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Abstract

In a financial market with one riskless asset and n risky assets following
geometric Brownian motions, we solve the problem of a pension fund max-
imizing the expected CRRA utility of its terminal wealth. By considering
a stochastic death time for a subscriber, we solve a unique problem for
both accumulation and decumulation phases. We show that the optimal
asset allocation during these two phases must be different. In particular,
during the first phase the investment in the risky assets should decrease
through time to meet future contractual pension payments while, during
the second phase, the risky investment should increase through time be-
cause of closeness of death time. Our findings also suggest that it is not
optimal to manage the two phases separately.
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1 Introduction
In this work we analyse optimal asset allocation by a pension fund which max-
imizes the expected utility of its final wealth. Unlike the analyses studying the
problem of a non-actuarial institutional investor (a general framework can be
found in Menoncin, 2002), the case of a pension fund requires the introduction
of two new characteristics: (i) the different behaviour of the fund wealth dur-
ing the accumulation and the decumulation phases (hereafter, APh and DPh,
respectively), and (ii) the mortality risk. We want to develop a set up aimed
at finding out how and how much this mortality risk affects the optimal asset
allocation.
The existing literature dealing with the asset allocation problem for a pension

fund, completely neglects the mortality risk and partially takes into account the
problem of distinguishing the accumulation and the decumulation phases. In
particular, Boulier, Huang, and Taillard (2001), and Battocchio and Menoncin
(2002) just deal with the investment problem during the APh while Blake,
Cairns, and Dowd (2000) take into account only the distribution phase. Instead,
the only literature explicitly taking into account the mortality risk problem is
the actuarial literature (see, e.g., Young and Zariphopoulou, 2002a,b for optimal
asset allocation under an exponentially distributed investment horizon).
The only work, at least at our knowledge, which considers both the mor-

tality risk and the difference between the APh and the DPh is the paper by
Charupat and Milevsky (2002). They analyse the interaction between financial
risk, mortality risk, and consumption towards the end of the life cycle. Their
main result is that for constant relative risk aversion (CRRA) preferences and
geometric Brownian motion dynamics, the optimal asset allocation during the
DPh is identical to the APh, which is the classical Merton’s (1971) solution.
Nevertheless, they solve two different problems: (i) they maximize, for the fund
manager, the expected utility of fund terminal wealth during the APh, and (ii)
they find, for the consumer-investor, the optimal consumption-portfolio during
the DPh. In their setting it is up to the consumer to choose how to allocate his
wealth after the accumulation phase.
In this paper, instead, we want to present the case of a pension fund which

manages the investor’s wealth during both phases. Thus, during the APh,
the fund wealth increases because of the contributions paid by the subscriber
while, during the DPh, it decreases because of the pension paid by the fund.
Thus, we suppose there is no choice at the retirement date but to receive a
pension until the death time (τ). Here, we suppose τ to be stochastic and, in
particular, we find a closed form solution to the asset allocation problem when
it is exponentially distributed while we show an approximated solution when it
is distributed according to a Weibull random variable.
Even if we take into account the simple framework after Charupat and

Milevsky (2002) with geometric Brownian motion and a CRRA utility function,
we show that their result is not robust. In fact, after solving a unique problem
for the optimal asset allocation during the whole life of the fund, we find two
different portfolio compositions during the APh and the DPh. More precisely,

1



we find that during the APh the amount of wealth invested in the risky assets
must decrease through time while, after the retirement date, it must (rapidly)
increase.
As we have already highlighted, the risk aversion of the pension fund we take

into account is described by a CRRA utility function. Nevertheless, in order
to take into account the engagement of the fund to provide the subscriber with
a (constant) pension rate, we use the so-called “state-dependent” preferences
(see, e.g. Merton, 1990, Section 6.4). In particular, we suppose that during the
APh the fund can obtain some utility only from the “new” wealth it is able to
create thanks to its investment strategy, without obtaining any utility from the
contributions paid by the subscriber. In fact, these contributions will have to
be paid back to the subscriber as pensions.
For the sake of simplicity, in our model we keep constant the contribution and

the pension rates and we compute a feasibility (equilibrium) condition on them
for making it convenient to subscribe the contract both for a pension fund and
for a worker. This equilibrium condition has already been used in the literature
about the pension funds (see, e.g. Josa-Fombellida and Rincón-Zapatero, 2001).
Through this work we consider agents trading continuously in a frictionless,

arbitrage-free market. Furthermore, we do not need the hypothesis of complete-
ness for the financial market.
The paper is structured as follows. The framework is outlined in Section 2.

First we describe the financial market. Then we compute the feasibility condi-
tion on the contribution and pension rates when the death time follows a Weibull
distribution. Eventually we present the state-dependent utility underlying the
financial decision problem. In Section 3 we compute the optimal portfolio and
discuss the main practical implications of our results for the management of a
pension fund. Section 4 concludes.

2 The model
We consider a financial market where there exist n risky assets and one riskless
asset paying a constant interest rate r, whose dynamics are described by:

dS
n×1

= IS
n×n

µ
µdt
n×1

+ Σ0
n×k

dW
k×1

¶
, dG = Grdt,

where IS is a square diagonal matrix containing the elements of vector S andW
is a k−dimensional Wiener process. Both µ and Σ are supposed to be constant.
The fund wealth process R is then equal to

R = θ0S + θ0G,

where θ and θ0 are the number of risky asset and the number of riskless asset
held, respectively. Its associated SDE is simply:

dR = θ0dS + θ0dG+ dθ
0 (S + dS) +Gdθ0.
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The self-financing condition implies that the two last terms must be equated
to zero or, when consumption is considered, must finance the consumption rate.
In the case of a pension fund, the self-financing condition must ensure that the
changes in portfolio composition (the two last terms) must: (i) be financed by
the subscribers’ contributions rate u (t) during the accumulation phase, and (ii)
finance the pension rate v (t) paid to the subscribers during the decumulation
phase. For the sake of simplicity, in what follows we suppose both u and v to
be constant.
Let T indicate the (deterministic) date at which the subscriber retires, and

let

φ (t) =

½
1, if t ≤ T,
0, if t > T.

Accordingly, the dynamic budget constraint can be written as

dR = (Rr + w0M + k) dt+ w0Σ0dW, (1)

where1

M ≡ (µ− r1) , w ≡ ISθ,
k = uφ− v (1− φ) , (2)

and 1 is a vector of 1s.
In Charupat and Milevsky (2002) each dollar of new income flowing into

the fund (u) is allocated separately and treated as a new problem. Thus, they
completely neglect the role of u during the APh and they solve for u = 0. In
our approach, instead, we treat u as a planned flow which the fund manager
can rely on. Furthermore, as Merton (1990, Section 5.7) underlines, it is not
necessary to treat the new financial flows (u) as they could be borrowed against,
since the investor behaves “as if” this would be true.

2.1 The feasibility condition

The constant level of the contribution and the pension rates (u and v respec-
tively) cannot be both freely chosen by the fund. Here, we take into account
the case of a pension fund letting its subscribers choose the (constant) con-
tribution rate (u) they prefer. The (constant) pension rate (v) is accordingly
chosen. In particular, we know that, at time t = 0, from the point of view of the
subscriber (pension fund), the expected present value of all pensions cannot be
lower (higher) than the expected present value of all payments. Thus, we just
equate the expected present value of pensions and payments by putting

Eτ0
·Z τ

0

k (s) e−rsds
¸
= 0.

1We underline that w ∈ Rn×1 contains the amount of money invested in each risky asset.
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This condition can be transformed into a condition on the ratio v/u by
substituting the expression for k in (2):

u

v
=

Eτ0
£R τ
0
e−rsds

¤
Eτ0
£R τ
0
φ (s) e−rsds

¤ − 1.
Now, since we can writeZ τ

0

e−rsds =
1− e−rτ

r
,Z τ

0

φ (s) e−rsds =

( R τ
0
φ (s) e−rsds =

R τ
0
e−rsds = 1−e−rτ

r , τ < T,R τ
0
φ (s) e−rsds =

R T
0
e−rsds = 1−e−rT

r , τ ≥ T,

we have

Eτ0
·Z τ

0

e−rsds
¸
=
1

r
− 1
r
Eτ0
£
e−rτ

¤
,

Eτ0
·Z τ

0

φ (s) e−rsds
¸
=

Z T

0

1− e−rτ
r

f (τ) dτ +

Z ∞
T

1− e−rT
r

f (τ) dτ

=
1

r
P (τ < T )− 1

r

Z T

0

e−rτf (τ) dτ +
1− e−rT

r
P (τ ≥ T )

=
1

r
− 1
r

Z T

0

e−rτf (τ) dτ − 1
r
e−rTP (τ ≥ T ) ,

and a feasible ratio u/v can finally be written under the following form where
IA is the indicator function for the event A.

Definition 1 A pair of contribution and pension rates (u, v) is said to be fea-
sible if

u

v
=

1− Eτ0 [e−rτ ]
1− Eτ0 [e−rτ Iτ<T ]− e−rTP (τ ≥ T )

− 1, u, v > 0. (3)

Let us remark that the event “death”, happening in τ , can sometimes be af-
fected by a series of explanatory variables. In particular, we are referring to the
so-called “proportional hazard rate model” used in statistical analysis of tran-
sition data. Fortunately the form of the feasible ratio u/v remains unchanged,
and we only need to compute the probability and expected values condition-
ally to the realization of the explanatory variables in (3) to accommodate this
situation.
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Figure 1: Expected time of death for the Weibull distribution

2.1.1 The Weibull distribution

Here, we explicitly compute the feasibility condition (3) by supposing that the
death time τ follows the Weibull distribution, whose probability density function
is given by

f (τ) = αβ (ατ)
β−1

e−(ατ)
β

,

where α > 0, β > 0. The case of the exponential distribution turns out to be a
particular case of the Weibull distribution when β = 1. The Weibull distribution
represents one of the most widely used model in survival analysis. The expected
time of death has the following form:2Z ∞

0

τf (τ) dτ =
1

α
Γ

µ
1 + β

β

¶
,

whose behaviour is shown in Fig. 1. We see that if parameter α belongs to
[0.01, 0.04] then the expected death time goes from a value close to 20 to a
value close to 100 years. For the numerical simulations that follow we will
always consider values of β belonging to [1, 2].

2We indicate with Γ (t) the Gamma function having the following form:

Γ (t) =

Z ∞
0

e−xxt−1dx.
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The probability that τ is greater than T is easy to compute:

P (τ ≥ T ) =
Z ∞
T

αβ (ατ)β−1 e−(ατ)
β

dτ = e−(αT )
β

,

while the expected value in the numerator of (3) is as follows:

Eτ0
£
e−rτ

¤
=

Z ∞
0

e−rταβ (ατ)β−1 e−(ατ)
β

dτ =

Z 1

0

e−
r
α (− ln y)

1
β
dy,

where we have used the change of variable y = e−(ατ)
β

. Since this integral does
not admit an algebraic solution, we may propose an approximation. Indeed we
know the exact solution for the exponential case, i.e. when β = 1, and we may
then think of approximating the integral via a Taylor expansion around β = 1:

Eτ0
£
e−rτ

¤ ∼= β
α

r + α
+ (β − 1) α

(r + α)2

µ
r ln

α

r + α
− rγ − α

¶
,

where γ is the Euler constant.3 The first term of the above expression obviously
coincides with the explicit solution given by the exponential case. Slightly more
tedious computation are required for Eτ0 [e−rτ Iτ<T ]:Z T

0

e−rτf (τ) dτ ∼= βα
1− e−T (r+α)

r + α
+ (β − 1) α

(r + α)2

µ
r ln

α

r + α
− rγ − α

¶
+ (β − 1) α

(r + α)2
e−(r+α)T

¡
ln (αT )

¡−r + rαT + α2T
¢
+ α

¢
+ (β − 1) α

(r + α)
2 r

Z −T (r+α)
−∞

1

x
exdx.

Note that the integral of the last term can be neglected for sufficiently high
values of T . Hence, after plugging these closed-form approximations into the
feasible condition (3), we obtain the results presented in Table 1 for several
values of α, β, T , and r.
Even if the approximation has been computed for β tending to 1, from

Table 1 we can see that it remains good while β is far from 1. Furthermore,
the approximated values seem to behave quite well even for closer time horizons
(T = 20). Accordingly, we can easily show how the ratio u/v behaves with
respect to the actuarial parameters α and β just by plotting the graphs of the
approximated ratio. These graphs are shown in Fig. 2, where three different
values of T and r are chosen. The first column of Fig. 2 shows the behaviour of
u/v for T ∈ {20, 30, 50}, while the second column analyses how u/v changes for
r ∈ {0.01, 0.03, 0.05}. The values of α and β belong to [0.012, 0.016] and [1, 2],
respectively.
In particular, we highlight the following results:
3We recall

γ = lim
n→∞

Ã
nX

m=1

1

m
− lnn

!
.
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Figure 2: Feasible ratio u/v|β→1
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Table 1: Approximation of the feasible ratio
r α β T u/v u/v|β→1
0.02 0.01 1.5 50 0.2747 0.2826
0.02 0.01 1.5 30 0.6971 0.7376
0.02 0.01 1.5 20 1.2677 1.4399
0.02 0.01 1.3 50 0.2775 0.2863
0.02 0.01 1.7 50 0.2738 0.2769
0.02 0.01 1.9 50 0.2741 0.2693
0.02 0.005 1.5 50 0.4289 0.4236
0.02 0.008 1.5 50 0.3302 0.3343
0.02 0.02 1.5 50 0.1039 0.1051
0.01 0.01 1.5 50 0.5125 0.5801
0.03 0.01 1.5 50 0.1559 0.1555
0.04 0.01 1.5 50 0.0913 0.0898

1. when the time horizon T is sufficiently far away, the ratio u/v is decreasing
with respect to both α and β. What changes is just the level of u/v
which inversely depends on the interest rate r. In fact, when the riskless
interest rate increases (decreases) it is easier (more difficult) to meet future
payments and the pension fund can ask for a lower (higher) contribution
rate;

2. when the pension horizon T is small, the ratio u/v is still decreasing with
respect to α and presents a maximum for a given value of β. For better
understanding this result, we recall that the hazard function for a Weibull
distribution is given by αβ (ατ)

β−1. So, when the hazard rate increases
(i.e. a near death is more likely) the contribution rate can decrease and
vice-versa. Furthermore, while the hazard function is always increasing in
α,4 it is increasing in β for β < − (ln (ατ))−1;5

3. the longer the pension horizon T the lower the ratio u/v. In fact, the
pension fund can ask for lower (higher) contribution rates when these
contributions are paid for a long (short) period of time;

4. the shape of u/v is not affected by the changes in r. The interest rate only
affects the level of u/v without altering its behaviour with respect to the
other parameters.

4 In fact, we have
∂

∂α

³
αβ (ατ)β−1

´
= β2 (ατ)β−1 .

5 In fact, the derivative

∂

∂β

³
αβ (ατ)β−1

´
= α (ατ)β−1 (1 + β ln (ατ))

is positive when β ln (ατ) > −1. Now, since ατ is generally lower then 1, the inequality
becomes β < − (ln (ατ))−1.
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2.2 The objective function

Since a pension fund does not consider any consumption problem, then it is
just supposed to maximize the expected utility of its final wealth. Thus, the
optimization problem can be written as

max
w
Eτ0 [U (R (τ) , τ)] ,

subject to the dynamic constraint (1) and where U (•) is an increasing and
concave function. Since the mortality risk is assumed to be independent of the
financial risk, we can write the maximization problem as follows:

max
w
E0 [Eτ0 [U (R (τ) , τ)]] = max

w
E0
·Z ∞

0

f (t)U (R (t) , t) dt

¸
, (4)

under the same dynamic constraint (1).
Now, we need to define the utility function U (•). The most widely used

utility function in the literature is the CRRA function of the form U (R) = 1
δR

δ.
Here, we use such a function with a little modification due to the specific nature
of the pension fund problem. When the pension fund receives the contributions,
it cannot obtain any utility from them since it will have to pay them back as
pensions. Thus, the argument of the utility function we consider here is the
wealth R diminished by the received contributions (during the accumulation
phase) and augmented by the paid pensions (during the decumulation phase).
In fact, when the pensions are paid, the corresponding amounts of money are
freed and the pension can obtain some utility from them.
Accordingly, we define the utility function as follows:

U (R, t) =
1

δ

µ
R (t)−

Z t

0

k (s) e−r(s−t)ds
¶δ
,

where the function k (s) is as in (2). This approach is widely used in the litera-
ture (see Merton, 1990, Section 6.4) and the utility function we have supposed is
known as “state-dependent” utility. In order to have an increasing and concave
utility function the parameter δ must be less than one.

3 The optimal portfolio
After what we have presented in the previous section, the asset allocation prob-
lem for a pension fund can be written as

maxw E0
·R∞
0
f (t) 1δ

³
R (t)− R t

0
k (s) e−r(s−t)ds

´δ
dt

¸
,

with dR = (Rr + w0M + k) dt+ w0Σ0dW,
and R (0) = R0.

(5)

9



The Hamiltonian for this problem is

H = f (t)
1

δ

µ
R (t)−

Z t

0

k (s) e−r(s−t)ds
¶δ
+JR (Rr + w

0M + k)+
1

2
JRRw

0Σ0Σw,

from which we have the set of first order conditions6

∂H
∂w

= JRM + JRRΣ
0Σw = 0⇒ w∗ = − JR

JRR
(Σ0Σ)−1M,

where J (R, t) is the value function solving the maximization problem and the
subscripts indicate the partial derivatives of J . The HJB equation is

0 = Jt + f (t)
1

δ

µ
R (t)−

Z t

0

k (s) e−r(s−t)ds
¶δ
+ JR (Rr + k)− 1

2

J2R
JRR

ξ0ξ,

where ξ ≡ Σ (Σ0Σ)−1M . For the value function, we try the form J (R, t) =
g (t) f (t)U (R, t) where g (t) must be determined. So, after substituting this
form into the HJB equation and carrying out some simplifications, we obtain
that g (t) must satisfy

∂g

∂t
+

∂f (t)

∂t

1

f (t)
g (t) + 1 + rδg (t) +

1

2
g (t)

δ

1− δ
ξ0ξ = 0,

whose boundary condition must guarantee the convergence of J (R, t) when t
tends to infinity. The precise form of function g (t) is not important for com-
puting the optimal portfolio composition. The inverse of the Arrow-Pratt risk
aversion index computed on J (R, t), in fact, does not depend on g (t). So, we
can finally write what follows.

Proposition 2 The optimal portfolio composition solving Problem (5) is given
by

w∗ = w∗R + w
∗
u + w

∗
v , (6)

where

w∗R ≡
1

1− δ
R (Σ0Σ)−1M,

w∗u ≡ −
1

1− δ
u

µZ t

0

φ (s) e−r(s−t)ds
¶
(Σ0Σ)−1M,

w∗v ≡
1

1− δ
v

µZ t

0

(1− φ (s)) e−r(s−t)ds
¶
(Σ0Σ)−1M,

and u and v must verify (3).
6The first order conditions are necessary and sufficient because the objective function is

strictly concave in R.
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The first component w∗R depends on the wealth level but not (explicitly) on
time, w∗u depends on the contribution rate and w∗v depends on the pension rate.
We underline that the component we have called w∗R coincides with Merton’s
portfolio.
It is interesting to stress that the actuarial risk enters the optimal portfolio

via the link that exists between u and v in the feasible condition (3). When
this link is not considered, as in Charupat and Milevsky (2002), the portfolio
composition is independent of the mortality risk.
Furthermore, it is important to stress that the optimal portfolio allocation

in (6) does depend on the wealth level R (t). Thus, it is not optimal to manage
the accumulation and the decumulation phases separately and our model sug-
gests to commit the management of the whole investment period to the same
institutional investor.
The function φ (t) can be eliminated from (6) by considering separately the

two following cases (in both cases w∗R is the same):

1. t ≤ T , we are in the APh and the components of the optimal portfolio are

w∗u ≡ −
1

1− δ

u

r

¡
ert − 1¢ (Σ0Σ)−1M, (7)

w∗v ≡ 0, (8)

2. t > T , we are in the DPh and we have

w∗u ≡ −
1

1− δ

u

r
ert
¡
1− e−rT ¢ (Σ0Σ)−1M, (9)

w∗v ≡
1

1− δ

v

r

³
er(t−T ) − 1

´
(Σ0Σ)−1M. (10)

All stated results can be easily traced back to Merton’s model by putting
u = v = 0. In this case w∗u = w

∗
v = 0. During the accumulation phase (t ≤ T ),

it is easy to check that w∗u in (7) contains only negative numbers. Indeed
δ < 1, Σ0Σ > 0 by construction, M > 0 to preclude arbitrage,7 and ert > 1.
Thus, the optimal portfolio during the accumulation phase contains less risky
assets than the optimal portfolio in the Merton’s case. Furthermore, we can see
that the vector w∗v contains only positive elements (we recall that during the
decumulation phase t > T ). So, the behaviour of the optimal portfolio can be
summarized as in the following corollary.

Corollary 3 During the accumulation phase (t < T ) the amount of wealth in-
vested in the risky assets decreases through time, while during the decumulation
phase (t > T ) it increases.

7The returns of the risky assets must be greater than the riskless rate. If this was not true,
all investors would buy the riskless asset.
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Figure 3: Behaviour of the function χ (t)

The behaviour described in this corollary can be seen in Fig. 3 where we
have plotted the following function which appears in (7)-(8) and (9)-(10):

χ (t) =

½ −ur (ert − 1) , if t ≤ T
−ur ert

¡
1− e−rT ¢+ v

r

¡
er(t−T ) − 1¢ , if t > T

and where we have put T = 30, r = 0.02, and u = 1. While t is lower than
the pension time T , the amount of money invested in the risky assets decreases.
It begins increasing when t becomes higher than T . Furthermore, the higher
the pension rate v, the sharper the increase in the risky profile of the optimal
portfolio. The behaviour during the accumulation phase confirms the results
after Boulier, Huang, and Taillard (2001) and Battocchio and Menoncin (2002).
In the deterministic case, that is to say when the subscriber of the fund

never dies (i.e. α → 0), then the feasibility condition becomes v = u
¡
erT − 1¢

and the optimal portfolio can be written as follows:

w∗ =
1

1− δ

³
R− u

r

³
ermin(t,T ) − 1

´´
(Σ0Σ)−1M.

In this case, during the accumulation phase (t < T ) the optimal portfolio
has the same behaviour as in the case of a “mortal” subscriber. Instead, during
the decumulation phase (t > T ) the component w∗u+w

∗
v of the optimal portfolio

becomes constant through time and remains negative. This leads to a different
behaviour than the one plotted in Fig. 3. In particular, since the subscriber
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never dies, we cannot increase the riskiness of the optimal portfolio after the
date T .

4 Conclusion
In this paper we have solved the asset allocation problem for a pension fund.
The structure of the financial market is as follows: (i) there are n risky assets,
following geometric Brownian motions, (ii) there exists a riskless asset paying a
constant interest rate, and (iii) the market is not necessarily complete. Further-
more, the fund is supposed to have a state-dependent CRRA utility function.
We analyse the portfolio problem during both the accumulation and the de-

cumulation phases when the death time of the subscriber is a stochastic variable
(following a Weibull distribution). The contribution and the pension rates are
supposed to be constant.
We show that the optimal asset allocation during the accumulation phase

(APh) is different from the one during the decumulation phase (DPh). In partic-
ular, during the APh the investment in the risky assets should decrease through
time for allowing the fund to guarantee the payment of the (constant) pen-
sion rate during the DPh. Instead, during the second phase when the pension
is paid, the risky investment should increase through time. In fact, since the
death of the subscriber becomes more and more likely, the remaining wealth can
be invested in riskier and riskier portfolio allocation.
Finally, since the optimal asset allocation depends on the level of fund wealth,

our model suggests that it is not optimal to manage the APh and the DPh
separately. This is in agreement with conventional industry practice.
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