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1. Introduction

Half a century ago, when decision theory and game theory were young, it was
common to perceive a dichotomy between (i) games against nature, in which the
“adversary” is a neutral “nature”—and (ii) strategic games, in which the adversary
is an interested party or parties. Games against nature were analyzed using
several criteria, most prominent being the maximization of subjective expected
utility—i.e., expected utility when the probabilities assigned to nature’s moves
are “subjective” or “personal,” as in Savage [1954];1 whereas strategic games
were analyzed by minimax, or, more generally, strategic equilibrium in the sense
of Nash [1951]. No need was seen to reconcile or even relate the approaches,
perceived as proceeding from distinct conceptual foundations.

In the ensuing years, the dichotomy gradually disappeared. It was recognized
that games against nature and strategic games are in principle quite similar, and
can—perhaps should—be treated similarly. Specifically, a player in a strategic
game should be able to form subjective probabilities over the strategies of the
other players, and then choose his own strategy so as to maximize his expected
utility with respect to these subjective probabilities.

There is, however, a difficulty with applying the notion of subjective proba-
bility to strategic games. In games against nature, subjective probabilities are
constructed from the the decision maker’s preferences among gambles that “stake
prizes” on nature’s possible choices. In strategic games, this translates to staking
prizes on strategy choices of the adversary. But that may change the incentives of
the players, and in particular, the propensity to play this or that strategy. This
invalidates the whole process.

In this paper, we propose a resolution of this difficulty.
The nature of the difficulty is described more precisely in the following section.

In Section 3, we describe the resolution informally. Section 4 is devoted to math-
ematical preliminaries, Section 5 to the formal statement of our result, Section 6
to discussion, Sections 7 and 8 to proofs, and Section 9 to the literature.

2. The Difficulty

It will be useful to use the same terminology for games against nature and
for strategic games. In either case, the “adversary”—be it nature or an inter-

1Related ideas occur in Ramsey [1931], DeFinetti [1937], Dreze [1961], and Anscombe and
Aumann [1963].
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ested party or parties—has several alternatives, called strategies of the adversary.
The decision maker—henceforth protagonist—also has several alternatives, called
strategies of the protagonist. Together, the strategies of the adversary and of the
protagonist determine the outcome of the game. Thus, each of the protagonist’s
strategies may be thought of as a function from the adversary’s strategies to the
possible outcomes: an “act” in the terminology of Savage [1954], a “horse lottery”
in that of Anscombe and Aumann [1963] (henceforth A-A).

Before proceeding, we review and contrast the concepts of objective and sub-
jective probability. Objective probabilities are associated with processes that are
repeatable—and/or in which considerations of symmetry determine the proba-
bility —like coin tosses, roulette spins, dice throws, and so on. Subjective prob-
abilities are associated with one-time events like elections, tomorrow’s weather,
a horse race or how an adversary will play a game. Reasonable people may be
expected to agree on the numerical values of objective probabilities, but may well
differ on subjective probabilities. That is why subjective probabilities are often
called “personal:” They are associated with a particular person i. Roughly, i’s
subjective probability for an event E is that number p such that i would as soon
have a dollar with objective probability p as a dollar contingent on E. In our
case, the protagonist’s subjective probability for the adversary playing some spe-
cific strategy s is that number p such that she2 would as soon have a dollar with
objective probability p as a dollar contingent on his playing s.

More precisely, let 1 and 0 be outcomes, with the protagonist preferring 1 to 0.
For each of the adversary’s strategies s, the protagonist considers a hypothetical
strategy r of her own yielding 1 if the adversary plays s, and 0 otherwise. Clearly,
she (weakly) prefers getting 1 for sure to playing r, and playing r to getting 0
for sure. So presumably, there is some number p between 0 and 1 such that she
would as soon play r in the given game, as getting 1 with probability p, and 0
otherwise. This p is defined as her subjective probability for s.

This brings us to the difficulty. In strategic games, the play of the adversary
depends on the strategies available to the protagonist. In most cases, the hypo-
thetical strategy r of the protagonist is indeed hypothetical—it is not actually
available to her. Making it available changes the game, and so may well change
the likelihood that the adversary plays s. But if it is not available, how can the
protagonist consider it?

To be sure, in games against nature, too, r may not be really available. But

2The protagonist is female. The other players are of indeterminate gender; we refer to them
as “he,” to distinguish them from the protagonist.
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there, nature is oblivious to the protagonist’s options; in the hypothetical situation
created by adding r to the protagonist’s options, nature will play as in the original
game. This is not so for strategic games3.

3. The Resolution

In this section, we state our result with a minimum of formality, while still striv-
ing for a maximum of transparency. Some compromises on both counts will be
necessary. For a formal treatment, see Sections 4 and 5.

Following standard practice in decision theory, we rely on the primitive concept
of “preference.” Preferences are applied to outcomes as well as to strategies
(which, as noted above, correspond to Savage’s acts and A-A’s “horse lotteries”).

Before the difficulty can be resolved, we must clarify what it is that we require
from a “resolution.” What, precisely, do we want subjective probabilities to do?

The first requirement is that the protagonist be able to use them to evaluate
her options—in our terminology, her strategies. Specifically, starting out with the
protagonist’s preferences,4 we want to construct utilities and subjective proba-
bilities that “represent” those preferences: inter alia, such that she prefers one
strategy to another if and only if its expected utility is greater.5 Call this the
“representation” requirement (or property).

There is also another, equally important desideratum. In Section 2 we wrote
that one may think of i’s subjective probability for an event E as that number p
such that i would as soon have a dollar with objective probability p as a dollar con-
tingent on E. Differently put, the constructed subjective probabilities should be
interchangeable, preference-wise, with objective probabilities that have the same
numerical value. Call this the “interchangeability” requirement (or property).

Before proceeding, we introduce some terminology and notation. A lottery
is an objective probability distribution.6 Unless otherwise indicated, a strategy
is a strategy of the protagonist. A consequence is an outcome of the game. A
mixed strategy is a lottery on strategies; a mixed consequence is a lottery on
consequences.

3See Section 6.1 for further discussion of games against nature.
4Over her strategies and over the possible outcomes of the game.
5When the constructed subjective probabilities are assigned to the adversary’s choices, and

the constructed utilities are assigned to the outcomes of the game.
6Anscombe and Aumann call this a roulette lottery; they also have horse lotteries, which are

similar to what we here call a “strategy” of the protagonist. See Section 6.3.
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We posit a preference order on the set ∆ of all hybrid lotteries—those whose
prizes may be either a pure strategy of the protagonist, or a consequence. This
enables us to compare strategies with consequences, and so, to scale the utilities
for strategies and for consequences to the same scale.

Operationally, such a lottery λ results either in (i) the outright selection of a
specified pure outcome of the game, or in (ii) the game being played, with the
protagonist choosing a specified pure strategy. More specifically, alternative (ii)
results in awarding to the protagonist the outcome associated by the game with a
specified strategy of the protagonist, combined with the strategy actually chosen
by the adversary when playing the game. For each strategy s of the adversary, λ
yields a mixed consequence λs in a natural way: if λ chose a consequence, then λs
chooses the same consequence; and if λ chose a pure strategy r, then λs chooses the
outcome of the game when the protagonist chooses r and the adversary chooses
s. Note that all mixed consequences are in ∆, as are all mixed strategies; thus the
preferences on ∆ apply also to mixed consequences and to mixed strategies.

The following two assumptions are made:

N-M: The preference order satisfies the usual assumptions of von Neumann-
Morgenstern utility theory; and

Monotonicity: If one lottery λ always yields a mixed consequence preferred to
that yielded by another lottery λ′, no matter what the adversary does, then λ is
preferred to λ′; likewise for weak preference.7

We then have the following

Main Theorem: There exists a function on the consequences, called a utility
function, and a probability distribution on the adversary’s strategies, called a
subjective probability distribution, such that one lottery is preferred to another if
and only if its expected utility is greater.

Here the expected utility is calculated using the objective probabilities that
define the relevant lotteries, and the subjective probabilities for the adversary’s
strategies.

That the utilities and subjective probabilities in this theorem enjoy the repre-
sentation property is immediate. They also enjoy the interchangeability property,
since expectations do not change when subjective probabilities are replaced by
objective ones.

7Preference or indifference.
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4. Formal Treatment: Preliminaries

In the following, terms being defined are italicized.
The set of all probability distributions8 on a finite set A is denoted ∆(A). Note

that if α, α′ ∈ ∆(A) and t ∈ (0, 1), then also tα+ (1− t)α′ ∈ ∆(A). Abusing our
notation, we write α and a interchangeably if α assigns probability 1 to a; that
is, we do not distinguish between a and a lottery that chooses a with certainty.
No confusion should result.

A preference order % on ∆(A) is a transitive9, reflexive10, and complete11

binary relation on ∆(A). If α % β and β % α, write α s β and say that α is
indifferent to β. If α % β and α � β, write α � β and say that α is preferred to
β. An N-M utility for % is a real valued-function u on ∆(A) such that.

(4.1) α % α′ iff u(α) ≥ u(α′), and

(4.2) u(tα+ (1− t)α′) = tu(α) + (1− t)u(α′).
Various mutually equivalent axiom systems for N-M utility theory are available
(von Neumann and Morgenstern [1944], Luce and Raiffa [1957], and others). We
say that a preference order satisfies the axioms of von Neumann-Morgenstern
utility theory—and call it an N-M preference order—if it satisfies any one of
those systems.

Proposition 4.3: An N-M preference order on ∆(A) has an N-M utility.

5. The Main Theorems

The viewpoint taken here is that of a single player, the protagonist, also called
Rowena; it is her subjective probabilities for the strategy choices of the other
players that we will define. Also, the preferences appearing below are hers, as are
the utilities. It is convenient to combine all the other players into a single one,
called Colin; we will see that no loss of generality is involved.

A game G consists of

a finite set R with members r (Rowena’s pure strategies),

a finite set S with members s (Colin’s pure strategies),

8Non-negative real-valued functions whose values sum to 1.
9α % β and β % γ imply α % γ.

10α % α.
11α % β or β % α.
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a finite set C with members c (pure consequences), and

a function h : R× S → C (the outcome function12).

Members ρ, ρ′, ... of ∆(R) are called mixed strategies of Rowena; members γ, γ′, ...
of ∆(C) are called mixed consequences; members λ, λ′, ... of ∆(R∪C) (henceforth
simply ∆) are called hybrid lotteries (or simply lotteries). If λ ∈ ∆, set λ =
tρ+ (1− t)γ, where ρ ∈ ∆(R), γ ∈ ∆(C), and t ∈ [0, 1]. For each pure strategy s
of Colin, let ρs ∈ ∆(C) be the mixed consequence that results when Rowena plays
ρ and Colin plays s, and let λs := tρs + (1 − t)γ be the mixed consequence that
results when Rowena uses the lottery λ and Colin plays s. Call a preference order
% on ∆ monotonic if λ % λ′ whenever λs % λ

′
s for all s, and λ � λ′ whenever

λs � λ′s for all s.
Now let G = (R, S,C, h) be a game, % a monotonic N-M preference order on

∆; so in particular, % |∆(C) is an N-M preference order on ∆(C),so has an N-M
utility u, unique up to positive linear transformations.13

Main Theorem: There exists a probability distribution p on S, such that for
any hybrid lotteries λ, λ′,

(5.1) λ % λ′ if and only if14
∑

s∈S psu(λs) ≥
∑

s∈S psu(λ
′
s).

Define up(λ) :=
∑

s∈S psu(λs) for all hybrid lotteries; then (5.1) becomes

(5.2) λ % λ′ if and only if up(λ) ≥ up(λ′).
In words, Rowena evaluates lotteries by their expected utility, when she ascribes
probability ps to Colin’s choosing his pure strategy s.

6. Discussion

6.1. Games against Nature

In a game against nature, if we allow the protagonist to consider only a specified
set of strategies, we get a theory formally identical to the one developed above.
To be sure, in games against nature, she can always consider arbitrary “hypo-
thetical” strategies, without running into the conceptual difficulty that motivates

12W.l.o.g. we could take C = R × S and let h be the identity; but nothing would be gained
thereby, the notation would become more cumbersome, and the ideas less transparent.

13Multiplication by a positive constant and addition of an arbitrary constant.
14Clearly, this holds for one utility u iff it holds for all utilities u.
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this paper (Section 2). Nevertheless, she might have difficulty in forming mean-
ingful preferences between highly hypothetical options, and so prefer to restrict
attention to the options actually available. Or, she might be reluctant to evaluate
carefully acts that are clearly irrelevant.

Our framework differs from that of standard decision theory only in that the
full set of acts (strategies) is replaced by a partial set. The main theorem says
that as in the standard theory, we still get subjective probabilities and utilities
that enjoy the representation and interchangeability properties.15

6.2. Non-Uniqueness

The subjective probabilities in the main theorem need not be unique; a simple
example is a two-person game whose matrix has two identical columns, in which
case the total subjective probability assigned to both columns can be divided
between them in an arbitrary way. They are, however, effectively unique, in
the sense that for a given utility function on the consequences, all subjective
probability distributions satisfying the Main Theorem yield the same expected
utility for each hybrid lottery. Formally, if p and p∗ satisfy (5.1), then up = up∗ .
For the proof, see the end of Section 8.

6.3. The Decision Criterion

The main theorem provides an unequivocal answer to the question raised in the
introduction: consistent decision making obeys the same basic logic in games
against nature and in games of strategy, namely the logic of subjectively expected
utility. This calls for (i) parallel assessment of the utilities of consequences and
the probabilities of contingencies, both assessments being summarized in cardinal
measures; (ii) the integration of utility and probability considerations through the
calculation of expected utility.

The nature of preferences over strategies is brought out by the main theorem:
one strategy r is “better” than another, r′, if and only if r carries higher expected
utility, at the subjective probabilities that summarize the uncertainties of the
situation. An important contribution of our analysis is the identification of the
domain to which the principles of consistent decision making should be applied,
namely hybrid lotteries over consequences and strategies.

15Equivalently, that a monotonic N-M preference order on the subset can be extended to a
monotonic N-M preference order on the full set.
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6.4. Observability and Operationalism

In the behavioralist tradition of Savage [1954, p.29] and of revealed preference
theory [Samuelson, 1950], preferences are derived from choices: For the protago-
nist to prefer strategy ρ to strategy ρ′ means that she chooses ρ when confined to
choosing ρ or ρ′. This has the advantage of “operationalism” or “observability”—
choices are in principle observable, preferences not. But in our context, it poses
a serious problem: Confining her to choosing ρ or ρ′ changes the game!

We have no unequivocal solution to this problem. In this work—as in most of
decision theory—preferences among strategies are primitives; we have no totally
satisfactory interpretation in terms of observable entities. Still, the following
interpretative remarks provide some perspective.

While this is undoubtedly serious, it is not crippling. Certainly, operationalism
and observability are vital principles. The question is, where do they fit in? Must
the theory be defined in terms of observable entities, or must it have observable
implications? Does one start with something observable, or end with it? One
could perhaps go either way, but the second option—observable implications—
certainly does not seem unreasonable.

Indeed, much of science operates in this way. None of the fundamental en-
tities of physics—mass, energy, distance, gravitational force, etc.—are directly
observable. These theoretical entities interact in complex ways, which eventually,
sometimes, allows one to measure them. Here, analogously, one starts with the
non-operational idea of preference among strategies; from this, one develops the
theory of utility and subjective probability, which eventually enables an “opera-
tional” characterization of choices.

One could make another point. Suppose you must choose between x and
y. You prefer x, and you choose x. Do you choose it because you prefer it, or
do you prefer it because you choose it? Obviously the first makes more sense.
Conceptually, preference comes before choice, it accounts for choice. So it makes
sense to build the theory around preference and derive choice from it, just as
actually happens in a person’s mind.

Whether or not one buys these arguments, preferences among strategies are in
this work a primitive; they define the protagonist. The axioms (N-M and mono-
tonicity) help her check their consistency and rationality. This is a mental process,
similar to Savage’s (1954, pp. 28 and 20) “intermediate mode of interrogation”
for normative application of his theory.

There is an alternative. Rather than taking preferences on hybrid lotteries as
a primitive, one can take as primitives (i) an optimal set M in ∆(R), plus (ii)
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a preference order on M ∪ ∆(C). The interpretation is that operationally, the
protagonist must choose one mixed strategy; the set of possible choices is M. A
preference order on M ∪∆(C) is also an operational concept. With appropriate
assumptions, one can then derive subjective probabilities. Elsewhere, we plan to
publish details, and compare such a treatment with that of this paper.

6.5. Reversal of Order

A-A use a formal assumption called “Reversal of Order in Compound Lotteries.”
It says that if the outcome of a compound lottery depends in a fixed, predetermined
way both on a roulette spin and a horse race, then it is immaterial whether the
wheel is spun before or after the race. That is, a decision maker will be indifferent
between these two possibilities, as long as he cannot change his horse bets after the
roulette spin, or his roulette bets after the horse race. Though lacking substantive
content in the A-A context, the assumption is required in their formalism16.

In our treatment, no separate assumption is necessary; it is already implicit in
the formalism. Indeed, it follows from monotonicity on ∆(R ∪ C) that if λs = λ′s
for all s, then λ s λ′, which is an expression of the reversal of order assumption.

6.6. Value

The value to Rowena of the game G does not enter our analysis. It is natural
to identify it with Rowena’s expected utility when she plays the game optimally,
given how she thinks Colin will play; i.e., with max{

∑
s∈S psu(rs) : r ∈ R}. Unlike

the minmax value of two-person zero-sum games, this does not call for Colin’s play
to be “optimal” in any sense.

6.7. Resolutions that Don’t Work

6.7.1. Side Bets

A potentially operational approach to defining the protagonist’s subjective proba-
bilities relies on “side bets.” In such a bet she gets, in addition to her payoff from
the game, an amount δ if the adversary plays a specified strategy s; nothing else
is changed. One might then define her probability for s as that number p such
that she would as soon opt for the side bet, as for δ with objective probability p.

16See Dreze [1987] for a context in which a similar assumption does have substantive content,
namely the context of games against nature with moral hazard.
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But it doesn’t work; side bets may change the game. For example17, in the
coordination game G1 below, one may expect the Pareto dominant outcome BR.
A side bet on L in the amount of δ = 8 adds 8 to the row player’s payoffs in
column L, i.e., transforms the game to G2. If side bets “don’t matter,” we should
expect BR in G2 as well. By the same token, adding 8 to the column player’s
payoffs in row T of G2 should not matter; this yields G3, commonly known as
the “Stag Hunt18.” But here BR, which is Pareto dominated by TL, is far from
compelling; indeed, Harsanyi and Selten [1987] select BR in G1 and TL in G3.

L R
T 1, 1 0, 0
B 0, 0 7, 7

G1

L R
T 9, 1 0, 0
B 8, 0 7, 7

G2

L R
T 9, 9 0, 8
B 8, 0 7, 7

G3

Side bets leave most equilibrium notions—including that of Nash (1951) and
correlated equilibrium (Aumann, 1974)—invariant. Nevertheless, they subtly
change incentives, as the example shows.

Some readers may hold that side bets do not change the game in any essential
way; that in spite of appearances, G3 would always be played like G1, and that
that is common knowledge. In that case, of course, one can use side bets to define
subjective probabilities. Put differently, one could restrict attention to players
for whom it is common knowledge that G3 is not essentially different from G1;
and again, with such a restriction, one can use side bets to define subjective
probabilities.

6.7.2. Ignorance

In games against nature, the probability of a state s of nature is the number p
such that Rowena is indifferent between a lottery yielding a dollar with objective
probability p, and a bet r yielding a dollar if and only if s occurs. The fundamental
difficulty set forth in Section 2 is that when s is a strategy of Colin in a strategic
game, then r is usually not available to Rowena; making it available may change
Colin’s view of the game, and so Rowena’s probability that he will choose s.

One might think it enough to consider a situation in which r really is available
to Rowena, but Colin does not know that it is, so his choices—and Rowena’s
probabilities for his making those choices—will not be affected. But that is not

17Communicated by S. Hart. To avoid difficulties, assume dollar payoffs and linear utilities.
18See O’Neill [1994, pp.1004-5] for a discussion of this game and some of the literature on it.
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very satisfactory. What does Colin know? Does he consider it possible that r
is available to Rowena? If he does, then already that changes the game, and we
have the same difficulty as before. If he considers it impossible—knows that r is
unavailable—how can it be available? There is a basic incoherence in situations
where something false is “known.”

7. Affine Monotonic Functions

For points x, y in Rn, write x � y if xi > yi for all i, and write x ≥ y if xi ≥ yi
for all i. A real-valued function f from a convex set D in Rn to R is called affine
if f(tx+(1− t)y) = tf(x)+ (1− t)f(y) for all x, y in D and t in (0, 1). It is called
monotonic if x � y implies f(x) > f(y), and x ≥ y implies f(x) ≥ f(y), for all
x, y in D.

Proposition 7.1: Let H be a convex subset of Rn, and f an affine monotonic
real-valued function on H. Assume19 that there are points z and z′ in H with
z � z′. Then there exist non-negative q1, ..., qn, not all of which vanish, and a real
q0, such that f(x) = q0 +

∑n
i=1 qixi for all x in H.

In this section we prove 7.1; readers willing to accept the proposition on faith
may proceed at once to the proof of the main result in the next section.

The origin (0, ..., 0) of Rn is denoted 0. A linear subspace M of Rn is a subset
of Rn that, together with any two points x, y in it, and any real number t, contains
x+y and tx.A function f onM is linear if f(x+y) = f(x)+f(y) and f(tx) = tf(x)
for all x, y in M and all real t. Note that a function on M is linear if and only if
it is affine. A hyperplane in M is a set of the form {x ∈ M : f(x) = t}, where f
is a linear function on M that does not vanish identically, and t is a constant.

Lemma 7.2: If D is an open convex set in Rn and M a linear subspace of Rn

that does not meet D, then there is a hyperplane in Rn that includes M and does
not meet D; i.e., a linear function on Rn that vanishes on M and is positive on
D.

Proof: Eggleston [1958], p.19, Theorem 7.

Define Rn++ := {x ∈ Rn : x� 0}.
Lemma 7.3: Let L be a linear subspace of Rn that intersects Rn++. Then any
monotonic linear function f on L may be extended to a monotonic linear function
on all of Rn.

19The proposition is true as it stands even without this assumption, but the proof lies deeper.
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Proof: Define L0 := {x ∈ L : f(x) = 0}. Because f is monotonic, L0 cannot
meet Rn++. Use 7.2 to find a linear function f ∗ on Rn that vanishes on L0 and
is positive on Rn++. Let x1 be a point in Rn++ ∩ L. Then f(x1) > 0. Similarly
f ∗(x1) > 0. Possibly redefining f ∗ by multiplication by a positive constant, we
may take f(x1) = f ∗(x1). So f and f ∗ coincide on L0 and on x1, which together
span L; so they coincide on L. Thus f ∗ extends f, and since it is positive on Rn++,
it is monotonic. This completes the proof of 7.3.

Proof of Proposition 7.1. By possibly applying a translation, we may sup-
pose w.l.o.g. that 0 is in the interior of H, relative to the smallest linear manifold
L that includes H. Since 0 ∈L, it follows that L is a linear space, and there is a
unique extension of f to a linear function f ′ on L. Both z and z′ are in H and
so in L, so z − z′ is in L, so L intersects Rn++, since z − z′ � 0. To see that f ′

is monotonic, let x in L be � 0. Then for sufficiently small positive ε, we have
εx ∈ L and εx � 0, so εf ′(x) = f ′(εx) = f(εx) > 0, so f ′(x) > 0. Similarly, if x
in L is ≥ 0, then f ′(x) ≥ 0. Thus f ′ is monotonic as well as linear. Applying 7.3,
we obtain an extension f ′′ of f ′ from L to a linear monotonic function on all of Rn.
Let f ′′(x) =

∑n
i=1 qixi for all x in Rn; all linear functions on Rn have this form.

It cannot be that all the qi vanish, for then f ′′(1, ..., 1) = 0 = f(0), contrary to
the monotonicity of f ′′. To show that the qi are non-negative, suppose, say, that
q1 < 0. Then f ′′(1, 0, ..., 0) = q1 < 0, again contradicting the monotonicity of f ′′.
So the qi are non-negative and do not all vanish, proving20 the proposition.

8. Proof of the Main Theorem

By Proposition 4.3, % has an N-M utility u; from 4.1, it follows that

(8.1) λ � λ′ iff u(λ) > u(λ′).
W.l.o.g., we assume that there are pure consequences d and d′ with21

(8.2) d � d′.
Set S := {s1, ..., sn}. With each lottery λ in ∆, associate the point u(λS) :=
(u(λs1), ..., u(λsn)) in Rn. Note that when λ chooses some mixed consequence
γ for sure (rather than playing the game with positive probability)—i.e., when
λ ∈ ∆(C)—then λs1 = ... = λsn = γ, so

(8.3) u(λS) := (u(λs1), ..., u(λsn)) = (u(γ), ..., u(γ)).

20The term q0 is due to the translation at the beginning of the proof.
21If all consequences are indifferent, take u to be identically 0, and p an arbitrary distribution.

13



Let H be the set of all the points u(λS) when λ ranges over ∆. By 4.2, we
have tu(λs) + (1− t)u(λ′s) = u(tλs + (1− t)λ′s) = u((tλ + (1− t)λ′)s) for each s
in S and t in [0, 1] so

(8.4) tu(λS) + (1− t)u(λ′S) = u((tλ+ (1− t)λ′)S),
so H is convex. Moreover, if d and d′ are as in 8.2, then by 8.3, H contains the
points z := (u(d), ..., u(d)) and z′ := (u(d′), ..., u(d′)), so by 4.1, z > z′. Thus H
satisfies the hypotheses of 7.1.

Now define a function f on H by f(x) := u(λ) for any λ for which u(λS) = x;
that there is such a λ follows from x ∈ H, and that it doesn’t matter which
one we use follows from monotonicity: If u(λS) = u(λ′S), then λ s λ′, by 5.1
and monotonicity, so u(λ) = u(λ′), by 8.1. Next, we show that f is affine and
monotonic. Indeed, let x = u(λS) and x′ = u(λ′S); then by 8.4 and 4.2,

f(tx+ (1− t)x′) = f(tu(λS) + (1− t)u(λ′S)) = f(u((tλ+ (1− t)λ′)S)) =

= u(tλ+ (1− t)λ′) = tu(λ) + (1− t)u(λ′) = tf(x) + (1− t)f(x′), proving that

(8.5) f is affine.

To show that

(8.6) f is monotonic,

first let x ≥ x′; then u(λS) ≥ u(λ′S), so u(λs) ≥ u(λ′s) for all s, so λs % λ
′
s for

all s, (by 4.1), so λ % λ′ (by monotonicity), so f(x) = u(λ) ≥ u(λ′) = f(x′), by
8.1. Similarly, if x � x′, then f(x) > f(x′), proving 8.6. So by 7.1, there exist
non-negative q1, ..., qn, not all of which vanish, and a real q0, such that f(x) =
q0 +

∑n
i=1 qixi for all x in H. So u(λ) = q0 +

∑n
i=1 qiu(λS)i = q0 +

∑n
i=1 qiu(λsi).

So by 8.1,

(8.7) λ % λ′ if and only if
∑n

i=1 qiu(λsi) ≥
∑n

i=1 qiu(λ
′
si
).

Set pi = qi/
∑n

i=1 qi; the denominator does not vanish because the qi are non-
negative and do not all vanish. So the pi are non-negative and sum to 1; that is,
they constitute a probability distribution on S = {s1, ..., sn}. The conclusion of
the Main Theorem then follows from 8.7.

To prove the effective uniqueness (Section 6.2), let λ be a hybrid lottery.
Preference-wise, λ must be between the most preferred and the least preferred
consequence; so there is a mixed consequence ρ with λ ∼ ρ. then 5.2 yields
up (λ) = up (ρ) = u (ρ) = up∗ (ρ) = up∗ (λ) , as was to be proved.
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9. Literature

Luce and Raiffa [1957, p.306] were among the earliest22 to suggest assigning sub-
jective probabilities to an adversary’s choices in a strategic game; they wrote as
follows: “The problem of individual decision making under uncertainty can be
considered a one-person game against a neutral nature. Some of these ideas can
be applied indirectly to individual decision making ... where the adversary is not
neutral but a true adversary. ... One modus operandi for the decision maker is
to generate an a priori probability distribution over the ... pure strategies ... of
his adversary by taking into account both the strategic aspects of the game and
... ‘psychological’ information ... about his adversary, and to choose an act which
is best against this ... distribution.” They go on to explore the idea of “side
bets” (see 6.6.1 above), noting some difficulties with it, and informally suggesting
a possible way around them. No formal model was developed, and no definite
conclusion reached.

It appears that Armbruster and Böge [1979] and Böge and Eisele [1979] were
the first to construct formal models in which each player directly23 assigns sub-
jective probabilities to the strategy choices of the others. A relatively early ap-
plication of this idea is Brandenburger and Dekel [1987]. The representation of
the value of a game to a player as a subjectively expected utility is implicit in the
work of Nau and McCardle [1990].

Kadane and Larkey [1982] claim that the problem of a player in a game is no
different from any other one-person decision problem. In particular, they suggest
abandoning altogether all notions of equilibrium and any “interactive” analysis
(i.e., analysis of each player’s beliefs about the others’ beliefs about his actions and
beliefs). Instead, they propose simply that each player form, in some unspecified
and unrestricted way, a probability distribution over the other players’ strategies,
and then maximize against that. To form the probabilities, they suggest using
disciplines like cognitive psychology rather than decision or game theory.

In the precisely opposite direction, Mariotti [1995, p.1108] writes that “a di-

22They cite an earlier paper by Hodges and Lehmann [1952] who suggest that a player in
a two-person zero-sum game might assign subjective probabilities to the eventuality that his
adversary will make a “mistake.” But this is not really in the spirit of this paper, nor of Luce
and Raiffa’s suggestion.

23Previously, Aumann [1974] had already used subjective probability in analyzing games; but
in that analysis, players use “subjectively mixed strategies”—peg their pure strategy choices on
events (like outcomes of horse races) whose probability is not agreed upon—rather than simply
assigning a subjective probability to the other players’ choices.
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vorce is required between game theory and individual decision theory ... strategic
decision principles may be radically different from individual decision-theoretic
principles.”

Some of the ideas underlying the current work appear already in Mariotti’s
excellent paper. Inter alia, that a strategy in a game corresponds to an act
in Savage’s one-person decision theory24; that “only some acts (strategies) are
feasible for each player in a given game,” and the players should “rank only the
strategies available in that game” (p.1102); and the difficulty discussed at 6.4
above, at which he hints in his discussion (p.1108(c)).

None of the authors cited above, nor indeed others, seem aware of the fun-
damental difficulty addressed by this paper: that the standard construction of
subjective probabilities does not apply to strategic games.
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24And so also to a horse lottery in A-A.

16



Harsanyi, J. C., and R. Selten (1987), A General Theory of Equilibrium Selection
in Games, Cambridge, Mass.: MIT Press.

Kadane, J. B., and P. D. Larkey (1982), “Subjective Probability and the Theory
of Games,” Manag. Sci. 28, 113-120.

Luce, R. D., and H. Raiffa (1957), Games and Decisions, New York: John Wiley.

Hodges, J. L. Jr., and E. L. Lehmann (1952), “The Uses of Previous Experience
in Reaching Statistical Decisions,” Ann. Math. Stat. 23, 396-407.

Mariotti, M. (1995), “Is Bayesian Rationality Compatible with Strategic Ratio-
nality?” Econ. J. 105, 1099-1109.

Nash, J. F. (1951), “Non-cooperative Games,” Ann. Math. 54, 286-295.

Nau, R. F. and K. F. McCardle (1990), “Coherent Behaviour in Non-cooperative
Games”, J. Econ. Th. 50, 424-444.

von Neumann, J., and O. Morgenstern (1944), Theory of Games and Economic
Behavior, Princeton: Princeton University Press.

O’Neill, B., (1994), “Game Theory Models of Peace and War,” in Handbook of
Game Theory with Economic Applications, Vol.2, R.J. Aumann and S.Hart, eds.,
Amsterdam: Elsevier, 996-1053.

Ramsey, F. P., (1931), “Truth and Probability,” Chapter VII of The Foundations
of Mathematics, edited by R.B. Braithwaite, London: Routledge and Kegan Paul,
156-198.

Samuelson, P. A., (1950) “The Problem of Integrability in Utility Theory,” Eco-
nomica NS 17, 355-385.

Savage, L. J. (1954), The Foundations of Statistics, New York: John Wiley.

17



Département des Sciences Économiques
de l'Université catholique de Louvain

Institut de Recherches Économiques et Sociales

Place Montesquieu, 3
1348 Louvain-la-Neuve, Belgique

 ISSN 1379-244X         D/2005/3082/020


