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Abstract

In this paper we identify and try to predict the turning points of
the Japanese business cycle. As a measure of the business cycle we
use a composite economic indicator (CEI). This indicator is endowed
with nonlinear dynamics to capture the asymmetries between differ-
ent cyclical phases. Two types of nonlinear dynamics are considered:
Markov switching and smooth transition autoregression (STAR). The
performance of these models in terms of forecasting the business cycle
turns is compared. Both types of models produce statistically equiv-
alent in-sample forecasting results, whilst the CEI with exponential
STAR tends to outperform the CEI with Markov-switching and logis-
tic STAR in the out-of-sample prediction.
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1 Introduction

The crucial question many economic agents face is how to detect and predict
timely the shifts between the cyclical phases. Possessing such a knowledge
they would be able to adjust their activities in advance to the ups and downs
of the business cycle. In order to address this question we suggest a composite
economic indicator (CEI) which is constructed using the nonlinear dynamic
factor analysis.

The CEI provided with the nonlinear dynamics permits detecting the
business cycle turns and, moreover, predicting the turning points, which
is impossible when the ad hoc techniques like a very popular Bry-Boschan
method — see Bry & Boschan (1971) are used.

The CEI with Markov switching (CF-MS) became already quite a stan-
dard tool of forecasting the business cycle dynamics. It was applied to the
US data by Chauvet (1998) and Kim & Nelson (1999), to the data of sev-
eral European economies by Kaufmann (2000), and to the Brazilian data by
Chauvet (2001). In this paper we propose another nonlinear model: CEI
with smooth transition autoregressive dynamics (CF-STAR). It can be use-
ful in the situations where CF-MS is not supported by the data, while the
hypothesis of the STAR dynamics cannot be rejected.

In section 2 we set up the linear dynamic factor model and three nonlinear
models. In section 3 these models are estimated, whereas in section 4 their
forecasting performance is evaluated with respect to the Japanese reference
cycle dates. Section 5 concludes the paper. All the tables are in Appendix.

2 Models

The models of CEI introduced in this section embody two key characteristics
of the business cycle: comovement of different time series across the cycle and
the asymmetric behavior of the economy at different cyclical phases. While
the linear model captures only first of these features, the nonlinear models
incorporate both characteristics.

The nonlinear models rely on the idea that the economic conditions evolve
through a limited number of alternating and recurrent regimes, or states.
In the simplest case we distinguish between two regimes: expansion and
recession.

The economy behaves asymmetrically under the different regimes. This
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translates into the CEI model’s parameters (for example, the growth rates
and the volatility) depending on the state.

The nonlinear models below, though coincide in assuming the existence
of qualitatively different regimes, differ in the way of modelling the transition
between these regimes. In the Markov switching model the shifts between
the regimes depend on unobserved state variable, whilst in the STAR model
these shifts are conditioned on the past history of some observed variable.

2.1 Linear dynamic common factor

The linear dynamic factor model as a tool of constructing the composite
economic indicator was adopted by Stock & Watson (1989). We will denote
it simply as CF. It is expressed as follows:

∆yt = γi(L)∆Ct + ut (1)

∆Ct = µ +
p∑

i=1

φi∆Ct−i + σεεt (2)

Ψ(L)ut = Σηηt (3)

where ∆ is the first-order difference operator; yt is the n × 1 vector of the
observable time series; Ct is the dynamic common factor in levels; ut is the
n× 1 vector of the idiosyncratic components; εt are the normally distributed
residuals with unit variance and zero mean; µ and φi (i = 1, 2, ..., p) are the
common factor’s state-dependent intercepts and autoregressive coefficients,
respectively.

The lag polynomial matrices of the specific factors, Ψj (j = 1, ..., q), are
diagonal.

Ση is a diagonal variance-covariance matrix. The shocks to the specific
factors are assumed to be serially and mutually uncorrelated and normally
distributed with unit variances and zero means: ηt ∼ NIID (On, In), where
On is the n× 1 vector of zeros and In is the n× n identity matrix.

Here we estimate the linear model without intercept. This is admissible
because the data are previously demeaned and standardized.
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2.2 Dynamic common factor with regime switching

The linear dynamic factor model of Stock & Watson was extended to the
Markov switching (CF-MS) case by Kim (1994) and Kim & Nelson (1999).
Equations (1) and (3) are kept unchanged, whereas the state-dependent terms
are introduced into equation (2) which as result looks like:

∆Ct = µMS
1 st + µMS

2 (1− st) +
p∑

i=1

[
φMS

1i st + φMS
2i (1− st)

]
∆Ct−i +

+ [σε1st + σε2(1− st)] εt (4)

where yt is the n× 1 vector of the observable time series; Ct is the dynamic
common factor in levels; εt are the normally distributed residuals with unit
variance and zero mean; st is the regime variable taking m values, where m is
the number of the regimes; µMS

j and φMS
ji (j = 1, 2 and i = 1, 2, ..., p) are the

common factor’s state-dependent intercepts and autoregressive coefficients,
respectively. Thus, for m = 2, st = 1, 0. Given that µMS

1 > µMS
2 , regimes

1 and 2 may be interpreted as an ascending trend and a descending trend
states, respectively. In this model the intercept term, µMS

i , and the residual
variance of the common factor, σ2

εj (j = 1, 2), are state-dependent, i.e., they
are different for the different regimes.

The transition probabilities, pij = Pr(st = j|st−1 = i), sum up to one
when added across all the possible states for the given regime in the previous
period:

∑m
j=1 pij = 1 ∀i for m states.

2.3 Dynamic common factor with smooth transition
autoregression

The novelty of this paper is the application of STAR to the unobserved com-
mon factor model. The technique itself as applied to the observed univariate
time series was developed by Chan & Tong (1986) as well as by Teräsvirta
and his coauthors (e.g. Granger & Teräsvirta (1993)).

The common factor model with smooth transition autoregression (CF-
STAR) is apparently very similar to its counterpart with regime switching.
However, there is a crucial difference between the two approaches: while in
CF-MS the state variable determining shifts from one regime to another is
unobserved, in CF-STAR the switches between regimes are conditioned upon
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the past values of the composite indicator itself or upon those of some other
observed variable. In the present case the situation is complicated by the
fact that we do not observe the CEI itself. Hence we should condition the
changes in regimes on its past estimated values.

The only difference between the two models is the equation describing
evolution of the common dynamic factor:

∆Ct = µSTAR
1 Ft + µSTAR

2 (1− Ft) +
p∑

i=1

[
φSTAR

1i Ft + φSTAR
2i (1− Ft)

]
∆Ct−i +

+ [σε1Ft + σε2(1− Ft)] εt (5)

where µSTAR
1 > µSTAR

2 are the state-dependent intercepts; φSTAR
ji (j = 1, 2

and i = 1, 2, ..., p) are the state-dependent autoregressive coefficients; Ft ≡
Ft(∆Ct−d; λ, r) is some smooth transition function. In the present study we
are using two specifications of the transition function. First, the logistic
specification (denoted as CF-LSTAR) which allows capturing the asymme-
tries between the business cycle phases:

Ft(∆Ct−d; λ, r) =
1

1 + exp(−λ(∆Ct−d − r))
(6)

where λ > 0 is the parameter determining the abruptness of transition (the
greater is its value the sharper are the switches between the regimes); ∆Ct−d

is playing the role of the so-called transition variable; d > 0 is called the
transition delay; r is the transition threshold. The shifts between the two
different regimes (say, high growth and low growth) depend on deviation be-
tween the past CEI’s growth rate and some threshold, r. If, for instance, the
past common factor’s growth rate exceeded the threshold, the high growth
regime becomes more probable.

Second, the exponential specification (denoted as CF-ESTAR) of the tran-
sition function:

Ft(∆Ct−d; λ, r) = 1− exp(−λ(∆Ct−d − r)2) (7)

Again as in the CF-MS case, the residual variances of the specific factors
are mutually and serially uncorrelated and normally distributed with unit
variance and zero mean.
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3 Estimation

The Japanese composite economic indicators were constructed using five
monthly macroeconomic time series starting in January 1973 and ending
in January 2003. In fact, these are the series corresponding to the ”type 1
dataset” of Fukuda and Onodera (2001) who have estimated a Japanese CEI
using the linear dynamic factor model. Table 1 lists the series and gives their
description.

As a benchmark the linear CF model was used. We started with deter-
mining the optimal lag structure of this benchmark model, that is, the order
of the autoregressive polynomials of the common and specific factors. The
Akaike (AIC) and Schwartz (SBIC) information criteria were applied. The
log-likelihood values of the linear CF with different orders of autoregressive
polynomials of the common and specific factors together with the correspond-
ing Akaike and Schwartz quantities are presented in Table 2. The AIC and
SBIC come up with optimal combinations (1,3) and (1,2), respectively. We
chose the combination (1,2) as more parsimonious. It corresponds to the
common factor following AR(1) and the specific factors following AR(2).

Next, we have tested the common factor dynamics for linearity. The
alternative was the STAR-type nonlinearity. The LM-type tests based on
the third- and fourth-order Taylor expansion of the STAR transition function
around λ = 0 were conducted as in van Dijk et al. (2000). To conduct these
tests the estimated values of the common factor, obtained from the linear
CF(1,2) model, were used.

The third-order Taylor expansion of the logistic transition function results
in:

∆Ĉt = µ1 +
p∑

i=1

φ1i∆Ĉt−i +
p∑

i=1

φ2i∆Ĉt−i∆Ĉt−d +

+
p∑

i=1

φ3i∆Ĉt−i∆Ĉ2
t−d +

p∑

i=1

φ4i∆Ĉt−i∆Ĉ3
t−d (8)

where ∆Ĉt is the linear estimate of the growth rate of the common factor.
Under this condition the null hypothesis (linear CF) is as follows: φj1 =

φj2 = ... = φjp = 0 (j = 2, 3, 4). This hypothesis can be tested with F-
statistic denoted as LM3.
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In order to select between the logistic and exponential STAR specifica-
tions we use the test proposed by Escribano & Jordá (2001). This requires
estimating the fourth-order Taylor approximation:

∆Ĉt = µ1 +
p∑

i=1

φ1i∆Ĉt−i +
p∑

i=1

φ2i∆Ĉt−i∆Ĉt−d +
p∑

i=1

φ3i∆Ĉt−i∆Ĉ2
t−d +

+
p∑

i=1

φ4i∆Ĉt−i∆Ĉ3
t−d +

p∑

i=1

φ5i∆Ĉt−i∆Ĉ4
t−d (9)

The null of linearity is φj1 = φj2 = ... = φjp = 0 (j = 2, 3, 4, 5). The
corresponding test statistic has an F-distribution and is labelled as LM4.

The p-values of the tests are reported in Table 3. The null of linearity
is rejected at 5% significance level for the delay d = 4. In other words, the
STAR nonlinearity can be accepted when the transition variable is ∆Ĉt−4.
This circumstance was used to specify the CF-STAR model. The choice be-
tween LSTAR and ESTAR depends on two statistics introduced by Escrib-
ano & Jordá (2001) and denoted by LML and LME. We will not reproduce
the corresponding formulae here referring the reader instead to Escribano &
Jordá (2001). The decision rule is: if the minimum p-value corresponds to
LME, select LSTAR, otherwise select ESTAR. The Japanese data support
the hypothesis of the exponential STAR dynamics. Nevertheless, we estimate
both models for the sake of comparison of their turning points forecasting
performance.

Before estimation the data were normalized by subtracting the mean and
dividing the resulting series by the raw series’ standard deviation.

In all the nonlinear models the common factor was specified as AR(1),
whereas the specific factors as AR(2). In CF-MS only common factor’s inter-
cept is supposed to be state-dependent. In CF-LSTAR and CF-ESTAR both
the common factor’s intercept and its residual variance are assumed to be
state-dependent. The reason why we do not make the CF-MS residual vari-
ance state-dependent is because in this case the model is detecting not the
recession – expansion regimes but the low volatility – high volatility regimes
capturing the long-term volatility decline which started in 1970s. This result
we obtained when we tried to estimate the CF-MS model with both intercept
and residual variance being state dependent.

In both CF-STAR models the exponent of the transition function, Ft(∆Ct−d; λ, r),
was standardized by division by the common factor’s residual variance, σ2

ε ,
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to make the abruptness parameter λ scale-free and easier to interpret, as
suggested by Skalin & Teräsvirta (1999).

Standardized logistic transition function:

Ft(∆Ct−d; λ, r) =
1

1 + exp(−λ(∆Ct−d − r)/σε)
(10)

Standardized exponential transition function:

Ft(∆Ct−d; λ, r) = 1− exp(−λ(∆Ct−d − r)2/σ2
ε) (11)

Both models were estimated using the method of maximum likelihood.
For more details on the maximum likelihood estimation of the CF-MS model
see Kim and Nelson (1999). The procedure is easily extended to the CF-
STAR case. The parameter estimates of the linear CF, both CF-STAR mod-
els, and CF-MS model (along with their standard errors in parentheses) are
reported in Tables 4-7.

4 Evaluation

The forecasting ability of each of the models in question cannot be exam-
ined directly, since CEI is unobserved and hence we cannot test which of the
models replicates it better. Therefore the performance of the two nonlinear
models is evaluated from the viewpoint of capturing and forecasting the turn-
ing points of the business cycle. These turns are detected by the conditional
low growth regime probabilities derived from each nonlinear model. In the
CF-STAR models these probabilities are computed as 1 − Ft(∆Ct−d; λ, r),
while in the CF-MS model these are the conditional filtered and smoothed
probabilities.

In the Japanese case the issue of the reference cycle chronology is rather
ambiguous. There is one ”official” chronology published by the Economic
and Social Research Institute (ESRI). The dating decisions made by ESRI
are based on the aggregation (computing a percentage of the series in expan-
sion) of the Bry-Boschan chronologies of 11 macroeconomic variables com-
plemented by the expert judgements1. The variables used to construct the
ESRI’s reference chronology are listed in Table 8.

1The description of the ESRI’s dating methodology was kindly provided by the member
of the Institute Yasuko Ikemoto.
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There are also two chronologies (for the classical and growth cycles) pro-
vided by the Economic Cycle Research Institute (ECRI). The ECRI claims
that its classical cycle chronology is constructed in a similar way to the NBER
dating of the US business cycle. The primary indicators used by ECRI to
establish the Japanese classical cycle chronology (in line with the NBER ap-
proach) are listed in Table 8. For each of these series a set of turning points
is defined, and the ”clusters” of turns for all the series serve as the base
for establishing the overall chronology. This dating is double-checked using
the quarterly real GDP and the unemployment rate, which tends to lag at
troughs. The ECRI’s Japanese Coincident Index is also used as a guide in
case of any ambiguity2.

We are going to use both the ECRI’s classical cycle dates for Japan and
the ESRI’s turning points dates as the alternative Japanese reference cycle
chronologies. While coinciding in some instances with the ECRI’s classi-
cal cycle chronology, the latter discovers additional cycles. The dating ap-
proaches of the ECRI’s classical cycle and of the ESRI’s cycle seem to be
pretty similar and their differences are caused mainly by the differences in
their composition.

Both chronologies are shown in Table 9. In addition, we have simulated
the ESRI’s chronology up to January 2003 (columns 5-6 of Table 9), since
the official ESRI’s dates are only available until December 2001. In order
to simulate the reference dates ten out of eleven component series were used
(except for the operating income which is a quarterly series). To each of
these series the Bry-Boschan algorithm (implemented as a GAUSS code by
M.Watson) was applied. A diffusion index was constructed as a percentage
of the series in expansion. Finally, the simulated ESRI’s reference chronology
was computed using the following rule: expansion when the diffusion index
exceeds 0.5, recession otherwise. The short contraction of May-September
1995 was detected when simulating the ESRI’s procedure. However, we do
not accept it, because it does not satisfy the minimum phase duration crite-
rion (6 months) imposed in the Bry-Boschan algorithm.

The ECRI’s chronology uncovers four cycles, where the last one starting
in August 2000 is incomplete. Both the official and simulated ESRI datings
report seven cycles where the last commences in October 2000 and is in-
complete (official chronology) or starts in August 2000 and ends in January
2002 (simulated chronology). The ESRI produces much more signals than the

2This information has been provided to us by the ECRI member Anirvan Banerji.
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ECRI classical cycle chronology. The four ECRI cycles coincide, although not
perfectly — the average absolute difference for the peaks being 4.25 months
and for troughs being 3.33 months — with four of the seven ESRI cycles.
The differences between the official and simulated ESRI’s chronologies are
much less important: on average 2.14 months for peaks and 0.5 months for
troughs.

Figure 1 compares the three nonlinear models, on the one hand, with the
linear CF model, on the other hand, in terms of the behavior of the common
factor in levels. It is constructed as a partial sum of the common factor’s
growth rates, ∆Ĉt.

The profiles of the composite economic indicators constructed using the
CF-MS and CF-STAR are quite similar to that of the CEI estimated using
the linear model. Apart from the differences in the levels which are easily
explained by the nonstationary nature of Ĉt, given the way it is constructed,
the upward and downward movements of the linear indicator are readily
replicated by those of the nonlinear models.

The ECRI recessions depicted on Figure 1 by the shadowed areas corre-
spond to the periods of the prolonged declines of the CEIs. There are four
episodes of short downswings (1977, 1980, 1982, and 1986) of the CEIs which
are not coupled with the ECRI’s contractions. Another episode where the
CEIs and the ECRI’s chronology diverge is the recession of 1991-1993 where
the CEIs fell down well in advance of the outbreak of the ECRI’s contraction.

If we inspect the ESRI’s chronology, however, we will see that it recognizes
the recessions of 1977, 1980-1982 (a single longer contraction instead of two
shorter ones as suggested by the CEIs), and 1986. It also signals the start of
the 1991-1993 recessions more than one year earlier than it does ECRI.

In sum, the CEIs’ profiles seem to conform better to the ESRI’s dating
than to that of the ECRI.

The informal judgement about the ”goodness-of-fit” of these models can
be made from the visual inspection of Figures 2-3 displaying the positive
growth regime probabilities derived from the CF-STAR and CF-MS, on the
one hand, and the ECRI’s business cycle dating, on the other hand. The
shaded areas correspond to the ECRI’s recessions. In the case of CF-MS
model we dispose of the filtered and smoothed regime probabilities. The CF-
STAR regime probabilities and the CF-MS filtered regime probabilities are
the most volatile. Anyway, all the regime probabilities seem to sufficiently
accurately recognize the ECRI dates.

Figure 2 displays the negative growth regime probabilities derived from
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Figure 1: The profiles of Japanese nonlinear composite economic indicators
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the CF-LSTAR and CF-ESTAR and plotted against the ECRI’s dates rep-
resented by the shadowed areas.

The CF-ESTAR model appears to produce less false alarms than CF-
LSTAR. The CF-ESTAR derived low regime probabilities are less volatile
than those of the logistic model. CF-ESTAR correctly detects four true
recessions and does not signal any false recession, while CF-LSTAR comes
up with four true and two false contractions. Interestingly, these two ”false”
contractions are false from the point of view of ECRI but are true from the
standpoint of ESRI.

Both models announce the beginning of the 1991-1993 recession a few
months earlier than the ECRI dating but at about the same moment as the
ESRI’s dating. We have noticed this already when examining the profiles of
the linear and nonlinear CEIs. The last two completed recessions detected
by both models (1992-1993 and 1997-1998) are significantly shorter than the
reference cycle contractions.

The low growth regime (filtered and smoothed) probabilities correspond-
ing to the CF-MS are graphed on Figure 3.

Again the shadowed areas correspond to the ECRI’s chronology. The
filtered conditional probabilities of CF-MS model detect four true signals
and give one false signal in 1980, while the smoothed probabilities capture
all the true signals without any false alarms.

The CF-MS and CF-STAR conditional probabilities are relatively close
to each other, the only important difference being the recession of 1991-1993
which is much shorter according to the CF-MS model.

The formal analysis of both in-sample and out-of-sample performance of
CF-STAR and CF-MS was undertaken using the quadratic probability score
(QPS) suggested by Diebold & Rudebusch (1989). This method compares
the recession probabilities derived from some model to a generally accepted
business cycle dating.

The QPS is defined as in Layton & Katsuura (2001):

QPS =
1

T

T∑

t=1

(Pt −Dt)
2 (12)

where T is the number of observations; Pt is the model-derived probability;
Dt is the binary variable taking value of 1 during the reference cycle reces-
sions and 0 during the reference cycle expansions. QPS is limited within the
interval [0,1]. The smaller is QPS the better is the correspondence between
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Figure 2: Japanese CF-STAR low growth regime probabilities vs. ECRI dates
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Figure 3: Japanese CF-MS low growth regime probabilities vs. ECRI dates
1973:1-2002:7
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the model-derived probabilities and the ”official” business cycle chronology.
To test whether the differences in the QPS of different models are statis-

tically significant we use the Diebold-Mariano statistic proposed by Diebold
& Mariano (1994).

For the in-sample evaluation we used the conditional recession proba-
bilities — filtered probabilities Pr(low growth regime in period t|It) and
smoothed probabilities Pr(low growth regime in period t|IT ) in CF-MS, or
Pr(low growth regime in period t|∆Ct−1) in CF-STAR — estimated using
the whole sample. As the reference cycle dates we use both the ECRI and
ESRI chronologies. Here It = {∆Ct, ∆Ct−1, ..., ∆C1} is the information set
consisting of the whole history of the CEI up to the period t. However, given
that the official ESRI dates were not updated since the December 2001, to
compute the QPS we used the probabilities over 1973:1-2001:12.

The results of the comparison of in-sample forecasting performance of
the three nonlinear models are presented in Table 10. The columns 2 and 3
contain the point estimates of the QPS with respect to the ECRI and ESRI
dates, correspondingly. In the columns 4-6 the upper diagonal submatrix re-
ports the DM-statistic for ECRI chronology, while the lower diagonal matrix
reports DM-statistic for ESRI dating. The asterisks denote the statistically
significant differences in predicting accuracy. The DM-statistic is computed
by comparing the loss differentials (with respect to a binary coded refer-
ence dating) of the regime probabilities of one nonlinear model to the loss
differentials of another nonlinear model.

The ranking of different forecasting models, according to their point es-
timates of QPS, regardless of the reference cycle chronology, is as follows:
the CF-ESTAR probabilities, smoothed conditional probabilities of CF-MS
and CF-LSTAR probabilities, and finally the filtered probabilities of CF-MS.
However, when the confidence intervals are taken into account, the in-sample
performance of the filtered low growth regime probabilities derived from all
the models proves to be statistically equal. CF-ESTAR in-sample prediction
is better than that of CF-LSTAR at 10% significance level with respect to
the ESRI dating.

To compare the out-of-sample forecasting accuracy of the three nonlinear
models, the predictions with forecasting horizons ranging from 1 month to
6 months were made. The period for out-of-sample forecasting exercise was:
1998:1-2001:12.

The algorithm of the out-of-sample forecasting was the following. First,
each model was estimated for the subsample 1973:1-1997:7 and the 1-, 2-,
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..., 6-month ahead forecasts were made. Next, the estimation subsample was
augmented by one month and the forecasts were computed. The forecasting
procedure was repeated until 2001:11 was reached.

The regime probabilities of the CF-MS model were predicted using the
forecasting formula from Hamilton (1994, p. 694). The CF-STAR regime
probabilities were computed using the following two-step procedure:

F̂T+1 ≡ FT+1(∆ĈT ; λ̂, r̂) =
1

1 + exp(−λ̂(∆ĈT − r̂))
(13)

∆ĈT+1 = µ̂STAR
1 F̂T+1 + µ̂STAR

2 (1− F̂T+1) +

+
p∑

i=1

[
φ̂STAR

1i F̂t + φ̂STAR
2i (1− F̂t)

]
∆ĈT (14)

where the parameters and variables with hats are those estimated for the
period from 1 to T. Based on these data the forecasts are made for the
period covering h following months, that is, [T + 1, T + h].

In addition to the ”standard” DM-test of the differences in forecasting
accuracy, the modified DM-test suggested by Harvey et al. (1997) was ap-
plied. This test is especially designed to compare the out-of-sample prediction
records. As its authors claim, it is less over-sized than the standard DM-test
which tends to over-reject the null hypothesis of no difference in forecasting
accuracy of two models being compared. The modified DM-test (DM∗) is
related to the standard one (DM) in a following way:

DM∗ = DM

(
T + 1− 2h + T−1h(h− 1)

T

)1/2

(15)

where T is the sample size; h is the forecasting horizon. Harvey et al. (1997)
report that the best results are obtained when the critical values of the
Student’s t rather than standard normal distribution are employed. Here
we follow their recommendation when computing the p-values of modified
DM-test.

The results of testing the out-of-sample forecasting accuracy are reported
in Table 11a for the ECRI’s reference chronology and in Table 11b for the
ESRI’s reference dating. The second column contains the point estimates of
QPS. In the columns 3-5 two submatrices are displayed: the upper diagonal
submatrix reports the DM-statistic, while the lower diagonal matrix reports
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the modified DM-statistic. The asterisks denote the statistically significant
differences in predicting accuracy.

Arithmetically under both reference cycle chronologies CF-ESTAR dom-
inates both CF-MS and CF-LSTAR over all forecasting horizons. Moreover,
this dominance is statistically significant. Under ECRI’s dating CF-LSTAR
outperforms CF-MS up to 5-month horizon after which they give statisti-
cally equal results, whereas under the ESRI’s dating CF-LSTAR is always
outperforming the CF-MS.

It should be stressed that at the moment we did these estimations the
ESRI had not decided yet on the trough date of the latest contraction. On
the one hand, it means that our comparisons of the three methods over the
second subsample were subject to changes depending on the ESRI decision,
although we tried to minimize this effect by choosing for the out-of-sample
forecasting the period before December 2001. On the other hand, it is worth
noting that all the three models showed a sharp decrease in the forecast
recession probabilities about the end of 2001, thus implying that the economy
is getting out of recession. In June 6, 2003 the ESRI finally released the new
reference cycle chronology, according to which the preliminary date of the
latest trough is January 2002. This coincides exactly with our simulated
ESRI’s chronology which signals a trough in January 2002 and confirms our
prediction results.

5 Concluding remarks

In this paper we have considered three alternative nonlinear single-factor
models of the composite economic indicator: a model with Markov switching
and its two counterparts with smooth transition autoregression: CF-LSTAR
and CF-ESTAR.

The empirical analysis of these three models was conducted based on
the Japanese monthly coincident series. Both in-sample and out-of-sample
turning points forecasting abilities of the models were compared using the
quadratic probability score test: the model-derived datings were contrasted
to the ECRI’s and ESRI’s reference cycle chronologies. In the in-sample
forecasting all the models appear to give statistically equivalent results, while
the leader of the out-of-sample forecasting is undoubtedly the CF-ESTAR
model, which is immediately followed by the CF-LSTAR.

We came to more or less similar conclusions in Kholodilin (2002) where
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the US composite economic indicator is constructed using the same three
nonlinear models. In that case CF-ESTAR dominated other two models up
to 3-month out-of-sample forecasting horizon.

In addition, both CF-ESTAR and CF-LSTAR for the moment appear
to be computationally less expensive than the common factor model with
Markov switching. Hence it can be concluded that CF with smooth transition
autoregressive dynamics, especially CF-ESTAR, is a reasonable alternative
to the CF-MS model.
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6 Appendix

Table 1. The component series of Japanese composite economic indicator
Monthly data, 1973:1–2003:1

Series Short-hand Description

Index of industrial production (mining & manufacturing) IP 1995=100, SA
Index of wholesale trade sales WTS % change
Effective job offer rate (job offers / applicants) EJO times
Index of non-scheduled worked hours (manufacturing) NWN 2000=100
Large industrial power consumption LIP 106 kWh

Source: Economic and Social Research Institute, Cabinet Office, Government
of Japan (http://www.esri.cao.go.jp/en/stat/menu.html).
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Table 2. Optimal lag structure of the linear common factor model
Japanese data 1973:1-2003:1

Comb LogLik AIC SBIC

(0,0) -2420.30 -4840.60 -4840.60
(0,1) -2260.41 -4530.82 -4550.26
(0,2) -2200.21 -4420.42 -4459.31
(0,3) -2185.77 -4401.54 -4459.87
(1,0) -2275.15 -4552.30 -4556.19
(1,1) -2187.20 -4386.40 -4409.73
(1,2) -2146.79 -4315.58 -4358.36
(1,3) -2137.63 -4307.26 -4369.48
(2,0) -2274.99 -4553.98 -4561.76
(2,1) -2183.80 -4381.60 -4408.82
(2,2) -2146.11 -4316.22 -4362.89
(2,3) -2137.31 -4308.62 -4374.73
(3,0) -2268.57 -4543.14 -4554.81
(3,1) -2183.60 -4383.20 -4414.31
(3,2) -2145.78 -4317.56 -4368.12
(3,3) -2136.90 -4309.80 -4379.80

Note 1: Comb = lag combination; LogLik = value of the log-likelihood func-
tion; AIC = Akaike information criterion; SBIC = Schwartz Bayesian infor-
mation criterion.
Note 2: Bold entries stand for the minima of the corresponding information
criterion: (1,2) is the optimal lag combination according to SBIC, while (1,3)
is the optimal lag combination according to AIC.
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Table 3. Testing linearity against STAR dynamics
Japanese data 1973:1-2003:1

Delay p-value
LM3 LM4 LML LME

1 0.289 0.291 0.450 0.111
2 0.126 0.042 0.123 0.116
3 0.029 0.029 0.265 0.174
4 0.0 0.0 0.011 0.387
5 0.390 0.432 0.222 0.880
6 0.633 0.784 0.978 0.736

Note: Linearity tests: 3rd (LM3) and 4th order (LM4) Taylor approximation.
Esribano-Jordá selection tests: the null of LSTAR dynamics (LML) and the
null of ESTAR dynamics (LME)
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Table 4. Estimated parameters of linear CF model
(Japanese macroeconomic monthly data, 1973:1-2003:1)

Log-likelihood: -2146.79

∆yt =




1
0.564(0.08)

1.36(0.20)

1.67(0.13)

0.726(0.08)




∆Ct + ut

∆Ct = 0.854(0.04)∆Ct−1 + 0.056(0.01)εt

uIP
t = −0.658(0.06)u

IP
t−1 − 0.265(0.06)u

IP
t−2 + 0.532(0.05)η

IP
t

uWTS
t = −0.395(0.05)u

WTS
t−1 − 0.259(0.05)u

WTS
t−2 + 0.787(0.06)η

EJO
t

uEJO
t = 0.335(0.06)u

EJO
t−1 + 0.314(0.06)u

EJO
t−2 + 0.333(0.03)η

IP
t

uNWH
t = −0.007(0.03)u

NWH
t−1 + 0.135(0.06)u

NWH
t−2 + 0.411(0.04)η

NWH
t

uLIP
t = −0.397(0.05)u

LIP
t−1 − 0.201(0.05)u

LIP
t−2 + 0.747(0.06)η

LIP
t
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Table 5. Estimated parameters of CF-LSTAR model with delay d=4
(Japanese macroeconomic monthly data, 1973:1-2003:1)

Log-likelihood: -2101.97

∆yt =




1
0.507(0.08)

1.15(0.19)

1.97(0.13)

0.710(0.09)




∆Ct + ut

∆Ct = 0.010(0.011)Ft − 0.051(0.09)(1− Ft) + 0.823(0.04)∆Ct−1 +[
0.026(0.01)Ft + 0.238(0.08)(1− Ft)

]
εt

Ft =
1

1 + exp(−5.2(∆Ct−4 + 0.38))

uIP
t = −0.572(0.06)u

IP
t−1 − 0.179(0.06)u

IP
t−2 + 0.608(0.05)η

IP
t

uWTS
t = −0.360(0.05)u

WTS
t−1 − 0.227(0.05)u

WTS
t−2 + 0.832(0.06)η

EJO
t

uEJO
t = 0.380(0.05)u

EJO
t−1 + 0.325(0.05)u

EJO
t−2 + 0.347(0.03)η

IP
t

uNWH
t = −0.384(0.11)u

NWH
t−1 − 0.116(0.09)u

NWH
t−2 + 0.244(0.04)η

NWH
t

uLIP
t = −0.360(0.05)u

LIP
t−1 − 0.174(0.05)u

LIP
t−2 + 0.787(0.06)η

LIP
t
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Table 6. Estimated parameters of CF-ESTAR model with delay d=4
(Japanese macroeconomic monthly data, 1973:1-2003:1)

Log-likelihood: -2110.08

∆yt =




1
0.486(0.08)

1.05(0.19)

2.02(0.14)

0.710(0.09)




∆Ct + ut

∆Ct = 0.013(0.01)Ft − 0.066(0.10)(1− Ft) + 0.782(0.05)∆Ct−1 +[
0.034(0.01)Ft + 0.238(0.10)(1− Ft)

]
εt

Ft(∆Ct−d; λ, r) = 1− exp(−0.28(∆Ct−d + 0.90)2)

uIP
t = −0.557(0.06)u

IP
t−1 − 0.161(0.06)u

IP
t−2 + 0.620(0.05)η

IP
t

uWTS
t = −0.352(0.05)u

WTS
t−1 − 0.221(0.05)u

WTS
t−2 + 0.842(0.06)η

EJO
t

uEJO
t = 0.396(0.05)u

EJO
t−1 + 0.327(0.05)u

EJO
t−2 + 0.352(0.03)η

IP
t

uNWH
t = −0.498(0.13)u

NWH
t−1 − 0.196(0.09)u

NWH
t−2 + 0.192(0.04)η

NWH
t

uLIP
t = −0.356(0.05)u

LIP
t−1 − 0.164(0.05)u

LIP
t−2 + 0.792(0.06)η

LIP
t
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Table 7. Estimated parameters of CF-MS model
(Japanese macroeconomic monthly data, 1973:1-2003:1)

Log-likelihood: -2141.76

∆yt =




1
0.559(0.07)

1.31(0.21)

1.64(0.13)

0.713(0.08)




∆Ct + ut

∆Ct = 0.039(0.02)st − 0.321(0.08)(1− st) + 0.726(0.08)∆Ct−1 + 0.051(0.05)εt

π =

(
0.983(0.01) 0.15(0.08)

0.017 0.85

)

uIP
t = −0.678(0.06)u

IP
t−1 − 0.283(0.06)u

IP
t−2 + 0.516(0.05)η

IP
t

uWTS
t = −0.396(0.05)u

WTS
t−1 − 0.260(0.05)u

WTS
t−2 + 0.786(0.06)η

EJO
t

uEJO
t = 0.337(0.06)u

EJO
t−1 + 0.317(0.06)u

EJO
t−2 + 0.334(0.03)η

IP
t

uNWH
t = 0.012(0.03)u

NWH
t−1 + 0.158(0.07)u

NWH
t−2 + 0.414(0.04)η

NWH
t

uLIP
t = −0.392(0.05)u

LIP
t−1 − 0.196(0.05)u

LIP
t−2 + 0.751(0.06)η

LIP
t
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Table 8. Time series used to establish the Japanese reference cycle
chronology

ECRI ESRI

Industrial production Production index (mining and manufacturing)

Employment Industrial goods shipment index (mining and manufactur-

ing)

Real earnings Electric power consumption of large users

Real retail sales Capacity utilization index (manufacturing industry)

Overtime working hours index (manufacturing industry)

Producer index level of investment good shipments (exclud-

ing transport machinery)

Department store sales (year-on-year)

Commercial sales index (wholesale business) (year-on-year)

Operating income (all industries)

Small business sales (manufacturing industry)

Effective job offer ratio (excluding new university gradu-

ates)

Table 9. Alternative Japanese reference cycle chronologies

ECRI classical cycle ESRI chronology Simulated ESRI chronology
Peak Trough Peak Trough Peak Trough

Nov-73 Feb-75 Nov-73 Mar-75 Nov-73 Mar-75
Jan-77 Oct-77 Jan-77 Oct-77
Feb-80 Feb-83 Feb-80 Feb-83
Jun-85 Nov-86 Nov-84 Nov-86

Apr-92 Feb-94 Feb-91 Oct-93 Oct-90 Jan-94
Mar-97 Jul-99 May-97 Jan-99 Mar-97 Jan-99
Aug-00 Oct-00 Aug-00 Jan-02
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Table 10. In-sample performance of the nonlinear models for Japanese data
in 1973:2-2001:12 with respect to ECRI’s classical cycle

and ESRI’s reference cycle dates

Model QPS DM-statistic
ECRI ESRI LSTAR ESTAR MSf MSs

LSTAR 0.144 0.296 1.28 0.812 0.0137
ESTAR 0.127 0.270 1.74* 1.08 0.451
MSf 0.158 0.305 0.483 1.22 0.957
MSs 0.144 0.293 0.123 0.648 0.736

Note 1: QPS = quadratic probability score; DM = Diebold-Mariano statistic
Note 2: MSf = filtered probabilities of CF-MS; MSs = smoothed probabilities
of CF-MS
Note 3: * forecasting accuracy difference is significant at 5% level
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Table 11a. Out-of-sample forecasting performance of CF-MS and CF-STAR
models for Japanese data

ECRI’s reference dating. Forecasting sample 1998:1-2001:12
Model QPS DM / modified DM

MS LSTAR ESTAR
Forecasting horizon: 1 month

MS 0.581 2.13** 2.19**
LSTAR 0.422 2.1** 0.488
ESTAR 0.406 2.16** 0.482

Forecasting horizon: 2 months
MS 0.603 1.99** 2.19**

LSTAR 0.463 1.93** 1.25
ESTAR 0.422 2.12** 1.21

Forecasting horizon: 3 months
MS 0.623 1.84** 2.09**

LSTAR 0.502 1.74** 1.71**
ESTAR 0.444 1.98** 1.62*

Forecasting horizon: 4 months
MS 0.641 1.60* 1.93**

LSTAR 0.541 1.48* 1.90**
ESTAR 0.471 1.79** 1.76**

Forecasting horizon: 5 months
MS 0.647 1.39* 1.75

LSTAR 0.562 1.26 1.88**
ESTAR 0.492 1.59* 1.70**

Forecasting horizon: 6 months
MS 0.652 1.30* 1.62*

LSTAR 0.571 1.16 1.71**
ESTAR 0.509 1.43* 1.51*

QPS = quadratic probability score; DM = Diebold-Mariano statistic; modified DM = modified Diebold-
Mariano statistic

* forecasting accuracy difference is significant at 10% level, ** significant at 5% level
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Table 11b. Out-of-sample forecasting performance of CF-MS and CF-STAR
models for Japanese data

ESRI’s reference dating. Forecasting sample 1998:1-2001:12
Model QPS DM / modified DM

MS LSTAR ESTAR
Forecasting horizon: 1 month

MS 0.419 2.21** 2.27**
LSTAR 0.255 2.19** 0.481
ESTAR 0.240 2.24** 0.476

Forecasting horizon: 2 months
MS 0.442 2.12** 2.30**

LSTAR 0.296 2.05** 1.25
ESTAR 0.255 2.23** 1.21

Forecasting horizon: 3 months
MS 0.465 2.03** 2.20**

LSTAR 0.335 1.92** 1.66**
ESTAR 0.279 2.09** 1.57*

Forecasting horizon: 4 months
MS 0.483 1.80** 2.06**

LSTAR 0.375 1.67* 1.88**
ESTAR 0.305 1.91** 1.74**

Forecasting horizon: 5 months
MS 0.490 1.60* 1.89**

LSTAR 0.395 1.45* 1.87**
ESTAR 0.325 1.72** 1.70**

Forecasting horizon: 6 months
MS 0.496 1.52* 1.71**

LSTAR 0.405 1.35* 1.79**
ESTAR 0.350 1.52* 1.59*

QPS = quadratic probability score; DM = Diebold-Mariano statistic; modified DM = modified Diebold-
Mariano statistic

* forecasting accuracy difference is significant at 10% level, ** significant at 5% level
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