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Abstract

This paper analyses the portfolio problem of an investor who wants
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tions for having a closed form solution. These conditions must hold on
a suitable combination of the drift and diffusion coefficients of the sto-
chastic processes describing the state variables and the asset prices. In
particular, we show that our framework leads to two cases: (i) the case
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1 Introduction
In this paper we contribute to the analysis of the optimal portfolio rules for
an investor wanting to maximize the expected power utility function (CRRA)
of his terminal wealth. Some closed form solutions for this problem have been
found in the literature. In particular, we refer to the works of Kim and Omberg
(1996), Wachter (1998), Chacko and Viceira (1999), Deelstra et al. (2000), and
Boulier et al. (2001). In all these works the market structure is as follows:
(i) there exists only one state variable (the riskless interest rate or the risk
premium) following the Vasiček (1977) model or the Cox et al. (1985) model,
(ii) there exists only one risky asset, (iii) a bond may exist. Some works consider
a complete financial market (Wachter, 1998; Deelstra et al., 2000; and Boulier
et al., 2001) while others deal with an incomplete market (Kim and Omberg,
1996; and Chacko and Viceira, 1999).
In spite of these efforts for finding a closed form solution for the optimal asset

allocation in more and more complicated framework, we stress that (at least at
our knowledge) no author has tried both: (i) to establish some general properties
that can be checked on the market structure for verifying if a closed form solution
exists, and (ii) to present the algebraic form of this exact solution. Generally,
the most technical approaches try to establish the existence (and uniqueness)
of a viscosity solution to the Hamilton-Jacobi-Bellman equation deriving from
the stochastic optimal control problem (see for instance Crandall et al., 1992;
and Buckdahn and Ma, 2001a, 2001b).
Here, we want to analyse this particular issue disregarded by the literature.

In particular, we find sufficient conditions for easily checking if there exists a
closed form solution to an optimal portfolio problem where there exists both
a set of (stochastic) state variables and a set of risky assets. Furthermore, we
provide the algebraic form of this exact solution.
These sufficient conditions must hold on some combinations of drift and

diffusion coefficients of the state variables and the risky assets. More precisely,
we are able to distinguish two different cases in which a closed form solution
can be found: (i) the kind of problem which can be solved by a log-linear value
function and (ii) the kind of problem which can be solved by a log-quadratic
value function. The second set of solutions, which will be defined ”quadratic
case”, is suitable only for a market structure ”similar” to that presented in Kim
and Omberg (1996), while all the other above-mentioned exact solutions can be
lead back to the ”linear case”.
Our analysis does not need the hypothesis of complete financial market and

so, the derived sufficient conditions are useful even for the much more gen-
eral case of an incomplete market. Under the hypothesis of completeness, in
Menoncin (2002) a closed form solution for the asset allocation problem is found
when: (i) there exist both a stochastic background risk and a stochastic infla-
tion risk following two general Itô processes, (ii) there exists a set of risky assets
whose prices are affected by a set of state variables, both following generic Itô
processes, and (iii) the investor maximizes the expected value of his terminal
exponential utility function (CARA). This approach is very general indeed but,
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unfortunately, it is not able to mimic the closed form solutions found in the
above-mentioned literature since there does not exist a suitable change in the
utility function parameters for transforming a CARA utility function into a
CRRA utility function.
After the general presentation, we compute the explicit solution for both

the ”linear” and the ”quadratic” case when the coefficients of the stochastic
processes driving the state variables and the asset prices do not depend on
time. In fact, this is the case analysed in the above-mentioned literature. We
derive the properties of the ”linear” solution. In particular, we show that the
absolute values of portfolio composition are monotonic functions of time. The
direction of this monotonicity can be easily checked looking at the sign of a
parameter. Since only the model after Kim and Omberg (1996) lies in the
”quadratic” case, then all the properties they expose for their solution are valid
in our case. Thus, the reader is referred to their work for a more complete
analysis of these properties.
In this paper, we follow the traditional stochastic dynamic programming

technique (Merton, 1969, 1971) leading to the Hamilton-Jacobi-Bellman (HJB)
equation (Øksendal, 2000; and Björk, 1998 offer a complete derivation of the
HJB equation). As regard the ”martingale approach” the reader is referred to
Cox and Huang (1989, 1991), and Lioui and Poncet (2001).
Through this work we consider agents trading continuously in a friction-

less, arbitrage-free market until time H, which is the horizon of the economy.
Furthermore, we analyse both a complete and an incomplete financial market.
The paper is structured as follows. Section 2 details the general economic

framework and exposes the stochastic differential equations describing the be-
haviour of asset prices and state variables. In Section 3, both the implicit form
of the optimal portfolio and the HJB equation are computed. Section 4 presents
our main result, that is to say the sufficient conditions that must hold so that
the optimal portfolio composition has a closed form solution. In Section 5, the
optimal asset allocation is computed in some particular cases which can be lead
back to the closed form solutions already found in the literature. Section 6 con-
cludes. A presentation of the market structures analysed in the literature and
the passages for computing the above-mentioned closed form solutions are left
to the appendices.

2 The market structure
The financial market is supposed to have the following structure:

dX
s×1

= f (t,X)
s×1

dt+ g (t,X)0
s×k

dW
k×1

, X (t0) = X0,

dS
n×1

= IS
n×n

"
µ (t,X, S)

n×1
dt+Σ (t,X, S)0

n×k
dW
k×1

#
, S (t0) = S0,

dG = Gr (t,X) dt, G (t0) = G0,

(1)
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where X is a vector containing all the state variables affecting the asset whose
values are contained in vector S. For a review of all variables which can affect
the asset prices the reader is referred to Campbell (2000) who offers a survey
of the most important contributions in this field. We have indicated with G
the value of a riskless asset paying the instantaneous riskless interest rate r.
Finally, IS is a diagonal matrix containing the elements of vector S. Hereafter,
the prime denotes transposition.
All the functions f (t,X), g (t,X), µ (t,X, S), Σ (t,X, S), and r (t,X) are

supposed to be Ft−measurable. The σ−algebra F is defined on a set Θ where-
through the complete probability space (Θ,F ,P) is defined. Here, P can be
considered as the ”historical” probability measure.
The stochastic equations in System (1) are driven by a set of risks repre-

sented by dW which is the differential of a k−dimensional Wiener process whose
components are independent.1

The set of risk sources is the same for the state variables and for the asset
prices. This hypothesis is not restrictive because thanks to the elements of
matrices g and Σ we can model a lot of different frameworks. For instance, if
we consider dW =

£
dW1 dW2

¤
, g0 =

£
g1 0

¤
, and Σ0 =

£
0 σ2

¤
then

the processes of X and S are not correlated even if they formally have the same
risk sources.
We recall the main result concerning completeness and arbitrage in this kind

of market (for the proof of the following theorem see Øksendal, 2000).

Theorem 1 A market {S (t,X)}t∈[t0,H] is arbitrage free (complete) if and only
if there exists a (unique) k−dimensional vector u (t,X) such that

Σ (t,X)0 u (t,X) = µ (t,X)− r (t,X)S (t,X) ,

and such that
E
h
e
1
2

R H
t0
ku(t,X)k2dti

<∞.

If on the market there are less assets than risk sources (n < k), then the
market cannot be complete even if it is arbitrage free. In this work we assume
that n ≤ k and that the rank of matrix Σ is maximum (i.e. it equals n).
Thus, the results we obtain in this work are valid for a financial market which
is incomplete and stay valid for a complete market (n = k).

1This condition can be imposed without loss of generality because a set of independent
Wiener processes can always be transformed into a set of correlated Wiener processes thanks
to the Cholesky decomposition. For an application see Appendices A.3 and A.4.
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3 The optimal portfolio
After defining the market structure as in System (1), if we indicate with w (t) ∈
Rn×1 the vector containing the wealth amount invested in each risky asset, then
the growth in investor’s wealth (dR) is given by

dR = w0I−1S dS + (R− w01) dG
G
,

where we have applied the self-financing condition and 1 is a vector of ones (of
dimension n× 1).
Now, after substituting the differentials from System (1) into the wealth

differential equation, we have:

dR = (Rr + w0 (µ− r1)) dt+ w0Σ0dW. (2)

Accordingly, the problem for an investor wanting to maximize the expected
power utility of his terminal wealth can be written as follows:

max
w
Et0

h
αR (H)

β
i

d

·
z
R

¸
=

·
µz

Rr + w0M

¸
dt+

·
Ω0

w0Σ0

¸
dW,

z (t0) = z0, R (t0) = R0, ∀t0 ≤ t ≤ H,
(3)

where

z
(s+n)×1

≡ £
X 0 S0

¤0
,

µz
(s+n)×1

≡ £
f 0 µ0

¤0
,

Ω
k×(s+n)

≡ £
g Σ

¤
,

M
n×1

≡ (µ− r1) ,

and the parameters α and β must be such that the function αRβ is increasing
and concave (thus, αβ > 0 and β < 1).
The vector z contains all the state variables but the wealth. From Problem

(3) we have the Hamiltonian

H = J 0zµz + JR (Rr + w
0M) +

1

2
tr (Ω0ΩJzz) (4)

+w0Σ0ΩJzR +
1

2
JRRw

0Σ0Σw,

where J (R, z, t) is the value function solving the Hamilton-Jacobi-Bellman par-
tial differential equation (see Section 3.1), verifying

J (R, z, t) = sup
w
Et
h
αR (H)

β
i
,
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and the subscripts on J indicate the partial derivatives. The system of the first
order conditions on H is

∂H
∂w

= JRM +Σ0ΩJzR + JRRΣ0Σw = 0.

The second order conditions hold if the Hessian matrix of H
∂H

∂w0∂w
= JRRΣ

0Σ,

is negative definite. Since Σ0Σ is a quadratic form it is always positive definite
and so the second order conditions are satisfied if and only if JRR < 0, that is if
the value function is concave in R. The reader is referred to Stockey and Lucas
(1989) for the assumptions that must hold on the objective function for having
a strictly concave value function.
From the first order conditions we obtain the optimal portfolio composition

w∗ = − JR
JRR

(Σ0Σ)−1M| {z }
w∗
(1)

− 1

JRR
(Σ0Σ)−1Σ0ΩJzR| {z }

w∗
(2)

. (5)

We recall that in this framework the matrix Σ0Σ is invertible. In fact, Σ0Σ is
an n× n matrix and we suppose that Σ0 ∈ Rn×k has maximum rank. Because
we put n ≤ k, then Σ has rank n and Σ0Σ is invertible. This means that, even
in an incomplete market, there exists a unique optimal portfolio.
We just outline that w∗(1) increases if the risk premium increases, while it

decreases if the risk aversion or the asset variance increase. From this point
of view, we can argue that this component of the optimal portfolio has just a
speculative role. The second part w∗(2) is the only optimal portfolio component
explicitly depending on the diffusion terms of the state variables.

3.1 The value function

For finding a closed form solution to the optimal portfolio problem we need to
compute the value function J (R, z, t). By substituting the optimal value of w
from (5) into the Hamiltonian (4) we have

H∗ = J 0zµz + JRRr +
1

2
tr (Ω0ΩJzz)− JR

JRR
M 0 (Σ0Σ)−1Σ0ΩJzR

−1
2

J2R
JRR

M 0 (Σ0Σ)−1M − 1
2

1

JRR
J 0zRΩ

0Σ (Σ0Σ)−1Σ0ΩJzR,

from which we can formulate the PDE whose solution is the value function.
This PDE is called the Hamilton-Jacobi-Bellman equation (hereafter HJB) and
can be written as follows:½

Jt +H∗ = 0,
J (H,R, z) = αR (H)

β
.

(6)
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The most common approach for solving this kind of PDE is to try a sepa-
rability condition. Here, we try for J (z,R, t) = αRβeh(z,t). After substituting
this functional form into the HJB equation (6) and dividing by J we obtain:½

ht + a (z, t)
0
hz + b (z, t) +

1
2 tr (C (z, t)hzz) +

1
2h

0
zD (z, t)hz = 0,
h (z,H) = 0,

(7)

where

a (z, t)
(s+n)×1

≡ µz −
β

β − 1Ω
0Σ (Σ0Σ)−1M,

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M,

C (z, t)
(s+n)×(s+n)

≡ Ω0Ω,

D (z, t)
(s+n)×e(s+n)

≡ Ω0
µ
I − β

β − 1Σ (Σ
0Σ)−1Σ0

¶
Ω,

and the subscripts on h indicate partial derivates.
Thus, the choice of a power utility function implies that the optimal portfolio

has the following composition:

w∗ =
R

1− β
(Σ0Σ)−1M +

R

1− β
(Σ0Σ)−1 Σ0Ωhz, (8)

where the function h (z, t) solves the PDE (7).
In the following section we derive some sufficient conditions that must hold

for having a closed form solution to the Equation (7). We underline that in
Menoncin (2002) a closed form solution for this kind of equation can be found
(thanks to the Feynman-Kač theorem), if a stochastic inflation risk is intro-
duced in a complete financial market and the investor maximizes a CARA
utility function. Unfortunately, there does not exist a suitable change in the
preference parameters for transforming a CARA utility function into a CRRA
utility function.

4 Sufficient conditions for an exact solution
After looking at the literature where a closed form solution to the portfolio
problem is found, we can see that the functions a (z, t), b (z, t), C (z, t), and
D (z, t) can always be represented as polynomials in z in the following way:

a (z, t)
m×1

= a0 (t)
m×1

+ A1 (t)
0

m×m
z

m×1
,

b (z, t) = b0 (t) + b1 (t)
0

1×m
z

m×1
+ z0
1×m

B2 (t)
m×m

z
m×1

,

C (z, t)
m×m

= C0 (t)
m×m

+ C1 (t)
0

m×m
Iz

m×m
C1 (t)
m×m

,

D (z, t)
m×m

= D0 (t)
m×m

+ D1 (t)
0

m×m
Iz

m×m
D1 (t)
m×m

,

(9)
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BHT DGK CV KO

a (z, t) a0 + a1z a0 + a1z a0 + a1z a0 + a1z

b (z, t) b0 + b1z b0 + b1z b0 + b1z b0 + b2z
2

C (z, t) c0 c1z c1z c0

D (z, t) d0 d1z d1z d0

Table 1: The structure of four models with an exact solution

where Iz is a diagonal matrix containing the elements of vector z and m = n+s
(we recall that s is the number of state variables while n is the number of risky
assets). The particular form for functions C (z, t) and D (z, t) comes from the
need to have two symmetric matrices.
We show in Table 1 that the already cited closed form solutions found in the

literature always lie on Structure (9). For the particular forms of the parameters
in Table 1 the reader is referred to Appendix A. Hereafter, we indicate with KO
the model presented in Kim and Omberg (1996), with CV the model in Chacko
and Viceira (1999), with DGK the model in Deelstra et al. (2000), and with
BHT the model in Boulier et al. (2001).
We immediately see that the function a (z, t) is always a first degree polyno-

mial in z while there exist some differences for what concerns the other functions.
From Table 1 it is clear that the model analysed by Deelstra et al. (2000) is
identical to the model presented in Chacko and Viceira (1999).
Now, we try to solve the general problem by considering a polynomial for the

function h (z, t). In particular, given the form of the functions a (z, t), b (z, t),
C (z, t), and D (z, t), we try

h (z, t) = y0 (t) + y1 (t)
0

1×m
z

m×1
+ z0
1×m

Y2 (t)
m×m

z
m×1

, (10)

where y0 (t) , y1 (t) , and Y2 (t) are functions whose forms must be determined.
After substituting all these functional forms into the HJB equation (7) we

obtain the following differential equation where, for the sake of simplicity, the

8



functional dependences have been omitted:

0 =
∂y0
∂t

+ z0
∂y1
∂t

+ z0
∂Y2
∂t
z + a00y1 + z

0A1y1 + 2a00Y2z + 2z
0A1Y2z

+b0 + b
0
1z + z

0B2z + tr (C0Y2) + tr (C 01IzC1Y2)

+
1

2
y01D0y1 + 2y

0
1D

0
0Y2z + 2z

0Y 02D0Y2z

+
1

2
y01D

0
1IzD1y1 + 2y

0
1D

0
1IzD1Y2z + 2z

0Y 02D
0
1IzD1Y2z.

After recalling the following properties:2

tr (C 01IzC1Y2) = tr (IzC1Y2C
0
1) = z

0 diag (C1Y2C01) ,
y01D

0
1IzD1y1 = tr (y01D

0
1IzD1y1) = z

0 diag (D1y1y01D
0
1) ,

we can write the previous polynomial differential equation as a system of differ-
ential equations in the following way:

2z0Y 02D0
1IzD1Y2z = 0,

z0 ∂Y2∂t z + 2z
0A1Y2z + z0B2z + 2z0Y 02D0Y2z + 2y01D0

1IzD1Y2z = 0,

z0 ∂y1∂t + z
0A1y1 + 2z0Y 02a0 + z

0b1 + z0 diag (C1Y2C01)
+2z0Y 02D0y1 +

1
2z
0 diag (D1y1y01D

0
1) = 0,

∂y0
∂t + a

0
0y1 + b0 + tr (C0Y2) +

1
2y
0
1D0y1 = 0,

(11)

while the boundary condition changes into the system y0 (H) = 0,
y1 (H) = 0,
Y2 (H) = 0,

where we have indicated with 0 a vector of suitable dimension, containing only
zeros.
The first equation in System (11) holds only in two cases: (i) Y2 (t) = 0 or

(ii) D1 (t) = 0. Let us analyse these two cases. If the matrix Y2 (t) contains
only zeros, then System (11) becomes:

z0B2z = 0,

z0 ∂y1∂t + z
0A1y1 + z0b1 + 1

2z
0 diag (D1y1y01D0

1) = 0,

∂y0
∂t + a

0
0y1 + b0 +

1
2y
0
1D0y1 = 0,

from which we can see that also the condition B2 (t) = 0 must hold.
2Given a square matrix, the diag operator transforms it into a column vector containing

the elements of the main diagonal of the matrix.
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Instead, when the matrix D1 (t) contains only zeros, then the HJB equation
can be written as the following system:

z0 ∂Y2∂t z + 2z
0A1Y2z + z0B2z + 2z0Y 02D0Y2z = 0,

z0 ∂y1∂t + z
0A1y1 + 2z0Y 02a0 + z0b1

+z0 diag (C1Y2C01) + 2z
0Y 02D0y1 = 0,

∂y0
∂t + a

0
0y1 + b0 + tr (C0Y2) +

1
2y
0
1D0y1 = 0,

We underline that in both cases, if the function h (z, t) has the form (10),
then the optimal portfolio (8) depends only on y1 and Y2, while y0 does not
play any role in determining the optimal asset allocation. Furthermore, in both
the previous systems, we can see that the value of y0 is uniquely determined by
the last equation. Accordingly, we can forget about this last equation and the
only relevant equations for both the above-mentioned cases can be written in
the following way:

B2 (t) = 0⇒

Y2 = 0,

∂y1
∂t + b1 +A1y1 +

1
2 diag (D1y1y

0
1D

0
1) = 0,

D1 (t) = 0⇒


∂Y2
∂t +B2 + 2A1Y2 + 2Y

0
2D0Y2 = 0,

∂y1
∂t + (2Y

0
2D0 +A1) y1 + 2Y

0
2a0 + b1

+diag (C1Y2C
0
1) = 0.

In other words, a quadratic form for the function b (z, t) can be considered
only if the function D (z, t) does not depend on z. Actually, this is the case
analysed in Kim and Omberg (1996) in which b (z, t) is a second degree poly-
nomial but D (z, t) is a constant. We underline that when B2 (t) = 0 and
D1 (t) = 0 the two cases here considered coincide.
We can see that in both cases we have to solve a matrix Riccati differential

equation where the main difference is given by the matrix dimensions. In the
second case, we also have to solve a linear first order differential equation which
has a solution under very general conditions on its parameters. Accordingly, we
can state what follows.

Proposition 1 The optimal portfolio solving Probelm (3) has a closed form
solution if one of the two following cases holds:

1. (the linear case) the following equalities hold:

µz − β
β−1Ω

0Σ (Σ0Σ)−1M = a0 (t)
m×1

+ A1 (t)
0

m×m
z

m×1
,

βr − 1
2

β
β−1M

0 (Σ0Σ)−1M = b0 (t) + b1 (t)
0

1×m
z

m×1
,

Ω0Ω = C0 (t)
m×m

+ C1 (t)
0

m×m
Iz

m×m
C1 (t)
m×m

,

Ω0
³
I − β

β−1Σ (Σ
0Σ)−1Σ0

´
Ω = D0 (t)

m×m
+ D1 (t)

0
m×m

Iz
m×m

D1 (t)
m×m

,
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and the functions A1 (t), b1 (t), and D1 (t) are such that the matrix Riccati
differential equation

∂y1 (t)

∂t
+ b1 (t) +A1 (t) y1 (t) +

1

2
diag

¡
D1 (t) y1 (t) y1 (t)

0D1 (t)
0¢ = 0,

has a solution;

2. (the quadratic case) the following equalities hold:

µz − β
β−1Ω

0Σ (Σ0Σ)−1M = a0 (t)
m×1

+ A1 (t)
0

m×m
z

m×1
,

βr − 1
2

β
β−1M

0 (Σ0Σ)−1M = b0 (t) + b1 (t)
0

1×m
z

m×1
+ z0
1×m

B2 (t)
m×m

z
m×1

,

Ω0Ω = C0 (t)
m×m

+ C1 (t)
0

m×m
Iz

m×m
C1 (t)
m×m

,

Ω0
³
I − β

β−1Σ (Σ
0Σ)−1Σ0

´
Ω = D0 (t)

m×m
,

and the functions A1 (t), B2 (t), and D0 (t) are such that the matrix Riccati
differential equation

∂Y2 (t)

∂t
+B2 (t) + 2A1 (t)Y2 (t) + 2Y2 (t)

0
D0 (t)Y2 (t) = 0,

has a solution.

For a complete review of all theorems and properties about the matrix Ric-
cati differential equations, the reader is referred to Freiling (2002) who offers an
interesting review of the main results in this field.
Contrary to the most common literature, Proposition 1 clarifies a subset of

cases in which a closed form solution can be found for the optimal portfolio
composition.
We underline that, if the market is complete, then the matrix Σ−1 does exist

and so the Proposition 1 implies that the functions C (z, t) and D (z, t) must
be two polynomials of the same order in z and, furthermore, (1− β)C (z, t) =
D (z, t).
In the following section we compute the explicit solutions for the functions

y1 (t) and Y2 (t) in both cases shown in Proposition 1, but when the functions
a (z, t), b (z, t), C (z, t), and D (z, t) are all scalar and do not depend on time.

5 Some particular cases
In this section we analyse in detail some particular cases which arise in the
literature and for which an exact solution has already been found. In particular,
we refer to the works of Kim and Omberg (1996), Chacko and Viceira (1999),
Deelstra et al. (2000), and Boulier et al. (2001). We underline that all the
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parameters of the stochastic processes considered in the cited papers do not
depend on time. Thus, the solutions of the differential equations derived from
the HJB equation are much easier to compute. A further simplification comes
from considering just one state variable (the riskless interest rate or the risk
premium) following a Vasiček (1977) process or a Cox et al. (1985) process.
In the following subsections we present the computations for the two cases

presented in Proposition 1, but when the functions a (z, t), b (z, t), C (z, t), and
D (z, t) do not depend on time. With respect to the classification of solutions
mentioned in Proposition 1, the structure presented in Kim and Omberg (1996)
lies in the ”quadratic” case while all the others lie in the ”linear” case. The
general solutions we present for both the quadratic and the linear cases are
able to mimic the particular solutions already found in the above-mentioned
literature.
We just sum up the hypotheses that must hold on the System (9) for repli-

cating the cited works.

Hypothesis 1 In System (9) all the functions do not depend on time and z is
a scalar.

Furthermore, when the matrix dimensionm equals 1, we adopt the following
notation: A1 = a1, B2 = b2, C0 = c0, C1 = c1, D0 = d0, and D1 = d1. We
recall that m can be equal to 1 only when n = 0 and s = 1, that is to say when
there exists just one state variable and the return of the risky assets do not
depend on the risky asset value itself. In this case, in fact, the n state variables
representing the risky asset returns disappear from Problem (3) since their role
is exhausted in computing the growth in investor’s wealth.

5.1 The linear case

When the vector z shrinks to a scalar and all the functions in System (9) are
affine transformation of z (i.e. b2 = 0), then the exact solution for the optimal
portfolio is given by

w∗ =
R

1− β
(Σ0Σ)−1M +

R

1− β
(Σ0Σ)−1 Σ0Ωy1 (t) ,

where ½
∂y1(t)
∂t + b1 + a1y1 (t) +

1
2d
2
1y1 (t)

2
= 0,

y1 (H) = 0.

Accordingly, we can state the following proposition.
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BHT DGK CV

a1 −ar β
β−1λrσr − br β

1−β (µ− r)σSz − λ

b1 β β − 1
2

β
β−1λ

2
r

1
2

β
1−β (µ− r)2

d1 0 − σ2r
β−1 σ2 − β

β−1σ
2
Sz

∆ a2r
b2r + 2

β
β−1σ

2
r

+ β
β−1σ

2
r

³
λ2r − 2 brσr λr

´ λ2 + 2 β
β−1 (µ− r)σSzλ

+ β
β−1 (µ− r)2 σ2

Table 2: The sign of the discriminant

Proposition 2 Under Hypothesis 1, if b2 = 0, then the optimal portfolio solving
Problem (3) is

w∗ =
R

1− β
(Σ0Σ)−1M +

R

1− β
(Σ0Σ)−1 Σ0Ωy1 (t) ,

where, after defining ∆ ≡ a21 − 2d21b1,

y1 (t) =


2b1

µ √
∆

tanh( 12
√
∆(H−t)) − a1

¶−1
, ∆ ≥ 0

2b1

µ √−∆
tan( 12

√−∆(H−t)) − a1
¶−1

. ∆ ≤ 0
.

Proof. See Appendix B.

When ∆ = 0 both solutions in Proposition 2 are valid. In fact their limits
coincide:

lim
∆→0

y1 (t) = 2b1

µ
2

H − t − a1
¶−1

.

When ∆ < 0, the presence of a tangent function makes the optimal portfolio
behave periodically, and this behaviour is quite difficult to explain from an
economic point of view. Thus, we want to check if the condition a21− 2d21b1 < 0
can be neglected by looking at the above-cited literature.
In Table 2 the value of ∆ for the models BHT, DGK, and CV is computed

(the detailed computations can be found in Appendix A). We can immediately
see that the structure analysed by Boulier et al. (2001) has a ∆ which is always
positive. In the DGK model, the value of ∆ is always positive with respect to
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br, σr, and λr if β < 0. In fact, in DGK ∆ is a quadratic function with respect
to these parameters and its determinants are all negative. Furthermore, if β < 0
all the coefficients of the quadratic terms are positive and so the positivity of
∆ follows. In the CV model we find a similar behaviour. The value of ∆ is
always positive with respect to λ, (µ− r), and σ if β < 0 and σSz > 0. In
fact, as in the previous case, ∆ is a quadratic function with respect to the cited
parameters and all the coefficients of the quadratic terms are positive if σSz > 0
and β < 0. Furthermore, under the same conditions, the determinants of these
quadratic functions (with respect to the considered variables) are all negative
and the positivity of ∆ follows.
It is quite interesting to underline that an investor with an infinite time

horizon has the following optimal portfolio:

lim
H→∞

w (t)∗ =
R

1− β
(Σ0Σ)−1M +

R

1− β

2b1√
∆− a1

(Σ0Σ)−1Σ0Ω,

whose weights (w∗/R) are constant through time.
Furthermore, we can see from the solution in Proposition 2 that the behav-

iour of the second optimal portfolio component is monotonic through time. In
fact, the derivative of y1 (t) with respect to t (when ∆ > 0) is

∂y1 (t)

∂t
= −4∆b1 e−

√
∆(H−t)³

−a1 +
√
∆+

³
a1 +

√
∆
´
e−
√
∆(H−t)

´2 ,
form which we immediately see that

signum

µ
∂y1 (t)

∂t

¶
= signum (−b1) .

Since we know from the boundary conditions that y1 (t) must be equal to
zero when t tends to the time horizon H, then we are able to easily check the
sign of y1 (t). In fact, since this function is monotonic and must reach the value
0 at t = H, then we can state the following proposition.

Proposition 3 Under Hypothesis 1, if b2 = 0 and ∆ > 0, then

1. if b1 < 0 then
∂y1(t)
∂t > 0 and y1 (t) < 0, ∀t < H;

2. if b1 > 0 then
∂y1(t)
∂t < 0 and y1 (t) > 0, ∀t < H;

3. if b1 = 0 then
∂y1(t)
∂t = 0 and y1 (t) = 0, ∀t < H.

Furthermore, we can conclude what follows.
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Corollary 1 Under Hypothesis 1, if b2 = 0 and ∆ > 0, then the second optimal
portfolio component never increases the absolute value of its weight through time.

From Table 2, it can be easily checked that when β < 0 all the three models
show a negative value of b1. Accordingly, we can conclude that in all the models
here analysed, the function y1 (t) takes negative values and so

signum
³
w∗(2)

´
= signum (−Σ0Ω) .

We recall that Σ contains the volatility terms of the asset prices while Ω
contains the volatility terms of the state variables. Thus, we can conclude that
when an asset is positively correlated with a given state variable (i.e. when the
product of their volatility terms is positive) the weight of the second optimal
portfolio component for this asset is negative. Actually, for hedging a portfolio
against the risk of a state variable, it is necessary to buy an asset which is
negatively correlated with this variable and sell an asset which is positively
correlated with it.

5.2 An application of the linear case

In this subsection we want to create a market structure from conditions stated in
Proposition 1. We consider a market with only one state variable and with only
one risky asset whose return does not depend on the asset value. Accordingly,
the market structure should be as follows:

dz = µz (z, t) dt+ ωz (z, t)
0

1×k
dW
k×1

,

dS

S
= µS (z, t) dt+ ωS (z, t)

0
1×k

dW
k×1

.

If there exists only one risk source (i.e. k = 1) then this market is complete
and the two random variables z and S are perfectly correlated. We do not
want to make such a restrictive assumption and so, we suppose to have two risk
sources (i.e. k = 2). In particular, the market structure can be written as

dz = µz (z, t) dt+ ωz (z, t) dWz,

dS

S
= µS (z, t) dt+ ωSz (z, t) dWz + ωSS (z, t) dWS .

Thus, the foundamental matrices a (z, t), b (z, t), C (z, t), and D (z, t) are
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given by:

a (z, t) ≡ µz (z, t)−
β

β − 1Ω
0Σ (Σ0Σ)−1M

= µz (z, t)−
β

β − 1
ωSz (z, t)ωz (z, t)

ω2Sz (z, t) + ω2SS (z, t)
(µS (z, t)− r) ,

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M

= βr − 1
2

β

β − 1
1

ω2Sz (z, t) + ω2SS (z, t)
(µS (z, t)− r)2 ,

C (z, t) ≡ Ω0Ω = ω2z (z, t) ,

D (z, t) ≡ Ω0
µ
I − β

β − 1Σ (Σ
0Σ)−1Σ0

¶
Ω

=

µ
1− β

β − 1
ω2Sz (z, t)

ω2Sz (z, t) + ω2SS (z, t)

¶
ω2z (z, t) .

Since we want C (z, t) to be a first order polynomial in z, then we must put

ωz (z, t) =
√
σ0 + σ1z,

and, accordingly, we must chose ωSz and ωSS such that

ω2Sz (z, t)

ω2Sz (z, t) + ω2SS (z, t)
= constant,

which means that
ωSz (z, t)

ωSS (z, t)
= constant. (12)

Furthermore, both a (z, t) and b (z, t) are polynomial of first degree in z only
if the following equations are verified:

√
σ0 + σ1z

µS (z, t)− r
ωSS (z, t)

= φ0 + φ1z,µ
µS (z, t)− r
ωSS (z, t)

¶2
= θ0 + θ1z,

for real values of φ0, φ1, θ0, and θ1. After computing the square of the first
equation and substituting the second equation, we obtain the system φ20 = σ0θ0,

2φ0φ1 = σ1θ0 + σ0θ1,

φ21 = θ1σ1,

where we have one degree of freedom. For instance, for a free value of φ0 the
solution is

θ0 =
φ20
σ0
, θ1 = σ1

φ20
σ20
, φ1 = σ1

φ0
σ0
.

16



Accordingly, we have

µS (z, t)− r
ωSS (z, t)

=
φ0
σ0

√
σ0 + σ1z.

From this equation we can see that it is possible to freely chose either µS (z, t)
or ωSS (z, t). Now, if we suppose

ωSS (z, t) = σS
√
σ0 + σ1z,

where σS is a real constant, then we must chose

µS (z, t) = r +
φ0
σ0

σS (σ0 + σ1z) ,

and, because of Condition (12),

ωSz (z, t) = σSz
√
σ0 + σ1z,

where σSz is a real constant. Finally, µz (z, t) can be an affine transformation
of z as

µz (z, t) = µ0 + µ1z,

and, thanks to Proposition 2, we are able to compute the closed form solution
for the optimal portfolio when the market structure is as follows:

dz = (µ0 + µ1z) dt+
√
σ0 + σ1zdWz,

dS

S
= (r + λ (σ0 + σ1z)) dt+ σSz

√
σ0 + σ1zdWz + σS

√
σ0 + σ1zdWS ,

where λ is a real constant which can be interpreted as a risk price.

5.3 The quadratic case

When the vector z shrinks to a scalar and in System (9) d1 = 0, then the exact
solution for the optimal portfolio is given by

w∗ =
R

1− β
(Σ0Σ)−1M +

R

1− β
(Σ0Σ)−1Σ0Ω (y1 (t) + 2y2 (t) z) ,

where 

∂y2(t)
∂t + b2 + 2a1y2 (t) + 2d0y2 (t)

2 = 0,
y2 (H) = 0,

∂y1(t)
∂t + (2d0y2 (t) + a1) y1 (t) + b1 + 2a0y2 (t) = 0,

y1 (H) = 0.

After solving the first differential equation for computing y2 (t), the second
one has the following simple solution:

y1 (t) =

Z H

t

(b1 + 2a0y2 (s)) e
− R t

s
(2d0y2(τ)+a1)dτds.
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Accordingly, we can conclude with the following proposition.

Proposition 4 Under Hypothesis 1, if d1 = 0, then the optimal portfolio solving
Problem (3) is

w∗ =
R

1− β
(Σ0Σ)−1M +

R

1− β
(Σ0Σ)−1Σ0Ω (y1 (t) + 2y2 (t) z) ,

where, after defining ∆ ≡ a21 − 2d0b2,

y2 (t) =


b1

µ √
∆

tanh(
√
∆(H−t)) − a1

¶−1
, ∆ ≥ 0

b1

µ √−∆
tan(
√−∆(H−t)) − a1

¶−1
, ∆ ≤ 0

,

y1 (t) =

Z H

t

(b1 + 2a0y2 (s)) e
− R t

s
(2d0y2(τ)+a1)dτds.

Proof. See Appendix B.

As in the previous paragraph, both solutions for function y2 (t) are valid
even when ∆ = 0. If the investor’s time horizon tends to infinity the function
y2 (t) has the limit

lim
H→∞

y2 (t) =
b1√
∆− a1

,

which is constant through time, while the function y1 (t), after direct computa-
tion of the integral in Proposition 4, takes the following value:

lim
H→∞

y1 (t) = − b1√
∆− a1

µ
1 +

2a0 − a1√
∆

¶
lim
H→∞

³
e−
√
∆(H−t) − 1

´
=

b1√
∆− a1

µ
1 +

2a0 − a1√
∆

¶
.

At our knowledge, the only market structure laying in the ”quadratic case”
is presented in the model after Kim and Omberg (1996). Thus, the reader
is referred to these authors for a complete exposition of the properties of the
solution presented in Proposition 4.

6 Conclusion
In this paper we have analysed the optimal portfolio problem for an investor
maximizing the expected CRRA utility function of his terminal wealth.
Contrary to other results found in the literature, which care either about

finding a particular closed form solution to the asset allocation problem or about
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determining existence and uniqueness of this solution, we present some sufficient
conditions that must hold for having a closed form solution and we present the
algebraic form of this solution which can be computed by solving a matrix
Riccati differential equation.
We do not specify the functional form for the drift and diffusion coefficients of

the stochastic processes driving the state variables and the asset prices. Instead,
we look for the form that a suitable combination of these drift and diffusion
coefficients must have for guaranteeing the existence of a closed form solution.
In particular, we distinguish two kinds of settings: (i) the ones which can be

solved through a log-linear value function and (ii) the ones solvable by means
of a log-quadratic value function.
We have explicitly computed the closed form solution for the optimal asset

allocation in both these cases, when there exists only one state variable and
the coefficients of the stochastic processes driving this state variable and the
asset prices do not depend on time. In fact, this is the case always considered
in the literature where a closed form solution to the asset allocation problem
is computed. We derive the properties of the ”linear” solution. In particular,
we show that the absolute value of the optimal portfolio component hedging
against the risk represented by the state variable is a decreasing function of
time. The sign of this optimal portfolio component depends on the signs of the
product between volatility terms of asset prices and state variable.

A The market structure of some exact solutions

A.1 The structure of Boulier, Huang, and Taillard (2001)

Boulier et al. (2001) consider a market structure in which there is only one
state variable (the riskless interest rate r) following the Vasiček (1977) model,
and two assets: a stock (S) and a bond (B). In particular, they have:

dr = ar (br − r) dt− σrdWr,
dS
S = (r + σ1λ1 + σ2λr) dt+ σ1dWS + σ2dWr,
dB
B =

³
r +

¡
1− ear(H−t)¢ λrσrar

´
dt+

¡
1− ear(H−t)¢ σr

ar
dWr,

dG
G = rdt,

where all the parameters take positive values.
Thus, under their model the matrices introduced in this work assume the
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following values:

z = r,

µz = ar (br − r) ,
M =

h
σ1λ1 + σ2λr

¡
1− ear(H−t)¢ λrσr

ar

i0
,

Σ =

·
σ2

¡
1− ear(H−t)¢ σr

ar
σ1 0

¸
,

Ω =
£ −σr 0

¤0
.

Accordingly, we can write:

a (z, t) ≡ µz −
β

β − 1Ω
0Σ0−1M = arbr +

β

β − 1λrσr − arr,

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M = −1

2

β

β − 1
¡
λ21 + λ2r

¢
+ βr,

C (z, t) ≡ Ω0Ω = σ2r,

D (z, t) ≡ Ω0
µ
I − β

β − 1Σ (Σ
0Σ)−1Σ0

¶
Ω = − σ2r

β − 1 .

A.2 The structure of Deelstra, Grasselli, and Koehl (2000)

Deelstra et al. (2000) consider a market structure in which there is only one
state variable (the riskless interest rate r) following the Cox et al. (1985) model,
and two assets: a stock and a bond. In particular, they have:

dr = ar (br − r) dt− σr
√
rdWr,

dS
S = (r + σ1λ1 + σ2λrr) dt+ σ1dWS + σ2

√
rdWr,

dB
B = (r + rλrg (H − t)σr) dt+ g (H − t)σr

√
rdWr,

dG
G = rdt,

where all the parameters take positive values and

g (τ) =
2
¡
eδτ − 1¢

2δ + (eδτ − 1) (δ + br − σrλr)
,

δ ≡
q
(br − σrλr)

2 + 2σ2r.

Thus, under their model the matrices introduced in this work assume the
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following values:

z = r,

µz = (ar − brr) ,
M =

£
σ1λ1 + σ2λrr g (H − t)λrσrr

¤0
,

Σ =

·
σ2
√
r g (H − t)σr

√
r

σ1 0

¸
,

Ω =
£ −σr√r 0

¤0
.

Accordingly, we can write:

a (z, t) ≡ µz −
β

β − 1Ω
0Σ0−1M = ar +

µ
β

β − 1λrσr − br
¶
r,

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M = −1

2

β

β − 1λ
2
1 +

µ
β − 1

2

β

β − 1λ
2
r

¶
r,

C (z, t) ≡ Ω0Ω = σ2rr,

D (z, t) ≡ Ω0
µ
I − β

β − 1Σ (Σ
0Σ)−1Σ0

¶
Ω = − σ2r

β − 1r.

A.3 The structure of Chacko and Viceira (1999)

Chacko and Viceira (1999) consider a market structure with only one risky asset
(S), and only one state variable given by the inverse of the volatility of the risky
asset and following the Cox et al. (1985) model. In particular, the model is:

dz = λ (θ − z) dt+ σ
√
zdfWz,

dS
S = µdt+ 1√

z
dgWS ,

dG = Grdt,

where all the parameters take positive values. We outline that the stochastic
differentials dfWz and dgWS are correlated:

Cov

µ
dz,

dS

S

¶
=

·
σ2z σSz
σSz

1
z

¸
.

We can lead this case back to our approach by using the Cholesky decomposi-
tion. Because the variance and covariance matrix is always positive semidefinite,
we can write:"

σ
√
z 0

σSz
σ
√
z

1√
z

q
1− σ2Sz

σ2

#"
σ
√
z σSz

σ
√
z

0 1√
z

q
1− σ2Sz

σ2

#
=

·
σ2z σSz
σSz

1
z

¸
.
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Thus, the previous problem can be written in the following way:
dz = λ (θ − z) dt+ σ

√
zdWz,

dS
S = µdt+ σSz

σ
√
z
dWz +

1√
z

q
1− σ2Sz

σ2 dWS ,
dG
G = rdt,

where dWz and dWS are the differentials of two independent Wiener processes.
Thus, under their model the matrices introduced in this work assume the

following values:

µz = λ (θ − z) ,
M = µ− r,
Σ =

h
σSz
σ
√
z

1√
z

q
1− σ2Sz

σ2

i0
,

Ω =
£
σ
√
z 0

¤0
.

Accordingly, we can write:

a (z, t) ≡ µz −
β

β − 1Ω
0Σ0−1M = λθ +

µ
β

1− β
(µ− r)σSz − λ

¶
z,

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M = βr +

1

2

β

1− β
(µ− r)2 z,

C (z, t) ≡ Ω0Ω = σ2z,

D (z, t) ≡ Ω0
µ
I − β

β − 1Σ (Σ
0Σ)−1Σ0

¶
Ω =

µ
σ2 − β

β − 1σ
2
Sz

¶
z.

A.4 The structure of Kim and Omberg (1996)

Kim and Omberg (1996) consider a market structure with only one state variable
(the risk premium z) following the Vasiček (1977) model, and only one risky
asset (S). In particular they have:

dz = λ (θ − z) dt+ σzdfWz,
dS
S = (r + σSz) dt+ σSdgWS ,
dG
G = rdt,

where all the parameters take positive values and fWz andgWS are two correlated
Wiener processes:

Cov

µ
dz,

dS

S

¶
=

·
σ2z σSσzρSz

σSσzρSz σ2S

¸
.

We can lead this case back to our approach by using the Cholesky decomposi-
tion. Because the variance and covariance matrix is always positive semidefinite,
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we can write:·
σz 0

σSρSz σS
p
1− ρ2Sz

¸ ·
σz σSρSz
0 σS

p
1− ρ2Sz

¸
=

·
σ2z σSσzρSz

σSσzρSz σ2S

¸
.

Thus, the previous market structure can be written in the following way:
dz = λ (θ − z) dt+ σzdWz,
dS
S = (r + σSz) dt+ σSρSzdWz + σS

p
1− ρ2SzdWS ,

dG
G = rdt,

where WS and Wx are two independent Wiener processes.
Thus, under their model the matrices introduced in this work assume the

following values:

µz = λ (θ − z) ,
M = zσS ,

Σ =
£
σSρSz σS

p
1− ρ2Sz

¤0
,

Ω =
£
σz 0

¤0
.

Accordingly, we can write:

a (z, t) ≡ µz −
β

β − 1Ω
0Σ0−1M = λθ −

µ
λ+

β

1− β
ρSzσz

¶
z,

b (z, t) ≡ βr − 1
2

β

β − 1M
0 (Σ0Σ)−1M = βr − 1

2

β

1− β
z2,

C (z, t) ≡ Ω0Ω = σ2z,

D (z, t) ≡ Ω0
µ
I − β

β − 1Σ (Σ
0Σ)−1 Σ0

¶
Ω = σ2z

µ
1− β

β − 1ρ
2
Sz

¶
.

B Riccati differential equation with constant co-
efficients

In this appendix we show how to solve a Riccati differential equation having the
following form:

∂f (t)

∂t
+ γ0 + γ1f (t) + γ2f (t)

2
= 0, (13)

where γi ∈ R, i ∈ {0, 1, 2}, and with the boundary condition
f (H) = γH ∈ R.

Since the coefficients are constant, we know two particular solutions of this
equation:

f∗ (t) =
−γ1 ±

√
∆

2γ2
,
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where ∆ ≡ γ21 − 4γ2γ0. Nevertheless, because we want our general solution to
be valid even when γ2 = 0, then we chose the solution with the positive sign.
In fact, in this case

lim
γ2→0

f∗ (t) = lim
γ2→0

− γ0p
γ21 − 4γ2γ0

= −γ0
γ1
,

which is a particular solution of the differential equation

∂f (t)

∂t
+ γ1f (t) + γ0 = 0.

Now we consider the following transformation:

φ (t) =
1

f (t)− f∗ (t) ⇔ f (t) = f∗ (t) +
1

φ (t)
,

and, after substituting it into (13), we have:

γ2f
∗ (t)2+γ1f

∗ (t)+γ0−
1

φ (t)2
∂φ (t)

∂t
+γ2

1

φ (t)2
+2γ2f

∗ (t)
1

φ (t)
+γ1

1

φ (t)
= 0.

The first three terms vanish and we have a linear first order differential
equation:

∂φ (t)

∂t
−
√
∆φ (t)− γ2 = 0,

whose boundary condition is

φ (H) =
1

f (H)− f∗ (H) =
2γ2

2γ2γH + γ1 −
√
∆
.

The solution of the ODE in φ (t) is

φ (t) = − γ2√
∆

Ã
1− γ1 + 2γ2γH +

√
∆

γ1 + 2γ2γH −
√
∆
e−
√
∆(H−t)

!
,

and so we can use our initial transformation for obtaining the final result:

f (t) =
−γ1 +

√
∆

2γ2
−
√
∆

γ2

Ã
1− γ1 + 2γ2γH +

√
∆

γ1 + 2γ2γH −
√
∆
e−
√
∆(H−t)

!−1
,

which can be simplified to3

f (t) =
γH + (2γ0 + γ1γH)

1√
∆
tanh

³
1
2

√
∆ (H − t)

´
1− (γ1 + 2γ2γH) 1√

∆
tanh

³
1
2

√
∆ (H − t)

´ , (14)

3We recall that

tanhx =
ex − e−x
ex + e−x

.
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from which, after substituting for the suitable values (and putting γH = 0) we
can find the solution presented in Proposition 2.
We underline that this solution is asymptotically valid when ∆ tends to zero.

In this case, it is easy to compute the following limit thanks to De L’Ĥopital’s
rule

lim
∆→0

tanh 12
√
∆ (H − t)√
∆

= lim
∆→0

1
4

³
1− tanh2 12

√
∆ (H − t)

´
H−t√
∆

1
2
√
∆

=
1

2
(H − t) .

Furthermore, Solution (14) is valid even for negative values of ∆. In this
case, the function f (t) can be written as follows

f (t) =
γH + (2γ0 + γ1γH)

1
i
√−∆ tanh

¡
1
2 i
√−∆ (H − t)¢

1− (γ1 + 2γ2γH) 1
i
√−∆ tanh

¡
1
2 i
√−∆ (H − t)¢ ,

and, since we know, from the Euler’s formulae, that

1

i
tanh (iy) = tan y, ∀y ∈ R

then we can conclude

f (t) =
γH + (2γ0 + γ1γH)

1√−∆ tan
¡
1
2

√−∆ (H − t)¢
1− (γ1 + 2γ2γH) 1√−∆ tan

¡
1
2

√−∆ (H − t)¢ .
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