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Abstract

We analyzed the hypothesis about the effectiveness of energy saving
technologies to reduce the trade-off between economic growth and en-
ergy preservation. In a general equilibrium vintage capital model with
embodied energy saving technical progress, we show that the success
of energy saving technologies is questionable in a scenario of decreasing
energy supply. Only constant returns to scale, with constant energy
supply, yields long run growth.
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1 Introduction

Fossil fuel—in particular petroleum and its refinery products—is an essential
input throughout all modern economies. However, the reduced availability
of this basic element in production and the stabilization of greenhouse gases
concentration would have a negative impact in economic growth and devel-
opment, through cutbacks in energy use (Smulders and de Nooij (2003); see
Xepapadeas (2003) for an overview of economic growth and pollution). As
a consequence, we can a priori ensure a trade-off between energy reduction
and growth. Nevertheless, this trade-off could be less severe if energy con-
servation is raised by energy saving technologies. Carraro, Gerlagh and van
der Zwaan (2003) pointed out that hypothesis, since new technologies can
fundamentally alter the extent and nature of this trade-off. Moreover, it is
well known that the effect of public policies on the development and spread
of new technologies is among one of the crucial determinants of the success
or failure of environmental management (see Löschel (2002), for a survey).
Newell, Jaffe and Stavins (1999) studied whether the increase in the energy
cost in recent years induces energy savings innovation in the US; they con-
cluded that the induced innovation hypothesis is very reasonable.

We focus on the exhaustion problem of fossil fuel, considering the en-
ergy saving technological progress as a way to offset the negative effect of
energy cutbacks. A general equilibrium model is developed here, based on
Boucekkine, Germain and Licandro (1997). We take an economy with ex-
ogenous technological progress embodied in the new capital goods, which are
introduced through a vintage capital technology with endogenous obsoles-
cence (scrapping) rule. A comparative study is developed in order to contrast
constant and decreasing returns to scale, within two possible scenarios: con-
stant (optimistic) and decreasing (gloomy) exogenous energy supply. We get
that, under the existence of balance growth path (BGP) defined by constant
growth rate of all the endogenous variables, only the case of constant returns
to scale, in the optimistic scenario, yields compatibility between energy re-
duction and growth. Otherwise, our economy does not present growth along
the BGP.

The paper is organized as follows. In section 2, we describe the general
case model, with the representative consumer’s problem and the rules that
depicts both the optimal investment and the scrapping behavior of the firms.
The BGP is presented in section 3, where we show the necessary conditions
for its existence in both constant and decreasing returns to scale. Finally,
some concluding remarks are considered in section 4.
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2 The Model

Following Boucekkine et al. (1997), we consider an economy where the pop-
ulation is constant. There is only one final good (numeraire good) which
can be assigned to consumption or investment. The final good is produced
in a competitive market by a constant returns to scale technology, which is
defined over a continuum of inputs in the interval [0, 1]. Inputs are produced
by mean of a technology defined over vintage capital. Both constant and de-
creasing returns to scale are considered here. The input market is assumed
monopolistically competitive to allow for a concave profit function in inputs
sector. Also, we assume competitive labour market and exogenous available
energy supply.

2.1 Individual’s behavior

Let us assume that the representative household considers the following stan-
dard inter-temporal maximization problem with constant relative risk aver-
sion (CRRA) instantaneous utility function

max
c(t),a(t)

∫ ∞

0

c(t)1−θ

1− θ
e−ρtdt (1)

subject to the budget constraint

ȧ(t) = r(t)a(t)− c(t)

a(0) given

lim
t→∞

a(t)e−
∫ t
0 r(z)dz = 0

(2)

with initial wealth a0, where c(t) is per-capita consumption, a(t) is per-capita
asset held by and the interest rate r(t) is taken as given for the household.
θ measures the constant relative risk aversion, and ρ is the time preference
parameter (it is assumed positive discount factor). The corresponding nec-

essary conditions are r(t) = ρ + θ ċ(t)
c(t)

, with limt→∞ λ(t)a(t) = 0, where λ(t)
is the co-state variable associated with the wealth accumulation equation.

2.2 Final Good Firm

The final good is produced competitively by a representative firm by solving
the following optimal profit problem

max
yj(t)

{
y(t)−

∫ 1

0

pj(t)yj(t)dj

}
(3)
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where the per-capita production y(t) is given by a constant elasticity of sub-
stitution (CES) production technology

y(t) =

(∫ 1

0

yj(t)
ε−1

ε dj

) ε
ε−1

(4)

defined over a continuum of inputs yj(t) with j ∈ [0, 1]. It is assumed a
constant elasticity of substitution ε > 1. Prices are given by

pj(t) =

(
yj(t)

y(t)

)− 1
ε

(5)

which comes from the standard monopolistic competition economy (Dixit
and Stiglitz (1977)) and they are taken as given by the final good firm.

2.3 Input firm

Producing in a monopolistically competitive market, the representative input
j firm maximizes her profits

max
yj(t),ij(t),Tj(t),pj(t)

∫ ∞

0

e−r(t)t [pj(t)yj(t)− ij(t)− ej(t)Pe(t)(1 + Z)] dt (6)

subject to

yj(t) = A

(∫ t

t−Tj(t)

ij(z)dz

)α

, 0 < α ≤ 1 (7)

ej(t) =

∫ t

t−Tj(t)

ij(z)e−γzdz, 0 < γ < r (8)

pj(t) =

(
yj(t)

y(t)

)− 1
ε

(9)

with the initial conditions i(t) given for all t ≤ 0, where ej(t) and Pe(t)
are respectively the demand and the price of energy, which are endogenous.
Z is the expenditure energy tax defined by the government1. ij(t) is the
investment of the representative input j firm. The output and the price
for input j are respectively represented by yj(t) and pj(t). The price of
input j and the final good production per-capita, y(t), are taken as given
by the monopoly. The equation (7) is our technology defined over vintage
capital. The energy demand is obtained by the equation (8). Here γ > 0

1It could be considered as a lump-sum tax.
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represents the rate of energy saving technological progress and Tj(t) is the age
of the oldest operating machines or scrapping age. Considering monopolistic
competition, the inverse demand function is given by the equation (9).

Notice that the new technology is more energy saving. Moreover, it is
important to observe that we assume complementarity between capital and
energy (Leontieff technology). Certainly, each vintage ij(t) has an energy
requirement ij(t)e

−γt. This assumption is unfailing from numerous studies;
for instance Hudson and Jorgenson (1974), or Berndt and Wood (1975).

We define the capital stock

K(t) =

∫ t

t−T (t)

i(z)dz (10)

and the optimal life of machines of vintage t

Jj(t) = Tj(t + Jj(t)) (11)

Notice that
Ti(t) = Ji(t− Ti(t)) (12)

Let us consider the symmetric equilibrium2. From the first order condi-
tion (FOC) for i(t), we get the optimal investment rule

∫ t+J(t)

t

αA

(∫ τ

τ−T (τ)

i(z)dz

)α−1

e−
∫ τ

t r(z)dzdτ =

1 +

∫ t+J(t)

t

(1 + Z)Pe(τ)e−γte−
∫ τ

t r(z)dzdτ

(13)

where the left hand side (LHS) is the discounted marginal productivity during
the whole lifetime of the capital acquired in t; 1 is the marginal purchase cost
at t, normalized to one; and the second term on the right hand side (RHS)
is the discounted operation cost at t.

The optimal investment rule establishes that firms should invest at time
t until the discounted marginal productivity during the whole lifetime of the
capital acquired in t exactly compensates for both its discounted operation
cost and its marginal purchase cost at t.

From the FOC for T (t), we have the optimal scrapping rule

Aα

(∫ t

t−T (t)

i(z)dz

)α−1

= Pe(t)(1 + Z)e−γ(t−T (t)) (14)

2yj(t) = y(t), Tj(t) = T (t), Jj(t) = J(t), pj(t) = 1, ij(t) = i(t) and ej(t) = e(t).
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The optimal scrapping rule states that a machine should be scrapped as soon
as its marginal productivity (which is the same for any machine whatever its
age) no longer covers its operation cost (which rises with its age).

Here the marginal productivity is given by αA(
∫ t

t−T (t)
i(z)dz)α−1, and

(1 + Z)Pe(t)e
−γ(t−T (t)) represents the operation cost.

2.4 Decentralized equilibrium

The (decentralized) equilibrium of our economy is characterized by equations
(2), necessary and transversality condition of the household problem, equa-
tions (7)–(11), the optimal investment rule, the optimal scrapping rule, and
the following three additional equations to close the model: c(t)+i(t) = y(t),
i(t) = ȧ(t) and e(t) = es(t), the equilibrium condition in the energy market.
es(t) is the available energy supply3; in our model it is assumed exogenous.

3 Balanced growth paths

Let us define the balance growth path (BGP) equilibrium as the situation
where all endogenous variables grow at constant rate. Boucekkine et al.
(1998) considered an equivalent model to our case of constant returns to
scale (α = 1). Following Malcomson (1975), they presented a sufficient
condition for the existence of a particular BGP with both constant scrapping
age and constant available energy supply4. Nevertheless, for the case of
decreasing returns to scale (0 < α < 1), we got that an analytical prove
of existence of such a BGP, using Malcomson’s technique, is not possible5

(Pérez-Barahona and Zou (2003)). Moreover, it is not difficult to check that
an alternative BGP, with not constant scrapping age, is not compatible with
constant growth of the other endogenous variables.

As a consequence, in order to compare constant and decreasing returns to
scale, we assume the existence of BGP with constant scrapping age6 T (t) =

3The available energy supply is a flow (exogenous) variable, for example petrol or any
petroleum refinery product to generate energy. Here we do not explicitly treat extraction
sector either producer countries.

4They assumed a technology that saves labour instead of energy saving technological
progress. A constant (exogenous) labour supply were considered.

5Observe that T (t) is forward-looking, but it depends on its own value in a particular
and endogenous point of time. This type of variable is not standard in economic models.

6Such an equilibrium (Terborgh-Smith result) is well known in economic literature. For
example, P.K. Bardhan (1969) and Boucekkine et al.(1997).
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J(t) = T . In the following, we present the necessary conditions of our BGP
for both, constant and decreasing returns to scale.

3.1 Necessary Conditions

For the general case 0 < α ≤ 1, we get from the necessary condition of the
household problem and along the BGP

r(t) = ρ + θγc = constant = r∗ (15)

and
e−

∫ τ
t r(z)dz = e−r∗(τ−t) (16)

where γc is the growth rate of consumption.

Differentiating (13) and rearranging terms, we obtain by (14)

(eγT − 1)− γ

γPe − r∗
(e(γPe−r∗)J − 1) =

r∗

(1 + Z)P e

eγ−γPe t (17)

where γPe and P e are respectively the growth rate and the level of the energy
prices. The LHS is constant for any t in the BGP, and the right hand side
RHS is a function of t. So the equality holds if and only if

γ = γPe (18)

As in the standard growth model, this result states that energy prices grow
at the same rate as productivity, in terms of energy saving.

By the definition of K(t), we have along the BGP that

K(t) =

{
i
γi

(1− e−γiT )eγit if γi > 0

i∗T if γi = 0
(19)

where i(t) = ieγit. Then, the growth rate of investment (γi) and capital stock
(γK) are equal.

Moreover, by (14) and (18)

AαK(t)α−1 = (1 + Z)Pee
γT (20)

where Pe(t) = P ee
γT . Substituting (19) into (20) it yields

eγi(α−1)t =
(1 + Z)Pee

γT

AαK
α−1 (21)
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It is easy to see that (21) holds if and only if α = 1 and/or γi = 0. Then, at
this point, we have to distinguish between constant and decreasing returns
to scale. If we have decreasing returns to scale (0 < α < 1) then γi = 0.
However, for the case of constant returns to scale (α = 1) γi is undetermined
a priori.

3.1.1 Constant returns to scale

From equation (8) we get the energy demand along the BGP

e(t) =
i(t)

γ
e−γt(eγT − 1) (22)

If we assume that the energy market is in equilibrium along the BGP, energy
demand equals energy supply (es(t)). We make a distinction between two
possible scenarios. There is an optimist scenario, with constant available en-
ergy supply. However, there is a gloomy situation, where the available energy
supply is decreasing7.

Case I: Constant available energy supply es(t) = es

Equalizing e(t) = es in equation (22), we get

i(t) =
esγ

eγT − 1
eγt (23)

Hence, γi(= γK) = γ. Moreover, as y(t) = AK(t) then γy = γK(= γ).8

From the budget constraint y(t) = c(t)+i(t), we also achieve that γc = γ.9

Summarizing, we have the following proposition for the case constant
available energy supply:

Proposition 1 Along the balanced growth path, assuming 0 < α < 1,
es(t) = es and γ < ρ,

1. the interest rate r(t) = r∗ = ρ + θγ;

7There is not meaning to assume increasing available energy supply, because we are
considering resources subject to exhaustion. The most optimistic scenario is constant
available energy supply.

8From the definition of capital stock is straightforward K(t) = γ2ese
−γT eγt. Since

y(t) = AK(t), then y(t) = Aγ2ese
−γT eγt.

9c(t) = esγ(eγT Aγ − 1
eγT−1

)eγt.
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2. the growth rate of energy prices equals the the growth rate of energy
saving technological progress (γPe = γ);

3. the growth rate of investment and capital stock are equal to the growth
rate of energy saving technological progress (γi = γK = γ);

4. the growth rate of final good output equals the growth rate of energy
saving technological progress (γy = γ);

5. the growth rate of consumption equals the growth rate of energy saving
technological progress (γc = γ).

Case II: Decreasing energy supply es(t) = ese
−γes t

Equalizing e(t) = ese
−γes t in equation (22), it yields

i(t)

γ
(eγT − 1)e−γt = ese

−γes t (24)

Then, to have BGP the growth rate of energy supply (γes) has to equal
γ. This means that the economy chooses a growth rate of energy saving
technological progress equalizing the decrease rate of available energy supply.
As a consequence:

i(t) = i∗ =
esγ

(eγT − 1)
(25)

Since γi(= γK) = 0, from the production function y(t) = AK(t), γy = γK =
0.10

From the budget constraint y(t) = c(t) + i(t), γc = 0.11

Finally, we get a proposition:

Proposition 2 Along the balanced growth path, assuming α = 1, es(t) =
ese

−γt and γ < ρ,

1. the interest rate r(t) = r∗ = ρ;

2. the growth rate of energy prices equals the the growth rate of energy
saving technological progress (γPe = γ);

3. there is not growth in investment and capital stock (γi = γK = 0);

10Hence, K(t) = K∗ = γes

eγT
T and y(t) = y∗ = A γes

eγT
T .

11c(t) = c∗ = (A− 1) γes

eγT−1
T .
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4. the growth rate of final good output is zero (γy = 0);

5. there is not growth in consumption (γc = 0).

To finish, we have to point out that constant returns to scale, in an
optimistic scenario (i.e. es(t) = es), generates exogenous growth with the
same rate as the growth of (exogenous) energy saving technological progress
(γ). However, if a pessimistic position is assumed (i.e. es(t) = ese

−γt), the
positive effect of the energy saving technological progress is completely offset
by the decreasing energy supply. Then, since we consider BGP equilibrium
with constant scrapping age T (t) = T , our model does not yield growth in
the long run (see equation (24)).

3.1.2 Decreasing returns to scale

As before, equation (21) holds if and only if α = 1 and/or γi = 0. Since
now we consider decreasing returns to scale (0 < α < 1), the growth rate of
investment has to be zero. As a consequence, γK = 0 because γi = γK .

Considering the energy market in equilibrium along the BGP, from equa-
tion (22) we conclude that a BGP is only possible in a gloomy scenario (i.e.
es(t) = ese

−γt). Then

i(t) = i∗ =
1

T

(
(1 + Z)Pee

γT

Aα

) 1
α−1

(26)

Since y(t) = AK(t)α and γi = 0, from equation (19) we get y(t) = y∗ =
A(i∗T )α. Hence, γy = 0. Considering the budget constraint along the BGP,
it is straightforward γc = 0.

To sum up, we have the following proposition:

Proposition 3 Along the balanced growth path, assuming 0 < α < 1,
es(t) = ese

−γt and γ < ρ,

1. the interest rate r(t) = r∗ = ρ;

2. the growth rate of energy prices equals the the growth rate of energy
saving technological progress (γPe = γ);

3. there is not growth in investment and capital stock (γi = γK = 0);

4. the growth rate of final good output is zero (γy = 0);
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5. there is not growth in consumption (γc = 0).

Finally, we have to remark that this case has no growth in the long run.
This behavior is explained, on the one hand, by the assumption of decreas-
ing returns to scale in the intermediate good technology; and on the other
hand because here we get that both the scrapping age and the exogenous en-
ergy saving technological progress are not strong enough to overcome those
decreasing returns. The reason is the following. Our framework considers
CRRA instantaneous utility function; as a consequence, the interest rate is
constant in the long run. Then, consistently with the Terborgh-Smith re-
sult, the scrapping age is also constant along the BGP. Taking the optimal
investment rule in the long run

αAeρt

∫ t+T

t

(∫ τ

τ−T

i(z)dz

)α−1

e−ρτdτ =

1 + (1 + Z)P e
1

ρ− γ
(1− e−(ρ−γ)T )

(27)

it is straightforward that the discounted operation cost is constant because
the effect of the energy saving technological progress (γ) is offset by the de-
creasing available energy supply. Hence, as the marginal purchase cost (1)
is remaining constant, the investment has to be also constant along the BGP.

The outcomes of section 3.1.1 (Case II) and section 3.1.2 are not stan-
dard results. In the case of neoclassical models, we would have exogenous
growth. For example, the models of Solow-Swan and Ramsey, with exoge-
nous technological progress, describe economies which grow at the growth
rate of both population and exogenous technological progress. However, we
get now that the the reduced availability of energy (nonrenewable resource)
offsets the (exogenous) energy saving technological progress. As a conse-
quence, since we consider BGP equilibrium with constant scrapping age, our
economy does not present long run growth. This result is consistent with the
partial equilibrium model of Boucekkine and Pommeret (2002), which also
depicts no growth along the BGP.

4 Concluding remarks

We analyzed the hypothesis about the effectiveness of energy saving technolo-
gies to reduce the trade-off between economic growth and energy preserva-
tion. In order to incorporate the roll of technology replacement, we developed
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a general equilibrium model, where the intermediate goods are produced by
a vintage capital technology with endogenous scrapping rule. New vintages
obsolete old machines because of their lower energy requirements. Constant
and decreasing returns to scale are distinguished to develope a comparative
study.

Under constant returns to scale, long run growth is only possible if we
are in an optimistic context (constant available energy supply). In this case,
the (exogenous) growth rate of the economy equals the (exogenous) growth
rate of energy saving technological progress. However, if a gloomy situation
is considered (decreasing available energy supply), our economy does not
present long run growth. Furthermore, when we assume decreasing returns
to scale, the economy achieves BGP only for the pessimistic case. As in the
gloomy situation with constant returns to scale, this case does not exhibit
growth in the long run. The reason of this incompatibility between long
run growth and energy reduction, in both constant and decreasing returns
to scale, is that the energy saving technological progress is offset by the
decreasing available energy supply. Since BGP equilibrium with constant
scrapping age is analyzed, our economy does not yield growth in the long
run.

As a conclusion, we have shown a limit to the success of energy saving
technologies12 as a way to achieve growth and energy conservation. According
to our model, energy saving technologies would not be sufficient to deal
efficiently with the trade-offs involved in the management of non-renewable
resources.

12See Mulder et al. for another critic about the success of this kind of technology within
a vintage capital framework.
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