, 12)-(12, 1)$ $\leq k_{(12, 12)-(1, 2)}^{sw}$
 s_w^{sw}
 s_w^{sw} s_w^{sw} s_w^{sw} s_w^{sw} s_w^{sw}
 s_w^{sw} s_w^{sw}
 s_w^{sw} $-267d^6 + 335d^7$
 $k < k$ sw
 $k(12, 1) - (1, 2)$
 $k(12, 12) - (1, 2)$
 $k(12, 12) - (1, 2)$
 $k(12, 12) - (1, 2)$ (1) $<$ 1) and $+$ 2, 0 at $\frac{1}{k}$ at $k_{(12)}^{sw}$ and $\lt \leq$ We $g(1 - T)$ den a $k_{(12)}^{sw}$ and $\lt \leq$ We $g(1 - T)$ den a $k_{(12)}^{sw}$ and $k_{(12)}^{sw}$ and \leq and $k_{(12)}^{sw}$ and \leq and $k < k$ or $0 < k_{(12)}^{sw}$

ighest social words in the special words $k < \overline{k}$ the gree the proposition

ine the threshorolic means the one that acroite $W(g(12, 1))$
 $W(g(12, 1))$
 $W(g(12, 1))$
 $\frac{2}{3} < d < 1$ at $\frac{2$ $< k_{(12)}^{sw}$
 $\leq k_{(12,12)}^{sw}$
 $\leq k_{(12,$ $k < k < k_{(12)}^{sw}$
 $k_{(12,12)-(12)}^{sw}$
 $(g(1,2))$. T
 $(g(1,2))$. T
 $(g(1,2))$. T
 $\frac{1}{3}k < (438)$
 $\frac{2}{3} < d < 0$.

3.

We if $k < 1$

s always p

for $\frac{2}{3} < d$

9.956154.
 $(g(12,1))$ i

resholds a
 $g,0$. The fo
 $\langle k, g(12, 1)$
 $\frac{w}{12,12)-(1,2)}$ \leq
 $\frac{w}{12,12)-(1,2)}$ \leq
 \geq parts **b.1)**
 $g(12, 1)$ and
 $4d-5824d^2 +$
 $\frac{w}{(12,1)-(12,0)}$
 $\frac{d^2}{(1+d)^2}$. We

md intersects \overline{k} in follows

me as in case
 $\frac{13-(12,0)}{k$ $< k_{012}^{\text{sw}}$
 $W(g(1$

which well $W(g(1$
 $W(g(1$
 $\frac{-c)^2}{1+d})(16-$
 $\frac{-c)^2}{1+d}$
 $\frac{1}{3}$
 $\frac{1}{$ $< k_{(12)}^{sw}$
2, 0), 2
2304 a
note by
md int
53 it 1
 $\frac{2d+12d^2}{(2-d)^2}$
ive an esammies in $\frac{2d+12d^2}{(12,d)^2}$
ive an int
is in $\frac{2d+12d^2}{(12,d)^2}$
 $k_{(12,1)}^{sw}$ (1) and $+$ $\frac{1}{2}$, $\frac{1}{2}$ at $\frac{1}{2}$ $\frac{1}{2$ $k_{(12)}^{\text{out}}$ and \leq We $g(1 - T)$ 368 the $k_{(12)}^{\text{out}}$ and $k_{(12)}^{\text{out}}$ and $k_{(12)}^{\text{out}}$ and $\frac{2}{3}$ \leq and F or The est $\langle k \rangle \langle k \rangle$ the greatest social welfare is $W(g(1, 2))$. This proves parts b.1)
the proposition.
Since the densities on k that indicate which one of $g(12, 0)$, $g(12, 1)$ and
the one that schieves the greatest social we $d < 1$.
We now d
 $d(12, 12)$
The diffication d^3+2
 d^3+2
 e later
the interview d^3+2
 e^{3w}
 e^{2w} k that indicate which one of $g(12, 0)$, $g(12, 1)$ and
the greatest social welfare.
 $g(12, 0)$) is positive if $k < (4352 - 2304d - 5824d^2 + 335d^7)\frac{(a - c)^2}{144(2 - d)^2(1 + d)(16 - 7d^2)^2}$. Denote by $k_{(12, 1)}^{\text{exp}} - (12, 1)$
meti $g(12, 12)$ is the one that achieves the greatest social welfare.

The difference $W(g(12, 1)) - W(g(12, 0))$ is positive if $k < ($
 $3680d^3+2270d^4-1990d^5-267d^6+335d^7) \frac{(a-c)^2}{144(2-d)^2(1+d)(16-d^2)^2}$

the later expression, whi - The difference $W(g(12, 1)) - W(g(12, 0))$ is positive if $k < (4352 - 2304d - 5824d^2 +$ W(g(12, 1)) – W(g(12, 0)) is positive if $k < (4352 - 2304d - 5824d^2 + 1990d^5 - 267d^6 + 335d^7)\frac{(a \cdot c)^2}{144(2 - d)^2(1+d)(16 - 7d^2)^2}$. Denote by $k_{(12,1)}^{exp} - (12, 12)$ is a function of d, is always positive and intersects k in $\frac{(a-c)^2}{144(2-d)^2(1+d)(16-7d^2)^2}$. Denote by $k_{(12,1)-(12,0)}^{sw}$

1 of *d*, is always positive and intersects \overline{k} in

Then, for $\frac{2}{3} < d < 0.87953$ it follows that

r *d* > 0.87953.

, 0)) is positive if $k < \frac{(17-2d+1$ the interval $\frac{2}{3} < d < 1$ at $\frac{d}{b} = 0.87953$. Then, for $\frac{2}{3} < d < 0.87953$ it follows that \sim \sim \sim \sim \sim \sim \sim \sim

3680d³+2270d⁴-1990d⁵-267d⁶+335d') $\frac{u-c_0}{144(2-d)^2(1+d)}$
the later expression, which is a function of d, is alwe
the interval $\frac{2}{3} < d < 1$ at $\frac{d}{b} = 0.87953$. Then, for $\frac{2}{3}$
 $k_{(12,1)}^{so}$ -(12,0) $$\overline{k}$$ $k_{(12)}^{\text{out}}$
 $k_{(12)}^{\text{out}}$
 $\text{in } (a-1)$
 $\text{in } (a+1)$
 $\text{in } (12)$
 $\text{in } (12)$
 $\text{in } (12)$
 $\text{in } (12)$ the later expression, which is a function of d, is always positive and intersects k in

the interval $\frac{2}{3} < d < 1$ at $\frac{d}{s} = 0.87953$. Then, for $\frac{2}{3} < d < 0.87953$ it follows that
 $k_{1121-12,00}^{(m)} < \overline{k}$, the opp $d < d < 1$ at $\frac{d}{b}$
 \overline{k} , the opposition \overline{k} , the opposition $W(g(12, 12))$
 $(12)-(12,0)$ the lift $(12, 0)$ is \overline{k} , the conduct of the difference of \overline{k} , the following \overline{k} , $(12, 1)$ is $(12, 12)$
 $(1$ $\frac{d}{b} = 0.87953$. Then, for $\frac{2}{3}$
ite follows for $d > 0.87955$

(b)) $- W(g(12,0))$ is positival in the sphere of $l > 0$

(b) is positic head in the sphere of $d > 0$

erence $W(g(12,12)) - W(\text{lowing ranking for the th})$
 $k_{(12,12)-(12,0)}^{sw} <$ $d < d < 0.87953$ it follows that
 e if $k < \frac{(17 - 2d + 12d^2)(a - c)^2}{144(2 - d)^2(1 + d)^2}$. We

always positive and intersects

or $\frac{2}{3} < d < 0.956154$ it follows

956154.
 $n(12, 1)$ is the same as in case

esholds applies in t $k_{(12)}^{\text{out}}$ - T den a that $\frac{1}{k}$ a that $\frac{2}{3}$ < ana For The est (12,1)−(12,0)

The difference by k

at $d = 0.9$

hat $k_{(12,12)}^{sw}$ $\langle k, \text{ the opposite follows for } d > 0.87953.$

nce $W(g(12, 12)) - W(g(12, 0))$ is positive
 $\sum_{12,12}^{w}$ $(12,0)$ the later expression, which is

56154 in the interval $\frac{2}{3} < d < 1$. Then, for
 $\langle (12,0) \rangle \langle k, \text{ the opposite follows for } d > 0.9$

cold for the diffe - The difference $W(g(12, 12)) - W(g(12, 0))$ is positive if $k < \frac{(1\ell - 2d + 12d^2)(d - c)^2}{144(2-d)^2(1+d)^2}$. We denote by $k_{(12, 12)-(12, 0)}^{sw}$ the later expression, which is always positive and intersects \overline{k} at $d = 0.956154$ denote by $k_{(12,12)-(12,0)}^{sw}$ the later expression, which is always positive and intersects ^{sw}<sup>(12,12)–(12,0) the later expression, which is always positive and intersects

956154 in the interval $\frac{2}{3} < d < 1$. Then, for $\frac{2}{3} < d < 0.956154$ it follows

{−(12,0)} < \overline{k} , the opposite follows for $d > 0.95$ that $k{(12, 12)-(12, 0)}^{sw} < \overline{k}$, the opposite follows for $d > 0.956$

 $W(g(12, 12)) - W(g(12, 0))$ is positive if $k < \frac{111-2a+12a-10a-1}{144(2-d)^2(1+d)^2}$)-(12,0) the later expression, which is always positive and interial is 4 in the interval $\frac{2}{3} < d < 1$. Then, for $\frac{2}{3} < d < 0.956154$ it for k^{30}
 k^{31} k at $d = 0.956154$ in the interval $\frac{2}{3}$
that $k_{(12,12)-(12,0)}^{sw} < \overline{k}$, the opposite-
The threshold for the difference V
(a), $k_{(12,12)-(12,1)}^{sw}$. The following r
 $\frac{2}{3} < d < 1$: $k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-}^{sw}$
a $d < d < 1$. Then, for $\frac{2}{3}$
follows for $d > 0.956$
 $(g(12, 12)) - W(g(12))$
mking for the threshot
 $(12,0) \leq k_{(12,1)-(12,0)}^{sw}$.
 $(k_{(12,12)-(12,1)}^{sw} \leq k_{(12,12)-(12,0)}^{sw} \leq k_{(12,12)-(12,0)}^{sw}$.
 $k_{(12,12)-(12,0)}^{sw} \leq k_{(12,12)-(12,0)}^{$ $< d < 0.956154$ it follows
54.
1)) is the same as in case
lds applies in the interval
'he following subcases are
 $\frac{1}{(12,0)} < k^{sw}_{(12,1)- (12,0)} < \overline{k}$.
 $\frac{1}{(12,1)- (12,0)} < k^{sw}_{(12,12)- (12,1)} < k <$ $k^{sw}_{(12)}$ the $k^{sw}_{(12)}$ denotes $k^{sw}_{(12)}$ denotes $k^{sw}_{(12)}$ denotes $k^{sw}_{(12)}$ denotes $\frac{2}{3}$ denotes $\frac{$ (12,12)−(12,0)

threshold fo
 $\frac{sw}{(12,12)-(12,1)}$

< 1 : $k_{(12,12)}^{sw}$

ied: $\langle k, \text{ the opposite follows for } d > 0.956154.$

r the difference $W(g(12, 12)) - W(g(12, 1))$

The following ranking for the thresholds
 $\langle k^{sw}_{(12,12)-(12,0)} \rangle \langle k^{sw}_{(12,1)-(12,0)} \rangle$. The

53, we have $0 \langle k^{sw}_{(12,12)-(12,1)} \rangle \langle k^{sw}_{(12,12)-(12,0)} \rangle$. The
 - The threshold for the difference $W(g(12, 12)) - W(g(12, 1))$ is the same as in case $W(g(12, 12)) - W(g(12, 1))$ is the same as in case
ranking for the thresholds applies in the interval
 $- (12,0) < k_{(12,1)}^{sw} - (12,0)$. The following subcases are
 $k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,12)-(12$ (a), ^{sw} (12,12)−(12,1). The following ranking for the thresholds applies in the interval
 $\langle 1 : k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,1)-(12,0)}^{sw}$. The following subcases are

ced:
 $\langle d < 0.87953$, we have $0 < k_{(12,12)-(12$ $\frac{2}{3}$ analyzed:

 $k_{(12)}^{\text{out}}$
 $d <$
 $72e$ c
 $\frac{2}{3}$
 \leq
 $\frac{2}{3}$
 \leq
 $\frac{2}{3}$
 \leq $d < 1$: $k_{(12)}^{sw}$

alyzed:

or $\frac{2}{3} < d < 0$.

hen, for $0 \le$

t social welfa $\begin{aligned} \n\mathcal{L}_{(12,12)-(12,1)} &< k_{(12,12)-(12,0)}^{sw} < k_{(12,1)-(12,0)}^{sw} \text{ The following subcases are} \ \n\mathcal{L}_{(12,12)-(12,0)} < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,12)-(12,1)}^{sw} \leq k < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k < k_{(12,12)-(12,$ $\langle k_{(12)}^{s,w}\rangle$
have
 $(12)-(1)$ ined $\langle k_{(12)}^{sw} \rangle$
 $\langle k_{(12)}^{w} \rangle$
 $\langle k_{(2,12)}^{w} \rangle$
 $\langle k_{(12)}^{w} \rangle$ (b.i) For $\frac{2}{3} < d < 0.87953$, we have $0 < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,1)-(12,0)}^{sw} < \overline{k}$. Then, for $0 \le k < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,1)-(12,0)}^{sw} < k$ the g
est social welfare is obtained with $g(12,12)$. For either $0 < k_{(12,12)-(12,1)}^{sw} <$
42 $d < d < 0.87953$, we have $0 < k_{(12)}^{sw}$
for $0 \le k < k_{(12,12)-(12,1)}^{sw}$
cial welfare is obtained with $g(1)$ $\langle k_{(12)}^{s,w}\rangle$
 $\langle k_{(12)}^{(12)}\rangle$ $< k^{sw}_{(12)}$
 $k^{0.0}_{(12,12)}$ $\langle k.$
reat-
 $k<$ $k < k_{(12)}^{sw}$
e is obta (12,12)−(12,1) (12,12)−(12,0) (12,1)−(12,0) est social welfare is obtained with $g(12, 12)$. For either $0 < k_{(12)}^{sw}$
42 $\langle k_{(12)}^{30}$
g(12, 42 $\langle k_{(12)}^{s,w}\rangle$
ither ($\langle k \rangle$ the great-
2)-(12,1) $\langle k \rangle$ g(12, 12). For either $0 < k_{(12)}^{sw}$
42 (12,12)−(12,1) <k<

(12,12) (12,1) (12,0)
 $\frac{sw}{(12,1)-(12,0)} < \overline{k}$, $g(12,1)$ gives the highest social welfare, and part **b.2)** of the

ition is proved. Finally, for $0 < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,1)-(12)}^{sw}$

the greatest socia (12,1)−(12,0)

(16) is provided in the greate

For 0.8795 sition is proved. Finally, for $0 < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k_{(12,1)-(12,0)}^{sw} < k < \overline{k}$ the greatest social welfare is $W(g(12,0))$, and part **d**) of the proposition is proved.

- $k_{(12)}^{sw}$ is the contract of $k_{(12)}^{sw}$ is the contract of $k_{(12)}^{sw}$ and $k < k_{(12)}^{sw}$ pro \overline{k} $k_{(12)}^{sw}$ g(1 \overline{e} are $k_{(12)}^{sw}$ of $k_{(12)}^{sw}$ soc \overline{e}). For $k_{(12)}^{sw}$ soc \overline{e} and \overline{e} and $\langle k_{01}^{\text{max}}\rangle$
 $\langle k_{01}^{\text{max}}\rangle$
 \overline{k} , $g(1)$

d. Fin

social
 $\langle d \rangle$

Then,

ocial wirth a.3
 $\langle k_{12,1}^{\text{max}}\rangle$
 $\langle k_{12,1}^{\text{max}}\rangle$
 $\langle k_{(12,1)}^{\text{max}}\rangle$
 $\langle k_{(12,1)}^{\text{max}}\rangle$
 $\langle k_{(12,1)}^{\text{max}}\rangle$
 $\langle k_{(12,$ $\langle k \text{ or } 0 \rangle \langle k_{(12,12)-(12,1)}^{sw} \rangle$
the highest social
 $\langle k_{(12,12)-(12,1)}^{sw} \rangle$
 $W(g(12,0)),$ and 1
follows that $0 \langle k_{(12,12)-(12,1)}^{sw} \rangle$
tained with $g(12, 1)$
otained with $g(12, 1)$
otained with $g(12, 1)$
roposition is $< k_{(12)}^{\text{sw}}$
 $< k_{(12)}^{\text{sw}}$
 $k_{(2,0)}^{\text{sw}}$
 $k_{(12,0)}^{\text{sw}}$
 $k_{(12,12)}^{\text{sw}}$
 $k_{(12,12)}^{\text{sw}}$
 $k_{(12,11)}^{\text{sw}}$
 $k_{(12,11)}^{\text{sw}}$
 $k_{(12,11)}^{\text{sw}}$
 $k_{(12,11)}^{\text{sw}}$
 $k_{(12,11)}^{\text{sw}}$
 $k_{(12,11)}^{\text{sw}}$
 $\begin{aligned} \text{Prop} &> p &> \text{prop} \text{or} \end{aligned}$ $\begin{aligned} &\geq k < \text{proved}. \ &\leq k < \text{1}) - (12,0) \text{, (b.i)} \ &\leq (12,1) < k < \overline{k} < \text{1}) \text{ of the} \ &\leq (12,0) < \overline{k} < \text{greatest} \ &\leq (12,0) < \text{1}) \end{aligned}$ $k_{(12)}^{sw}$ sitile $k_{(12)}^{sw}$ sitile and $k < k_{(12)}^{sw}$ the and $k < k_{(12)}^{sw}$ proper \overline{k} , $k_{(12)}^{sw}$ sociallecty $g(1$ are k sociallect g and k substantiallect \overline{s} conditionallect \overline{s} conditionallect k , g(12, 1) gives the highest social welfare, and part b.2) of the proposition

ond Finally, for it b k (Eag)-(14), and part d) (dependential points of
 k to social welfare is $W(g(12,01))$, and part d) of the proposit $\langle k \rangle_{(12)}^{88}$
 $\langle k \$ $g(12,12)-(12,1)$ (12,12)−(12,0) (12,1)−(12,0)
 $g(12,0)$), and part **d)** of the proposition is power that $0 < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,1)}^{sw}$
 $k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < \overline{k} < k_{(12,12)-(12,1)}^{sw}$ $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k_{(12,12)}^{sw}$
 $< k_{(12,12)}^{sw}$
 $< k_{(12,12)}^{sw}$
 $< k$
 $< 2) - (12$
 $> 2) - (12$
 > 38
 $> 2)$: 38
 > 38
 $> 2)$: 38
 > 38
 $> 2)$: 38
 > 38
 $> 2)$: > 38 $\langle k_{(12)}^{sw} \rangle$
 $\langle k_{(12)}^{sw} \rangle$
 $\langle k_{(12)}^{sw} \rangle$
 $\langle k_{(12)}^{sw} \rangle$
 $\langle k_{(12,1)}^{sw} \rangle$
 \sqrt{k}
 $\lt \overline{k}$
 \lt $-$ (12,0)
 $\sqrt{(b \cdot i)}$
 $\lt \sqrt{k}$
 $\lt \sqrt{k}$

of the
 $\sqrt{2,0}$
 $\lt \overline{k}$
 \lt eatest
 $\sqrt{2,0}$
 $\lt \sqrt{k}$
 $\approx 2,0$
 $\sqrt{2}$
 ≈ 0 k the greatest social welfare is W(g(12, 0)), and part d) of the proposition is proved.

For Bre Willak social welfare is W(g(12, 0)), and part d) of the proposition is proved.

For Bre Willace is obtained with $g(12, 12)$ (b.ii) For 0.87953 < d < 0.9535, it follows that 0 < k $k_{\text{eff}}^{\text{max}}$
 $k_{\text{eff},21}^{\text{max}}$ = (rag.) Then, for 0 $\leq k \leq k_{\text{eff},21}^{\text{max}}$ of the presentes social welfare is obtained with $g(12,12)$

the greatest social wel $\begin{align*} (12,12)^{-1}(12,1) \times (12,12) \$ $< k_{0.0}^{\text{sw}}$
 $< k_{(12)}^{\text{sw}}$
 inj it are $0 < \frac{sw}{(12,12)-1}$
 $< \infty$
 $< k_{(12)}^{\text{sw}}$
 $< k_{(12)}^{\text{sw}}$
 $< k \leq 1$
 inj $\begin{array}{l} - (12,0) \ \hline (12,1) \end{array}$, $(\mathbf{b}.\mathbf{i})$
 $\begin{array}{l} 12,1) \end{array}$ < $\begin{array}{l} < \overline{k} \end{array}$
 $\begin{array}{l} < \overline{k} \end{array}$ of the
 $\begin{array}{l} 12,0) \end{array}$ < $\begin{array}{l} < \overline{k} \end{array}$
 $\begin{array}{l} \hline 12,0) \end{array}$ < decreases and the distributi $k_{(12)}^{sw}$ the and $k < k_{(12)}^{sw}$ the and $k < k_{(12)}^{sw}$ pro $\big)$ F $< k_{(12)}^{sw}$ soc $\big)$ F $k_{(12)}^{sw}$ soc $k_{(12)}^{sw}$ soc $k_{(12)}^{sw}$ soc s and s and s and s and s conducts s and s and s conducts s an ^{sw}_{(12,1)−(12,0)}. Then, for $0 \le k < k_{(12,12)-(12,1)}^{sw} < k_{(12,12)-(12,0)}^{sw} < k < k_{(12,1)-(12,0)}^{sw}$
he greatest social welfare is obtained with $g(12,12)$. Considering items (a.v), (b.i)
nd (b.ii), part **a.3**) of the proposi $k < k_{(12)}^{sw}$
botained
proposit
)-(12,0) c
e highes
e highes
4, it folle
either k
 $< 0 < k_{(12)}^{sw}$
h $g(12, 1)$
follows t
 $\leq k < 1$
collows t
 $\leq k$
 $\leq k$
nston (1
1994). "Journal of Economic Reformal of Economic Reform $< k_{(12)}^{sw}$
 $(12).$ (red. F
 $(12).12)$ (red. F
 $(12).12)$ (led. F
 (12.12) < 0
 $< k <$
 > 0 (12.12)
 > 0
 $< k <$
 > 0 (12.12)
 > 0
 $< k <$
 > 0
 ≥ 0
 $\geq k <$
 > 0
 ≥ 0
 $\geq k <$
 > 0
 ≥ 0
 $\geq k$ $k < k$ ($k_{(12)}$

g items (**a.** $0 < k_{(12,12)}^{sw}$
 $k_{(12,12)}^{sw}$
 $k_{(12,1$ the greatest social welfare is obtained with $g(12, 12)$. Considering items $(a.v)$, $(b.i)$ g(12, 12). Considering items (a.v), (b.i)
proved. For either $0 < k_{12,12}^{sm}(-12,1) < k_{(12,12)-(12,1)}^{sm} < k_{(12,12)-(12,1)}^{sm} < k_{(12,12)-(12,1)}^{sm} < k_{(12,12)-(12,1)}^{sm} < k_{(12,12)-(12,1)}^{sm} < k < \bar{k} <$ al welfare. This proves part b.3) of the
 and (b.ii), part a.3) of the proposition is proved. For either $0 < k_{(12,12)-(12,1)}^{sw} <$ $(12,12)$ (12,1)
 $(2,0) < k < k$

(12,1)
 $(12,12)$
 $(12,12)$ ^{sw}_{(12,12)−(12,0)} < $k < k_{(12,12)-(12,0)}^{sw}$ or 0 < $k_{(12,12)-(12,1)}^{sw}$ < $k_{(12,12)-(12,0)}^{sw}$
 $(12,1)$ gives the highest social welfare. This proves part

sition.

0.9535 < d < 0.956154, it follows that $k_{(12,12)-($ proposition.
- $\langle k_{(12)}^{sw} \rangle$ = (12,0)
 $\langle k_{(12)}^{sw} \rangle$ is obtained in the munits are formulated in the munission of the munission of the munission of the mu \leq \leq $k < k_{(12)}^{sw}$
 $k_{(12,1)-}^{sw}$
 $k_{(12,1)-}^{sw}$
 $k < k_{(12,1)-}^{sw}$
 $k_{(12,1)-}^{sw}$
 $k_{(12,1)-}^{sw}$
 $k_{(12,1)-}^{sw}$
 $g(12,1)$
 $g(12,1)$
 $\textbf{percent}$
 $\textbf{element}$
 $\textbf{element$ $k < k$ (k_{12})
 k (k_{21})
 k) gives t
 k (k)
 k) gives t
 k (k)
 k). Then, for all
 k (k) and F. Blootting and Ect
 k (k). The k (k). Herry
 k). The k (k). The k (k). The k (k) $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $= (12,0)$
 $k_{(12,12)}^{sw}$
 $=$ k $< k_{(12)}^{sw}$
 $< k_{(12)}^{sw}$
 $< k < k_{(12)}^{sw}$
 $0 < k_{(12)}^{sw}$
 $0 < 1$ welf

Agreen

aling,'

aling,'

aling,'

licatic

ean (9.3) of the

2)-(12,0) $\langle k \rangle$

29.

29.

29.

29.

29.

29.

20 for Echail $k_{(12)}^{\text{sw}}$ pro $\bigr)$ F $\leq k$ $k_{(12)}^{\text{sw}}$ soc $\bigr)$ F $k_{(12)}^{\text{sw}}$ soc $\bigr)$ F $k_{(12)}^{\text{sw}}$ soc $\bigr)$ F $k_{(12)}^{\text{sw}}$ soc $\bigr)$ F $k_{(12)}^{\text{sw}}$ soc $\bigr)$ E $k_{(12)}^{\text{sw}}$ soc $\bigr)$ and $\bigr)$ and $\bigr)$ $\begin{aligned} &\overset{sw}{(12,1)-(12,0)}, \ &\text{toposition.} \ &\text{For } 0.9535 \ &\lt k^{sw}_{(12,1)-1} \end{aligned}$ g(12, 1) gives the highest social welfare. This proves part b.3) of the
 $< d < 0.956154$, it follows that $k_{(12,12)-(12,1)}^{exp} < 0 < k_{(12,12)-(12,0)}^{exp} < 0$
 α_{120} . Then, for either $k_{(12,12)-(12,1)}^{exp} < 0 \le k < k_{(12,12)-(12,0)}^{exp} <$ (b.iii) For 0.9535 < d < 0.956154, it follows that k_{112}^{m}
 \overline{k} < $k_{12,11}^{m}$ -(12,0). Then, for either $k_{12,121}^{m}$ -(12,1)
 $k_{12,11}^{m}$ -(12,0) or $k_{12,121}^{m}$ -(12,1) < 0 < $k_{12,121}^{m}$ -(12,1)

(b.iv) $\begin{align*} (12,12) \quad (12,12) \quad (12,12) \ \frac{1}{2} < 0 \leq k < k^{sw} \ \leq k < \overline{k} < k^{sw} \ \leq k < k^{sw} \ \end{align*}$ $< 0 < k_{(12)}^{sw}$
 $< k_{(12,12)-(12,0)}^{sw}$
 $< \overline{k} < k_{(12,12)-(12,0)}^{sw}$
 $< \overline{k} < k_{(12)}^{sw}$
 $< \overline{k} < k_{(12)}^{sw}$
 $<$ $\overline{k} < k_{(12)}^{sw}$
 $<$ \overline{k} $< k_{(12)}^{sw}$
 $<$ \overline{k} $< k_{(12)}^{sw}$
 $<$ \overline{k} $< k_{(12)}^{sw}$
 $<$ \overline{k} (vertical vertical verti (12,1)−(12,0). Then, for either $k_{(12,12)-(12,1)}^{sw} < 0 \le k < k_{(12,12)-(12,0)}^{sw} < k < k_{(12,12)-(12,0)}^{sw} < k$ (12,12)−(12,0) or $k_{(12,12)-(12,1)}^{sw} < 0 < k_{(12,12)-(12,0)}^{sw} < k < \overline{k} < k_{(12,1)-(12,0)}^{sw}$ the greatest ocial welfare is obtained social welfare is obtained with $q(12, 1)$.
- $k < k_{(12)}^{sw}$
 $k_{(12,1)- (12)}^{sw}$
 $k_{(12,1)- (12)}^{sw}$
 $k_{(12,1)- (12)}^{sw}$
 s^{sw} $k_{(12,1)}^{sw}$
 $k_{(12,1)}^{sw}$
 $(k_{(12,1)}^{sw})$. "
 k
 k \overline{k}
 $< 0 \leq k < k_{(12)}^{sw}$
 $k < \overline{k} < k_{(12,1)-1}^{sw}$
 $(12,1) < 0 < \overline{k} <$

st social welfare

st social welfare

aling Agreemer

387-411.

sive Dealing," *Journal Distribut*

cy Implications

s-European Com $\frac{1}{2,0}$ \leq
d with
bllusive
bllusive
bllusive
conomic
DG for $k_{(12)}^{\text{sw}}$ soc.) First $k_{(12)}^{\text{sw}}$ soc.) First $g(1$ and $g(1$ are ℓ belief variation. $k_{(12)}^{\text{out}}$ is obviously and and any n and n and $4-1$ of k is k is k is k in k $< 0 < k_{012}$
th $g(12, 1)$
follows th
 $0 \le k < \overline{k}$
 $\ge k < \overline{k}$
 ≥ 0
 $\ge k < \overline{k}$
 ≥ 0
 $\ge k < \overline{k}$
 ≥ 0
 ≥ 0
nomic Re
inston (1994). "Economic ey (1996)
ts," Economic security Economic $k < k < k$
 $k < k < k$
 $k = (12,1) < 0 < k$

test social well

sharing Agree
 $k = 387-411$.

Iusive Dealing,

Dealing in a Sp
 l Organization

ling and Distri

blicy Implication

ling and Distri $g(12, 1)$.

Ilows that
 $\leq k < \overline{k}$
 (2004) .
 $mic Rev$

ston (19

994). "Expansion (19

994). "Expansion (1996).

'Econo Numbe

4 (b.iv) For 0.956154 < *d* < 1, it follows that $k_{(12)}^{sw}$
 $k_{(12,1)- (12,0)}^{sw}$. Then, for all $0 \le k \le \overline{k}$ the g
 $g(12,1)$. ■
 References

[1] Belleflanme, P. and F. Bloch (2004). "Mark

Networks," *International Ec* $\sum_{(12,12)-(12,0)}^{sw}$ (12,12)−(12,0). Then, for all $0 \le k < \overline{k}$ the greatest social welfare is obtained w
(12,1). \blacksquare

- [1] Belleflamme, P. and F. Bloch (2004). "Market Sharing Agreements and Collusive Networks," International Economic Review 45(2): 387-411.
- [2] Bernheim, B.D. and M.D. Whinston (1998). "Exclusive Dealing," Journal of Political Economy 106: 64-103.
- [3] Besanko, D. and M.K. Perry (1994). "Exclusive Dealing in a Spatial Model of Retail Competition," International Journal of Industrial Organization 12: 297-329.
- [4] Betancourt, R.R. (2004), The Economics of Retailing and Distribution. London: Edward Elgar Publishing Ltd.
- $<$ 0 $<$ k $<$ k th
th
we
all
all
d-
ic $k_{(12)}^{\text{sw}}$
 $g(1$
 $g(1$
 B elletv 3 err \mathbb{E} cor \mathbb{E} err \mathbb{E} cor \mathbb{E} aba $k < k$ the greatest social welfare is obtained with
 $k < k$ the greatest social welfare is and Collusive
 k ic $Review 45(2): 387-411$.

on (1998). "Exclusive Dealing," *Journal of Political*

4). "Exclusive Dealing in a Spatial $g(12,1).$
Belleflam
Jetworks
Bernhein
Economy
Economy
Besanko,
Denpetit
Betancou
Vard Elg
Caballerc
nalysis
Conomic [5] Caballero-Sanz, F. and P. Rey (1996). "The Policy Implications of the Economic analysis of Vertical Restraints," Economic Papers-European Commission, DG for Economic and Financial Affairs, Number 119.
- [6] Calvó-Armengol, A. (2004). "Job Contact Networks," Journal of Economic Theory 115: 191-206.
- [7] Calvó-Armengol, A. and M.O. Jackson (2004). "The Effects of Social Networks on Employment and Inequality," American Economic Review 94(3): 426-454.
- [8] Chang, M.H. (1992). "Exclusive Dealing Contracts in a Successive Duopoly with Side Payments," Southern Economic Journal 59: 180-93.
- [9] Dobson, P.W. and M. Waterson (1997). "Exclusive Trading Contracts in Successive Differentiated Duopoly," Southern Economic Journal 63: 361-77.
- [10] Goyal, S. and S. Joshi (2003). "Networks of Collaboration in Oligopoly," Games and Economic Behavior 43(1): 57-85.
- [11] Goyal, S. and J.L. Moraga-Gonzalez (2001). "R&D Networks," Rand Journal of Economics 32(4): 686-707.
- [12] Hendricks, K., M. Piccione and G. Tang (1997). "Entry and Exit in Hub-Spoke Networks," Rand Journal of Economics 28: 291-303.
- [13] Iyer, G. and J.M. Villas-Boas (2003). "A Bargaining Theory of Distribution Channels," Journal of Marketing Research 40: 80-100.
- [14] Jackson, M.O. (2003). "The Stability and Efficiency of Economic and Social Networks," in Networks and Groups: Models of Strategic Formation, edited by B. Dutta and M.O. Jackson. Heidelberg: Springer-verlag.
- [15] Jackson, M.O. (2005). "A Survey of Models of Network Formation: Stability and Efficiency," in Group Formation in Economics: Networks, Clubs and Coalitions, edited by G. Demange and M. Wooders. Cambridge: Cambridge University Press.
- [16] Jackson, M.O. and A. van den Nouweland (2005). "Strongly Stable Networks," forthcoming in Games and Economic Behavior.
- [17] Jackson, M.O. and A. Wolinsky (1996). "A Strategic Model of Social and Economic Networks," Journal of Economic Theory 71: 44-74.
- [18] Kranton, R. and D. Minehart (2000a). "Networks versus Vertical Integration," Rand Journal of Economics 31: 570-601.
- [19] Kranton, R. and D. Minehart (2000b). "Competition for Goods in Buyer-Seller Networks," Review of Economic Design 5: 301-331.
- [20] Kranton, R. and D. Minehart (2001). "Theory of Buyer-Seller Networks," American Economic Review 91(3): 485-508.
- [21] Lin, Y.J. (1990). "The Dampening-of-Competition Effect of Exclusive Dealing," Journal of Industrial Economics 39: 209-23.
- [22] Mycielski, J., Y.E. Riyanto and F. Wuyts (2000)."Inter- and Intrabrand Competition and the Manufacturer-Retailer Relationship," Journal of Institutional and Theoretical Economics 156: 599-624.
- [23] Moner-Colonques, R., J. J. Sempere-Monerris and A. Urbano (2004). "The Manufacturers' Choice of Distribution Policy under Successive Duopoly," Southern Economic Journal 70(3): 532-548.
- [24] Nishiguchi, T. (1994), Strategic Industrial Sourcing: The Japanese Advantage. New York: Oxford University Press.
- [25] O'Brien, D. and G. Shaffer (1993). "On the Dampening-of-Competition Effects of Exclusive Dealing," Journal of Industrial Economics 41: 215-221.
- [26] O'Brien, D.P. and G. Shaffer (1997). "Nonlinear Supply Contracts, Exclusive Dealing and Equilibrium Market Foreclosure," Journal of Economics and Management Strategy 6: 755-85.
- [27] Rey, P. and J. Stiglitz (1995). "The Role of Exclusive Territories in Producers' Competition," Rand Journal of Economics 26: 431-51.
- [28] Rey, P. and J. Tirole (2003). "A Primer on Foreclosure," forthcoming in Handbook of Industrial Organization Vol.3, edited by M. Armstrong and R. Porter. Amsterdam: Elsevier Science Publishers.
- [29] Sass, T.R. (2005). "The Competitive Effects of Exclusive Dealing: Evidence from the U.S. Beer Industry," forthcoming in International Journal of Industrial Organization.
- [30] Slade, M.E.(1998). "Beer and the Tie: Did Divestiture of Brewer-Owned Public Houses Lead to Higher Beer Prices?," The Economic Journal 108: 565-602.
- [31] Tirole, J. (1988). The Theory of Industrial Organization. Cambridge, MA: The MIT Press.
- [32] Wang, P. and A. Watts (2003). "Formation of Buyer-Seller Trade Networks in a Quality-Differentiated Product Market," mimeo: Vanderbilt University and Southern Illinois University.

Département des Sciences Économiques de l'Université catholique de Louvain Institut de Recherches Économiques et Sociales

> Place Montesquieu, 3 1348 Louvain-la-Neuve, Belgique

> > ISSN 1379-244X D/2005/3082/036