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Abstract

We consider a stochastic model for a defined-contribution pension fund in
continuous time. In particular, we focus on the portfolio problem of a fund
manager who wants to maximize the expected utility of his terminal wealth
in a complete financial market. The fund manager must cope with a set of
stochastic investment opportunities and with the uncertainty involved by the
labor market. After introducing a stochastic interest rate, we assume a market
structure characterized by three assets: a riskless asset, a bond and a stock.
Moreover, we introduce a stochastic process for salaries, and develop the model
according to the stochastic dynamic programming methodology.

We show that the optimal portfolio is formed by three components: a specu-
lative component proportional to the market price of risk of the two risky assets
through the relative risk aversion index, an hedging component proportional to
the diffusion term of the interest rate, and a preference-free hedging component
proportional to the volatilities of the salary process. Finally, after specifying a
suitable functional form for the drift term of the salary process, we find a close
form solution to the asset allocation problem.
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1 Introduction

There are two extremely different ways to manage a pension fund. On one hand, we
find defined-benefit plans (DB), where benefits are fixed in advance by the sponsor
and contributions are initially set and subsequently adjusted in order to maintain
the fund in balance. On the other hand, there are defined-contribution plans (DC),
where contributions are fixed and benefits depend on the returns on fund’s portfo-
lio. However, DC plans allow contributors to know, at each time, the value of their
retirement accounts. Historically, fund managers have mainly proposed DB plans,
which are definitely preferred by workers. In fact, in the case of DB plans, the asso-
ciated financial risks are supported by the plan sponsor rather than the individual
member of the plan. Nowadays, most of the pension plans proposed are based on
DC schemes, which involve a considerable transfer of risks to workers. Accordingly,
DC pension funds provide contributors with a service of saving management, with-
out guaranteeing any minimum performance. As we have already highlighted, only
contributions are fixed in advance, while the final retirement account depends funda-
mentally on the administrative and financial skill of the fund manager. Thereafter,
an efficient financial management is essential to gain contributors’ trust.

The goal of the fund manager is to invest the accumulated wealth in order to
optimize the expected value of a suitable terminal utility function. The classical
dynamic optimization model, initially proposed by Merton (1971), assumes a market
structure with constant interest rates. In the case of pension funds, the optimal
asset-allocation problem involves a quite long period, generally from 20 to 40 years.
It follows that the assumption of constant interest rates is not good for our purpose.
Moreover, the benefits proposed by DC pension plans require often the specification
of the stochastic behavior of other variables, such as salaries. Thus, the fund manager
must cope not only with financial risks, but also with background risks, where by
”financial risk” we mean the risk involved by financial markets, and by ”background
risk” we mean all the risks outside the financial markets (e.g. salary and inflation).

Merton (1969,1971,1990), Duffie (1996), Karatzas and Shreve (1998) provide
general treatments of optimal portfolio choice in continuous-time. The optimal
portfolio problem becomes more and more complex when we allow for background
risks. At this regard, it is important to distinguish between two different classes of
background risks: the ”level” background risks and the ”ratio” background risks.
The first set of risk affects the amount of wealth which can be invested, while the
second set of risk affects only the wealth growth rate. In this work, we consider only
a scalar dimensional ”level” background risk given by the shareholder’s salary.

In this work, we consider a stochastic model for pension fund dynamics in contin-
uous time. We assume a financial market with stochastic interest rates and consisting
in three assets: a riskless asset, a stock and a bond, which can be bought and sold
without incurring any transaction costs or restriction on short sales. More precisely,
we study an optimal investment problem related to the accumulation phase of a
defined-contribution pension fund. We consider the case of a shareholder who, at
each period t ∈ [0, T ], contributes a constant proportion of his salary to a personal
pension fund. At the time of retirement T , the accumulated pension fund will be
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converted into an annuity. Similar models have been presented recently by Blake,
Cairns, and Dowd (2000), Boulier, Huang, and Taillard (1999), and Deelstra, Gras-
selli, and Koehl (2001). Especially, Blake et al. (2000) assume a stochastic process
for salaries including a non-hedgeable risk component and focus on the replacement
ratio as the central quantity of interest. Boulier et al. (1999) assume a determin-
istic process for salaries and consider a guarantee on the benefits. Accordingly,
they strongly support the real need for a downside protection of contributors who is
more directly exposed to the financial risk borne by the pension fund. Deelstra et al.
(2001) also allow for a minimum guarantee in order to minimize the randomness of
the retirement account, but they describe the flow of contributions through a non-
negative, progressive measurable and square-integrable process. A recent model for
a DC pension scheme in discrete time is proposed by Haberman and Vigna (2001).
In particular, they study both the ”investment risk”, that is the risk of incurring a
poor investment performance during the accumulation phase of the fund, and the
”annuity risk”, that is the risk of purchasing an annuity at retirement in a particular
negative economic scenario involving a low conversion rate.

The problem of optimal portfolio choice for a long-term investor in presence of
a wage income is treated also by El Karoui and Jeanblanc-Picqué (1998), Campbell
and Viceira (2001) and Franke, Peterson, and Stapleton (2001). Under a complete
market with a constant interest rate, El Karoui and Jeanblanc-Picqué (1998) present
the solution of a portfolio optimization problem for an economic agent endowed with
a stochastic insurable stream of labor income. Thus, they assume that the income
process does not involve a new source of uncertainty. Campbell and Viceira (2001)
focus on some aspects of labor income risk in discrete-time. In particular, they look
at individual’s labor income as a dividend on the individual’s implicit holding of
human wealth. Franke et al. (2001) analyse the impact of labor income uncertainty
resolution on portfolio choice. They show how the portfolio startegy of an investor
changes when his labor income uncertainty is resolved early or late in life.

The methodological approach we use to solve the optimal asset-allocation prob-
lem of a pension fund is the stochastic dynamic programming. Alternative ap-
proaches (see for instance Deelstra et al. (2001), and Lioui and Poncet (2001)) are
based on the Cox-Huang methodology, where the resulting partial differential equa-
tion is often simpler to solve than the Hamilton-Jacobi-Bellman equation coming
from the dynamic programming.

In this work, we intend to proceed by steps in order to set up the basis for an
analytical solution of the Hamilton-Jacobi-Bellman equation under a general frame-
work. Moreover, we study some important properties of the optimal portfolio. In
particular, we show that it is optimal to invest in a combination of three portfolios:
a speculative portfolio proportional to the market price of risk of the risky assets
through the relative risk aversion index, an hedging portfolio proportional to the dif-
fusion term of the interest rate, and a preference-free hedging portfolio proportional
to the diffusion terms of the salary process.

The work is organized as follows. Section 2 and Section 3 present respectively the
financial market structure and the defined contribution process. In Section 4, the
pension fund dynamics is derived. Section 5 develops the optimal asset allocation
problem. The properties of the optimal portfolio are discussed in Section 6. In
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Section 7, an explicit solution to the asset allocation problem is derived. Section 8
concludes.

2 The Financial Market

In this section we introduce the market structure of our optimal asset allocation
model and we define the stochastic dynamics of the interest rate and asset values.
We consider a complete and frictionless financial market which is continuously open
over the fixed time interval [0, T ], where T ∈ R+ − {0} denotes the retirement time
of a representative shareholder. The uncertainty involved by the financial market is
described by a 2-dimensional standard Brownian motion

W (t) =
[

W 0(t)
W 1(t)

]
, t ∈ [0, T ] ,

defined on a complete probability space (Ω,F ,P), where F = {F(t)}t∈[0,T ] is the
filtration generated by the Brownian motion and P represents the historical proba-
bility measure. The natural interpretation of F(t) is to view it as the information
available to the investor at time t ∈ [0, T ]. The two Wiener processes W 0(t) and
W 1(t) are supposed to be independent. We can impose this constraint without loss
of generality. In fact, we can always shift from uncorrelated to correlated Wiener
processes (and viceversa) via the Cholesky decomposition of the correlation matrix.
A description of the Cholesky decomposition of the correlation matrix is provided
in Appendix A.

We consider a general one-factor model for the forward interest rate f(t, τ),
whose dynamics is given by:

df (t, τ) = α (t, τ) dt + ν (t, τ) dW 0 (t) , τ ∈ [0, T ] , (1)
f (0, τ) = f0,

where we assume ν (t, τ) > 0.1 Following Heath et al. (1992), from the forward
interest rate we can derive the behaviour of the spot interest rate.

Proposition 1 If f(t, τ) satisfies Equation (??), then the short rate satisfies

dr(t) = a(t)dt + b(t)dW 0(t), (2)

where {
a(t) = ∂

∂τ f(t, τ)|τ=t + α (t, t) ,
b (t) = ν (t, t) .

We assume that the fund manager can invest in three assets: a riskless asset, a
bond, and a stock.

1We assume a strictly positive diffusion term for the forward interest rate, since it leads to a
strictly negative volatility term in the bond’s dynamics. In fact, when the interest rate increases,
then the bond value decreases. Thus, the two diffusion terms must have opposite sign.

3



The price process X0(t, r) of the riskless asset is given by

dX0(t, r) = X0(t, r)r(t)dt, (3)

X0 (0) = 1,

where the dynamics of r(t), under the real probability measure P, is defined in
Equation (??). The natural interpretation of the riskless asset is view it as the value
of a bank account, where the instantaneous interest rate is given by r(t) and there
is no default risk.

The second investment opportunity we consider is a stock. For the sake of
simplicity, we introduce in our model only one stock, which can be interpreted as
an index of the stock market. Nevertheless, if we allow for a complete market with
a finite number of stocks, no further difficulties are added to the model because the
only source of troubles is the market incompleteness. Let X1(t, r) denote the price
process of the stock. The dynamics of X1(t, r) is given by

dX1(t, r) = X1(t, r)
[
µ1(t, r)dt + σ1,0(t, r)dW 0(t) + σ1,1(t, r)dW 1(t)

]
, (4)

X1(0) = X1
0 ,

where σ0,1 6= 0 and σ1,1 6= 0.
The third asset we introduce is a bond rolling over zero coupon bonds with

maturity τ , where τ ∈ [0, T ].

Given the forward interest rate (??), we assume that there exists a market for
zero coupon bonds for every value of τ . It is known that a zero coupon bond with
maturity τ , called τ -bond, is a contract which guarantees the holder 1 monetary
unit (face value) to be paid on the maturity τ . We denote by XB(t, τ) the price
at time t ∈ [0, τ [ of a zero coupon bond with maturity τ . Then, we have a market
with an infinite number of bonds, where each bond is regarded as a derivative of
the underlying riskless asset. Thus, each bond is characterized by the same market
price of risk (see for example Björk, 1998). Now, when the market has specified the
dynamics of a basic bond price process, say with maturity τ , the market has also
indirectly specified the price of risk which is the same for each bond, as we have
already noted. Then, the basic τ -bond and the forward interest rate fully determine
the price of all bonds. Actually, assuming the existence of an infinite number of zero
coupon bonds is quite unrealistic. However, since the forward rate dynamics has
only one source of randomness, we only need one zero coupon bond to replicate the
other ones. Following Heath et al. (1992), the bond dynamics is defined as follows:

Proposition 2 If f(t, τ) satisfies Equation (??), then XB (t, τ) satisfies

dXB (t, τ)
XB (t, τ)

= µB(t, τ)dt + σB(t, τ)dW 0 (t) , (5)

where {
µB(t, τ) = r(t)− ∫ τ

t α (t, s) ds + 1
2

(∫ τ
t ν (t, s) ds

)2
,

σB(t, τ) = − ∫ τ
t ν (t, s) ds.

(6)
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In order to ease the following notation, we characterize the two risky assets, the
stock and the bond, by the vector X(t, r) = (X1(t, r), XB(t, τ, r))

′
. Then, we have

dX(t, r) = IX(t, r) [µX(t, r)dt + Σ(t, r)dW (t)] , (7)

where

IX(t, r) ≡
[

X1(t, r) 0
0 XB(t, τ, r)

]
,

µ(t, r) ≡ (µ1(t, r), µB(t, τ, r))
′
,

and

Σ(t, r) ≡
[

σ0,1(t, r) σ1,1(t, r)
σB(t, τ, r) 0

]
.

As σ1,1(t, r) 6= 0 and σB(t, τ, r) 6= 0, it follows that

detΣ(t, r) = −σ1,1(t, r)σB(t, τ, r) 6= 0,

thus, consistently with the assumption of complete market, the diffusion matrix
Σ(t, r) is invertible.

3 The Defined-Contribution Process

The introduction in the optimal portfolio problem of non-capital income causes sev-
eral computational difficulties, although the underlying methodological approach is
the same as for the no-wage income case. In general, when we introduce ”level” back-
ground risks, which affect directly the level of wealth (e.g. salary), the solution of
the partial differential equation (PDE) characterizing the stochastic optimal control
problem becomes harder and harder to compute. However, since our goal is to anal-
yse the optimal portfolio strategies for a DC pension fund during the accumulation
phase, we cannot overlook the leading role of the salary process.

Since Merton (1971), in his classical dynamic optimization model, examines the
effects of introducing a deterministic wage income in the consumption-portfolio prob-
lem. In the more recent literature, Boulier et al. (1999), and Deelstra et al. (2001)
provides some models for DC pension fund in continuous time involving determinis-
tic salaries. In particular, Boulier et al. (1999) strongly support the real need for a
downside protection of contributors who are more directly exposed to the financial
risk borne by the pension fund. Accordingly, they introduce a guarantee on the
benefits. Deelstra et al. (2001) also allow for a minimum guarantee in order to
minimize the randomness of the retirement account, but they describe the flow of
contributions through a non-negative, progressive measurable and square-integrable
process. Blake et al. (2000) consider a model for DC pension fund where salaries are
modeled through a stochastic process including a non-hedgeable component. Then,
they focus on the replacement ratio as the central quantity of interest. Haberman
and Vigna (2001) provide a model for DC pension fund in discrete-time with a fixed
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contribution rate. They study both the ”investment risk”, that is the risk of in-
curring a poor investment performance during the accumulation phase of the fund,
and the ”annuity risk”, that is the risk of purchasing an annuity at retirement in a
particular negative economic scenario involving a low conversion rate. The problem
of optimal portfolio choice for a long-term investor in presence of a wage income
is treated also by El Karoui and Jeanblanc-Picqué (1998), Campbell and Viceira
(2001) and Franke, Peterson, and Stapleton (2001). Under a complete market with
a constant interest rate, El Karoui and Jeanblanc-Picqué (1998) present the solution
of a portfolio optimization problem for an economic agent endowed with a stochas-
tic insurable stream of labor income. While they assume that the income process
does not involve a new source of uncertainty, in the present work we allow for a
non-hadgeable salary risk. Campbell and Viceira (2001) focus on some aspects of
labor income risk in discrete-time. In particular, they look at individual’s labor
income as a dividend on the individual’s implicit holding of human wealth. Franke
et al. (2001) analyse the impact of labor income uncertainty on portfolio choice.
They show how the portfolio startegy of an investor changes when his labor income
uncertainty is resolved early or late in life. While they add the labor income to the
terminal value of the portfolio investments, in the present work the income process
enters directly in the wealth dynamics at each time t ∈ [0, T ].

This paper is principally related to the work of Blake et al. (2000). Indeed, we
characterize the salary process through a stochastic differential equation. Accord-
ingly, we show how the optimal portfolio choices depend directly on the uncertainty
involved by salary. The introduction of stochastic salaries, instead of determinis-
tic, allows us to consider the effects due to the labor income uncertainty, and in
particular to its resolution over time.

The dynamic evolution of salaries is given by

dS(t, r)
S(t, r)

= µS(t, r)dt + σS,0(t, r)dW 0(t) + σS,1(t, r)dW 1(t) + σS(t)dWS(t), (8)

where WS(t) is a one-dimensional standard Brownian motion independent of W 0(t)
and W 1(t). As Blake et al. (2000) point out, the assumption of a time-dependent
drift term µS(t, r) allows us to incorporate possible age-dependent salary growth.
At this regard, it is well known that salaries grow faster at younger ages. This
empirical evidence suggests a decreasing function of time for the drift term µS(t, r).
The diffusion terms σS,0(t, r) and σS,1(t, r) allow us to model any link between salary
growth and returns on bond and stock markets. We note again that the unique stock
we have introduced in our simple model can be always interpreted as the index of
the stock market. According to the stochastic salary process modeled by Blake et al.
(2000), the term σS(t)dWS(t) allows us to incorporate non-hedgeable salary risks,
that is risks associated properly to the labor market and not to the financial market.

Now, we assume that each employee puts a constant proportion γ of his salary
into the personal pension fund. Then, the defined contribution process is character-
ized as follows

C(t, r) = γS(t, r),
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and
dC(t, r)
C(t, r)

=
dS(t, r)
S(t, r)

.

Finally, the defined contribution process characterizing the pension fund is given
by

dC(t, r)
C(t, r)

= µS(t, r)dt + σ
′
S,X(t, r)dW (t) + σS(t)dWS(t), (9)

where σS,X(t, r) = (σS,0(t, r), σS,1(t, r))
′
.

4 The Pension Fund

The purpose of this section is to derive the budget equation characterizing the pen-
sion fund dynamics. First, let us summarize the whole market structure:





dr(t) = α(t, r)dt + ν(t, r)dW 0(t)

dX0(t, r) = X0(t, r)r(t)dt

dX(t, r) = IX(t, r) [µ(t, r)dt + Σ(t, r)dW (t)]

to which we have to add the defined contribution process described in Equation (9).
Let θX(t, r) = (θ1(t, r), θB(t, r))

′
and θ0(t, r) denote the number of shares in-

vested respectively in the two risky assets, the stock and the bond, and in the
riskless asset. The accumulated wealth at any time t ∈ [0, T ] is given by

F (t, r) = θ
′
X(t, r)X(t, r) + θ0(t, r)X0(t, r) + C(t, r). (10)

Then, we can write the number of shares invested in the riskless asset at time t
as follows

θ0(t, r) =
F (t, r)− θ

′
X(t, r)X(t, r)− C(t, r)

X0(t, r)
.

Substituting for θ0(t, r) into Equation (10) and differentiating, we obtain that

dF (t, r) = θX(t, r)dX(t, r)+ (11)

+
[
F (t, r)− θ

′
X(t, r)X(t, r)− C(t, r)

] dX0(t, r)
X0(t, r)

+

+ dC(t, r).

Now, it is advantageous to write the pension fund dynamics in terms of frac-
tion of wealth instead of number of shares invested in each assets. Let x(t, r) =
(x1(t, r), xB(t, r))

′
be the vector of the fraction of wealth invested in the two risky

assets at any time t ∈ [0, T ], where

x1(t, r) ≡ θ1(t, r)X1(t, r)
F (t, r)

,

xB(t, r) ≡ θB(t, r)XB(t, τ, r)
F (t, r)

.
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Thereafter, we can write the pension fund dynamics (11) as follows

dF (t, r)
F (t, r)

= [1− x(t, r)1− c(t, r)]
dX0(t, r)
X0(t, r)

+ (12)

+ x(t, r)I−1
X (t, r)dX(t, r)+

+ c(t, r)
dC(t, r)
C(t, r)

,

where c(t, r) = C(t,r)
F (t,r) indicates the fraction of wealth given by wage income at time

t ∈ [0, T ], and 1 = (1, 1)
′
. Finally, substituting for X0(t, r), X(t, r) and C(t, r) from

Equations (3),(4) and (5) into Equation (12), the wealth process becomes

dF (t, r)
F (t, r)

=
{

r(t) + x
′
(t, r) [µ(t, r)− r(t)1] + c(t, r) [µS(t, r)− r(t)]

}
dt+

+
(
x
′
(t, r)Σ(t, r) + c(t, r)σ

′
S,X(t, r)

)
dW (t)+

+ c(t, r)σS(t)dWS(t).

For the sake of simplicity, in the following sections we will not indicate the
functional dependences, unless it is necessary.

5 The Optimal Asset Allocation Problem

The goal of the fund manager is to choose a portfolio strategy in order to maximize
the expected value of a terminal utility K(F (T )). We assume that the terminal
utility K is an increasing and concave function in F . Then, we may formally state
the stochastic optimal control problem as follows





Max
x

E0 [K(F (T ))]

d

[
r
F

]
= mdt + M

[
dW
dWS

]

F (0) = F0; r(0) = r0

(13)

where

m
2×1

≡
[

α

F
[
r + x

′
(µX − r1) + c(µS − r)

]
]

,

M
2×3

≡
[

δ
′

0
F

(
x
′
ΣX + cσ

′
S,X

)
FcσS

]
,

δ
′ ≡ [ν 0] .

The scalar variables F and r represent the two state variables, while the elements
of x represent the two control variables.
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The methodology used to solve this optimal control problem is the stochastic
dynamic programming. By the theory (e.g. Björk (1998)), we know that the original
optimal control problem is equivalent to the problem of finding a solution to a
suitable partial differential equation (PDE), known as the Hamilton-Jacobi-Bellman
(HJB) equation. Under our assumption, the HJB equation provides a very nice
solution to the optimal control problem in which we are considering only Markov
processes. We will not describe rigorously the whole theoretical structure of this
approach, but we will limit our analysis to the basic steps necessary to specify the
HJB equation which characterizes our optimal control problem.

Let J(t;F0, r0) denote the value function of the optimal control problem (13), it
follows that

J(t;F0, r0) = Et [K(F (T )) |F (0) = F0, r(0) = r0 ] ,

where Et stands for E (·|F(t)).
The Hamiltonian corresponding to (13) results to be

H = Jrα + JF F
[
r + x

′
(µ− r1) + c(µS − r)

]
+

1
2
tr

{
MM

′
[

Jrr JrF

JFr JFF

]}
,

where we denote Jr ≡ ∂J
∂r , JF ≡ ∂J

∂F , Jrr ≡ ∂2J
∂r2 , JFF ≡ ∂2J

∂F 2 and JrF = JFr ≡ ∂2J
∂r∂F .

By working out the Hamiltonian, we obtain that

H = Jrα + JF F
[
r + x

′
(µ− r1) + c(µS − r)

]
+ (14)

+
1
2
Jrrδ

′
δ + JrF F

(
x
′
Σ + cσ

′
S,X

)
δ+

+
1
2
JFF F 2

[(
x
′
Σ + cσ

′
S,X

) (
x
′
Σ + cσ

′
S,X

)′
+ c2σ2

S

]
.

The first order condition (FOC) give us the following linear system of two equa-
tions and two unknowns:

∂H
∂x

= JF F (µ− r1) + JFrFΣδ + JFF F 2
(
ΣΣ

′
x + cΣσS,X

)
= 0. (15)

We note that JFF must be strictly negative. Indeed, the second order condition
(SOC) holds if the corresponding Hessian matrix H is negative definite, where

H = F 2JFF ΣΣ
′
.

As ΣΣ
′
is a variance-covariance matrix, it is a positive definite matrix. Then, H

is a negative definite matrix if and only if JFF < 0. Under our assumptions, we can
easily show that JFF is effectively strictly negative. In fact, as the terminal utility
K is concave in F , the value function J results to be a strictly concave function in
F (see for example Stokey and Lucas (1989)). Moreover, the completeness of the
market implies that the matrix ΣΣ

′
is invertible.

Let x∗(t) = (x∗1(t), x
∗
B(t))

′
denote the vector of optimal fractions of wealth in-

vested in the stock and in the bond. From Equation (15), we obtain that

x∗ = − JF

FJFF

(
ΣΣ

′)−1
(µ− r1)− JFr

FJFF

(
Σ
′)−1

δ − c
(
Σ
′)−1

σS,X , (16)
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where J(t, F, r) solves the following PDE equation, called the Hamilton-Jacobi-
Bellman equation: {

Jt +H∗ = 0

J(T, F (T ), r(T )) = K(F (T ))
(17)

where Jt ≡ ∂J
∂t , and H∗ denotes the value of the Hamiltonian with respect to the

optimal proportions x∗. We note that the solution of this PDE is just the value
function corresponding to our optimal control problem. The hard work of stochastic
dynamic programming consists just in solving the highly nonlinear PDE involved
by the optimal control problem. There is no general analytical method to solve a
parabolic PDE. In this case, the strategy that is usually adopted is the following:
first, we try to guess an a priori suitable parametrized form for the solution to the
PDE, then we use the PDE itself in order to specify the parameters. However,
this analytical procedure is hardly ever successful. Thus, we must often try for a
numerical approximation.

6 The Optimal Portfolio

In this section, we will analyse some structural properties of the optimal portfolio
x∗(t). In particular, we show that the optimal portfolio can be interpreted as the
sum of three different components in the following way:

x∗(t, r) = φ1(t, r)p1(t, r) + φ2(t, r)p2(t, r) + p3(t, r).

Comparing this with Equation (16), we find that it is optimal to invest in a
suitable combination of three portfolios:

1. a speculative portfolio φ1p1 proportional to the market price of risk corre-
sponding to the two risky assets through the relative risk aversion index, and
defined as follows

φ1p1 ≡ − JF

FJFF

(
ΣΣ

′)−1
(µ− r1),

where
φ1 ≡ − JF

FJFF

represents the only part of the portfolio depending on individual preferences;

2. an hedging portfolio φ2p2 proportional to the diffusion term of the interest rate
through the cross derivative of the value function J , and defined as follows

φ2p2 ≡ − JFr

FJFF

(
Σ
′)−1

δ,

where
φ2 ≡ − JFr

FJFF

represents the only part of the portfolio depending on individual preferences;
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3. a preference-free hedging component p3 proportional to the volatilities of the
salary process corresponding to the risk involved by the interest rate and by
the stock, and defined as follows:

p3 ≡ −c
(
Σ
′)−1

σS,X .

We note that p1 and p2 are two components depending only on the financial
market structure. Accordingly, the investment policies corresponding to p1 and
p2 do not require the knowledge of the preferences or the endowments of the fund’s
shareholders. It follows that p1 and p2 are the same for all participants. On the other
hand, φ1 and φ2 depend directly on the individual preferences. The interpretation
of this result in terms of pension fund management is that the optimal portfolio is
set up by two purely financial components, p1 and p2, common to every shareholder,
and which must be adjusted on the basis of the individual preferences through φ1

and φ2.
Moreover, we see that the speculative component of the optimal portfolio (φ1p1)

does not depend directly on the volatility of the interest rate. Even though p1 is
independent of ν, the diffusion term of interest rate could affect φ1 through the
value function J . In general, we cannot rule out this dependence. This is possible
only when the value function meets some suitable properties, in particular when the
value function is separable in wealth by product. We will discuss further about the
separability in wealth and its consequences in the next section.

Let us analyse the second preference-free component (p2), it results that

p2 =
[

0
1

σB
ν

]
=

[
0
−1

]
ν(t, r(t))∫ τ

t ν(s, r(s))ds
.

We can see that the stock does not contribute at all to the hedging component,
while the proportion invested in the bond depends only on the volatility of the
interest rate. Accordingly, when the interest rate volatility increases, the optimal
proportions invested in the bond increases, while the investment in the riskless asset
decreases by the same proportion.

Finally, let us analyse the third component of the optimal portfolio.

p3 = −c

[
1

σ1,1
σS,1

1
σB

σS,0 − σ0,1

σBσ1,1
σS,1

]
.

As noted, p3 represents an hedge component of the optimal portfolio x∗, and
it is preference-free. It follows that p3 is completely defined, without specifying
the functional form of the value function J . Moreover, p3 is independent of the
non-hedgeable salary risk. We see that an increase in the volatility of salaries with
respect to the risk of the stock market (σS,1) draws immediately in a fall, both in
the proportion invested in the stock, and in the proportion invested in the bond
(we recall that σB < 0). Therefore, an increase in σS,1 involves an increase in the
proportion invested in the riskless asset. On the other hand, a rise in the volatility
of salaries with respect to the risk of the interest rate (σS,0) does not affect the

11



investment in the stock. In this case, we have a rise in the optimal proportion
invested in the bond, and a corresponding decrease in the investment in the riskless
asset.

It is important to observe that if we assume deterministic salaries, then the
preference-free component (p3) disappears because we have σS,0 = σS,1 = σS = 0. In
fact, in the work by Boulier et al. (2001), where deterministic salaries are assumed,
the optimal portfolio is characterized by only two components.

7 The Value Function: An Explicit Solution

In the previous section, we have highlight some interesting properties of the optimal
portfolio x∗(t, r), without specifying the value function J . In order to state precisely
the value function J , we should solve the HJB equation. In general, there is no
analytical method to solve an highly nonlinear PDE. As there is a very little hope of
finding an analytic solution to the original problem, it is common practice, to some
extent, to rig it in order to obtain a problem analytically solvable. Consistently with
this practice, in this section, we study the functional form of the HJB Equation (17),
we rig it in a suitable way, and finally we provide a particular solution to the optimal
control problem.

Let assume that the salary risk is completely hedgeable, that is σS (t) = 0. We
substitute the expression for x∗(t, r) into Equation (14), giving us the Hamiltonian

H∗ = Jrα + JF Fr + JF C
[
µS − r − σ

′
S,XΣ−1(µ− r1)

]
+

+
1
2
Jrrδ

′
δ − 1

2
(JFr)

2

JFF
δ
′
δ − JFrJF

JFF
δ
′
Σ−1(µ− r1)+

− 1
2

(JF )2

JFF
(µ− r1)

′ (
ΣΣ

′)−1
(µ− r1).

Thus, the PDE equation we have to solve is the following:
{

Jt +H∗ = 0

J(T, F (T ), r(T )) = K(F (T )).
(18)

The standard approach to solve this kind of PDE is to try for a separability
condition. In the financial literature, since Merton (1969,1971), the condition of
separability in wealth by product represents a common assumption in the attempt
to solve explicitly optimal portfolio problems. Accordingly, we assume that our value
function is given by the product of two terms: an increasing and concave function
of the wealth F , and an exponential function depending on time and the interest
rate r. Thus, the value function J can be written as follows

J(t, r, F ) = U(F )eh(t,r).

Substituting for this expression into the HJB Equation (18), we obtain that
{

J(t, r, F )ht +H∗ = 0

h(T, r(T )) = 0,

12



where

H∗ = hrα +
UF

U
C

[
µS − r − σ

′
S,XΣ−1(µ− r1)

]
+

1
2
hrrδ

′
δ+

− 1
2

(UF )2 h2
r

UFF U
δ
′
δ − (UF )2 hr

UFF U
δ
′
Σ−1(µ− r1)+

− 1
2

(UF )2

UFF U
(µ− r1)

′ (
ΣΣ

′)−1
(µ− r1) +

UF F

U
r.

In order to have our model consistent with the assumption of separability in
wealth, we must impose that UF

U F , UF
U , and (UF )2

UFF U are constant with respect to the
wealth F . How we expected, there is no utility function U such that this is true.
How we have already highlighted, in order to provide a particular solution to the
HJB, it is usual to rig the optimal control problem in some suitable way. In this
case, we force the drift of the salary process to have a particular, but consistent,
functional form.

Let assume that
µS = r + σ

′
S,XΣ−1(µ− r1).

This assumption can be supported by the standard macroeconomic theory. In-
deed, in a standard stochastic monetary economy, it is possible to predict, around
the steady state, a strong correlation between the interest rate and the inflation
rate. As the real wages are constant along the steady state deterministic equilib-
rium, it follows that the nominal wages are also strongly correlated to the interest
rate (see for example Stokey and Lucas (1987)). Accordingly, it seems consistent to
approximate the drift of the salary process (µS) through the interest rate plus an
adjustment term depending on the volatility of the salary and the Sharpe ratio.

Thus, the HJB equation becomes

0 = ht + hrα +
1
2
hrrδ

′
δ+ (19)

− 1
2

(UF )2 h2
r

UFF U
δ
′
δ − (UF )2 hr

UFF U
δ
′
Σ−1(µ− r1)+

− 1
2

(UF )2

UFF U
(µ− r1)

′ (
ΣΣ

′)−1
(µ− r1) +

UF F

U
r.

According to the previous analysis, we must have UF
U F , and (UF )2

UFF U constant with
respect to the wealth F . It is easy to check that these two differential equations are
solved by a power utility function. Thus, we have

U(F ) =
F λ

λ
,

where λ 6= 0, and λ < 1 in order to have a concave value function. We note that the
constant λ interprets the relative risk aversion index of our utility function.

13



Substituting for this expression into Equation (19), the HJB equation becomes

0 = ht + hr

[
α− λ

λ− 1
δ
′
Σ−1(µ− r1)

]
+

+
1
2
hrrδ

′
δ − 1

2
λ

λ− 1
h2

rδ
′
δ+

− 1
2

λ

λ− 1
(µ− r1)

′ (
ΣΣ

′)−1
(µ− r1) + λr.

Now, following the methodology used by Menoncin (2001), we look for a solu-
tion of the PDE such that (hr)

2 = hrr. Accordingly, after solving this differential
equation, we obtain that h(t, r) must have the following functional form:

h(t, r) = A(t)− ln [D(t) + G(t)r] , (20)

where A(t), D(t), G(t) ∈ R, and [D(t) + G(t)r] > 0.
Thus, the HJB equations can be written as follows

{
ht + z(t, r)hr + p(t, r)hrr + q(t, r) = 0
h(T, r(T )) = 0

(21)

where

z(t, r) =
[
α− λ

λ− 1
δ
′
Σ−1(µ− r1)

]
,

p(t, r) = − 1
2 (λ− 1)

δ
′
δ,

q(t, r) = −1
2

λ

λ− 1
(µ− r1)

′ (
ΣΣ

′)−1
(µ− r1) + λr.

This PDE can be solved by applying the Feynman-Kač representation theorem
(see for example Øksendal (2000)). Accordingly, we find the following solution to
the HJB Equation (21):

h(t, r) =
∫ T

t
Et [q(t, r̃)] ds,

where the dynamics of the variable r̃ is given by

dr̃ = z(t, r̃)ds +
(
− 1

λ− 1

)
ν(t, r̃)dW 0,

r̃ = r̃0.

We note that, under the Feynman-Kač representation theorem, the interest rate
dynamics is different from the original dynamics defined in Equation (??). In fact,
the interest rate giving the exact solution to our optimal control problem has the
same diffusion term as the interest rate in Equation (??), while the drift term is
different. Let us analyze the new drift term:

z(t, r̃) = α− λ

λ− 1
µB − r̃

σB
ν.
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We see that z(t, r̃) is equal to the original drift term (α) diminished by the bond
market price of risk multiplied by the interest rate diffusion term and the relative
risk aversion index. Accordingly, we note that the modified interest rate solving
the HJB equation follows an extended Vasicek model as defined by Hull and White
(1990).

Finally, the optimal portfolio x∗ can be written as follows

x∗ = − 1
λ− 1

(
ΣΣ

′)−1
(µ− r1)+ (22)

− 1
λ− 1

(
Σ
′)−1

δ

∫ T

t

∂

∂r
Et [q(t, r̃)] ds+

− c
(
Σ
′)−1

σS,X .

We note that the second preference-free component (p2) is the only one compo-
nent depending explicitly on the retirement time T .

As Menoncin (2001) highlights, the closed form solution for the portfolio alloca-
tion problem we have obtained in Equation (22) is the exact solution if and only if
the function h(t, r) can be written as in Equation (20). Nevertheless, if the function
h(t, r) does not meet this condition, Equation (22) is still valid as an approximation
of the true result. Indeed, we can develop in Taylor series the function h(t, r) around
a given value of r (say r̂) in order to obtain a polynomial in r approximating the
exact solution.

8 Conclusion

In this work, we have studied the optimal portfolio problem for a defined contribu-
tion pension fund. After introducing a stochastic interest rate, we have assumed a
market structure characterized by three assets: a riskless asset, a bond and a stock.
Moreover, we have introduced a stochastic process for salaries, and developed the
model according to the stochastic dynamic programming methodology.

We have shown that the optimal portfolio is formed by three components: a
speculative component proportional to the market price of risk of the two risky
assets through the relative risk aversion index, an hedging component proportional
to the diffusion term of the interest rate, and a preference-free hedging component
proportional to the volatilities of the salary process.

Finally, after specifying a suitable functional form for the drift term of the salary
process, we have found a close form solution to the asset allocation problem.

We plan to extend this model to a stochastic process for inflation.
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A The Cholesky Decomposition of the Correlation Ma-
trix

Let
[

Wx(t) Wy(t)
]′ denote a vector of two independent standard Wiener pro-

cesses. Then, we have

cov [dWxdWy] = E [dWxdWy] = 0,

and variance-covariance matrix Σ = tI(2), where I(2) denotes the identity matrix
of dimension two. We can transform

[
Wx Wy

]′ into a vector of two correlated

Wiener processes
[

W̃x W̃y

]′
with the same mean (i.e. zero mean), but with

variance-covariance matrix

Σ̃ =
[

σ2
x ϕσxσy

ϕσxσy σ2
y

]
,

by applying to the original vector of uncorrelated processes the Cholesky decompo-
sition as follows [

W̃x

W̃y

]
= C ′eΣ

[
Wx

Wy

]
,

where CeΣ is just the Cholesky decomposition of the matrix Σ̃. The matrix CeΣ is an

upper-triangular matrix such that Σ̃ = C ′eΣCeΣ. Finally, we have

[
W̃x

W̃y

]
=

[
σx ϕσy

0 σy

√
1− ϕ2

]′ [
Wx

Wy

]
=

[
σxWx

σyϕWx + σy

√
1− ϕ2Wy

]
.

In conclusion, the following general result holds: given a set of Wiener processes,
correlated or uncorrelated, it can always be represented as a vector of Wiener pro-
cesses with the same drift of the initial processes, and diffusion term equal to the
transpose of the Cholesky matrix calculated with respect to the variance-covariance
matrix of the initial processes.
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