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Abstract

Composite economic indicator is a very useful tool designed
to trace and predict the business cycle conditions. In this paper
we study possible extensions of this approach intended to cope
with the potential data problems caused by various structural
breaks affecting both level and volatility of the component series.
The structural shifts are introduced in the composite economic
indicator model via deterministic dummies capturing breaks in
the observed variables’ intercepts and in the residual variances
of the specific factors. As an illustration the Post-World War 11
US monthly macroeconomic series are utilized for which differ-
ent specifications of the single-factor linear and regime-switching
model are evaluated.
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1 Introduction

The composite economic indicators (both leading and coincident) can be
very useful in the political and business decision-making. It can supply
more timely, accurate, and complete information than some conventional
indicators like real GDP (too low frequency of observation) or index of
industrial production (too narrow scope).

One of the approaches to construction of this composite economic
indicator is the dynamic factor model advocated in the linear context by
Stock and Watson (1988, 1989, 1992) and in the Markov-switching con-
text by Kim (1994), Kim and Nelson (1999) and Chauvet (1998). Some
recent examples of applying the dynamic factor model with Markov-
switching dynamics include Chauvet (2001), Fukuda and Onodera (2001).

However, quite often the practical realisation of the dynamic factor
approach is impeded by the lack of the relevant data measured at high
(say, monthly) frequencies. Another source of the problems are the var-
ious structural breaks which introduce discontinuities in the time series,
thus, shortening already not very long contemporaneous macroeconomic
time series. This is especially the case of most European countries and
their regions, not to mention the developing economies whose statistical
databases may be even worse. The causes of these breaks are very diver-
sified ranging from changes in the statistical methodology to the natural
shifts in the behaviour of economic variables.

In this paper we examine a way of dealing with the structural breaks
in the observed time series using the dynamic factor analysis with linear
and regime-switching dynamics. The models considered here use de-
terministic dummies to capture the structural breaks in different model
parameters with unknown break-points different for each time series.
These models’ specification builds on the paper of Krane and Wascher
(1999), who introduce the seasonal dummies in the means of the observed
time series and of the common factor as well as in the factor loadings
in order to take account of the deterministic seasonality in the common
dynamic factor model, and on that of Chauvet and Potter (2001), who
make the mean and the autoregressive coefficients of the common factor
change as a function of the structural break.

The remainder of the paper is organised as follows. In section 2 we
set up a common dynamic factor model with deterministic structural
break(s) in the observed time series. Section 3 analyses a real example
— common dynamic models (both linear and with Markov switching) of
the U.S. composite economic indicator with deterministic dummies cap-
turing the structural breaks in the means and variances of the observed
series and idiosyncratic components. Section 4 concludes the paper.



2 Model

We deal with a set of observed time series, whose co-movements are
explained by one or several common factors which may interact in a
complex temporal and/or spatial way. In contrast, the idiosyncratic
dynamics of each time series in particular are captured by one specific
factor per each observed time series. The observed component series are
subject to a one-time structural breaks which may affect both their level
and volatility. Hence the model in its general form can be written as:

Ayy = [(In — L)1 + Lioo] + [(L, — L)1 + L] Afe + (1)

where Ay, is the n x 1 vector of the logged observed time series in the
first differences (growth rates); Af; is the k x 1 vector of the unobserved
common factors in the first differences; u; is the n x 1 vector of the un-
observed specific factors; 6; and d, are the n x 1 vectors of the means
of the observed time series; I'y and I's are the n x k factor loadings
matrices linking the observed series with the common factors, I, is the
n X n identity matrix, and [; is the structural break indicator function.
Since, in principle, there is no reason to suppose that all the observed
time series were subject to the structural break and that, if any, the
structural breaks took place in the same moment, the break-point indi-
cator function, I;, can be written as a diagonal matrix whose diagonal
elements are the individual indicator functions:

Iy
It == ]n & IQt
]nt

where

1, otherwise

]it:{ 0, ift<my

where 7; is the period when the structural break in the ¢ — th observed
time series took place.

The dynamics of the latent common factors can be described in terms
of a vector-autoregression model:

Afy= [T = Iy + T+ [ (L = IO (L) + T ®o(L)| Afiater (2)

where v, and v4 are the k x 1 vectors of the constant intercepts; Itf is the
k x k diagonal matrix having the structure similar to that of I;; ®1(L)
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and ®o(L) are the sequences of p (p = max{py,,...,pys, }, where py, is
the order of the autoregressive (AR) polynomial of the j — th common
factor) k x k lag polynomial matrices; &; is the k x 1 vector of the serially
and mutually uncorrelated common factor disturbances:
2
0 o 0
gg~NID 3 I
2

0 0 ---0%

The specific factors are assumed to be mutually independent but
serially correlated:

up = V(L)ug—y + n, (3)

where U(L) is the sequence of ¢ (¢ = max{qi..., g}, where g; is the order
of the AR polynomial of the ¢ — th idiosyncratic factor) n x n diagonal
lag polynomial matrices and 7, is the n x 1 vector of the mutually and
serially uncorrelated Gaussian shocks:

0 g%t o0
My ~ D ST
0 0O --- o2
where 0%, = \;(1 — I;) + 02, i=1,...,n.

Thus, in general the means of the observed variables, their factor
loadings, and the residual variances of the specific components may be
subject to the deterministic structural breaks.

Assume for simplicity that there is only one common factor. Further-
more, suppose that only observed variables are subject to the structural
change which affects their means but not their factor loadings. These
assumptions would seem realistic especially in the case of changes in
the accounting methodology which lead to the sudden shifts in the time
series levels.

We estimate the model using the maximum likelihood method. To

construct the likelihood function, the model is expressed in a state-space
form:

Ay, = [61(1 = L) + 621,] + AB, (4)

By=a+CB_; +uv (5)

where 3, = (f;|u;)" is the state vector containing vector of common factor
and the vector of specific factors stacked on top of each other; v; is the
vector of the common and idiosyncratic factors’ disturbances with mean
zero and variance-covariance matrix (J; « is the vector of intercepts.

4



I'vig, O
A= 1
I O g,

where I'; is the 1 x g vector of the factor loadings of the ¢ — th observed
variable: I'; = (7,1, .., %4, -, 0) with g = max{gi, ..., gn}.

d0---0
oOwl... 0
I 0 . :
00-.-gn

(i
Ipo—10pc—1

with ¢ = (¢, #,) being the 1 x p vector of the AR coefficients of the
common factor. The matrices ¥', ..., ™ have the same structure as ®¢.

One immediate extension of this model is introduction of the regime-
switching dynamics. This would allow taking into account the asymme-
tries existing between different phases of business cycle which, along with
the co-movements of macroeconomic variables, according to Diebold and
Rudebusch (1996), are the two key characteristics of business cycle. We
introduce the Markov-switching dynamics through the intercept of the
common factor:

Afy=p(s) + S(L)Afi 1 + & (6)

where (s;) is the regime-dependent intercept (low in contractions and
high in expansions); s; is the state variable following first-order Markov
chain process. In this paper we consider a two-regime case: one regime
for expansions and another one — for recessions. To save space we do
not enter further into details and simply refer our readers to the com-
prehensive discussion of common dynamic model with Markov switching
in Kim and Nelson (1999).

In what follows the above dynamic factor model will be denoted as
CF(p,q), where p is the autoregressive order of the common factor; ¢ is
the autoregressive order of the specific factors. In particular, the models
with Markov-switching will be denoted as CF-MS(p,q).

3 Real example

The U.S. monthly coincident time series covering 1959:1-2002:6 are anal-
ysed — see Table 1 of Appendix. In fact, the component series we use to
build our common coincident factor are those utilised by the Conference
Board (USA) to construct its composite coincident index.
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The first question to answer is when the structural breaks took place.
To address this question we employed the following procedure as in Mc-
Connell and Perez Quiros (2000). Firstly, for the growth rates of each
of the time series in question an AR(1) model with a constant was esti-
mated:

Ayir = p; + 0 Ays—1 + &y (7)

where i =1, ..., n.
Secondly, the residuals of these models were used to estimate the
following model:

T
\/g €| = c1iDing + a9 Digy + wi (8)

where D;1; and D;9; are the dummies capturing structural break in the
variance of the ¢ — th time series.

0, ift<m
Dm={ eeT

1, otherwise
and

Dy — 0, ift>m
2671 1, otherwise

The idea is to change the location of the break-point 7; and for each
location compute the corresponding Wald statistic. The point where
Wald statistic achieves its ”supremum” is taken to be the break-point.
However, not all the points of the sample were considered — only those
between 0.157" and 0.857", where T' is the sample size, as suggested by
Andrews (1993).

To test for the structural break with unknown break-point in the
variance of the ¢ — th time series we apply the supremum Wald statistic
as Andrews (1993) proposes:

/ /

W, pWip — W Wi

SupW; = max T e s (9)
Wiy Wi



where m = 7/T'; R stands for "restricted”, while U means "unrestricted”.
In other words, for each time series we are looking for the point of time
where the estimated Wald statistic attains its supremum.

The test critical values were computed using bootstrapping procedure
as described in Diebold and Chen (1996). We implemented the procedure
as follows:

1. Estimate model in (7) and save the residuals.

2. Estimate restricted analog of equation (8), that is, an equation
where, instead of two structural break dummies, D;; and D;o, we
put a constant term.

3. Construct the pseudo-observations of the standard errors, \/g éit
using the estimate of the coefficient with the constant term of the
model from step 2 as well as its residuals drawn with replacement.

Y

4. Estimate equation (8) and compute the statistic value using equa-
tion (9). Save this statistic and repeat steps 3-4 large enough
number of times.

We undertook the bootstrap procedure outlined above with1000 it-
erations. The resulting critical values corresponding to 10%, 5%, and
1% significance levels are reported in Table 2.

Then we estimated the Wald statistics for each time series within
the sub-sample obtained from the original sample when 15% of the ob-
servations were left out in the beginning and 15% in the end of the
sample. Figure 1 shows the estimated Wald statistics together with cor-
responding bootstrap critical values at 10% and 5% significance levels
(inferior and superior horizontal lines, respectively) for each of the time
series. The results of the test aiming at determination of the timing
of the structural breaks in the variances of these series are reported in
Table 3. Three time series out of four — for INC the null hypothesis of
no structural break could not be rejected — seem to have experienced
a structural break in the variance, though the break-points are spread
across the sample. It is worthwhile to notice, however, that two out of
these four time series had the structural break in variance in the early
1984, namely EMP and IIP.



Testing the timing of structural break
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It is worth to check the intercept of equation 7 for a structural break,
because the structural shifts in the residual variances may be due to
the changes in the intercepts. Therefore the following unrestricted and
restricted regressions were estimated to test the null of no structural
breaks in the intercepts:

Unrestricted regression:

Ayir = 1;Din + Bo; Dio + 0, Ayis—1 + &y (10)

Restricted regression:

Ay = B:D; + ¢;Ayi—1 + &y (11)



where ¢ = 1, ...,n. The null hypothesis is formulated as: D; = D;; = D;s
for all ¢, the dummies being defined as above. Notice that the time
subscripts are suppressed, since the structural break locations were fixed
at the break-points identified in Table 2. However, the variable subscript
is still there meaning that each variable has its specific break-point.

The parameter estimates of regressions (10) and (11) are reported
in Tables 4 and 5, respectively. The results of the F test conducted
using these two regressions are displayed in Table 6. Only for INC the
null hypothesis of no structural break in intercept may be rejected at
the usual 0.05 significance level. This implies that most probably the
structural breaks detected for the other three variables are due entirely
to the breaks in the residual variances.

The results of Table 3 were used to construct the structural break
dummies in the common dynamic factor model. We estimated eight
models: four linear and four with regime-switching dynamics. Under
each dynamics assumption the following modifications of the model were
considered: (1) no structural break, (2) structural break only in the ob-
served variables’ means, (3) structural break only in the residual variance
of the specific components, and (4) structural break both in means and
in variances. Only specification CF(0,0) — both for linear and regime-
switching models — was used. The estimated parameters of these models
together with their standard errors are reported in Tables 7-10. The re-
spective log-likelihood function values are presented in the header after
the specification of the model ”linear” or ”Markov-switching”.

It can be seen that the structural-break-in-means dummies in most
cases (except sometimes the INC variable) are not significantly different
from zero. This is not the case, however, of the residual variances which
are almost always significant at 0.05 significance level. This implies that
it was rather volatility of the rates of growth of the U.S. macroeconomic
variables that decreased during the last 30 years, whereas the average
growth rates level did not experience any noteworthy changes.

The linear estimates of the composite economic indicators with and
without breaks in intercepts and/or variances are plotted on Figure 2.
The estimates with deterministic dummies are strikingly close to CF(0,0)
with no breaks. This is especially true in the case of CF(0,0) with breaks
in the means.



Figure 2: Linear CF(0,0) with and without dummies

No break vs. break in means

25 30
20 r s
15 - - 20
~ 15
10 " ——  BREAK_
5 - - - = NOBREAK_
- 5
0
N - 0
5 L s
-10 L L L L A L A A L A B -10
1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001
No break vs. break in variances
30 30
25 - 25
20 - 20
15 + - 15
—— BREAK_
10 + e - 10
- - - NOBREAK_
5 7 y \ - 5
p
0 - 0
5 1 - -5
-10 L UL L L L A -10
1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001
No break vs. break in means and variances
20 30
- 25
15
- 20
10 +
- 15
s 10 —— BREAK_
- -~ NOBREAK_
0 A roe
) \
b e F oo
5
- -5
4
-10 LU BRI UNURLBUN T T T T T -10

TT 17T TT T T T T T T T T T 1T T 1T 1717 TT T
1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001

The profiles of non-linear composite economic indicators with and
without deterministic dummies are shown on Figure 3. It appears that
the CF-MS with no break and CF-MS with break in the residual vari-
ances have the closest profiles. In contrast, the model with breaks both
in means and residual variances of the specific factors displays quite dis-
tinct behaviour — it has a clearly expressed downward trend which is
not the case of other CF-MS, whereas the CF-MS with breaks in means
produces a CEI with an upward growing profile.
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Figure 3: CF-MS(0,0) with and without dummies

No break vs. break in means
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Different specifications of the model are compared in Table 11. The
likelihood ratio (LR) test is used to conduct this comparison. Each cell
of the table contains the double difference between the log-likelihoods
of the unrestricted and more restricted models. Numbers in the paren-
theses stand for the degrees of freedom. The asterisks show the test
statistics values which exceed the critical x2 o5 values. The upper tri-
angular matrix contains the LR-statistics for the linear models, while
the lower triangular matrix displays those corresponding to the Markov-
switching models. The models (2) and (3) are not nested and therefore
cannot be compared using the LR test. Therefore the corresponding
cells are left empty.

The model with the structural break only in the means of the ob-
served variables does not lead to an important improvement of the log-
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likelihood: in the linear case the difference between the model with no
structural breaks and with breaks only in the means is not significant,
while in the regime-switching case it is significant at 5% level. The intro-
duction of the structural breaks in the residual variances of idiosyncratic
components substantially improves the performance of the model. On
the other hand, in the linear case there is no significant gain of intro-
ducing the structural shifts both in means and variances as compared
to the model with breaks in variances only. In the Markov-switching
case the estimated test statistic again is very close to the critical value
X2 05(8) = 21.03. This implies that the bulk of the improvements in the
model stem from including the deterministic dummies accounting for
the structural breaks in the residual variances of specific factors. This
can be regarded as an evidence of the negative structural shift in the
volatility which has affected the four U.S. macroeconomic time series in
question.

Figures 4 through 6 illustrate the low-intercept regime probabilities
for each of the models with deterministic dummies. These probabilities
are superimposed on the National Bureau of Economic Research (NBER)
business cycle chronology. The simple ”eyeball analysis” of the pictures
permits concluding that the it is the CF-MS(0,0) with break in the means
that replicates the NBER dates the best. The other two models, while
capturing good enough most of the recessions, exaggerate the last one
which took place in early 1990s. They make it last twice as long as the
”official” contraction had lasted.
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Figure 4: Recession probabilities vs. NBER dates
Model with break in means

Smoothed probabilities

f

}\\ I \A\ T \f\t\\ T
1959 1962 1965 1968

T LU
1971 1974 1977

T T T T 1T 1T 1T T
1980 1983 1986 1989 1992 1995 1998 200

Filtered probabilities

T
1

A,
LU

|

M
T T 1T 711

1959 1962 1965 1968

T T T T T 11
1971 1974 1977

13

T T T T T T 1T
1980 1983 1986 1989 1

T 1T
992 1

1
995 1998 200

T
1




1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

Figure 5: Recession probabilities vs. NBER dates
Model with break in variances
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Figure 6: Recession probabilities vs. NBER dates
Model with break in means and variances
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We conclude the analysis of the non-linear models examined in this
paper by comparing their performance in terms of the in-sample predic-
tion of the NBER turning points. We use the quadratic probability score
(QPS) proposed by Diebold and Rudebusch (1989) to evaluate the per-
formance, which is reported in Table 12. Numbers in the third column
of the table denoted by DM are the values of the statistic introduced
by Diebold and Mariano (1994) to test the hypothesis of equality of the
forecast accuracy of two alternative models. The Diebold-Mariano (DM)
statistic was computed using the rectangular spectral window of length
201. The forecast accuracy of each structural break model is compared
to that of the benchmark (no structural break) model . The null hy-
pothesis states no difference between the predictive accuracy of the two
models. The test statistic is standardized and hence it is asymptotically
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distributed as N(0,1).

First conclusion that can be drawn from this table is that among
the deterministic break models only model with break in mean gives
better estimates of the NBER turning points than the benchmark model.
However, if we take into account the Diebold-Mariano statistics we have
to conclude that there is no significant difference in the in-sample turning
points forecast accuracy between the benchmark model and the best
model with structural break (deterministic break in the means of the
observed variables).

Secondly, the smoothed conditional probabilities are as a rule closer
to the NBER dates than the filtered conditional probabilities. The for-
mer take into account both past and future information which allows
detecting better the signal, i.e., turning points of the business cycle.

4 Concluding remarks

In this paper we examined a common dynamic factor model with the
one-time deterministic shifts in the means of the observed variables and
in the residual variance of the idiosyncratic components. The structural
shifts in the mean often occur when the accounting methodology used
to construct the statistical indicators is changed. Usually this causes
a discontinuity in the observed time series not allowing to compare
the dynamics before and after the structural break. Alternatively, the
structural breaks, especially those hitting the variance, may reflect some
"real” economic phenomenon like stabilisation of the economic system
when the cyclical fluctuations become less wild.

If we want to investigate the business cycle which is approximated
by the fluctuations of the composite economic indicator, these structural
breaks may cause a lot of troubles distorting the cyclical signal. There-
fore we need some mechanism to isolate the cyclical component. The
models of composite economic indicator considered here offer a solution
to this problem.

We consider the models with both linear and regime-switching dy-
namics having a single common dynamic factor. The model allowing
structural breaks both in the means of the observed time series and in
the residual variances of the idiosyncratic factors was estimated for the
real U.S. post-World War II monthly data. A model without structural
breaks is compared to (1) model with structural breaks in the observed
variables means; (2) model with structural breaks in the residual vari-
ances of the specific factors, and (3) model with structural breaks both
in the means and variances. It turns out that the hypothesis of struc-
tural break in the means finds no support in the real data, whereas the
hypothesis of the structural breaks in the variances, although occurred
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at different points of time for different observed variables, is likely to be
confirmed by the empirical evidence.
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5 Appendix

Table 1. The component series of the US composite economic indicator

Monthly data, January 1959 — June 2002

Series ‘ Short-hand | Description
Employees on nonagricultural payrolls EMP 10%, SA
Personal income less transfer payments INC 10° 1996 $, SA, annual rate
Index of industrial production 1P total index, 1996=100, SA
Manufacturing and trade sales SLS chained 10° 1996 $, SA

Notation: 10° 1996 $ = billions of 1996 dollars; SA = seasonally adjusted.
Note: Chained (1996) dollar series are calculated as the product of the
chain-type quantity index and the 1996 current-dollar value of the cor-

responding series, divided by 100.

Source: NBER (www.nber.org/cycles/hall.xlw): the industrial produc-
tion series has an erroneous entry in December 1985 which was replaced
by the figure taken from the index of industrial production with 1992
base, given that the neighboring values (before and after 1985:12) are

exactly the same for both indices.

Table 2. Bootstrap critical values of the Wald statistics

1000 iterations

Variable Significance level
10% 5% 1%
EMP  13.071 14.620 17.609
INC 13.063 14.220 16.826
1P 12.726  14.119 17.987
SLS 13.324 14.880 17.270
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Table 3. Structural breaks timing

Variable Wald statistic  Date

EMP 64.25%* 1984:3
INC 7.171 1972:6
ImP 25.59%* 1984:4
SLS 13.48* 1992:2

The statistic has superscripts * and ** if it exceeds 10% and 5% critical
value, respectively.

Table 4. Unrestricted regression
Break-points: as suggested by Table 2
Variable D4 D Ay 4

EMP  0.0031 -0.0057 0.4363
INC 0.0540 -0.0281 0.2623

1P 0.0089 -0.0249 0.3765
SLS -0.0273  0.1170 -0.0894

Table 5. Restricted regression
Break-point: none
Variable D Ay 4

EMP  -0.0002 0.4369
INC -0.0006 0.2752
1IP -0.0036  0.3771
SLS -0.0025 -0.0871
Null hypothesis: D = Dy = Dy

Table 6. F-test for structural break in intercept
Based on results of the regressions in Tables 4 and 5

Variable F-statistic p-value

EMP 0.188 0.664
INC 4.233 0.040
1P 0.188 0.665
SLS 1.282 0.258
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Table 7. Estimated parameters of the linear and regime-switching
models with no structural break 1959:1-2002:6

Linear LL=-2627.9 | Markov-switching LL=-2547.8
Parameter | Estimated | St.error | Estimated | St.error

P11 - - 0.979 0.008

1 — poo — - 0.085 0.031
1y — — 0.296 0.042
Lo — — -1.16 0.104
YINC 0.825 0.057 0.778 0.052
Yirp 1.00 0.065 0.887 0.056
YsLs 0.710 0.062 0.619 0.056
o? 0.639 0.066 0.385 0.040
%P 0.359 0.039 0.270 0.037
2o 0.563 0.042 0.557 0.040
o2p 0.353 0.040 0.426 0.039
041 g 0.676 0.047 0.720 0.049

LL = the value of loglikelihood function
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Table 8. Estimated parameters of the linear and regime-switching
models with structural break in means 1959:1-2002:6

Linear LL=-2624.4 | Markov-switching LL=-2538.5
Parameter | Estimated | St.error | Estimated | St.error

P11 - - 0.979 0.008
1-— P22 - - 0.104 0.036
1y — — 0.364 0.073
s - - 121 0.114
YINC 0.816 0.057 0.773 0.052
Yirp 1.01 0.066 0.914 0.056
YsLs 0.713 0.062 0.632 0.056
o? 0.634 0.066 0.352 0.038
%P 0.358 0.039 0.288 0.035
2o 0.561 0.042 0.558 0.040
o2p 0.353 0.040 0.408 0.037
041 g 0.676 0.047 0.716 0.048
o1.5mP 0.054 0.054 0.026 0.060
o1.18C 0.127 0.070 0.103 0.075
O1.11P 0.025 0.058 0.0 0.036
O01.5Lg -0.002 0.032 -0.044 0.067
o mMP -0.074 0.061 -0.252 0.091
do.1NC -0.056 0.047 -0.147 0.068
do.11P -0.035 0.059 -0.199 0.090
02.51.5 0.006 0.032 -0.101 0.093

LL = the value of loglikelihood function
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Table 9. Estimated parameters of the linear and regime-switching
models with structural break in variances 1959:1-2002:6

Linear LL=-2586.7 | Markov-switching LL=-2492.0
Parameter | Estimated | St.error | Estimated | St.error
P11 - - 0.978 0.008
1 — poo — - 0.073 0.026
1y — — 0.290 0.034
Lo — — -1.13 0.078
YINC 0.900 0.066 0.816 0.056
Yirp 0.978 0.072 0.795 0.056
YsLs 0.769 0.072 0.615 0.059
o? 0.553 0.065 0.301 0.034
%P 0.175 0.034 0.029 0.024
2o 0.551 0.043 0.568 0.040
o2p 0.183 0.033 0.293 0.035
041 g 0.601 0.083 0.664 0.086
AEMP 0.363 0.069 0.426 0.058
AINC 0.0 0.0 0.0 0.0
Arrp 0.365 0.070 0.364 0.080
AsLs 0.089 0.100 0.113 0.104

LL = the value of loglikelihood function
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Table 10. Estimated parameters of the linear and regime-switching
models with structural break in intercepts and variances 1959:1-2002:6

Linear LL=-2582.9 | Markov-switching LL.=-2484.8
Parameter | Estimated | St.error | Estimated | St.error
P11 - - 0.978 0.008
1 — po - - 0.075 0.028
0 - - 0.267 0.080
4y - - 1.17 0.124
Ve 0893 | 0067 | 0.799 0.057
N 0983 | 0073 | 0.793 0.058
Yers 0.776 | 0.073 | 0.613 0.060
o? 0.545 0.064 0.292 0.034
2 0173 | 0034 | 0.026 0.026
o 0549 | 0042 | 0569 0.041
op 0.183 | 0033 | 0295 0.036
o2 s 0599 | 0.082 | 0.660 0.086
01.EMP 0.055 0.056 0.132 0.090
b1 1NnC 0.130 0.070 0.180 0.091
o1.11p 0.027 0.053 0.090 0.080
01.51.9 -0.002 0.036 0.029 0.069
02 EMP -0.075 0.050 -0.064 0.073
da.1nC -0.058 0.050 -0.023 0.041
ba11P -0.037 0.047 -0.031 0.067
02.51.9 0.005 0.024 0.034 0.091
AEMP 0.366 0.069 0.427 0.058
AINC 0.0 0.0 0.0 0.0
AIIp 0.365 0.070 0.362 0.080
ASLS 0.090 0.099 0.120 0.105

LL = the value of loglikelihood function
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Table 11. Comparison of different modifications of the model.
Specifications CF(0,0) and CF-MS(0,0). Likelihood ratio test

Linear models
No SB 7.0 (8) 82.4% (4) 90.1* (12)
18.7* (8) SB in M 83.1*% (4)
111.7% (4) SB in V 7.7 (8)
126.0* (12) 107.3* (4) 143 (8) | SBinM &V
Markov-switching models

”"No SB” = no structural break; ”SB in M” = structural break in the
mean of observed variables; ”SB in V” = structural break in the residual
variance of specific components; ”SB in M & V” = structural break both
in the mean and in the residual variance.

The asterisks show the LR-statistics exceeding the critical xZ o5 values.

Table 12. In-sample forecasting performance of the Markov-switching
common factor models with deterministic structural break
Model-derived recession probabilities compared to the NBER business
cycle chronology, 1959:1-2002:6

Model ‘ QPS | DM ‘ p-value

Filtered probabilities
No break (benchmark model) | 0.050 | —
Break in mean 0.047 | 0.378 | 0.353
Break in variance 0.060 | -1.27 0.102
Break in mean and variance | 0.056 | -0.862 | 0.194
Smoothed probabilities
No break (benchmark model) | 0.037 | —
Break in mean 0.029 | 0.959 | 0.169
Break in variance 0.051 | -1.89 | 0.029
Break in mean and variance | 0.044 | -0.779 | 0.218

QPS = quadratic probability score
DM = Diebold-Mariano statistic testing the hypothesis of equality of the
forecast accuracy of two alternative models — see Diebold and Mariano

(1994)
p-value = significance value of DM-statistic
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