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Abstract

The transition from economic stagnation to sustained growth is often mod-
elled thanks to “population-induced” productivity improvements, which are as-
sumed rather than derived from primary assumptions. In this paper the effect of
population on productivity is derived from optimal behavior. More precisely,
both the number and location of education facilities are chosen optimally by
municipalities. Individuals determine their education investment depending on
the distance to the nearest school, and also on technical progress and longevity.
In this setting, higher population density enables the set-up costs of additional
schools to be covered, opening the possibility to reach higher educational levels.
Using counterfactual experiments we find that one third of the rise in literacy can
be directly attributed to the effect of density, while one sixth is linked to higher
longevity and one half to technical progress. Moreover, the effect of population
density in the model is consistent with the available evidence for England, where
it is shown that schools were established at a high rate over the period 1540-1620.

Keywords: Human Capital, Population Density, Education Investment, School
Location, Technical Progress.
JEL Classification Numbers: O41, I21, R12, J11.



Introduction

Human capital theory aims at accounting for income growth in terms of the charac-
teristics of the labor force. This theory is useful in addressing many pressing issues,
as shown by the large literature on the subject. It is also relevant in an historical
perspective to understand the link between education and the take-off of Western-
Europe. Indeed, many authors advocate that there is a causality link between the rise
in literacy in the pre-industrial era and the process leading to the Industrial Revolu-
tion. For example, Cipolla (1969) argues that literacy favored the Industrial Revolu-
tion in more than one way. It avoided shortages of literate workers in those fields in
which such workers were specifically required and on a more general ground it made
people more adaptable to new circumstances and receptive to change. In times of in-
novations, educated workers have a comparative advantage because they assimilate
new ideas more readily (Bartel and Lichtenberg 1987).

Figure A-1 shows literacy rates (average of men and women) for England as esti-
mated by Cressy (1980). It suggests that improvements in literacy started as early as
in the sixteenth century.1 Over the nineteenth century, however, They also witness
a steady rise from 1580 to 1760, This picture is consistent with the overall survey of
Houston (2002) for the early modern period. According to Houston (2002), the per-
centage of children who were able to attend school at some stage during their youth
lies between a fifth to a third at the end of the early modern period. Areas where half
or more of the school-age children received instruction were educationally advanced.
England belonged to these favored zones. O’Day (1982) stresses that a key determi-
nant for this relative success was accessibility to schools: only a small proportion of
the rural population was geographically distant from access to any kind of formal
education provision.

Higher education achievements might have been triggered by several economic fac-
tors. We distinguish three of them (see Galor (2004) for an exhaustive list). First,
technical progress increased labor productivity and wage rates in the modern sector
(see Hansen and Prescott (2002) and Bar and Leukhina (2005)), and thereby the return
to investment in education (Doepke 2004). Facing better income perspectives in this
sector, households would engage in education to benefit from the higher skill pre-
mium. However, as illustrated by Figure A-2, productivity gains started to accelerate
in the beginning of the nineteenth century. The timing implied by this explanation is
thus partly counterfactual, and cannot account for the fact that higher literacy rates
were achieved two centuries before any significant gain in productivity.

Secondly, another interesting candidate for explaining the rise in literacy is longevity

1The data from Cressy (1980) are globally consistent with the ones displayed by Clark and Hamilton
(2004) from other sources. There is however an unresolved debate on literacy developments during
the first phase of the industrial revolution. Sanderson (1995) claims that literacy rate was stagnant over
the period 1760-1830.
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improvements. In Western Europe, adult mortality started to drop before the Indus-
trial Revolution took place for reasons that are not yet fully understood (see e.g. the
discussion in Fridlizius (1985)). Boucekkine, de la Croix, and Licandro (2003) and
Nicolini (2004) argue that lower mortality induced higher investment in human capi-
tal and/or in physical capital, therefore paving the way to future growth. This could
only be part of the story however, as shown by English data. Figure A-3 presents the
survival rate of five years old individuals. It therefore abstracts from infant mortality
swings to concentrate on mortality during the active life. We see that adult longevity
was first stagnant then declining over the period 1600-1700, probably because of the
urban penalty associated with the fast growth of cities. During this period of high
mortality, literacy rose continuously, as we shown on Figure A-1. Hence, for England,
the mortality channel is of no help to explain the early rise in educational attainments.

A third possibility is drawn from various authors who stress that the rising density of
population may have played a role in fostering the take-off. Higher density can lower
the cost of education through facilitating the creation of schools (see Fujita and Thisse
(2002) for a textbook treatment of this effect and Holmes (2005) for an application on
contemporary data). There can also be externalities generated by denser population.2

The view that population density matters for growth is in accordance with the em-
pirical literature which finds that density appears as a significant factor in growth
regressions across countries (see e.g. Kelley and Schmidt (1995)) and across US states
(see Ciccone and Hall (1996)). Looking at English historical data, Figure A-4 shows
that population3 rose rapidly in the sixteenth and nineteenth centuries, while the sev-
enteenth century was one of demographic stagnation.4 The corresponding swings in
crude birth rates are plotted in Figure A-5. We notice that rises in population in the
sixteenth century correspond to the first wave of improvement in literacy.

In the papers with “population-induced” productivity growth, the effect of popu-
lation on productivity is assumed instead of being derived from more primary as-
sumptions. In this paper we propose a new framework of literacy and growth where
the effect of population on growth is derived from maximizing behavior. By looking
at the linkages between literacy, school establishment and income growth, we will
be able to evaluate the exact role of population density. In our model, the length of
schooling is chosen by individuals who maximize life-time income, which depends
on future wages, longevity, and the distance to the nearest school. Then, the num-

2Becker, Glaeser, and Murphy (1999) argue that larger populations encouraged greater specializa-
tion and increased investments in knowledge. For Kremer (1993), high population spurs technological
change. For Galor and Weil (2000) and Lagerloef (2003), there is a “population-induced” technical
progress which raised the return to human capital. Population needs to reach a threshold for produc-
tivity to take-off.

3We represent the population aged 6 and more, because it coincides with the concept of population
of our model, disregarding the infants aged 0-5.

4Population growth in England was spectacular compared to other big European countries. Ac-
cording to Maddison (2001) numbers, English population was multiplied by 2.17 between 1500 and
1700. This growth factor was about 1.43 for France, 1.25 for Germany, 1.27 for Italy, and 1.29 for Spain.
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ber and location of education facilities is determined, either chosen optimally by the
State or following a free entry process. Higher population density makes it optimal
to increase school density, opening the possibility to reach higher educational levels.

Figure 1: School creation rate
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Source: Own estimation from Appendix B.

This effect of population on the density of schools is consistent with the available
evidence that we have gathered from the the reports of the British Parliamentary Pa-
pers (Schools Inquiry Commission (1868a) and Schools Inquiry Commission (1968b))
presented in Appendix B. Figure 1 shows that the creation of grammar schools accel-
erated markedly over the period 1540-1620. The expansion of grammar schools was
followed by the one of non-classical schools in the eighteenth century.

The paper is organized as follows. The model economy is introduced in Section 1. In
Section 2 we study the problem of the individual who has to choose the length of her
studies. Section 3 is devoted to the problem of the school authority, who decides the
number and the localization of schools. We also consider other types of school estab-
lishments, including free-entry and price making schools. A quantitative exercise in
proposed in Section 4 in order to evaluate the ability of the model to explain the rise
of schooling over the period 1530-1860. In addition, we run several counter-factual
experiments to disentangle the role of each factor in the development of education.
Section 5 contains robustness analyzes with respect to important parameters and as-
sumptions on school institutions. Section 6 concludes.
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1 The Model Economy

The model mixes aspects from growth theory with elements from the economic ge-
ography literature.

Time and Space

Time is continuous. At each point in time t a new generation of size ζt is born. In-
dividuals born at the same date have different innate abilities, µ, and location, i. We
assume that abilities are distributed according to a probability density function g(µ)
over the interval [0, µ̄], where µ̄ is a strictly positive number (possibly infinite). This
distribution is the same at every location. Moreover, we assume that g is unimodal
and has the usual regularity properties. Within generations individuals are thus in-
dexed by (µ, i).

We assume that a given household stays at their location i forever. In the pre-industrial
era, the main reason for households to move was to reach regions with better employ-
ment opportunities or higher wages. Since, in our set-up, production can take place
anywhere with the same set of technologies, the prime reason for migration is not
present in the model. Introducing migration in a meaningful way would imply spec-
ifying employment basins and using core-periphery models à la Fujita and Thisse
(2002).

Space is modelled as a circle of unit length. We suppose that each new generation
is uniformly spread over the circle, hence ζt can also be interpreted as the density
of the newborn population at any point. As an alternative to the assumption of a
uniform distribution of the population over the circle, we could have taken a negative
exponential density function, reflecting the idea that there is a center, London, and the
countryside. However, this would make little sense, since the model cannot explain
why some people would have an interest to be concentrated and some other would
stay in the countryside. Notice also that rural population was still more than 80% of
total population by the end of the period we consider.

Given the dispersion of the population, the schools will be optimally located if they
are evenly spaced, let us say at locations j/E, where j = 0, . . . , (E − 1), E being the
number of schools. x(i) measures the distance between the individual located at i
and the closest school. If no school is created, distance is infinite: x(i) ∈

[

0, 1
2

]

∪
{+∞} . For the sake of clarity, all individual variables will be expressed as functions
of absolute location i, while they are actually functions of the distance x(i).

Notice finally that the number of schools E should be interpreted as a density, since it
depends on the normalization of the circle. If we multiply the length of the circle by
a factor C, there will be C E schools.
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Demographics

Each individual has an uncertain lifetime. The unconditional probability for an indi-
vidual belonging to the cohort t of reaching age a, is given by the survival function
introduced by Boucekkine, de la Croix, and Licandro (2002):

mt(a) =
eβta − αt

1 − αt
, (1)

Assumption 1 The functions αt and βt satisfy: αt > 1 and βt > 0.

Assumption 1 guarantees that the survival function is concave, i.e., the probability of
death increases with age, and that there is a maximum age Lt that an individual can
reach. This parameter configuration allows the function mt(a) to represent with better
accuracy the empirical survival laws compared to models with constant probability
of death (Blanchard 1985). The maximum age is obtained by solving mt(Lt) = 0 and
is equal to

Lt =
log(αt)

βt
. (2)

The size of the generation born in t at any time z ∈ [t, t + Lt] is given by ζt mt(z −
t), reflecting that the measure of each generation declines deterministically through
time. The size of total population at time t is given by

Pt =

∫ t

t−Lt

ζz mz(t − z)dz, (3)

where Lt is the age of the oldest cohort still alive at time t.

Technology

There is a unique material good, the price of which is normalized to 1, that can be used
for consumption. This good can be produced through two different technologies. In
the “modern sector”, which can represent both modern agriculture and industry, the
technology employs human capital Ht with constant returns:

Yt = At Ht where At = eγtt. (4)

The process γt > 0 models the rate of exogenous technological progress.

In equilibrium the wage per unit of human capital is equal to the marginal productiv-
ity At. In what follows, we already incorporate this result into the household decision
problem.
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The physical good can also be produced in the “traditional sector”, which can be seen
as a home production sector. Individuals who work in this sector have a productivity
wh per unit of time, and is independent of their level of human capital. The equi-
librium wage per unit of time in the traditional sector is simply wh and is constant
through time. There is no technical progress in this sector and, as a consequence, the
modern sector will become more attractive over time provided that γt > 0. This cap-
tures the mechanism calibrated by Hansen and Prescott (2002) and Bar and Leukhina
(2005) where technical progress in the modern sector is much faster than that in the
traditional sector.

Individuals

We consider the case of an individual (µ, i) born at time t. We assume that this in-
dividual has the same survival function (and thus the same parameters αt and βt) as
the other individuals of the cohort born at t. We also assume that the individual has
no initial endowment neither in the final good nor in human capital. For simplicity,
we assume perfect annuity markets, all the contracts by which they buy goods and
sell labor are contingent on survival.

We will model the cost of schooling with two elements: transportation costs and tu-
ition fees. Transportation costs are a function of distance. From the Schools Inquiry
Commission (1868a) we learn that boys can attend a city school from distances up to
20 miles, and a daily consumption of time amounting to more than one hour in the
morning and in the evening. In the country, many pupils were farmers’ sons who
came in from the neighborhood, some on foot, some on ponies or donkeys, for which
stabling is provided at some cost. The report lists many examples, among which the
one of a 11 year old girl who walked five miles and back every day.

In the period considered, schools were funded through income from an endowment
and through fees paid by the students’ parents. The Schools Inquiry Commission
(1868a) noted that fees were imposed in order to supplement the endowment, and
that parents were willing to pay fees, provided the fees were not excessive, and the
education was suitable. The report also provides estimates of peoples willingness to
pay across different social classes.

The problem of the individual (µ, i) is to maximize lifetime resources W:

W[St(µ, i)] =

∫ t+Lt

t+St(µ,i)
ωt(µ, i, z) mt(z − t)e−θ(z−t)dz

−

∫ t+St(µ,i)

t
ξ x(i) eγzz mt(z − t)e−θ(z−t) dz − k eγtt δ[St(µ, i)], (5)

where θ is the risk-free interest rate, St(µ, i) is the schooling length, ωt(µ, i, z) is the
spot wage income at time z, ξx(i) is a transportation cost, and k is a fixed cost repre-
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senting tuition fees to be paid only if the individual decides to go to school. δ is an
indicator function equal to 1 if its argument is positive, and equal to 0 otherwise.

In the sequel we will refer to k as the tuition fee. To ensure the existence of a balanced
growth path, both the tuition cost and the transportation cost are indexed on the rate
of exogenous productivity growth.

The spot wage ωt(µ, i, z) is given by

ωt(µ, i, z) = ht(µ, i)Az ,

where ht(µ, i) is the human capital of individual (µ, i) in cohort t. The individual’s
human capital is built according to the following technology:

ht(µ, i) = µ St(µ, i). (6)

While the individual is still at school, we assume that his/her human capital is nil.
Hence, productive human capital at age a can be expressed as δ[a − St(µ, i)]ht(µ, i).

For education to be an optimal outcome, the resources obtained by spending the op-
timal time at school should be larger than the one obtained if the individuals stay in
the “traditional sector”, where no human capital is needed. This constraint writes:

W[St(µ, i)] >

∫ t+Lt

t
whmt(z − t)e−θ(z−t)dz ≡ Wh

t . (7)

School Location and Policy

At each date a number Et of classrooms is created to serve the newborn generation.
These classrooms are assumed to be scrapped when the last person of generation
t graduates. We need to determine the objective pursued by the schools founders.
The Schools Inquiry Commission (1868a) distinguishes three types of schools: en-
dowed schools, private schools and proprietary schools. Endowed schools have usu-
ally some income from funds permanently appropriated to the school. Even in this
category, there is a wide variation in their character and history. Some are part of
large charitable foundations, others are run by the Church. Many endowed schools
have no exclusive connection. The private schools are the property of the master or
mistress who teaches in them. They “owe their origin to the operation of the ordi-
nary commercial principle of supply and demand”, according to the Schools Inquiry
Commission (1868a). They provide more individual care and teaching, but the School
Enquiry Commission extensively complains about the quality of these schools. Com-
missioners noted that “A really large and flourishing school is of course a marketable
commodity, and sometimes sells well. But it is always a dangerous purchase for a
stranger. (...) when the school declines the house is let for a shop or a private resi-
dence, and the master betakes himself elsewhere.” And also “ Considered commer-
cially, few descriptions of business seem to require less capital than the keeping of a
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private day school of the second order. A house is taken, a cane and a map of England
bought, an advertisement inserted, and the master has nothing more to do but teach.
It is not likely that schools established at so slight a cost should have buildings well
adapted to purposes of education.” These two quotes stress the commercial nature of
private schools. The last of the three classes of schools is composed of the proprietary
schools who belong to a body of shareholders. They are alike private property. This
type of school is more recent, not more than 40 years old in 1860.

Given the uncertainty around the objectives these schools were actually pursuing, we
will consider four different types of institutional arrangements.

Model M1: Although there was not a single school in England over which the State
actually exercised full control (with the exception of some military schools), endowed
schools were subject to rules (“The State has allowed endowments to be scattered
over the whole surface of England”, Schools Inquiry Commission (1868a)), and the
founders were themselves obedient to a superior authority. In the scenario M1, we
assume the existence of a central authority that determines each year the optimal
number of classrooms to be built. We assume that the objective is to maximize ag-
gregate profits, reflecting that “the purpose of schools was never to save those from
paying who could afford to pay”.

The set-up cost for implementing a classroom is equal to f , which is indexed on the
rate of exogenous productivity growth. This cost can be seen as being net of the
possible endowment. In M1, we assume that the tuition fee k is exogenous. Each
school possesses a catchment area. The attendance rate is the proportion of children
from the newborn generation in the catchment area who decide to attend school. It
can be expressed as a function of the density of schools and the tuition fee, let R(Et, k).
The benefit drawn from the school built in a given area is equal to kAtζtR(Et, k). The
maximization problem can be written as:

max
Et

At (kζtR(Et, k) − f ) Et. (8)

Model M2: Another scenario supposes that the central authority determines simulta-
neously at each date t the density of schools Et and the tuition fee kt to maximize the
system’s profit. This maximization problem is formulated as follows:

max
Et ,kt

At (ktζtR(Et, kt) − f ) Et (9)

Model M3: Instead of assuming the existence of any central authority, we can suppose
that the density of schools results from a free entry process: schools are created as
long as they earn a positive profit. In scenario M3, we suppose that the tuition cost k
is exogenous. The equilibrium solution results from the free entry condition:

Find Et such that kζtR(Et, k) − f = 0 (10)

This model M3 is equivalent to a model where a central authority maximizes aggre-
gate attendance (for example, for religious reasons). In that case, it would create as
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many schools as possible, subject to a non-negative profit condition, which would
lead to equation (10).

Model M4: In the last scenario M4, we consider a free entry process of schools to-
gether with an endogenously fixed tuition fee kt. This can reflect the functioning of
private schools discussed above. The problem can then be stated as:

Find (Et, kt) such that Et solves ktζtR(Et, kt) − f = 0 for a given kt (11)

and kt is the maximand of ktζtR(Et, kt) − f for a given Et. (12)

Equilibrium

Given exogenous demographic and technological trends αt, βt, γt and ζt, an equilib-
rium consists of
– A path of optimal education decision {St(µ, i)}t>0 maximizing life-time resources
(5), subject to (7);
– A path of optimal density of schools {Et}t>0 and tuition fee {kt}t>0 solution to the
maximization problem (8), (9), (10) or (11)-(12).

To solve for the equilibrium, we first consider the problem of the individual given a
distance to the closest school. This will determine the optimal reaction of households
to the creation of new schools. Once this is known, we can solve the problem of the
school authority.

2 Solution to the Individual’s Problem

The optimal schooling decision St(µ, i) can be interior or corner. Among the possible
corner solutions, St(µ, i) = 0 and St(µ, i) = Lt, we can already disregard the latter as
it is always welfare-dominated by the first due to the strictly positive costs inherent to
schooling. Now, notice that if St(µ, i) = 0, then the human capital of individual (µ, i)
is nil, which implies that his lifetime labor income is equal to home production. For a
given technological pace, if the interior solution for schooling is strictly positive, thus
inducing nonzero human capital and wages, and if the resulting wage is high enough
to more than compensate the schooling costs, then the interior solution is very likely
to welfare-dominate the corner solution St(µ, i) = 0. Nonetheless, an explicit proof
is required, and we will provide it later. Firstly, let us establish the existence and
uniqueness of interior solutions.

Notice that all the results of this section are obtained for θ = 0, and are therefore valid
for small risk free interest rates, by continuity.
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Existence and Uniqueness of the Interior Solution

The first-order necessary condition is:

µ

∫ t+Lt

t+St(µ,i)
Az mt(z − t)dz = mt(St(µ, i)) At+St(µ,i) (µ St(µ, i) + ξ x(i)) . (13)

We study hereafter the existence and optimality of the interior solution in the case of
a steady technological progress γt = γ > 0, ∀t. Also, for ease of presentation, we
shall temporarily drop the index t since we are deriving the optimal decisions of a
fixed generation t. Naturally, the time argument will be re-introduced when needed.

At first, notice that under a steady technological progress, the first-order condition
with respect to schooling (after an obvious variable change) can be re-written as:

µ

∫ L

S(µ,i)
eγa m(a)da = (µ S(µ, i) + ξx(i)) eγS(µ,i) m(S(µ, i)). (14)

Observe that L does check the integral equation because of m(L) = 0. However, since
it is always dominated by the other corner solution, S(µ, i) = 0, we abstract from it
from now on. The next proposition provides a necessary and sufficient condition for
the existence of an interior solution to (14). This condition is:

∫ L

0
eγa m(a) da >

ξx(i)

µ
,

which imposes a condition on µ.

Proposition 1 For γ small enough, under Assumption 1, there exists a solution to (14) such
that 0 < S(µ, i) < L if and only if µ > µ(i), with

µ(i) =
ξx(i)

∫ L
0 eγa m(a) da

. (15)

The solution is unique. This solution tends to zero as µ gets closer to µ(i).

Proof : see Appendix C. �

Proposition 1 implies that for fixed demographic parameters α and β, there exists an
interior strictly positive schooling decision provided: (i) the transport cost parameter
ξ and the distance to school x(i) are small enough; and / or, (ii) the leaning ability
is large enough. In other words, such an interior solution may not exist under huge
transport costs and distances to schools, or under a poorly efficient education sector.
For fixed ξ, µ and x(i), this solution neither exists if the demographic parameters in-
duce markedly low life expectancy and maximal age figures. Hereafter, the threshold
µ(i) is characterized.

10



Corollary 1 The threshold µ(i) is an increasing function of ξ, x(i) and β. It is decreasing in

α and γ.

Proof : see Appendix D. �

The main implication of the Corollary is that the higher life expectancy (via a rise
in α or a drop in β) the likelier the decision to go to school. In contrast, a tougher
geographical situation in terms of distance to schools and transport costs makes this
decision unlikely. These basic mechanisms are also clear in the comparative statics of
the interior solution.

Proposition 2 Under the conditions of Proposition 1, the interior solution S is a strictly
increasing function of γ and α, and a strictly decreasing function of β and x(i). For x(i) > 0,
it is strictly decreasing in ξ, and strictly increasing in µ. It is independent from ξ and µ when
x(i) = 0.

Proof : see Appendix E. �

Optimal Schooling under Fixed Tuition Fees

We now compare the welfare implication of the corner solution S(µ, i) = 0 versus
the interior solution. Let us denote the latter Ŝ. Also, denote by Ŵ (Resp. Wh)
the intertemporal utility in the interior case (Resp. corner case). We have: Wh =
∫ L

0 wh m(z)dz > 0. The interior solution is optimal if and only if Ŵ > Wh:

∫ t+L

t+Ŝ
ω(µ, i, z) m(z − t) dz >

∫ t+Ŝ

t
ξx(i) eγz m(z − t) dz + k eγt + Wh,

which can be written using the expression of the spot wage, and after rearranging
terms and a variable change as:

∫ L

Ŝ
µ Ŝ eγz m(z) dz >

∫ Ŝ

0
ξx(i) eγz m(z) dz + k + e−γt Wh.

Finally using the optimality condition (27) to replace the integral appearing in the left
hand side of the inequality, and rearranging terms, one gets the following condition:

Ŝ2 eγŜ m(Ŝ) µ + ξx(i)

[

Ŝ m(Ŝ) eγ Ŝ −

∫ Ŝ

0
eγz m(z) dz

]

> k + e−γt Wh.

Denote by Ψ(µ, i) the function in µ given by the left-hand side of the inequality above:

Ψ(µ, i) = Ŝ2 eγŜ m(Ŝ) µ + ξx(i)

[

Ŝ m(Ŝ) eγ Ŝ −

∫ Ŝ

0
eγz m(z) dz

]

.

The following optimality proposition holds.
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Figure 2: Schooling and ability
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Proposition 3 Under Assumption 1, Ψ(µ, i) is strictly increasing in µ, for µ > µ(i). More-

over, for any tuition fee k > 0, there exist a threshold µ̃(i, k) > µ(i), given by

µ̃(i, k) = Ψ
−1

(

k + e−γt Wh
)

, (16)

checking:

(i) If µ > µ̃(i, k), then the interior schooling solution is optimal: S⋆ = Ŝ.

(ii) If µ < µ̃(i, k), then the interior schooling solution is dominated: S⋆ = 0.

(iii) If µ = µ̃(i, k), then the individual is indifferent between the interior solution and the
corner solution.

Proof : see Appendix F. �

Figure 2 shows the respective role of µ(i) and µ̃(i, k). The interior solution for school-

ing is positive for µ > µ(i) but is still dominated by the corner solution until the

threshold µ̃(i, k) is reached. The optimal solution corresponds to the heavy line.

The following comparative statics can then be established.

Proposition 4 For any t, the threshold µ̃ is a strictly increasing function of k, wh, ξ, x(i)
and β, and a strictly decreasing function of α and γ.

Proof : see Appendix G. �
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Figure 3: Separated catchment areas
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3 Solution to the School Location Problem

We now consider the choice of the density of schools Et, denoted without time sub-
script in this section. The framework is inspired by Bos (1965), but our reaction func-
tion µ̃(i, k) is much more involved than in the original setting. Given our hypothesis
on the dispersion of the population, the schools will be optimally located if they are
evenly spaced. To get rid of indeterminacy, we will assume that, provided schools
are created, there will be one at 0. Hence, the schools are located at (j − 1)/E, with
j = 1, . . . , E.

The potential catchment area of the school at 0 is the circular segment [−1/2E, 1/2E].
The members of the new-born cohort who attend school are the persons with a high
ability µ such that µ > µ̃(i, k), where the function µ̃(i, k) was defined in Proposition 3.
The distance function x(i) is the arc length between location i and the closest school,
hence in the catchment area of 0, x(i) = |i|. The function µ̃(·) is increasing in i,
reflecting the idea that, for a population very close to the school, many children are
likely to attend courses, while for very distant populations, only the most skilled do.
Let us denote the attendance rate of population located at i by r(i, k), where the index
k will be useful later on. It is given by

r(i, k) =

∫ µ

µ̃(i,k)
g(µ)dµ if µ̃(i, k) 6 µ

= 0 otherwise

If we multiply this quantity by ζ, we obtain the density of pupils at i. Furthermore,
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Figure 4: Contiguous catchment areas
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multiplying the latter by the tuition fee k gives the benefit accruing from the pupils at
i:

b(i, k) = kζr(i, k) (17)

The question is now to determine the number of schools that will be created at time t.

Model M1

We assume the existence of a central authority which determines the optimal density
of schools so as to maximize the profit of the whole schooling system. Two cases
may occur. In the first one, illustrated in Figure 3, the effective catchment areas (i.e.,
the areas with a strictly positive demand) of the schools do not touch each other.
This occurs when µ̃(ℓ, k) = µ for some point ℓ such that ℓ 6 1/2E. By convention,
we set ℓ = 1/2 when µ > µ̃(1/2, k), i.e., a single school is able attract pupils from
every location. The effective catchment area is thus the circular segment [−ℓ, ℓ]. The
proportion of children attending school within the effective catchment area is then

R = 2

∫ ℓ

0
r(i, k)di.

Notice that, in this case where catchment areas do not touch each other, R is indepen-
dent of the density of schools. The benefit drawn from a school built in this area is
equal to the tuition fee k times the attendance:

kζR

14



The school can be sustained provided that the benefit outweighs the set-up cost f ,
hence:

kζR − f > 0 (18)

The global profit when implementing E schools is

B(E, k) =
[

kζR − f
]

E (19)

It follows from the previous discussion that if the term between brackets is negative,
no schools will be built. If it is positive, the central authority has an incentive to create
as many schools as possible. Now, it is obvious that the potential catchment areas of
the schools shrink as E grows. This implies there is some minimal value Ẽ beyond
which these areas come to contact:

Ẽ =

⌊

1

2ℓ

⌋

To simplify the presentation, we will assume that the number of schools is large
enough, so that E can be assimilated to a continuous variable. Hence

Ẽ =
1

2ℓ

We now consider the second case where the potential catchment areas are in contact,
i.e., where E > Ẽ. It is illustrated in Figure 4. The attendance rate in the catchment
area of the school at 0 is

R(E, k) = 2

∫ 1
2E

0
r(i, k)di = 2

∫ 1
2E

0

∫ µ

µ̃(i,k)
g(µ) dµ di (20)

It can be easily checked that R is a decreasing function of E, which is not surprising
as the catchment area of the school shrinks when E grows, while the attendance rate
in each location remains the same.

The profit function of the decision maker is equal to the tuition paid by the total
population of children of that generation who attend school, minus the set-up cost
for opening E schools:

B(E, k) = [kζR(E, k) − f ] E (21)

We now study the properties of the function B.

Lemma 1 At given k, the benefit function B(E, k) is a continuous concave function of E.

Proof : see Appendix H. �

It follows from the previous discussion that some schools will be opened provided
that condition (18) is met. As stated in Appendix H, the partial derivative of B with
respect to E is continuous at Ẽ provided that ℓ < 1/2. Proposition 5 follows:
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Proposition 5 1. If ζ < f /(Rk), then no schools are created.

2. If ζ = f /(Rk), then Ẽ = 1/(2ℓ) is the optimal density of schools, with ℓ such that
µ̃(ℓ, k) = µ (or ℓ = 1/2 when µ̃(1/2, k) > µ).

3. If ζ > f /(Rk) and ℓ < 1/2, then E⋆ determined by the first order condition B′(E⋆, k) =
0 is the optimal density of schools.

4. If ζ > f /(Rk), ℓ = 1/2, and B(Ẽ, k) 6 kζ
∫ µ

µ̃(ℓ,k) g(µ)dµ, then Ẽ is the optimal density

of schools.

5. If ζ > f /(Rk), ℓ = 1/2, and B(Ẽ, k) > kζ
∫ µ

µ̃(ℓ,k) g(µ)dµ, then E⋆ determined by the

first order condition B′(E⋆, k) = 0, is the optimal density of schools.

Proposition 5 shows that, when the newborn population is low, set-up costs are not
covered, hence no schools are created. Once the population reaches the threshold
f /(Rk), Ẽ schools are created at once. The process by which illiteracy is eliminated is
initiated by a jump.

The next step is to examine the influence of the exogenous parameters on the density
of schools. First, let us notice that (30) allows one to rewrite B′ as follows:

B′(E, k) = 2

∫ 1
2E

0

[

b(i, k) − b

(

1

2E
, k

)]

di − f

= 2kζ

∫ 1
2E

0

∫ µ̃( 1
2E ,k)

µ̃(i,k)
g(µ)dµ di − f

B′ is a decreasing function of f , hence dE⋆/d f < 0. Also B′ is an increasing function
of ζ and thus dE⋆/dζ > 0. The effect of the other parameters on E⋆ depends on the
density function g(µ), and it is impossible to have general results. Let p denote any
other parameters of the model. We have:

∂B′

∂p
(E, k) = 2

∫ 1
2E

0

[

∂b

∂p
(i, k) −

∂b

∂p

(

1

2E
, k

)]

di (22)

It then follows:

1. If ∂2b
∂p∂x = 0, then dE⋆/dp = 0.

2. If ∂2b
∂p∂x > 0, then dE⋆/dp < 0.

3. If ∂2b
∂p∂x < 0, then dE⋆/dp > 0.
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Model M2

In the alternative scenario M2, the central authority determines the optimal number
of facilities Et and tuition fee kt in order to maximize the profit of the whole school
system. Again here we drop the time index for the sake of clarify. The maximization
problem can be expressed as follows

max
E,k

(kζR(E, k) − f )E

We shall study briefly the properties of this problem. The following lemma will prove
most helpful.

Lemma 2 µ̃(i, k) tends to infinity when k goes to infinity.

Proof : see Appendix I. �

Let us now have a look at our optimization problem for a given E > 0. Notice that
the profit B(E, k) = (kζR(E, k) − f )E is equal to − f E for k = 0. By Lemma 2, we
know that there exists a k-value, say K, which is independent of E and f , such that
µ̃(i, k) > µ̄. Hence, for k > K, R(E, k) = 0 and B(E, k) = − f E. Now, consider the
optimization problem of B(E, k) for fixed E > 0. The problem admits necessarily a
maximum on the compact k ∈ [0; K]. This maximum is necessarily interior because

∂B(E, k)

∂k
(0) = 2ζ E

∫ 1
2E

0

∫ µ̄

µ̃(i,0)
g(µ) dµdi > 0.

This maximum is also a global maximum since B(E, k) = B(E, 0) = − f E, ∀k > K.
Denote by k̃, the corresponding maximizer. Since it is interior, it satisfies the equation:

∂B(E, k)

∂k
(k̃) = 0,

or

k̃
∂R(E, k)

∂k
(k̃) + R(E, k̃) = 0.

Because the function B(E, k) reaches its (strict) maximum at k̃, it should be strictly
concave with respect to k at k = k̃. Henceforth, the derivative of the left hand side
of the equality above should be strictly negative, and the implicit function theorem
holds. For any E, we can associate a single k̃(E). Moreover function k̃(E) is differen-
tiable by the implicit function theorem. Clearly this maximizer is independent of f .
Therefore, for the maximized B(E, k), for fixed E > 0, to be non-negative, we need
the condition:

k̃(E)ζ R(E, k̃(E)) = θ(E) > f .

Since k̃(E) is differentiable, function θ(E) is also differentiable (and thus continuous).
Now notice that the previous non-negative profit condition cannot hold for E tending
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to infinity because by definition, the attendance rate R(E, k) goes to zero in such a
case, and since k̃(E) < K. Therefore the condition θ(E) > f should correspond to a
bounded E-set if non-empty. If this set is empty, then E > 0 cannot yield non-negative
profits, and the corner solution E = 0 applies. Otherwise, creating schools becomes
optimal. We can now solve the free optimization problem with respect to (E, k).

Proposition 6 The scenario M2 has a unique and global optimal solution for (E, k). The
maximized profit is necessarily non-negative.

Proof : see Appendix J. �

Model M3

In the scenario M3, we consider that the tuition fee k is fixed, but we assume a free-
entry process in which school creation decisions are totally decentralized. This yields
an equilibrium density of schools such that the benefit gained from opening a school
matches the cost it raises. This number, denoted E⋄, is such that

kζR(E⋄, k) − f = 0 (23)

It follows from Appendix H (Equation (30)) and from B(E⋄, k) = 0 that B′(E⋄) < 0,
hence the density of schools with free entry is larger than the density chosen by a
central authority.

Establishing the impact of the exogenous parameters on E⋄ is much easier than it
was for E⋆. First, it is obvious that E⋄ is a decreasing function of f and an increasing
function of ζ. Next, let p denote any other parameter besides k. We have:

dB

dp
= −kζ

∫ 1
2E

0

dµ̃

dp
(i, k)g(µ̃(i, k)) di

It then follows from Proposition 3 that E⋄
t is a strictly decreasing function of wh, ξ,

and β and a strictly increasing function α and γ. Finally, note that

dB

dk
=

B(E, k)

k
− kζ

∫ 1
2E

0

dµ̃

dk
(i, k)g(µ̃(i, k)) di

It can easily be established that E⋄
t is a strictly decreasing function of k.

Model M4

The third scenario M4 mixes the two preceding cases of free entry process and optimal
tuition fee. The problem can be stated as a two-stage procedure. Suppose that E
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schools have been created. Next, each school chooses k to maximize its profit. This
leads to an optimal tuition function of school density k̃(E), the same as in model M2.
If the profit is negative, there are too many schools and one will run out of business. If
the profit is positive, there is potentially room for at least one more school. Formally
the problem can be stated as follows :

max E subject to: B(E, k̃(E)) > 0 and B(E, k̃(E)) > B(E, k) ∀k > 0 (24)

4 Baseline Scenario

In this section, we are interested in the ability of our model to capture some of the
early increase in literacy. School creation follows model M1. A robustness analysis
to this assumption will be carried over in section 5. We consider the period 1530-
1860, which corresponds to the period considered by Wrigley and Schofield (1989)
(followed by Wrigley, Davies, Oeppen, and Schofield (1997)) for which they build a
consistent set of demographic data. To be consistent with our focus on adult mortality,
we let the birth date in our model correspond to age 5 in the data. We first calibrate
the exogenous processes and the parameters of the model.

Calibration

The four exogenous processes αt, βt, ζt, and γt should be made explicit. We assume
that all these four processes follow a polynomial function of time. Polynomials of
order 3 are sufficient to capture the main trends in the data.

For the survival function processes αt and βt, the parameters of the polynomial are
chosen by minimizing the distance with the survival functions estimated by Wrigley,
Davies, Oeppen, and Schofield (1997). These survival functions applies to the age
5-85, and have been accordingly normalized to 1 at age 5, abstracting from infant
mortality. The parameters of the process for ζt are chosen so that the distance be-
tween total population Pt defined in equation (3) and the observed level of population
aged 5 and over is minimized. Finally, the parameter of the exogenous technological
progress is set to follow the estimated level of total factor productivity of Figure A-2.
For the period running after 1860 until 1920, which intervenes in the expected wages
of the persons born in the nineteenth century, we assume a constant total factor pro-
ductivity growth of one percent per annum (Clark 2003). Panel A of Figure 5 presents
the evolution of survival probabilities as implied by the calibrated αt and βt. All vari-
ables are assumed constant before 1530. The survival probabilities first drop, then
increase. The level of 1530 is reached and surpassed in 1720. Panel B of Figure 5
represents the process ζt needed to generate the adequate level of population. We
see that ζt increases in two distinct periods: 1530-1600 and 1730-. We use the label
“birth density” for the process ζt because the main driving force behind consists in
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Figure 5: Exogenous processes
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fluctuations of crude birth rate (net of infant mortality). The value of ζt should be
interpreted as a density, since it depends on the normalization of the circle. If we let
the circle shrink, this would have the same effect as increasing ζt. Finally, Panel C
of Figure 5 represents the estimated productivity process At; it is relatively constant
until 1700, with a marked acceleration thereafter.

In a second step, we need to select a distribution function for abilities, g(µ), and
choose the five remaining parameters: θ, k, ξ, f , and wh. Since we have little informa-
tion to calibrate those parameters, we chose values which give a reasonable baseline
scenario, and carry out extensive sensitivity analysis in the next section. For g(µ)
we have selected a log-normal distribution, which is commonly used to approach
the actual distribution of abilities. The parameters of the lognormal are set to -3/2
and 1/2 respectively. For the risk free interest rate, we choose θ = 0.05 which lies
in the range provided in Epstein (2000). The wage in the home production sector wh

is set to 0.6, which will deliver a reasonable literacy rate at the end of the sixteenth
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Figure 6: Baseline simulation - density of schools Et
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century. The transportation cost ξ is equal to 40. This value has no precise meaning
per se, since distances are not measured in actual terms. The set-up cost parameter
f and the tuition fee parameter are determined jointly. The set-up cost f is chosen
so as to meet the equality condition of Proposition 5 for the year 1539. Doing this,
schools will be created from 1540 onwards. The tuition fee is set to correspond to
the profit maximizing level of the school system in 1540. This yields f = 0.0133 and
k = 11.0256.

Baseline Simulation

Panel D of Figure 5 reports the function µ̃t(i, k) for three different values of the dis-
tance, i = 1/100 (bottom curve), i = 1/10 and i = 1/2 (top curve). The drop in the
curves reflects higher incentives to go to schools, either because life expectations are
increasing, and/or higher technical progress makes wages in the modern sector more
attractive. The fact that the two curves are closer to each other at the end of the period
means that distance matters less at this stage of development.

Figure 6 reports the optimal density of schools, such as it results from the maximizing
process of the central school authority. In 1540 the optimal number goes from zero to
2 (Ẽ of Proposition 5) and then 3 in 1550. Thereafter, the density of schools increases
monotonically, with a marked slowdown in the seventeenth century followed by an
acceleration in the eighteenth century.

Once the density of schools is known we can compute the literacy rate of the total
population as

Λt =
1

Pt

∫ t

t−L
ζz mz(t − z)

∫ 1

0

∫

∞

µ̃z(i,k)
g(µ) dµ di dz.
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Figure 7: Baseline simulation - literacy rate - total population
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The results are reported in Figure 7. There is a first rise prior to 1600, thanks to the
creation of the first schools. It is followed by a period with slower improvements,
and, after 1700, by a second period of fast growth.

The level of literacy is globally consistent with the data provided in the introduction
(Figure A-1) although a precise mapping would be meaningless since literacy data
cover the ability to sign on marriage register, not school attendance. Notice also the
role of expectations: the sharp acceleration in the end of the period is related to the
anticipation by households of strong productivity gains in the modern sector in the
nineteenth century.

Next we compute the total stock of human capital and total GDP. The total stock
of human capital integrates all the generations which are currently at work in the
modern sector:

Ht =

∫ t

t−L
ζz mz(t − z)

∫ 1

0

∫ µ

µ̃z(i,k)
δ[t − z − Sz(µ, i)] hz(µ, i)g(µ) dµ di dz.

For those who go to school, we can compute the transportation costs as follows:

Ξt = −ξ

∫ t

t−L
ζz mz(t − z)

∫ 1

0

∫ µ

µ̃z(i,k)
δ[Sz(µ, i) − (t − z)] x(i)g(µ) dµ di dz.

Finally we can compute total GDP It as the sum of the production of the traditional
and modern sector minus the transportation cost minus the set-up cost of schools:

It = wh(1 − Λt)Pt + At(Ht − Ξt − kEt). (25)

Figure 8 plots the growth rate of It/Pt over 10 years. It is by definition equal to 0
before the creation of the first school. Then, there is a period of negative growth after
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Figure 8: Baseline simulation - growth of income per capita
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1530, because the economy has to pay the transportation costs of students and the
set-up cost of schools, but does not yet benefit from better educated persons. There-
after there is a mini-boom when the newly educated generations start to work. Next,
the seventeenth century is characterized by very low growth. After this stagnation
period, growth starts accelerating after 1700 to reach 0.7% per annum at the end of
the eighteenth century.

Notice that our growth numbers should be interpreted as the growth generated by
the accumulation of human capital and by TFP growth, without any effect from the
accumulation of physical capital. With the displayed growth rates, GDP per capita
is multiplied by 3.15 from 1500 to 1860 (it goes from 0.6 in 1500 to 1.89 in 1860).
Maddison (2001) estimates the UK GDP per capita as being equal to 714 in 1500 and
2817 in 1860, which delivers a factor of 3.94. The difference between the two can be
interpreted as the role played by physical capital accumulation.

Counterfactual Experiments

There are four exogenous processes in the model, representing three forces: mortality
(with two processes), birth density and exogenous technical progress. To evaluate
the importance of each of them in accounting for literacy and growth, we have run
experiments where we fix two of the exogenous variables to a constant path and allow
the third to vary with the calibration. A summary of the results is provided in Table 1.

In the first simulation we have considered that birth density and technical progress
are constant over the period; this allows to isolate the role of mortality. Since mortality
drops very late in England (see other data on Geneva and Venice in Boucekkine, de la
Croix, and Licandro (2003)), it does not exert positive influence before the eighteenth
century. If mortality improvements were the only driving force of the industrial rev-
olution, the first school should have been created in 1730 and the literacy rate in 1850
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Table 1: Counterfactual analysis - importance of each factor

First school School Change in Average
created creation Literacy growth

Mortality 1730 13.2% 15.4% 12.2%
Birth density 1540 65.8% 31.5% 20.7%
Technical progress 1650 28.9% 59.7% 77.6%
Interaction terms -7.9% -6.6% -10.6%

would have been 8.59%. Compared to the baseline simulation, mortality improve-
ments explain 13.2% (5/38) of total school creations over the period 1500-1850, 15.4%
of improvements in literacy and 12.2% of growth of income per capita.

In a second step we run a simulation where both mortality and technical progress are
constant. Only the birth density ζt varies, reflecting all changes in population which
are not due to mortality. In this simulation we observe that the rise in population
of the sixteenth century can be held responsible for school creation and increases
in literacy. In the seventeenth century, however, population stagnates, and school
creation drops to zero. In the end, the rise in birth density explains 65.8% (25/38) of
total school creations over the period 1500-1850, 31.5% of improvements in literacy
and 20.7% of income growth per capita.

In a third step we run a simulation where both mortality and birth density are con-
stant. Only the technical progress At is variable. In this simulation we observe that
the first school is created in 1650. In the end, technical progress explains 28.9% (11/38)
of total school creations over the period 1500-1850, 59.7% of improvements in literacy
and 77.6% of the growth of income per capita.

From the counterfactual analysis we conclude that neither productivity increases nor
mortality improvements can explain the establishment of schools at a high rate in the
sixteenth century documented in Table A-1 and Figure 1. Only the rise in population
density can.

Further Discussion of the Results

The above results merit further discussion, specially concerning two points: the small
role played by mortality and the importance of technical progress.

As far as mortality is concerned, our counterfactual experiments estimate that mor-
tality improvements account for only one sixth of the rise in literacy and growth. This
is small especially compared to the important role is was supposed to play in Nicol-
ini (2004) for England and Boucekkine, de la Croix, and Licandro (2003) for Western

24



Figure 9: Shifts in the survival function
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Europe as a whole. Looking first at the raw data, Figure 9 compares the survival func-
tion in England as estimated by Wrigley, Davies, Oeppen, and Schofield (1997) to the
one in Geneva (Perrenoud 1978). We have normalized the series to 1000 at the age of
10; doing so, we concentrate on the mortality of adults. Perrenoud’s data consists of
a high quality data set for the period 1600-1800, including mortality tables estimated
from parish register information. It is the best we can find in continental Europe.

During the early seventeenth century (data for 1625-49), surviving was more likely in
England than in Geneva, specially for the ages 35-65. English longevity was remark-
ably high for this period. Fifty years later, mortality in Geneva has dropped substan-
tially, becoming lower compared to England. More surprisingly, English mortality
has in fact increased over this period. This different evolution in mortality is prob-
ably due to the sharp rise in urbanization in England. At that time, big cities were
unhealthy places. According to Bairoch, Batou, and Chèvre (1988), the population of
London went from 50 thousands in 1500 to 948 thousands in 1800, while it grew only
from 12 thousands to 25 thousands in Geneva over the whole period. In the eigh-
teenth century, finally, survival probabilities increased at all ages in both England
and Geneva. Over the two centuries, the improvements in longevity were steady in
Geneva, while they came quite late in England probably because of the fast urban-
ization process. This is why, in our quantitative exercise, mortality reductions play a
role only in the eighteenth century.

Concerning technical progress, we have assumed it follows a purely exogenous process.
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This view is in line with standard neo-classical growth theory starting with Solow
(1956). The effect of population density passes uniquely through enhancing the qual-
ity of the labor force, via a better access to schooling. If, on the contrary, we had
assumed that the stock of human capital exerts a positive influence on TFP through
an externality as in Lucas (1988), the increase in total factor productivity would have
been partly related to the density effect. An example of a formulation with externality
consists in replacing equation (4), with:

At = e(1−ρ)γttH
ρ
t , (26)

where the parameter ρ is related to the intensity of the externality. Such a formula-
tion amounts to partially endogenizing technical progress, the extreme case ρ = 1
describing a model with endogenous growth. With this formulation, the estimation
of the importance of the birth density effect would be larger than in our baseline sim-
ulation. Indeed the initial effect would be amplified by the externality over time. We
should therefore interpret the estimation according to which population density is
responsible for one third of the rise in literacy and one fifth of the rise in growth as
a lower bound, assuming that technical progress is not related to population density.
This comment is also robust to the inclusion of urbanization. Modelling urbaniza-
tion caused by increases in population would have reinforced our density effect by
reducing distance (for example shrinking the circle).

5 Robustness Analysis

Robustness to the Choice of Parameters

We now provide a comprehensive robustness analysis to changes in the parameters.
For each simulation, we recalibrate the fixed cost f such that the first school is created
in 1540.

In the baseline simulation, transportation costs are indexed on technical progress,
see Equation (5). This assumption is probably too pessimistic because transporta-
tion costs relative to other costs have probably been reduced thanks to urbanization.
To evaluate the importance of this assumption we have run a simulation where the
transportation cost is kept not indexed; as a consequence, the relative importance of
this cost will diminish in the eighteenth century and the rise in literacy should be
more important. Quantitative results are presented in Table 2. 28 schools are created
over the period 1500-1850, instead of 38 in the baseline simulation. Since transport
is cheaper it is less useful to install many schools to attract pupils. The literacy rate
increases by 57.97% instead of 55.73%. Income per capita reaches 1.84 in 1850 instead
of reaching 1.77. This small difference reflects that lower transportation costs imply a
smaller loss for the economy (the transport sector is not modelled and it is not part of
value added). Hence, when the transportation cost is modified, the density of schools
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Table 2: Robustness analysis - results for 1500-1850

School Change in GDP per cap.
creation Literacy in 1850

Baseline 38 55.73% 1.77
No indexation of transportation costs 28 57.97% 1.84
Risk free interest rate 3% 17 79.46% 1.96
Lower variance g(µ) 80 66.19% 1.71

Higher home productivity wh 46 48.62% 1.77

wh indexed on At 30 29.57% 1.77

adjusts, and both literacy and growth are almost unaffected. This simulation shows
that our previous results are robust to the choice of ξ.

We next analyze the robustness of the result to a change in the risk free interest rate θ.
It was set to 5% in the baseline; we now assume a value of 3%. This should increase
the incentive to be educated. Indeed, we observe from Table 2 that both literacy
and growth reach higher levels. This improvement in performance is obtained with
fewer schools; given the higher demand for education, authorities have an incentive
to reduce school density compared to the baseline.

Lowering the variance parameter of the distribution g(µ) (1/3 instead of 1/2) has the
opposite effect. There are fewer high skilled people ready to walk long distances to go
to school, and consequently it is optimal to increase the density of schools compared
to the baseline (from 38 to 80). The results on literacy and growth are slightly affected,
with a positive impact on literacy and a negative impact on growth.

Until now, the robustness analysis indicates that the result on literacy and growth are
little affected by changes in the parameters, essentially because the density of schools
adjust endogenously. This conclusion is however not valid when the parameter wh

is concerned. We have first increased wh by 25% from 0.6 to 0.75, making the mod-
ern sector less attractive. The density of schools adjusts slightly upwards. This has
a strong negative influence on literacy, and almost no effect on GDP per capita in
1850. Since in this simulation we start with a higher GDP per capita (0.75 instead
of 0.60), growth is slowed down. Secondly, we have indexed wh on productivity At.
Again, this prevents literacy from rising as much as in the baseline simulation. In fact,
the non-indexation of wh is the main mechanism through which technical progress
plays a role in the model. If we shut down this channel by indexing wh, we reduce
drastically the role of technical progress, and we are left with the two other factors,
mortality and birth density, which explain about half the observed rise in literacy.
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Figure 10: School density (log) and growth with models M1-M4
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Robustness to the Assumptions on School Establishment

The simulations result for the four models are presented in Figure 10 for both the
school density (in log) and growth of GDP per capita. There is an important differ-
ence between the models with a central authority (M1 and M2) and those with a free
entry process (M3 and M4). Assuming a constant tuition fee k or assuming that the
tuition fee is chosen so as to maximize profits does not matter much for school den-
sity and growth. In model M2, the optimal tuition fee k is about constant (= 11) over
the period 1540-1650, then rises steadily to reach 17.7 in 1860 (18.2 with free entry).
This rise in the tuition fees leads to a slightly higher density of schools and a slightly
lower growth rate at the end of the period. Notice also that the timing of the take-off
for school creation does not vary across models; for the same set-up cost parameter
in the four cases, the first schools are created in 1540, at the point where schools make
zero profit.

With free entry, the density of schools increases much faster than with a central au-
thority. Indeed, the evolution of school density follows an exponential pattern (linear
in the log-scale of the top panel of Figure 10) with M1-M2 (central authority) while
it follows a double exponential with M3-M4. This very fast rise entails important
fixed costs for the economy, which slow growth compared to the central authority
case (bottom panel of Figure 10). The model with free entry is therefore not as good
as the model with a central authority to reproduce the acceleration in growth during
the early nineteenth century because it would imply too many school establishments.
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6 Conclusion

Literacy in England started to rise in the sixteenth century, two centuries before the
official Industrial Revolution. In models of the transition from stagnation to growth,
three economic factors can be held responsible for this fact. (A) Exogenous techni-
cal progress in the modern sector increased the return to investment in education
(Hansen and Prescott 2002). (B) Lower mortality increased the return to education
and induced higher investment in human capital (see Boucekkine, de la Croix, and
Licandro (2003) and Nicolini (2004)). (C) Rising density of population induced eco-
nomic gains which in turn raised the incentive to educate (Galor and Weil 2000).

The first contribution of this paper is to propose micro-foundations for the effect of
population density on growth. We assume that the investment in education is chosen
by individuals as a function of future wages, longevity, and the distance to the nearest
school. The number and location of education facilities are chosen optimally either to
maximize the profit of the whole school system or by assuming a free entry process.
In this set-up, higher population density increases the number of schools, opening
the possibility for individuals to reach higher educational levels.

Secondly, we use our model to measure the impact of the three factors on school
density, literacy and growth through a set of counterfactual experiments. We find
that one third of the rise in literacy over the period 1530-1850 can be directly related
to the effect of density, while one sixth is linked to higher longevity and one half to
exogenous total factor productivity growth. The estimation of the effect of density
is a lower bound, because we assume that density affects the productivity of labor
through enhancement in human capital through schools, but we do not assume any
externality from human capital to total factor productivity.

The predictions of the model are then compared to school establishments data that we
have gathered from the reports of the School Inquiry Commission written in 1867-8.
These data show a peak in school creation at the end of the sixteenth century. Our
counterfactual analyzes conclude that neither productivity increases nor mortality
improvements can explain this peak. But the rise in population density can.

We have finally carried out extensive sensitivity analysis of the results, both to the pa-
rameters of the model and to the assumptions made on school establishment. When
we modify the value of the parameters, school density bears the major part of the
adjustment, while the pattern of both literacy and growth is less sensitive. This ro-
bustness result holds for all parameters for which we have little information except
for the productivity of the traditional sector relative to the modern one. We have
also analyzed different models of school establishment, distinguishing centralized
decisions from free entry processes, and exogenous versus endogenous tuition fee.
Simulations show that the model where schools are created through free entry is not
as good as a model with a central authority at reproducing the acceleration in growth
during the eighteenth century.
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It is often claimed that the impressive performance of pre-industrial England in terms
of education was related to cultural and religious factors (Protestantism). Our analy-
sis shows that the surge in education provision as early as in the sixteenth century
can also be understood as an optimal response to population density passing a given
threshold.
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Appendices

A England data: 1530-1860

Figure A-1: Literacy achievements (% population)
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Figure A-2: Total factor productivity
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Figure A-3: Mortality: number of survivors at age 40 from 1000 individuals at age 5
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Figure A-4: Population of England aged 5+
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Figure A-5: Crude birth rate
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B School establishments

The reports of the School Inquiry Commission written in 1867-8 documents the cre-
ation of schools.5 Two lists of schools are provided, together with their date of estab-
lishment. The “endowed grammar schools” taught a mixture of Latin and practical
skills to sons of the middling sort and lesser elite (list in Schools Inquiry Commission
(1868a)). The “endowed non-classical schools” were products of the Charity School
Movement, offering protestant socialization and basic skills to the worthy poor (list
in Schools Inquiry Commission (1968b)). According to Cressy (1980), although short-
lived private schools are omitted from the list, a check against other sources proves
the Commission’s work to be reliable. We use these lists to compute the number of
school establishments per decade. These data are presented in Table A-1.

Table A-1: School establishments

grammar non-classical

<1500 23 2
1500 - 1510 9 2
1510 - 1520 8 2
1520 - 1530 13 0
1530 - 1540 8 0
1540 - 1550 36 0
1550 - 1560 47 10
1560 - 1570 44 7
1570 - 1580 31 2
1580 - 1590 19 14
1590 - 1600 26 13
1600 - 1610 41 18
1610 - 1620 42 27
1620 - 1630 27 33
1630 - 1640 31 38
1640 - 1650 15 33
1650 - 1660 42 45
1660 - 1670 34 58
1670 - 1680 38 67
1680 - 1690 31 75
1690 - 1700 25 81

5A special thank to Françoise Canart for her help in identifying the relevant British Parliamentary
Papers.
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Table A-2: School establishments (continued)

grammar non-classical

1700 - 1710 23 188
1710 - 1720 24 287
1720 - 1730 23 279
1730 - 1740 12 152
1740 - 1750 9 91
1750 - 1760 4 93
1760 - 1770 3 128
1770 - 1780 7 84
1780 - 1790 8 99
1790 - 1800 6 106
1800 - 1810 3 87
1810 - 1820 1 125
1820 - 1830 3 64
1830 - 1840 4 36
1840 - 1850 6 9
1850 - 1860 9 4

C Proof of Proposition 1

We shall denote S(µ, i) by S. Therefore, we can rewrite the integral equation as follows
(assuming m(S) 6= 0 or S < L):

∫ L
S eγ(z−S) m(z)dz

m(S)
− S = φ, (27)

where φ = ξx(i)/µ. We shall denote by Φ(S) the function on the left hand side of
Equation (27), and solve for Φ(S) = φ for S ∈ (0; L). First, notice that function Φ(S)
can be expanded continuously to S = L. Indeed, simple Taylor first-order expansions

allow trivially to show that the limit of
∫ L

S eγ(z−S) m(z)dz/m(S) is zero when S tends

to L.6 It follows that Φ(S) tends to −L when S tends to L, so that (27) cannot have a
solution in this neighborhood.

Next we prove that Φ(S) is decreasing for γ small enough and S ∈ [0; L]. By conti-
nuity of the problem with respect to γ, it is enough to prove this property for γ = 0.

6Just use ex − 1 is almost equal to x when x is close to 0.
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Differentiating Φ(S) and putting γ = 0, one gets:

Φ
′(S) = −2 −

m′(S)

m2(S)

∫ L

S
m(z)dz.

To prove that function Φ(S) is decreasing, we shall demonstrate that:

−m′(S)

m2(S)

∫ L

S
m(z)dz 6 1,

for S ∈ [0; L]. First, notice that:

−m′(S)

m2(S)

∫ L

S
m(z)dz =

−m′(S)

m(S)

∫ L

S

m(z)

m(S)
dz 6

−m′(S)

m(S)
(L − S),

since function m(S) is decreasing. We prove now that function ρ(S) = −m′(S)/m(S)
(L − S) is strictly increasing on [0; L]. Indeed, the sign of ρ′(S) is the one of −β eβS
(

α − eβS
)

+ α β2 eβS (L − S), which turns out the sign of the simpler expression

α β (L − S) −
(

α − eβS
)

.

Now, it is easy to see that the latter function should be positive: Its derivative is ex-
actly β

(

eβS − α
)

6 0, for 0 6 S 6 L, and it is decreasing to 0 (its value when S = L).
Henceforth, function ρ(S) is increasing on the interval [0; L]. It is then straightfor-
ward, using the same kind of first-order Taylor expansion seen above, that the limit
of ρ(S) = β eβS/(α − eβS) (L − S) is exactly 1 when S tends to L. This is turn means
that Φ

′(S) < 0 when S ∈ [0; L]. The necessary and sufficient condition for existence
and uniqueness is then straightforward.

D Proof of Corollary 1

The proof is trivial except for the demographic parameters α and β. Notice that since
µ(i) is given by Equation (15), the effect on the threshold of an increase in α or β is

the reverse of the effect on the integral
∫ L

0 eγa m(a) da. Differentiating this integral

with respect to p = α or β, yields
∫ L

0 eγa ∂m(a)/∂p da, the effect via the integral limit
L being zero as m(L) = 0. Since ∂m(a)/∂p > 0 when p = α, and ∂m(a)/∂p < 0 when
p = β, we get the announced results.
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E Proof of Proposition 2

Let us recall that the interior schooling decision is given by:

∫ L
S eγ(z−S) m(z)dz

m(S)
− S = φ,

with φ = ξx(i)/µ. Again the stated comparative statics properties are obvious except
for the demographic parameters, α and β.

The last part of the proposition is straightforward: when x(i) = 0, φ = 0, and the
parameters ξ and µ vanish from the interior solution equation (27).

We shall prove the properties with respect to α and β for γ = 0, which by continuity
of the problem with respect to γ, validate them for γ’s values small enough. Denoting

by Φ
1(S) =

∫ L
S m(z)dz/m(S), and by total differentiation of (27) with respect to S and

p (= α or β), one gets:

∂S

∂p
= −

∂Φ
1(S)
∂p

Φ′(S)
.

We know by the proof of Proposition 1 that function Φ(S) is decreasing, hence the
sign of ∂S/∂p is the sign of ∂Φ

1(S)/∂p. And the sign of the latter is the sign of:

m(S)

∫ L

S

∂m(z)

∂p
dz −

∂m(S)

∂p

∫ L

S
m(z)dz.

For p = α, one can see that the sign of latter expression is positive if and only if

∫ L

S

∂m(z)
∂α

∂m(S)
∂α

dz >

∫ L

S

m(z)

m(S)
dz.

Since
∂m(z)

∂α
∂m(S)

∂α

=
eβz − 1

eβS − 1
,

and since the latter function is increasing from 1 while the integrand on the right
hand side of the inequality just above is obviously lower than 1 on [0; L] as m(S) is
decreasing, it follows that ∂Φ

1(S)/∂α > 0, which leads to ∂S/∂α > 0 as expected.

The result with respect to β is obtained with an identical reasoning. Notice that as
∂m(z)/∂β < 0, ∀z, 0 6 z 6 L, ∂S/∂β < 0 if and only if

∫ L

S

∂m(z)
∂β

∂m(S)
∂β

dz >

∫ L

S

m(z)

m(S)
dz.
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Again, (∂m(z)/∂β)/(∂m(S)/∂β) = zeβz/(SeβS) is always bigger than 1 for 0 6 z 6 L,
and the inequality holds.

F Proof of Proposition 3

Notice that properties (i) to (iii) hold if function Ψ is increasing in µ. By differentia-
tion, we get:

Ψ
′(µ) =

∂Ψ

∂µ

(

µ, Ŝ(µ)
)

=
∂Ψ

∂µ
+

∂Ψ

∂Ŝ(µ)

∂Ŝ(µ)

∂µ
.

Therefore, it remains to establish the positivity of the term ∂Ψ

∂Ŝ(µ)
. To unburden the

presentation, we will denote it Ψ
′(Ŝ) hereafter.

When x(i) = 0, Ψ(.) becomes:

Ψ(Ŝ) = Ŝ2eγŜm(Ŝ)µ.

Differentiating, one gets:

Ψ
′(Ŝ) = ŜeγŜ

[

2m(Ŝ) + Ŝ
(

γm(Ŝ) + m′(Ŝ)
)]

.

By the proof of Proposition 1, we know that the function Φ(S) is decreasing in S for γ
small enough, which implies that at S = Ŝ, we have:

γ m(Ŝ) + m′(Ŝ) >
−2 m2(Ŝ)

∫ L
Ŝ eγ(z−Ŝ) m(z) dz

. (28)

Therefore, when x(i) = 0,

Ψ
′(Ŝ) > 2ŜeγŜm(Ŝ)

[

1 −
Ŝm(Ŝ)

∫ L
Ŝ eγ(z−Ŝ) m(z) dz

]

.

Since, from Equation (27), Ŝ is given by

∫ L

Ŝ
eγ(z−Ŝ) m(z)dz = Ŝm(Ŝ)

when φ = ξw(i)/µ = 0, we get Ψ
′(Ŝ) > 0.
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If x(i) > 0, then, computing the derivative of Ψ with respect to Ŝ, one concludes that
the sign of this derivative is the one of

µ

ξx(i)

(

γŜ m(Ŝ) + 2m(Ŝ) + Ŝ m′(Ŝ)
)

+ γ m(Ŝ) + m′(Ŝ).

By the proof of Proposition 1, we know that function Φ(S) =
∫ L

S eγ(z−S) m(z)dz/m(S)−

S is decreasing in S for γ small enough, which implies that at S = Ŝ, we have Equa-
tion (28). Therefore, Ψ is increasing in Ŝ if and only if

(

µ

ξx(i)
Ŝ + 1

)

−2 m2(Ŝ)
∫ L

Ŝ eγ(z−Ŝ) m(z) dz
+

2µ

ξx(i)
m(Ŝ) > 0.

We shall see that the latter large inequality is in fact checked with equality. Rearrang-
ing terms and simplifying, it is enough to prove:

µ

ξx(i)

[

1 −
Ŝ m(Ŝ)

∫ L
Ŝ eγ(z−Ŝ) m(z) dz

]

−
m(Ŝ)

∫ L
Ŝ eγ(z−Ŝ) m(z) dz

= 0.

The reader can trivially check that this equality is true because at the interior solution
Φ(Ŝ) = ξx(i)/µ.

In order to see that µ̃(i, k) > µ(i),just notice that as µµ(i) tends to µ(i), Ŝ goes to zero

by Proposition 1. Hence µ̃(i, k) = Ψ
−1

(

k + e−γt Wh
)

> Ψ
−1(0) = µ(i).

G Proof of Proposition 4

The comparative statics with respect to k and wh are obvious. For the remaining
parameters, the comparative statics are obtained by total differentiation of Ψ

(

Ŝ(µ)
)

=

k + e−γt Wh = k + e−γt
∫ L

0 wh m(z)dz. For any parameter p = α, β, γ, ξ and x(i), we
have:

∂µ̃(i, k)

∂p
= −

∂Ψ

∂Ŝ
∂Ŝ
∂p + ∂Ψ

1

∂p

∂Ψ(Ŝ)
∂µ

, (29)

where
∂Ψ(Ŝ)

∂µ
=

∂Ψ

∂Ŝ

∂Ŝ

∂µ
+

∂Ψ

∂µ
,

and Ψ
1 = Ψ − e−γt

∫ L
0 wh m(z)dz. We know that denominator in (29) is always

positive given that function Ψ(.) is strictly increasing by the proof of Proposition 3,

Ŝ is an increasing function of µ by Proposition 2, and ∂Ψ/∂µ = Ŝ2 eγŜ m(Ŝ) > 0.
Therefore, we shall concentrate on the sign of the numerator in (29). Finally, notice
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that ∂Ψ
1/∂p = ∂Ψ/∂p for all parameters p except γ. Indeed, though α and β enter the

integration bound L which appears in Ψ − Ψ
1 = e−γt

∫ L
0 wh m(z)dz, the derivative of

the integral just before with respect to either α and β is nil because m(L) = 0.

For p = ξ x(i) (or equal to any of the parameters of the product), we have: ∂Ŝ/(∂ξx(i))
= 1/(µ Φ

′(Ŝ)) < 0, since function Φ(.) is decreasing by Proposition 1, and

∂Ψ

∂ξx(i)
= Ŝ m(Ŝ) eγ Ŝ −

∫ Ŝ

0
eγz m(z) dz < 0,

for γ small enough.7 Since ∂Ψ/∂Ŝ > 0 by the proof of Proposition 3, it follows that
the numerator in (29) is positive. Therefore, µ̃(i, k) is an increasing function of ξ and
x(i), as expected.

We now move to the demographic parameters α and µ. For p = α, notice that ∂Ŝ/∂α >
0. We have to study the sign of ∂Ψ/∂α. We have:

∂Ψ

∂α
= Ŝ2 eγŜ mα(Ŝ) µ̃ + ξx(i)

[

Ŝ mα(Ŝ) eγ Ŝ −

∫ Ŝ

0
eγz mα(z) dz

]

,

where

mα(x) =
∂m(x)

∂α
=

eβx − 1

(α − 1)2
> 0.

The sign is trivial because the term between brackets is necessarily positive as func-
tion eγz mα(z) is increasing from 0 to Ŝ. Therefore, ∂Ψ/∂α > 0, and using (29), one
can deduce that µ̃(i, k) is a decreasing function of α.

When p = β, one has to sign the derivative ∂Ψ/∂β since we already know by Propo-
sition 2 that ∂Ŝ/∂β < 0. We have:

∂Ψ

∂β
= Ŝ2 eγŜ mβ(Ŝ) µ̃ + ξx(i)

[

Ŝ mβ(Ŝ) eγ Ŝ −

∫ Ŝ

0
eγz mβ(z) dz

]

,

where

mα(x) =
∂m(x)

∂β
=

−x eβx

α − 1
< 0.

And again, the sign is trivial by the same argument as just above: Because function
−eγz mβ(z) is increasing for positive z, it follows that the term between brackets is
negative, and so is the derivative ∂Ψ/∂β. Hence, (29) implies that µ̃(i, k) decreases
when β is raised.

7Put γ = 0 and explicit the integral in the inequality just above, the result is then trivial given that
function m(Ŝ) is decreasing: the area comprised between the curve m(x) and the horizontal axis, and
the vertical lines x = 0 and x = Ŝ, is necessarily bigger than the area of the rectangle of dimensions Ŝ
and m(Ŝ).

41



At last, for p = γ, we know that ∂Ŝ/∂γ > 0 by Proposition 2. We have to sign the
partial derivative ∂Ψ

1/∂γ, which is equal to:

∂Ψ
1

∂γ
= Ŝ3 eγŜ m(Ŝ) µ̃(i, k) + ξx(i)

[

Ŝ2 m(Ŝ) eγŜ −

∫ Ŝ

0
z eγz m(z)dz

]

+ te−γt

∫ L

0
wh m(z)dz,

which can be rewritten using the fact that µ̃(i, k) = Ψ
−1

(

k + e−γtWh
)

by Proposi-
tion 3, as:

∂Ψ

∂γ
= Ŝ

[

k + e−γtWh + ξx(i)

∫ Ŝ

0
eγz m(z)dz

]

− ξx(i)

∫ Ŝ

0
z eγz m(z)dz + te−γt Wh,

=
(

k + e−γtWh
)

Ŝ + ξx(i)

∫ Ŝ

0
(Ŝ − z) eγz m(z)dz + te−γt Wh.

It follows that ∂Ψ/∂γ > 0, and by (29), one concludes that µ̃(i, k) is a decreasing
function of γ as expected.

H Properties of R(.) and B(.)

Let us first study the properties of function R(E, k). First, it tends asymptotically to 0
when either E or k grows infinitely. Moreover

lim
E→0

ER(E, k) = 0, lim
k→0

R(E, k) = 2

∫ 1
2E

0

∫ µ

µ(i,k)
g(µ) dµ di

The first order partial derivatives are

∂R

∂E
= −

1

E2

∫ µ

µ̃( 1
2E ,k)

g(µ)dµ < 0

and
∂R

∂k
= −2

∫ 1
2E

0

∂µ̃

∂k
(i, k)g[µ̃(i, k)]di < 0

R is thus a decreasing function of E, which is not surprising as the catchment area of
the school shrinks when E grows, while the attendance rate in each interior location
remains the same. It is also a decreasing function of k, which is obvious as the catch-
ment area remains the same but the school attracts less children from every location.
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Let us turn to the second order partial derivatives.

∂2R

∂E2
=

2

E3

∫ µ

µ̃( 1
2E ,k)

g(µ)dµ −
1

2E4

∂µ̃

∂i
(

1

2E
, k)g[µ̃(

1

2E
, k)]

The sign of this expression is ambiguous. To study the behavior of the function, we
assimilate E to a continuous variable. The second term dominates for values of E
close to 0 and R is concave in a certain neighborhood of the origin. When E grows,
the first term dominates and R is convex.

∂2R

∂k2
= −2

∫ 1
2E

0

{

∂2µ̃

∂k2
(i, k)g[µ̃(i, k)] +

[

∂µ̃

∂k
(i, k)

]2

g′[µ̃(i, k)]

}

di

The sign of this derivative is also ambiguous.

∂2R

∂E∂k
=

1

E2

∂µ̃

∂k
(

1

2E
, k)g[µ̃(

1

2E
, k)] > 0

Only the sign of this cross-derivative is unambiguous.

We now turn to the properties of function B(E, k). First, it is obviously continuous.
Second, we have the following limits when either E or k grows infinitely:

lim
E→0

B(E, k) = 0, lim
k→0

B(E, k) = − f E

lim
E→∞

B(E, k) = −∞, lim
k→∞

B(E, k) = − f E

The first order partial derivatives are

∂B

∂E
= kζR(E, k) − f + Ekζ

∂R

∂E
(E, k)

= kζR(E, k) − f −
kζ

E

∫ µ

µ̃( 1
2E ,k)

g(µ)dµ

=
1

E

[

B(E, k) − kζ

∫ µ

µ̃( 1
2E ,k)

g(µ)dµ

]

(30)

and

∂B

∂k
= ζER(E, k) + kζE

∂R

∂k
(E, k)

= 2ζE

∫ 1
2E

0

∫ µ

µ̃(i,k)
g(µ)dµdi − 2kζE

∫ 1
2E

0

∂µ̃

∂k
(i, k)g[µ̃(i, k)]di (31)
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Comparing (19) and (30), we easily see that for a fixed k, the function ∂B
∂E is continuous

at Ẽ provided that ℓ < 1/2. Otherwise, there is a jump of magnitude

kζ

Ẽ

∫ µ

µ̃(ℓ,k)
g(µ)dµ

and a kink at Ẽ.

We turn to the second order partial derivatives.

∂2B

∂E2
= 2kζ

∂R

∂E
(E, k) + kζE

∂2R

∂E2
(E, k)

= −
kζ

2E3

∂µ̃

∂i
(

1

2E
, k)g[µ̃(

1

2E
, k)] < 0 (32)

Hence, for any fixed value of k, B is a concave function of E.

∂2B

∂k2
= −4ζE

∫ 1
2E

0

∂µ̃

∂k
(i, k)g[µ̃(i, k)]di

− 2kζE

∫ 1
2E

0

{

∂2µ̃

∂k2
(i, k)g[µ̃(i, k)] +

[

∂µ̃

∂k
(i, k)

]2

g′[µ̃(i, k)]

}

di (33)

Obviously, the sign of this expression is ambiguous.

The envelope theorem can help us to characterize the solution to problem M2. Let
E⋆ = E⋆(k) denote the optimal solution to problem M1 at given k. According to (30),
the first order condition give

BE(k) = B(E⋆, k) = kζ

∫ µ

µ̃( 1
2E⋆ ,k)

g(µ)dµ

The derivative with regard to k gives:

dBE

dk
(k) = ζ

∫ µ

µ̃( 1
2E⋆ ,k)

g(µ)dµ− kζg

[

µ̃(
1

2E⋆
, k)

] [

−
∂µ̃

∂i
(

1

2E⋆
, k)

1

(2E⋆)2

dE⋆

dk
+

∂µ̃

∂k
(

1

2E⋆
, k)

]

The first term is positive, while the coefficient of k in the second term is also always
positive. It follows that the function BE is unimodal and, as BE′(0) > 0, there a
unique interior to problem M2.
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I Proof of Lemma 2

µ̃(i, k) is given by the equality Ψ(µ̃(i, k)) = k + e−γt W0 with

Ψ(µ̃(i, k)) = Ŝ2 eγŜ m(Ŝ) µ̃ + ξx(i)

[

Ŝ m(Ŝ) eγ Ŝ −

∫ Ŝ

0
eγz m(z) dz.

]

,

and Ŝ = Ŝ(µ̃(i, k)). Therefore, Ψ(µ̃(i, k)) goes to infinity when k is infinitely large.
Given the expression of Ψ(µ) just above, this can only happen if µ̃(i, k) itself goes to
infinity, since Ŝ is bounded from above (by L for example).

J Proof of Proposition 6

Consider the set Ω given by

Ω = {(E, k) ∈ R
2 : 0 6 E; θ(E) > f ; 0 6 k 6 K}.

This set is a compact set of R
2, and since B(E, k) is continuous in (E, k), it must reach

a maximum in Ω. The non-negativity of the profit comes immediately from the defi-
nition of K and θ( f ).
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