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Abstract
This paper develops a dynamic factor models with regime switching to account for the
decreasing volatility of the U.S. economy observed since the mid-1980s. Apart from the Markov
switching capturing the cyclical fluctuations, an additional type of regime switching is introduced
to allow variances to switch between distinct regimes. The resulting four-regime models extend
univariate analysis currently used in the literature on the structural break in conditional volatility
to the multivariate time series. Besides the dynamic factor model using the data with a single
(monthly) frequency, we employ the additional information incorporating the mixed-frequency
data, which include not only the monthly component series but also such an important quarterly
series as the real GDP. The evaluation of six different nonlinear models suggests that the
probabilities derived from all the models comply with NBER business cycle dating and detect a
one-time shifting from high variance to low-variance states in February 1984. In addition, we find
that: mixed-frequency models outperform single-frequency models; restricted models outperform

unrestricted models; four-regime switching models outperform two-regime switching models.
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1. Introduction

Recent studies suggest that the U.S. economy has become considerably stabilized since
the mid-1980s compared to the rest of the postwar era. McConnell and Pérez Quirds’
(2000) find that the volatility of quarterly GDP growth experienced a one-time drop
around the first quarter of 1984: the variance of output fluctuation over the period from
1953 ending in 1983 is at least four times as large as that of the period since then. This
view is independently shared by Kim and Nelson (1999a), who distinguish, within the
context of a Markov-switching (MS) model, two important sources of stabilization in real
GDP growth: a decline in the variance of shocks and a narrowing gap between growth
rates during booms and recessions. Blanchard and Simon (1999) estimate that standard
error of the autoregressions of GDP has declined from 1% a quarter on average from the
1950s through the mid-1980s to roughly 0.5% a quarter since then. Kim ez 2/ (2004),
using Bayesian tests, document one or multiple structural breaks in U.S. aggregate and
disaggregate real GDP, then volatility and persistence of inflation and interest rates.
These new evidences have induced numerous studies to explain the decline in U.S.
output volatility. Among them, “better policy”, “good luck”, and technological
improvement such as those used in inventory control strategy are most prominent. See

Herrera and Pesavento (2003) and Sensier and Van Dijk (2003) for more details.

2 . . - - . .
From now on we will refer to this paper as MPQ (2000) to save space, since we will cite it on many
occasions.



Indeed, the reduction in volatility is not confined to aggregate output or durable
goods sector. It is rather widespread in most of economic processes and sectors:
employment (Warnock and Warnock, 2001), consumption and income (Chauvet and
Potter, 2001), wages and prices (Sensier and Van Dijk, 2003), and a more comprehensive
characterization by Stock and Watson (2002).> Most of studies so far are based on
quarterly series. Yao and Kholodilin (2004) find that reduction in volatility is significant
only in two of the coincident indicators. Incorporating structural breaks appears to
account for one-time structural breaks in volatility evident in seties, but does not remove
the break in the estimated co-movement completely. Yao and Kholodilin (2004) also
incorporate structural breaks in growth rates and volatility into the dynamic factor model
with Markov switching. Likelihood ratio tests suggest that the added feature has
significantly improved the statistical property of a plain model based on either Stock and
Watson (1989) or Kim and Nelson (1998). It has exaggerated the weak signals for
recessions when the state of economy is in low-variance regimes, similar to what the U.S.
economy has experienced since the mid-1980s.

The advantage of using dynamic factor model in contrast to the univariate
models on reduction in volatility is that it estimates an unobserved underlying state
variable or co-movement between the various macroeconomic series, which is one of
two key features of business cycles specified by Burns and Mitchell (1946). This paper
identifies the business cycle turning points using dynamic factor model. It makes two
specific contributions to the literature: using mixed-frequency data and incorporating
structural breaks. The first feature enables us to include real GDP (low frequency)
together with four coincident indicators (high frequency) when estimating composite
coincident index (CCIL) or co-movement. GDP, by its very nature, is one of the most
important economic indicators, and ignoring information in real GDP certainly would
make less efficient the estimation of the conventional dynamic factor models for business

cycle studies. The constructed model in this paper should be able to be applied to more

® However, studies have shown that the bulk of variations in most macroeconomic series take place at
seasonal frequencies and only a much smaller proportion within business cycles. Yao (2004) examines the
changes in the output fluctuations at various frequencies. Using univariate spectra of a number of
important macroeconomic series, it finds that although variation at frequencies of business cycles in all the
series and total variation in most series have been moderated, the variation at business cycles and trading-
day-effect frequencies have increased. As firms improve their inventory control and supply-chain
management, variations in investment of various inventories have shifted from lower frequencies to higher

frequencies, which corresponds to a shift of adjustments to shorter cycles.



general examples. As stated in MPQ (2000), the structural break in volatility affects the
implementation of a range of econometric techniques and macroeconomic policies. In a
typical dynamic factor model with regime switching, the presence of one-time reduction
in volatility of coincident indicators clearly affects the time horizon over which the
second or higher moment of the resulting CCI and the estimated probabilities that the
overall economy is in recession should be computed. On the empirical side, the volatility
break implies that dynamics factor model such as Stock and Watson (1989) model used
to estimate CCI could have been mis-specified when the variance is modeled as constant.
Generally, the practical realization of the dynamic factor model is impeded by the
structural breaks, which introduce discontinuities in the time series. Therefore,
considerations of possible structural breaks in coincident indicators are both theoretically
and practically interesting. Moreover, the probabilistic approach to the volatility shift
adopted in this paper does not impose any predefined breakpoint rather estimating the
moment when the structural break occurred which is reflected in the conditional regime
probabilities.

The remainder of the paper is organized as follows: Section 2 sets up a basic
dynamic factor model with Markov switching and discusses its possible extensions to
allow structural breaks and use mixed-frequency data. In section 3 the model is estimated
using the U.S. Post-World War II monthly and quarterly macroeconomic time seties.

Section 4 summarizes the main findings of the paper.

2. Model
2.1. Dynamic Factor Model with Four Regime Switching

Given a set of coincident indicators y, (#X1 vector; ¢ = 1,...,T), their growth rates are
explained by a latent common factor and # idiosyncratic factors, which are specific to
each component series. Formally, the measurement equation for Ay, is defined as:

Ay, =TAe, + )
where ¢, is interpreted as the growth rates of estimated CCl, #, is the #X7 vector of
specific factors, and / is the #X7 vector of loadings. In the transition equations
describing the dynamics of common and specific factors, both the common dynamic
factor e, and idiosyncratic factors #, are assumed to be independent of each other, but

serially correlated with their own lags and driven by noise terms », and ¢, respectively.

A6, = p(5f) + D) Ao,y + , @



u=YL)u,+e¢ 3)
where #(s/') is regime-dependent mean, s/ is the unobserved binary regime variable (taking
values of 1 or 2), and @(L) and W(L) are autoregressive (AR) polynomials of common
and specific factors with orders p and ¢ (g=max{q,...,4,}), tespectively. w, are mutually
and serially uncorrelated, following normal distribution with zero means. Both the mean
and variance of growth in CCI vary depending on the regimes: the mean is usually
assumed to be low in recessions and high in expansions, whereas the variance often
happens to be high in recessions and low in expansions. Therefore, ¢, is the serially
uncorrelated but with regime-dependent variance:

&, ~ NID(O, #(5)). “
Regimes embedded in variance, s (high variance or 1 vs. low variance or 2) are assumed
to be independent from those in mean s/ (high growth or 1 vs. low growth or 2). This
specification yields four possible states for the means of CCI, and two state-dependent

2

residual vatiances, o;, where j= {high, low}. Namely,

>0 s
Regime1  Regime2 | Regime3  Regime 4
Combined state variable s=1 §=2 5=3 =4
State variable for intercept st =1 st =2 st =1 st =2
State variable for variance s, =1 s/ = s = s =

The MS 4-regime framework used in our dynamic factor model dealing with multivariate
data extends the model used by MPQ (2000) to examine the reduction in volatility of the
univariate real GDP series.

The transitions of both mean and variance under different regimes (s/ and s),
incorporated into (2) and (4), are governed by two separate hidden Markov processes.
They are summarized by the transition probabilities matrix IT* (k&={y o}) with a
charactetistic element p; = prob(s,=/|s,,=7). Provided that two state vatiables s/ and s, are
independent, the 44 transition probabilities matrix, I1, governing the behavior of the
“combined” state variable, 5, would look as:

Pal-pd)  (1-py)(-pi)

(1-pz)pi  Pr(l-Ph)
Pad-pPz)  (L-P)A-Pz2)  PuPz (1-p) P2

(1-p)A-Pz) P Pz)  Pz(1-Pz)  PzP

In fact, IT* =IT* O IT, where I and IT are the transition probabilities matrices for the
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state variables s/ and s/, and [ is the Kronecker product. When there is only regime



switching governing mean growth rates, the above model gets back to dynamic factor
model without (Stock and Watson, 1989) or with regime switching (Chauvet, 1998; Kim
and Nelson, 1998).

A restricted model can also be specified following Kim and Nelson (1999a) who
also estimate their model based on the univariate GDP data. They treat low-volatility
regime as an absorbing state, implying that whenever the system attains this state, it
remains there forever. This assumption translates into the following constraint imposed
on the transition probabilities matrix 1%

e = ( pi 1- pfij

0 1 ©)

Like duration measures in one regime-switching model (for instance, Kim and Nelson,

1998), the expected duration of the high-volatility regime can be calculated as

0"
~ Pu

which actually suggests the approximate location of the breakpoint. These two models,
Ze., unrestricted and restricted, can be compared using the standard likelihood ratio (LR)

test.

2.2. Modeling Mixed-Frequency Data

The dynamic factor model with double regime switching can be extended to include
mixed-frequency coincident indicators. The conventional models only utilize four
monthly coincident indicators that National Bureau of Economic Research (NBER) uses
to determine the turning points: non-farm employment (EMP), personal income less
transfer payments (INC), industrial production (IP) and manufacturing and trade sales
(SAL). However, the most important coincident indicator, real GDP, is usually ignored
because it is only available on a quarterly basis. Mariano and Murasawa (2003) explain
two benefits of including GDP into dynamic factor model: improving the efficiency due
to additional information and being able to interpret the common factor as the growth
rates of latent monthly real GDP. The interpretation leads to natural identification of the
mean and variance of the common factor as those of quarterly real GDP by assuming the
loading factor of the latter to be 1. Stock and Watson (1989) normalize the variance of
the common factor to be 1 and identify the mean growth rates of common factor as a
weighted average of monthly coincident indicators. As a result, interpretation of common

factor was unclear.



The central idea of mixed-frequency data in dynamic factor model is to replace
the missing observations of quarterly GDP with artificial observations from the standard
distribution independent of the model parameters and rewrite the state-space model
accordingly. Assume that we have #=n,+#, observable component series. The first 7,
component series, y,, are observed at lower frequency (each f>7 periods), while the
remaining 7, series, y,, are measured at a higher frequency which we may normalize to 1.
Thus, if we have quarterly and monthly data, then /=3 and we observe y,={y;3,):-- 1.1
Wit and 1,={9050-Js 110213 Denote by 3, the values of the first #, component series
that we might have observed if these series were measured at the same frequency as y,,
that is, ¥, ={)" 1) 1Y 10100 17} The observed lower-frequency seties can be expressed

as an arithmetic average of these unobserved values:

13 .

Y = T Z L| Ya
=0 %

where the left-hand-side variable is reported every three months at periods f, 3f..., T and
the right-hand-side variable is observed in each month, ze., 7, 2,..., T. The growth rates of

these series® are eventually formulated as:

A~y = T(RLY ALY,
®

and

2f-1

f-1 _
QL) =D (f+1-|i-f)L
i=0 i=0
for a more general case of low frequencies. For instance, (8) for quarterly data becomes
— 1 * * * * *
Aylt - é (Aylt + 2Ay1t—l + 3Ay11—2 + 2Aylt—3 + A3/1t—4) ©)

To estimate the model at the higher frequency, the unobserved values of the lower-
frequency time series are treated as missing. As Mariano and Murasawa (2003) have
shown, they can be replaced by any random variable that is independent of the

parameters of the model. In particular, the missing observations may be substituted by

* Let, for example, y,, be the quarterly series. Thence their first difference is the quarterly growth rate. But
since our model is expressed in terms of the higher (monthly) frequency, to designate this first-order

difference we need operator A=7-17,



zeros. Thus, the growth rates of the first 7, variables expressed at the higher frequency

can be constructed as:

@-LYYy, if t=f,2f,..T

: (10)
0 otherwise

(1_ L) 9; :{

Like in the typical measurement equation, growth rates of mixed-frequency observables,
4y, can be explained by a common factor and their idiosyncratic dynamics. Therefore,

equation (1) has become:

P 1 f-1 52 1 f1iy2
((1_L )yltjzr f(Zi:OL) l (1-L)c + f(Zi:OL) l U

(1_ L)th 1 1 (11)

where I, is the indicator function:

1, when t=f3f,..T
I, = _ 12
0, otherwise
and I"is the #X2 factor loadings matrix:
re r, o,
O, I,
13)

where I', and I, are the vectors of loading factors for the lower- and high-frequency
series, respectively, and O, is #X7 vector of zeros. Equations (8), (10) and (11) are more
general expression of mixed-frequency model in Mariano and Murasawa (2000). Except
that equation (1) is replaced by (11), equations (2) — (6) remain the same for our dynamic
factor model when mixed-frequency time series are used for estimation. The model is

expressed in the state-space form and estimated by the maximum likelihood method as in

Kim and Nelson (1999b).



3. Real Example

The data employed in this study are quarterly real GDP published by U.S. Bureau of
Economic Analysis and four monthly coincident indicators characterizing the general
state of the U.S. economy: EMP, INC, IP, and SAL as defined earlier. These seasonally
adjusted historical series are readily available on the NBER website and are plotted in
Figure 1, where the shaded areas represent the U.S. recessions defined by NBER. The
sample begins in January 1959 (or first quarter of 1959) and goes through March 2004 (or
first quarter of 2004).

EMP and INC are broad measures on the labor input and real income of the
overall economy. IP and SAL represent real output of two important sectors,
manufacturing and trade, respectively. Real GDP measures aggregate output. As with
Stock and Watson (1989) and Kim and Nelson (1998), the first differences of the logs of

all the series are demeaned and standardized.

3.1. Evidences of Structural Break in Volatility

The existence and exact timing of structural breaks in these five coincident indicators can
be tested either by single series or by multiple series. The Wald or likelihood ratio (LM)
test’ developed by Andrews (1993) and Andrews and Ploberger (1994) is used by MPQ
(2000) for the significance of reduction in volatility in real GDP data and by Yao and
Kholodilin (2004) for that in four monthly coincident indicators. A rejection of the null
hypothesis of stability simply implies the existence of structural break. In the former
study, a single break is detected around the first quarter of 1984 and in the latter study, a
single break is only significant in EMP and IP around February 1984. There is a less
significant break point in SAL around February 1984 and no significant break in INC at
all.

Yao and Kholodilin (2004) have also found that the structural break that has
taken place in monthly coincident indicators since mid-1980s is not one-time and thus
adapt a test developed by Bai and Perron (1998) for the presence of multiple breaks. Bai-
Perron test eventually calculates a corresponding confidence interval by minimizing the

sum of square residuals among all possible sub-samples:

® Wald statistic is based on the comparison of mean estimators before and after each time point of

2
2 it

indicator.

, which is unbiased estimator of the standard deviation of error term in a AR(2) regression of the




. . (14)
7, =argmins, (1))

1< <T
where ST (Ti)is the sum of squared residuals from the estimated model in both sub-

samples when the break is at time . The mean and 90% confidence interval of break

i
points suggested by Bai-Perron test are September 1983 [April 1983, November 1986]
for EMP, February 1984 [June 1982, August 1989] for IP and February 1987 [August
1982, July 1996] for SAL. The means are almost identical to the single break point
detected in the corresponding series using Wald test.

Another alternative test, widely used in the literature of volatility (for instance,
Stock and Watson, 2002; Irvine and Schuh, 2004) when the break point is known, is to
directly test the equality of means and variances of sub-samples before and after 1984,
for which MPQ (2000) detect a one-time break in GDP. These results are reported in
Table 1. The columns two and four represent Z-statistic following a normal distribution
and F-statistic following F(n,,n,) distribution for means and variances, respectively. 7, and
n, represent the sizes of each sub-sample. The p-values suggest that variances of all five
series are significantly different over two periods and the reduction in volatility is most
evident in GDP, EMP, and IP. The means of these series are not so different over two
periods except that for EMP.

In addition to univariate tests, we also test and construct valid confidence
intervals for the date of a single break in multivariate time series following methods
developed by Bai, Lumsdaine and Stock (hereafter BLS, 1998). The BLS test is based on

a system equation
V=Y A HTX G+ (A Y By +MIX) +g (15)
where y, #, 4, and ¢, are nX7 and {A}and {B}are nXu; d(k) = 0 for # <k and d(k) = 1 for
t > k; and X is a matrix of stationary variables. Equation (15) can be written in matrix
form
Y= (v, D1O+d (Y, 01)5+¢, (16)
whete V= (1,5, o, 9ip X,o)y 6 = Ve (u, A, ..., A, I), 8 = Vee (4, B, ..., B, IT),
and I is a #Xn identify matrix. The above equation specifies a full structural change in that
it allows all coefficients to change. From MPQ (2000) and Yao and Kholodilin (2004), we

know that only a subset of coefficients such as the intercept, if we are talking about the

series of conditional variance, has a structural break. Therefore, a partial structural

10



change is more appropriate. BLS (1998) also point out that tests for partial structural
changes will have better power than those for full structural changes. This consideration

would generate a partial structural change model

Y =V, 018+d (K, 01)SSI+¢, (17)

where § is a selection matrix containing 0’s and 1’s and having full row rank. Its rank is
equal to the number of coefficients that are allowed to change. For a break in the

intercept only, § = (s(7 1) with s = (1, 0, ..., 0), we have

Y=V, 0 1)8+Ad () +&
=Z (k)B+¢, (18)

where Z. (k)= (v, 0 1),d,(K)(V, 01)S) and B=(6,(39))" BLS test for a break in
the coefficients are based on the sequence of F-statistics (F;) testing SO = 0, for &£ =
kt1, ..., T-k., where k. is a trimming value. From this point forward, procedures of BLS
test are similar to those in univariate analysis. Both tests detect the possible break point
by maximizing Wald statistics or the logarithm of the Andrews-Ploberger (1994)
exponential statistic

Sp-W: sup F(7)

(7 1-7.)

: (19)

Exp-W:In[ " exp{LF. (r)}dr}
5 2 . (20)
where 7, refers to an initial fraction of the sample which is trimmed. The break-point

estimator is defined as the month that maximizes the likelihood function of (17) or (18)

k = argmax L(k, B(K),2(K)), @1)

1<k<T

2 (k)

is the variance-covariance matrix of the error terms.

Table 2 reports test results for univariate through quatrivariate time series analysis
among four monthly coincident indicators. The break points of univariate BLS test are
similar to those from Bai-Perron test for multiple break points and those from Andrews-
Ploberger test for single point. The confidence intervals from the BLS test are wider than
those from Bai-Perron test, and have relatively earlier lower and upper limiting dates.

Like Yao and Kholodilin (2004), structural break is most significant in EMP and then IP,

11



less significant in SAL and insignificant in INC. This order rules the results in bivariate
through quatrivariate time series: the break point and confidence interval of EMP
dominate those of combinations of EMP with other three indicators; those of INC
would dominate its combination with SAL and INC; SAL would dominate its
combination with INC only. As a result, break date and confidence interval from all four
monthly coincident indicators are very close to those of EMP. Therefore, BLS test has
detected a significant structural break on November 1983 in volatility of four current
coincident indicators with 90% confidence interval around [June 1982, April 1985]. We

then apply the dynamic factor model with structural breaks to the mixed-frequency data.

3.2. Estimation
We have estimated six types of dynamic factor models with regime switching. These MS

models are defined by equations (1) or (11) and (2) — (6) and sorted as:

(@) Dynamic factor model with no structural break based on single-frequency
data, which is identical to models in Chauvet (1998) and Kim and Nelson (1998)
(2-regime switching model or Base (2));

(b) Dynamic factor model with no structural break based on single-frequency

data based on mixed-frequency data (MF (2));

() Restricted dynamic factor model with structural break based on single-
frequency data (ResSF (4));

(d) Restricted dynamic factor model with structural break based on mixed-
frequency data (ResMF (4));

(¢) Unrestricted dynamic factor model with structural break based on single-

frequency data (UnSF (4));

(f) Unrestricted dynamic factor model with structural break based on mixed-

frequency data (UnMF (4)).
The orders of AR polynomial, (p,g), can be determined by minimizing Akaike
information critetion (AIC) defined as -2(J/T) + 2(k/T), where £ is the number of
parameters in the model, T is the sample size and / is the value of the log of the
likelihood function using the estimated parameters. In our case, the optimal lag number
is 2 for both common and specific factors, which is consistent with Stock-Watson (1989)
and Kim-Nelson (1998). For the purpose of identification, the first loading factor in all
the models is normalized to 1, ze., the loading factor for EMP in single frequency models

and that for GDP in mixed frequency models.

12



The parameter estimates and their standard errors of models (a) and (b) are
reported in Table 3, where all the parameters are statistically significant. The estimates of
Base (2) model is similar to those in Kim and Nelson (1998), where the sum of the AR
coefficients (0.519) for the state variable is significantly lower, implying less state-
dependence in the resulting CCI. Both these two MS models clearly distinguish between
two clear-cut regimes of positive and negative growth rates. They have also estimated
negative AR dynamics for specific factors of INC, IP and SAL, but positive for that of
EMP. Since Kim and Nelson (1998) only covers the data from January 1960 to January
1995, slowdown of January 1995 to January 1996 and the latest recession of March to
November 2001 are not included. The additional period in our study could have
impacted the estimated duration and mean growth rates: compared with Kim and Nelson
(1998), p,, is higher suggesting longer duration of recessions; #, is lower because of more
recessions in this sample period. The higher #, is more likely to being attributable to the
reduction in volatility. The loading factors (y) of CCI entering each measurement
equation are roughly the same, ranging from 0.709 to 1.290 with larger weights on EMP
and IP than the other two. Including real GDP data into Base (2) forms MF (2) model.
Put in another way, Base (2) is a restricted version of MF (2) where all coefficients related
to GDP are set to be 0’s. The estimates are largely the same, except a few minor changes.
#, has become less negative due to the diffusion effect from real GDP. Variances of
common factor and most specific factors are smaller, except for IP, which is
complemented by increased weights of their AR dynamics. As a by-product, MS models
estimate both filtered and smoothed probabilities that U.S. economy is in recession or
low-growth state. The latter of both Base (2) and MF (2) are plotted in Figure 2, where
the shaded areas represent NBER business cycle chronology as benchmarks. Both
models appear to have missed the latest two recessions after the break point in mid-
1980s, while the duration of the eatlier recessions is grossly underestimated. It is also not
surprising to see that ignoring reduction in volatility since mid-1980s can suppress the
signals for the phases of low growth in conjunction with low vatriance when the model is

overviewed by a complete sample from 1959 up to the latest’,

We next proceed with four different four-regime switching models. The

parameter estimates and their standard errors of all four models are reported in Table 4.

® This is not the case when a shorter sample is considered. We have also estimated the model for the
samples ending in June 2002, December 2002, June 2003, etc. Our observation was that as soon as the data
of the second half of 2002 were included, the predicting performance of the conditional regime
probabilities drastically went down.

13



Likewise, both Base (2) and MF (2) can be considered restricted version of their
corresponding four-regime switching models, where coefficients related to second regime
switching for variances are suppressed to 0’s. All the values of log-likelihood function are
reported in the last row of Table 4. Neither of the restricted four-regime models alter the
coefficient estimates from previous two-regime models. Both restricted models impose
2 =1 on the corresponding restricted models. The purpose of this restriction is to
constrain the transition probabilities of regime switching for variances to have a one-time
permanent shift from regime 1 to 2. Between restricted and unrestricted models, the
restriction imposed on the transition probabilities matrix of the state variable for variance
can be rejected at 5% significance level using LR test. The test statistic for the single-

frequency model is equal 24.8 and that for the mixed-frequency model is 22.4 against a
critical value of X4 (1) =3.84 in both cases.

All four-regime switching models make clear distinction between states of low
growth and high growth or between those of low variance and high variance. The
coefficient estimates of #, and g, (states of high growth) are always positive in contrast to
the negative estimates of x, and z, (states of low growth). Unrestricted models, compared
with restricted models, have expanded the gap between growth rates of low-growth
regime and high-growth regime in conjunction with same regime of variances, Ze., #, - #,
and g, - y, are increased. Likewise, standard errors of #, and y, (states of high variance)
are about 3-4 times larger than those of #; and y, (states of low variance). This implies
that the shift in the volatility was accompanied by a "stabilization" of the growth rates.
Both recessions and expansions became milder. The gap between standard errors of low-
variance regime and high-variance regime under same regime for growth rates has also
deepened in unrestricted models. Therefore, the restriction imposed on transitional
probabilities has re-arranged the distribution of estimates in different regimes. Loading
factors (y, — the elements of matrix [, where 7=71,...,7) on EMP and IP in all models are
still the heaviest among all, suggesting their larger influence in forming the common
factor. The AR coefficients of common factor (¢ and @) in restricted models are similar
to those in two base MS models reported in Table 3. However, when the restriction is
lifted in unrestricted models, those dynamics have increased from 0.4 to 0.5, implying
more state dependence in estimated CCI from unrestricted models. Variances (¢, and o))
of common factor and those (for instance o;,,;) of specific factors have also increased in

unrestricted models. All these increases are complemented by a negative increase in AR
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coefficients (J;, and Y, of specific factors.

Based on and — respectively, we can calculate the expected duration

1-pp  1-pi
of low-growth regimes (recessions) and high-variance regimes. In both restricted models,
the expected duration of the high-volatility state is equal to 333 months. Since transition
from high to low variances is just one-time, we can figure out that the expected break
point corresponds to October 1986. This date is somewhat late compared to the early
1984 or late 1983 suggested by most of tests in previous section, but it is still within the
90% confidence interval reported in Table 2. Both unrestricted models, on the other
hand, estimate a much shorter duration. The expected duration of recessions is calculated

ranging from 27 to 40 months out of four models.

Figure 3 plots the estimated CCI (or common factor) from six different models,

which is derived from the estimated A, in various models:
¢ = ¢, T uls)+ Ae,. (22)
All CCIs appear to be identical to one another and they match up well with NBER
recessions marked by shaded areas. The common factors from the mixed-frequency
models have a far smaller variance than those from the single-frequency model. Figure 4
depicts the smoothed conditional probabilities of low-growth regime (regimes 2 and 4)
from four different four-regime switching models. There are relatively good
correspondences between the model-derived probabilistic dates and the NBER’s
chronology, and the former has captured all NBER recessions with matching timing.
However, the model-derived probabilities suggest different dynamics of two latest
recessions as NBER Dating Committee perceives: both recessions feature “double-dip”
as described in Lahiri and Yao (2004). That is, some coincident indicators such as
sectoral output measures IP and SAL are more sensitive to shocks than others, such as
broader measures EMP and INC. When a monetary policy or supply shock begins,
certain industries or processes get hit first, which alter price, output and people’s
expectation. As the shock dies away, the contaminated industries, regions or processes
are back to the track of recovery. But meanwhile as Fed observes change in price and
output, a stabilization policy will be implemented, which can well interrupt the recovery
process and transmit the initial effect of shocks into broader scope. A fully-fledged
recession will come into being. The phase before this point is usually negligible and
limited to certain industries or regions and the phase since this point is the recession that

NBER defines. As a result of economic stabilization, recessions since mid-1980s have
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become shorter and milder (Moore (1987)), but they are usually followed or preceded by
fairly long slowdowns. The slowdown before recession of July 1990 to March 1991 has
started as early as February 1988 and ended around July 1988. The latest recession is

followed by a fairly long weak recovery or slowdown till as late as late 2003.

In Figure 4, the smoothed probabilities from both restricted models began to
signal recession in February 1989 and drop in August 1989. This period corresponds to a
mild slowdown preceding the 1990 recession. The model-derived recession dates are
from April 1990 to March 1991. The probabilities signaled the start of the latest recession
in June 2000, which is the date when both IP and SAL declined. For the controversy on
dating the latest peak, see Lahiri and Yao (2004). Both models also capture a slowdown
of July 2002 to April 2003 following the latest recession. The two unrestricted models
have the similar probabilities as the corresponding restricted model. But they did not
make distinction between two separate recessions in early 1980s. They also picked up an

additional down state in 1967.

Figure 5 depicts the smoothed probabilities of low variance state (regimes 3 and
4) from four-regime switching models. The restricted models generate a similar one-time
break point from high variance to low variance in February 1984, which is consistent
with that in Kim and Nelson (1999), MPQ (2000), and Yao and Kholodilin (2004). Both
restricted models have similar probabilities of low variance after February 1984, but they
also signaled many episodes of low variances during the period of 1962 to 1983. The
four-regime models as depicted in Figure 5 have fully captured two latest recessions since
mid-1980s that the previous two two-regime switching models have missed as plotted in
Figure 3. We thus plot the smoothed probabilities of low growth and low variance
(regime 4) in Figure 6 to show the additional gains in implied probabilities from
modeling regime switching for variances. Since the entire period since February 1984 is
sorted as low-variance states, the two latest recessions are identified due to the addition

of regime switching for variances.

3.3. Evaluation
The above comparison of implied probabilities against official business cycle chronology

can be formalized into in-sample evaluation and out-of-sample evaluation when the
predicted reference chronology is known using different criteria. We first calculate the
Quadratic Probability Score (QPS) (Brier, 1950) based on probabilities implied from each

model. Let P, be the probability that the economy is in recession estimated from the
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model, R, be the NBER-defined chronology (1 if recession, 0 otherwise), the QPS is
given by:

QPS=23(R-R)’ @)

which ranges from 0 to 1, with a score of 0 corresponding to perfect accuracy. This is the
unique proper scoring rule that is only a function of the discrepancy between realizations
and assessed probabilities (see Diebold and Rudebusch (1989) for more discussion). In
order to compare the forecasting accuracy of different models, that is, to test whether the
differences in QPS of each model are significant, we employ a test statistic developed by
Diebold and Mariano (1994). The null hypothesis states no difference between the
predicted accuracy of the pair of models being compared. Given a sample path {4},_," of

a loss differential series (PR, in the above definition), we have

JT(d - ) 0B N(0, 2771, (0) 24

: (0= 3 ().

where d is the sample mean loss differential, r=-w is the spectral

density of the loss differential at frequency zero, and Vo (7) = E[(d; = )(d,_, — p)].

Mariano (DM) statistic for testing the H, of equal forecast accuracy is defined as

d

[272f,(0)
T (25)

which is standardized and hence asymptotically distributed as IN(0, 1). We calculate the

DM =

DM statistics with rectangular winder of length 21.

The QPS and DM test statistics are reported in Table 5 for all six models: Base
(2), ReSF (4), UnSF (4), MF (2), ResMF (4) and UnMF (4). Overall, a few conclusions
can be drawn from the comparison: 1) the smoothed probabilities seem to outperform
the filtered ones; 2) mixed-frequency models outperform single-frequency models; 3)
restricted models outperform unrestricted models; 4) four-regime switching models
outperform two-regime switching models. 1) is true due to the fact that smoothing
eliminates the smaller spikes which are very typical for the filtered probabilities and
which reflect nothing but the noise. The rest of the findings is actually confirmed by our
LR tests and graphs in the previous section. DM test results suggest different conclusions
between filtered and smoothed probabilities of different models. In Table 5, rejection of

H,, marked by * or **, suggests that two models are significantly different from each
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other in terms of signaling recessions. From filtered probabilities, there are nine pairs that
can reject the H, of equality and six pairs that cannot. That is, Base (2) is significantly
different from all but MF (2); MF (2) model is not significantly different from Base (2)
and ResMF (4); ResSF (4) is not significantly different from UnSF (4), ResMF (4) and
UnSF (4); UnSF (4) is not significantly different from only Base (2) and ResMF (4);
ResMF (4) is not significantly different from ResSF (2), UnSF (2) and UnsMF (4); UnMF
(4) is not significantly different from ResSF (4) and ResMF (4). Based on smoothed
probabilities, two out of six similar pairs can reject H, now: MF (2) and Base (2), ResMF
(4) and UnSF (4). Since both Base (2) and MF (2) are significantly different from other
five models, all four-regime switching models have improved the probabilities from two-
regime switching models. Both unrestricted models are not significantly different from
their corresponding restricted models in terms of implied probabilities. Although
restricted MF model does not improve restricted SF model, unrestricted MF model does

relative to unrestricted SF model.

4. Concluding Remarks
This paper models the declining volatility of the U.S. economy using the dynamic factor

models with Markov regime switching., Apart from the regime switching accounting for
the fluctuations at the business cycle frequencies, an additional type of regime switching
is created to account for two distinct states: low variance vs. high variance. The resulting
four-regime models thus extend univariate analysis in MPQ (2000) and in Kim and
Nelson (1999) to multivariate time series. We examined both the unrestricted model of
the former and the constrained model of the latter imposing a restriction on transition
probability of the variance state variable (p,,°=7), which makes the low-variance regime
an absorbing one.

Moreover, we consider the models with mixed-frequency data: besides the
monthly component series we employ such an important quarterly series as that of the
real GDP. Thus, four monthly coincident indicators together with GDP are used to
estimate underlying states and model-derived probabilities for different regimes. This
technique would enable us to interpret the estimated common factor as monthly GDP,

which is not appropriate otherwise.
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Prior to the estimation step we test for the significance of structural breaks in five
monthly and quarterly coincident indicators. Four different test statistics are used: Wald
test for single break point in univariate time series adapted by MPQ (2000); traditional F-
statistic for the equality of two sub-samples divided by the known break point identified
by MPQ (2000), which is widely used in this literature; Bai-Perron test for the signficance
of multiple break points in a single time series and the corresponding confidence
intervals; BLS test for the significance of a single break point in multivariate time series.
In particular, BLS test fits best into the specification of dynamic factor models. The
results and exact timing of breaks are largely the same from different tests: November
1983 or February or March of 1984 is the mostly likely break point in U.S. economy. In
addition, our study shows that the series with more significant break in univariate analysis
usually dominates in biviriate or multivariate time series analysis in conjunction with
others. As a result, the break point found in EMP governs the test results when all four
coincident indicators are used. Either by comparing with NBER official recession dates
or among one another, we find that: mixed-frequency models outperform single-
frequency models; restricted models outperform unrestricted models; four-regime

switching models outperform two-regime switching models.
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Six dynamic factors models with Markov switching were eventually examined:
three single-frequency models and three mixed-frequency models. Among each type, a
basic MS model with two-regime switching, one restricted and one unrestricted four-
regime switching models are applied to the data. LR test reject the validity the restriction
imposed on transition probabilities p,,°, and thus suggests the superiority of unrestricted
models over restricted ones. The similar test also suggests the improved statistical
properties of mixed-frequency models over single-frequency models. Although the
estimated CCI from six different models appear to be similar, the filtered and smoothed
probabilities of low-growth regimes make distinction among them. Four-regime models
have correctly signaled two latest recessions which was missed by two-regime models.
Because the former has detected a one-time switching from high variance to low variance
in February 1984, the ruling low variance since mid-1980s could have prevented the
detection of low-growth states in two-regime models. By incorporating regime-switching
in variances, four-regime switching models successfully picked up the recessions. The
result shows that additional recessions detected by four-regime switching models are
identified as the state of low growth and low variance. Various models are evaluated
based on filtered and smoothed probabilities using QPS and DM statistics. A strong link
between our models' recession probabilities and the NBER chronology is evident. As the
formal forecasting accuracy tests show, the four-regime models do not contribute new
information in forecasting the NBER dates but allow detecting the secular structural

break in the volatility of U.S. economy.
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Appendix

Table 1. Testing the Equality of Means and Variances Before and After January 1984

Variables Mean Variance
Z-statistics | p-value | F-statistics | p-value
EMP 2.56 0.005 3.47 0.0
INC 1.27 0.103 0.401 0.0
1P 0.95 0.171 3.98 0.0
SAL 0.080 0.468 1.40 0.004
GDP 0.661 0.254 4.46 0.0
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Table 2. Means and Confidence Intervals for a Single Break in Multivariate Series

Variables Model type | Sup-W | Exp-W | Break 90% confidence interval
point

EMP univariate | 4891 19.62 | 1983:11 [1982:5, 1985:5]
INC univariate 3.99 0.76 1972:7 [1959:1, 1988:5]

1P univariate | 17.69 5.77 1984:3 [1979:10, 1988:8]

SAL univariate | 10.24 3.08 1987:4 [1979:10, 1994:10]
EMP/INC bivariate 5230 | 21.23 | 1983:11 [1982:6, 1985:4]
EMP/IP bivariate 51.70 | 21.01 1983:11 [1982:6, 1985:4]
EMP/SAL bivariate 48.88 | 19.63 | 1983:11 [1982:5, 1985:5]
INC/1P bivariate 18.88 6.41 1984:3 [1980:1, 1988:5]
INC/SA bivariate 11.31 3.70 1992:11 [1987:5, 1998:5]
IP/SAL bivariate 18.44 6.28 1984:3 [1980:1, 1988:5]
EMP/INC/IP trivariate 54.29 | 2225 | 1983:11 [1982:6, 1985:4]
EMP/INC/SAL | trivariate 51.87 | 21.05 | 1983:11 [1982:6, 1985:4]
EMP/IP/SAL trivariate 50.04 | 20.22 | 1983:11 [1982:5, 1985:5]
INC/IP/SAL trivariate 18.87 6.61 1984:3 [1980:2, 1988:4]
All series quatrivariate | 52.71 21.5 1983:11 [1982:6, 1985:4]
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Table 3. Estimates of the Two-Regime Switching Models

Parameter Single-frequency: Mixed-frequency: LL=-3080.36
L1=-2584.91
Estimates s.€. Estimates s.€.

P 0.991 0.005 0.991 0.005
Pz 0.621 0.170 0.639 0.177
# 0.031 0.025 0.017 0.013
s -2.070 0.277 -1.110 0.155
Yemp - - 1.840 0.144
YiNe 0.709 0.063 1.320 0.112
Yip 1.290 0.089 2.310 0.136
Vsis 0.799 0.062 1.480 0.100
o, 0.399 0.056 0.396 0.056
o, 0.120 0.053 0.125 0.054
Y, ep 0.142 0.041 0.680 0.197
Y, evp 0.512 0.046 -0.577 0.079
Y, ne -0.275 0.047 0.144 0.041
Y, ne -0.015 0.077 0.517 0.046
Y » -0.184 0.082 -0.289 0.045
Y, » -0.233 0.072 -0.027 0.043
Y, sar -0.385 0.047 -0.115 0.077
Y, sar -0.180 0.046 -0.177 0.066
¥, .cop - - -0.404 0.047
Y, cop - - -0.196 0.046
2 0.258 0.032 0.079 0.011
Orpp 0.291 0.031 0.067 0.029
Oine 0.732 0.047 0.283 0.031
Oip 0.247 0.036 0.720 0.046




Parameter Single-frequency: Mixed-frequency: LL.=-3080.36
LI=-2584.91
Ty 5 0.593 0.040 0.279 0.034
Oepp - - 0.577 0.039

LL = value of log-likelihood function
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Table 4. Estimates of Four-Regime Switching Models

Parameter Single Frequency Models Mixed Frequency Models
Restricted Unrestricted Restricted Unrestricted
Estimates | s.e. | Estimates | s.e. | Estimates | s.e. | Estimates | s.e.
i 0964 |[0.014| 0963 0.023| 0962 |0.016| 0.975 0.018
§ 2% 0.850 0.064 | 0.854 |0.074| 0.853 0.059 | 0.897 |0.069
Pl 0.997 0.003 | 0.931 0.042| 0997 |0.003| 0917 |0.060
2 1 - 0.971 0.015 1 - 0.967 |0.018
# 0.185 0.094 | 0.103 0.138 | 0.095 0.045| 0.054 |0.124
“ -0.683 |0.201 | -0.310 |0.442| -0.310 |0.092| -0.090 | 0.205
s 0.060 0.023 | 0.064 |0.026| 0.029 0.012 | 0.023 0.013
Ha -0.354 | 0.068 | -0.284 |0.067| -0.173 |0.033| -0.146 |0.042
Vemp - - - - 2.030 |0.144| 2.030 |0.147
Yine 0.621 0.052 | 0.629 0.053 1.290 |0.112 1.300 | 0.113
Yup 1.120 0.070 1.150 | 0.071 2.260 | 0.131 2300 |0.134
Vsis 0.705 0.051 0.711 0.051 1.450 | 0.098 1.460 | 0.100
0, 0.332 0.090 | 0434 |0.086| 0.325 0.087 | 0.436 | 0.095
o, 0.120 0.069 | 0.147 |0.063| 0.127 |0.070| 0.162 |0.063
Y, e 0.164 [0.044| 0.194 [0.046| 0.709 0.174 | 0.695 0.186
Y, e 0.530 0.048 | 0487 |0.050| -0.613 |0.073| -0.595 |0.075
Y, ine -0.279 1 0.044 | -0.281 |0.046| 0.170 |0.045| 0.198 |0.046
Y, ne -0.019 0.035| -0.020 |0.052| 0.536 |0.048| 0.492 |0.050
Y p -0.193 | 0.066 | -0.241 |0.072| -0.290 |0.052| -0.291 |0.048
Y, p -0.166 | 0.059 | -0.192 |0.064| -0.027 |0.077| -0.029 |0.056
Yoo -0.395 | 0.046 | -0.401 |0.046| -0.152 |0.063| -0.191 | 0.066
Y, o -0.181 | 0.045| -0.185 |0.045| -0.135 |0.059| -0.153 |0.061
Y, cop - - - - -0.407 | 0.046 | -0.416 | 0.046
Y, cop - - - - -0.191 | 0.046 | -0.197 | 0.046
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Parameter Single Frequency Models Mixed Frequency Models
Restricted Unrestricted Restricted Unrestricted
Estimates | s.e. | Estimates | s.e. | Estimates | s.e. | Estimates | s.e.

g 0.551 0.076 1.040 |0.204| 0.135 0.022 | 0.269 0.064

g, 0.022 0.012 | 0.035 0.015| 0.006 |0.003| 0.011 0.005
Oenp 0.220 0.027 | 0.236 |0.026| 0.062 |0.025| 0.067 |0.027
Oine 0.749 0.047 | 0.749 0.047 | 0217 |0.025| 0.231 0.026
Oup 0.315 0.034 | 0294 |0.033| 0.741 0.046 | 0.740 | 0.046
Og15 0.609 0.040 | 0.613 0.040 | 0.332 | 0.031 0.312 | 0.031
Ocpp - - - - 0.600 [0.039| 0.599 0.040
LL -2522.84 -2513.95 -3015.77 -3009.26
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Table 5. In-sample Evaluation of MS Models

Filtered probabilities

Model QPS DM statistics

ResSF (4) | UnSF (4) | MF (2) | ResMF (4) | UnMF (4)
Base 0.130 1.493* 1.401* 1.191 1.494* 1.753%*
ResSF (4) 0.082 0.857 1.481* 0.901 0.239
UnSF (4) 0.088 1.384* 1.047 1.981**
MF (2) 0.129 1.482* 1.737**
ResMF (4) 0.080 0.073
UnMF (4) 0.080

Smoothed probabilities

Model QPS DM statistics

ResSF (4) | UnSF (4) | MF (2) | ResMF (4) | UnMF (4)
Base 0.131 1.534% 1.368* 1.320* 1.531* 1.729%*
ResSF (4) 0.068 1.154 1.521* 0.472 0.053
UnSF (4) 0.081 1.350* 1.290* 1.571*
MF (2 0.130 1.518* 1.711%*
ResMF (4) 0.067 0.124
UnMF (4) 0.069

Note: * and ** denote the rejection of Hy at 10% and 5% levels; Base represents the 2-regime MS

model based on single-frequency data; “Res” represent restricted models; “Un” represent

unrestricted models; SF = single frequency data; MF = mixed-frequency data.
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Figure 1.

Mixed Frequency Data: Four Monthly Coincident Indicators and Quarterly Real GDP
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Figure 2.

Smoothed Probabilities of Low Growth: Two-Regime Switching Models
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Figure 3.

CCls Estimated from Various MS Models
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Figure 4.

Smoothed Probabilities of Low Growth: Four-Regime Switching Models
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Figure 5.

Smoothed Probabilities of Low Variance: Four-Regime Switching Models
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Figure 6.

Smoothed Probabilities of Low Growth and Low Variance
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