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1 Introduction
Since non-linear dynamic systems cannot be usually solved in closed form,
stationarity becomes particularly suitable when we look for analytical solu-
tions. If the dynamic system have a unique, or multiple but isolated, struc-
turally stable rest point we can proceed by solving the linear approximation,
which retains the main dynamic properties from the original non-linear sys-
tem. However, the new growth theory based on endogenous growth models
generates dynamic systems for which it does not exist a well-de…ned hyper-
bolic steady state. In such cases, linearization is not allowed for solving in
closed form, and then we su¤er from the lack a general resolution method.

In this paper we show a method for solving in closed form a particular family
of non-linear dynamic systems. They are four-dimension non-linear modi…ed
Hamiltonian dynamic systems with two states and two co-states. These
systems arise in a natural way from two-sector endogenous growth models like
the one studied in Lucas (1988), which considers the consequences of human
capital accumulation in addition to physical capital, or the more recent one
studied in Aznar-Márquez and Ruiz-Tamarit (2002), which combines both
the traditional physical capital stock and a renewable natural capital stock
as essential inputs for production. Looking at these two endogenous growth
models, the …rst one has been largely analyzed in Benhabib and Perli (1994),
Xie (1994), and others. Whereas Benhabib and Perli proceed by reducing
dimension and solving the linear approximation around the so arti…cially
generated steady state, Xie takes directly the original system and solves it
under additional parameter constraints. The results from the latter have
been recently revised in Ruiz-Tamarit (2002). In this paper we solve the
original non-linear modi…ed Hamiltonian dynamic system arising from the
second endogenous growth model. Moreover, in line with Xie’s procedure we
impose an additional parameter constraint which allows us to solve in closed
form for the original variables of the model. In Section 2 we shortly describe
the model economy, the optimization problem for a competitive economy,
and the dynamic system that governs the state of this economy over time.
In Section 3 we provide the complete analytical solution.
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2 The dynamic system
Consider the intertemporal optimization problem corresponding to the eco-
nomic model studied in Aznar-Márquez and Ruiz-Tamarit (2002). There
are two state variables, K and Q, representing the levels of physical capital
and natural capital, respectively. Each of these states has an accompanying
accumulation equation that determines its evolution over time. The value
for each state at any moment in time depends on the parameters connected
with technology and nature, and also on the values of two control variables,
c and z, representing the ‡ows of consumption and harvesting that denote
the extraction from the stocks decided in each period. There is also a return
function that takes the form of a CIES (¾¡1 > 0) instantaneous utility func-
tion, which only depends on consumption. Behind the natural resource there
is a biotic law of motion suggested by the intrinsic rate of growth, ± > 0,
which should imply exponential growth at a constant rate out of any human
economically-based intervention. In the …nal good sector technology is rep-
resented by Y = AK¯ (zQ)1¡¯ Q°a, where Qa plays the role of a production
externality, A > 0 is an e¢ciency parameter, 1 > ¯ > 0 is the elasticity of
output with respect to physical capital, and ° > 0 captures the weight of the
external e¤ect. This production function exhibits constant returns to scale
over private internal factors. Moreover, for …xed Qa, there are diminishing
returns to K and Q. If, however, Qa rises along with K diminishing returns
will not arise because of the increasing returns to scale with respect to all
the accumulable factors taken together. The absence of diminishing returns
to the factors that can be accumulated is at the origin of the endogenous
growth result, and the presence of an externality opens the possibility for
multiple equilibrium paths. Under the previous technological assumptions,
individual agent still face to a concave optimization problem, but the external
e¤ect introduces a distortion between private and social marginal productiv-
ity of natural capital. That is, the competitive solution to this intertemporal
optimization problem does not correspond to a social optimum.

The problem facing up this economy, for a given constant intertemporal
discount rate ½ > 0, consists in choosing the controls c(t) and z(t) 8t ¸ 0,
which solve the following optimization problem:

Max

Z 1

0

c(t)1¡¾ ¡ 1
1¡ ¾ e¡½t dt (P)
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subject to:

²
Q (t) = ± (1¡ z(t))Q(t)¡ z (t)Q (t) (1)

²
K (t) = AK¯ (t) (z (t)Q (t))1¡¯ Qa (t)

° ¡ c(t) (2)

for K0 > 0 and Q0 > 0 given.

In order to calculate the competitive sub-optimal equilibrium, the represen-
tative agent takes Qa(t) as given when he optimizes, but we will impose
hereafter the additional ex-post equilibrium condition Qa = Q to make in-
dividual decisions compatible at the aggregate level. If we introduce µ1 and
µ2 as the co-state variables (shadow prices) associated with K and Q, re-
spectively, then the set of equations arising from the Pontryagin’s Maximum
Principle as …rst order necessary conditions are:

c¡¾ = µ1 (3)

µ1 (1¡ ¯)AK¯z¡¯Q1¡¯+° = µ2 (1 + ±)Q (4)

²
µ1= ½µ1 ¡ µ1¯AK¯¡1z1¡¯Q1¡¯+° (5)

²
K= AK¯z1¡¯Q1¡¯+° ¡ c (6)

²
µ2= ½µ2 ¡ µ1(1¡ ¯)AK¯z1¡¯Q¡¯+° ¡ µ2±

µ
1¡

µ
1 + ±

±

¶
z

¶
(7)

²
Q= ±

µ
1¡

µ
1 + ±

±

¶
z

¶
Q (8)

The boundary conditions include the two initial conditions K0 and Q0, as
well as the transversality conditions:

lim
t!1

µ1K exp f¡½tg = 0 (9)
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lim
t!1

µ2Q exp f¡½tg = 0 (10)

From (3) and (4) we get the two control functions:

c = µ
¡ 1
¾

1 (11)

z =

µ
(1¡ ¯)A
(1 + ±)

¶ 1
¯
µ
µ1
µ2

¶ 1
¯

Q
°
¯
¡1K (12)

After substituting in (5)-(8), we obtain the following dynamic system:

²
µ1= ½µ1 ¡ »µ

1
¯

1 µ
¡( 1¡¯¯ )
2 Q

°
¯ (13)

²
K=

»

¯
µ
1¡¯
¯

1 µ
¡( 1¡¯¯ )
2 KQ

°
¯ ¡ µ¡

1
¾

1 (14)

²
µ2= ¡ (± ¡ ½) µ2 (15)

²
Q= ±Q¡

µ
1¡ ¯
¯

¶
»µ

1
¯

1 µ
¡ 1
¯

2 KQ
°
¯ (16)

where » ´ ¯(1+±)
(1¡¯)

³
(1¡¯)A
(1+±)

´ 1
¯
> 0. These equations, together with the ini-

tial conditions K0 and Q0 and the transversality conditions (9) and (10),
determine the equilibrium dynamics over time.

3 The complete analytical solution
In this section we resolve the non-linear dynamic system (13)-(16) together
with the initial conditions K0 and Q0 and the transversality conditions (9)
and (10). We characterize the whole parameter space identifying the main
parameter constraints that delimitate the di¤erent sub-spaces for which the
states, co-states and controls show, respectively, a unique equilibrium trajec-
tory, a multiplicity of equilibrium trajectories, or even no equilibrium trajec-
tory at all. Once trajectories have been completely obtained, we conclude

5



about the short-run and the long-run dynamics for each variable. We also
analyze features like positiveness and the sign of the long-run rates of growth.
We will proceed sequentially and using instrumental variables when neces-
sary. The main competitive equilibrium results will be provided under the
form of Propositions with their corresponding proofs. Let us start with the
co-state variable µ2.

Proposition 1 : Along any equilibrium path, µ2 grows permanently at a
constant rate, ¡ (± ¡ ½) 7 0. Each of these paths, in turn, represents a
balanced growth path for µ2.

Proof. From (15) we obtain
²
µ2 =µ2 constant. Hence,

µ2 = µ2(0) exp f¡ (± ¡ ½) tg (17)

where µ2(0) has still to be determined. ¥
Consider now the instrumental variable X de…ned as:

X ´ µ
1
¾
1 K =

K

c
(18)

By totally di¤erentiating and substituting from (13) and (14) we get:

²
X=

1

¾

²
µ1
µ1
X+

²
K

K
X =

½

¾
X¡ »

¾
µ
1
¯
¡1

1 µ
¡(1¡¯¯ )
2 Q

°
¯X+

»

¯
µ
1
¯
¡1

1 µ
¡(1¡¯¯ )
2 Q

°
¯X¡ X

µ
1
¾
1 K

which under the assumption that ¾ = ¯, transforms into the following non
homogeneous …rst-order …rst-degree linear di¤erential equation with constant
coe¢cients:

²
X=

½

¾
X ¡ 1 (19)

Now, given the initial conditionK0 and a certain initial value µ1 (0), although
for the moment unknown, we can generate an initial condition for X, namely

X(0) = µ
1
¾
1 (0)K0. Then, a particular solution to (19) will be given by the

expression:

X =
¾

½
+

·
X(0)¡ ¾

½

¸
exp

n½
¾
t
o

(20)

The transversality condition (9) allows us to establish and prove the follow-
ing:

6



Proposition 2 : Along any equilibrium path, X remains constant at the
stationary value X = ¾

½
.

Proof. From (18) and (20), under the assumption ¾ = ¯, we get:

µ1K = Xµ
¡( 1¡¯¯ )
1 =

¾

½
µ
¡( 1¡¯¯ )
1 +

·
X(0)¡ ¾

½

¸
µ
¡(1¡¯¯ )
1 exp

n½
¾
t
o

Then, the transversality condition (9) may be written as:

lim
t!1

µ1K exp f¡½tg =lim
t!1

¾µ
¡( 1¡¯¯ )
1 exp f¡½tg

½

+ lim
t!1

·
X(0)¡ ¾

½

¸
µ
¡( 1¡¯¯ )
1 exp

½
½

µ
1¡ ¯
¯

¶
t

¾
= 0 (21)

Given that in the long-run X is always di¤erent from zero, the transversality
condition imposes as necessary but not su¢cient condition:

lim
t!1

µ
¡( 1¡¯¯ )
1 exp f¡½tg = 0 (22)

Consequently, looking at the second right-hand term of (21), we realize that
the transversality condition also imposes the constraint X(0) = ¾

½
, from

which we deduce the stationarity of X simply by substituting in (20). This is
the unique non-explosive solution trajectory for X, which implies a constant
value given by the initial condition. Moreover, this result also implies a
particular and well-de…ned initial value for µ1:

µ1 (0) =

µ
¾

½

1

K0

¶¾
(23)

where ¾, the inverse of the intertemporal elasticity of substitution, is equal
to the elasticity of goods production with respect to physical capital stock,
¯. ¥

Proposition 3 : Under the equilibrium conditions,
i) if ° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 then there exist a continuum of

equilibrium paths for Q starting from Q0. These paths may be characterized

by the multiplicity of initial values µ2 (0) = (1 + ²)

µ
( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

¶¯
Q°¡¯0 ,

where ² ? 0 is indeterminate.
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ii) if ° > ¯ and ± (1 + ° ¡ ¯)¡½ 6 0 then it does not exist any equilibrium
path for Q starting from Q0.
iii) if ° < ¯ and ± (1 + ° ¡ ¯)¡ ½ > 0 then it does not exist any equilib-

rium path for Q starting from Q0.
iv) if ° < ¯ and ± (1 + ° ¡ ¯)¡½ < 0 then there exist a unique equilibrium

path for Q starting from Q0. This unique path may be characterized by the

initial value µ2 (0) =
µ
( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

¶¯
Q
¡(¯¡°)
0 .

Proof. Making use of the previous result about the instrumental variable X,
we can reconsider the non-linear dynamic system (13)-(16), which may be
sequentially solved in closed form. We do not need to transform this original
modi…ed Hamiltonian dynamic system by reducing its dimension. Instead,
we can substitute the results from Propositions 1 and 2 in (16) getting:

²
Q = ±Q¡ Ã1Q

°
¯ (24)

where Ã1 =
³
1¡¯
¯

´
»µ
¡ 1
¯

2 (0)¾
½
exp

n
±¡½
¯
t
o
. Equation (24) may be solved in

two steps using Bernoulli’s method, which leads to the general solution:

Q =

½·
Q

¯¡°
¯

0 +W1

¸
exp

½
± (¯ ¡ °)

¯
t

¾
¡W1 exp

½
± ¡ ½
¯
t

¾¾ ¯
¯¡°

(25)

where:

W1 = ¡
³
°¡¯
¯

´
(1¡ ¯) »µ¡

1
¯

2 (0)¾
½

± (1 + ° ¡ ¯)¡ ½
The transversality condition (10), in turn, may be written as:

0 = lim
t!1

[ (µ2(0)Q0)
¯¡°
¯ ¡

³
°¡¯
¯

´
(1¡ ¯) »µ¡

1+°¡¯
¯

2 (0)¾
½

± (1 + ° ¡ ¯)¡ ½

+

³
°¡¯
¯

´
(1¡ ¯) »µ¡

1+°¡¯
¯

2 (0)¾
½

± (1 + ° ¡ ¯)¡ ½ exp

½
± (1 + ° ¡ ¯)¡ ½

¯
t

¾
]

¯
¯¡° (26)
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and the di¤erent cases in Proposition 3 arise almost automatically in a nat-
ural way. ¥
As we have seen in Proposition 3, the initial value for the shadow price of
natural capital admits the following general speci…cation:

µ2 (0) = (1 + ²)

0@
³
°¡¯
¯

´
(1¡ ¯) » ¾

½

± (1 + ° ¡ ¯)¡ ½

1A¯

Q°¡¯0 (27)

This expression will correspond to case i) under the additional constraints:
° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 for any ² ? 0. Moreover, it will corre-
spond to case iv) under the alternative set of constraints: ² = 0, ° < ¯ and
± (1 + ° ¡ ¯)¡½ < 0. On the other hand, the coe¢cientW1 appearing in (25)

may be simpli…ed by de…ningW1 = ¡ (1 + ¢)Q
¯¡°
¯

0 , where 1+¢ ´ (1 + ²)¡ 1
¯

and ¢ ? 0 depending on whether ² 7 0. Now, we can use this de…nition to
derive a general expression for Q, which encompasses the two cases i) and
iv) from Proposition 3:

Q =
Q0h

1 + ¢¡¢exp
n
¡±(1+°¡¯)¡½

¯
t
oi ¯

°¡¯
exp

½
½¡ ±
° ¡ ¯ t

¾
(28)

This expression will correspond to case i) under the constraints: ° > ¯ and
± (1 + ° ¡ ¯) ¡ ½ > 0, for any ¢ ? 0. It shows a multiplicity of solution
trajectories for Q because of the indeterminate value of the parameter ¢.
Moreover, it will correspond to case iv) under the constraints: ² = ¢ = 0,
° < ¯ and ± (1 + ° ¡ ¯)¡ ½ < 0, showing a unique solution trajectory for Q
because in this case the parameter ¢ takes a de…nite value.

Proposition 4 : Under the equilibrium conditions,
a) if ° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 then there exist a continuum of

equilibrium paths for µ2. These paths may be characterized by the multiplicity

of initial values µ2 (0) = (1 + ¢)¡¯
µ
( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

¶¯
Q°¡¯0 , where ¢ ? 0 is

indeterminate.
b) if ° < ¯ and ± (1 + ° ¡ ¯)¡½ < 0 then there exist a unique equilibrium

path for µ2. This unique path may be characterized by the initial value µ2 (0) =µ
( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

¶¯
Q
¡(¯¡°)
0 .
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Otherwise it does not exist any equilibrium path for µ2.

Proof. We only need to take (17) and substitute the value for µ2(0) just
determined in (27). Then, we get:

µ2 = (1 +¢)
¡¯

0@
³
°¡¯
¯

´
(1¡ ¯) » ¾

½

± (1 + ° ¡ ¯)¡ ½

1A¯

Q°¡¯0 exp f¡ (± ¡ ½) tg (29)

Multiplicity appears associated with the indeterminate value of ¢, while in
case b), where ¢ = 0, the indetermination disappears and we …nd a unique
trajectory. ¥

Lemma 1 : The equilibrium paths for µ2 and Q take only positive values if
and only if ¢ > ¡1.

Proof. From (29), given the correlation among the signs of the parameter
constraints as indicated in Proposition 4, we conclude that the positiveness
of µ2 depends on the constraint ¢ > ¡1 alone. From (28), the positiveness
of Q also depends on the constraint ¢ > ¡1, given the sign of the parameter
constraints. ¥

Proposition 5 : If ° > ¯ and ± (1 + ° ¡ ¯)¡½ > 0 then any of the multiple
equilibrium trajectories for Q starting from Q0, while describing transitional
dynamics, approaches asymptotically to an undetermined positive balanced
growth path where the natural capital stock grows permanently at a constant
rate g

I

Q=
½¡±
°¡¯ ? 0, depending on whether ½ ? ±.

Proof. Under the above parameter constraints, looking at (28) we …nd that
in the long-run any of the multiple equilibrium trajectories for Q evolves
transitionally approaching to its associated positive balanced growth path:

QI=
Q0

[1 + ¢]
¯

°¡¯
exp

½
½¡ ±
° ¡ ¯ t

¾
(30)

for any ¢ > ¡1. Along these asymptotic paths Q grows at a constant rate,
which is positive or negative depending on whether ½ ? ±. ¥
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Corollary 1 : Under the parameter constraints assumed in the previous
Proposition, any of the long-run equilibrium trajectories or balanced growth
paths, which implies permanent and positive (negative) growth for Q, also
implies permanent and positive (negative) growth for its associated shadow
price µ2. Nevertheless, along any of such trajectories we …nd non-explosivity
because the transversality condition is satis…ed.

Proposition 6 : If ° < ¯ and ± (1 + ° ¡ ¯) ¡ ½ < 0 then, associated with
the unique equilibrium trajectory for Q starting from Q0, it does not exist
transitional dynamics at all, and the natural capital stock grows forever along
such a balanced growth path at a constant rate g

II

Q=
±¡½
¯¡° ? 0, depending on

whether ± ? ½.

Proof. Under the constraint of a weak externality that means ° < ¯ and
± (1 + ° ¡ ¯)¡ ½ < 0 then, according to Proposition 3, the constraint ¢ = 0
applies too. Thus, substituting the latter in (28), we get the following positive
balanced growth path:

Q =QII= Q0 exp

½
± ¡ ½
¯ ¡ ° t

¾
(31)

Consequently, Q grows at a constant rate, which is positive or negative de-
pending on whether ± ? ½. ¥

Corollary 2 : Under the parameter constraints assumed in the previous
Proposition, the unique equilibrium trajectory and balanced growth path which
implies permanent and positive (negative) growth for Q, also implies a con-
tinuous decreasing (increasing) movement for its associated shadow price µ2.
Along this trajectory the transversality condition is satis…ed.

Proposition 7 : Under the equilibrium conditions,
I) if ° > ¯ and ± (1 + ° ¡ ¯)¡½ > 0 then there exist a continuum of equi-

librium paths for µ1 starting from µ1 (0). These paths may be characterized
by the indeterminate value of the parameter ¢.
II) if ° < ¯ and ± (1 + ° ¡ ¯) ¡ ½ < 0, hence ¢ = 0, then there exist a

unique equilibrium path for µ1 starting from µ1 (0).
Otherwise it does not exist any equilibrium path for µ1 starting from µ1 (0).
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Proof. Using (28) for Q and (29) for µ2, we can substitute in (13), getting
the non-linear di¤erential equation:

²
µ1= ½µ1 ¡ Ã2µ

1
¯

1 (32)

where Ã2 = »

µ
1

1+¢

( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

¶¯¡1 h
1 + ¢¡¢exp

n
¡ ±(1+°¡¯)¡½

¯
t
oi ¡°

°¡¯

Q1+°¡¯0 exp
n
±¡½
¯¡° (1 + ° ¡ ¯) t

o
. Equation (32) may be solved as before ap-

plying Bernoulli’s method, which leads to the solution:

µ1 =

"µ
½

¯
K0

¶1¡¯
+ C0¢Q

1+°¡¯
0 I¢(t)

# ¡¯
1¡¯

exp f½tg (33)

where C0¢ =
( 1¡¯¯ )»

(1+¢)
¯(1+°¡¯)

°¡¯
Ã
( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

!1¡¯ is an indeterminate constant,
which depends on the value of the parameter ¢, and I¢(t) represents the
following de…nite integral, which also depends on the parameter ¢:

I¢(t) =

Z t

0

exp
n
¡±¯(1+°¡¯)¡°½

(°¡¯)¯ s
o

h
1¡ ¢

1+¢
exp

n
¡ ±(1+°¡¯)¡½

¯
s
oi °

°¡¯
ds (34)

Equation (33) gives a continuum of solution trajectories for µ1 depending on
the indeterminate value of ¢ as well as on the value of the remaining struc-
tural parameters. Hence, we will study this shadow price under two sets of pa-
rameter constraints. First, consider ° > ¯, ± (1 + ° ¡ ¯)¡½ > 0 and¢ > ¡1.
In this case, the necessary transversality condition (21) which imposes the

non-explosivity constraint lim
t!1

µ
¡( 1¡¯¯ )
1 exp f¡½tg = 0, given (33) may be

simpli…ed to the following necessary condition: lim
t!1

I¢(t) exp
n
¡ ½
¯
t
o
= 0.

Moreover, given the above parameter constraints, we can see the integrand
function in (34) as a function converging in the long-run to the pure expo-

nential function exp
n
¡±¯(1+°¡¯)¡°½

(°¡¯)¯ s
o
. Therefore, this suggest a bound to

the function I¢(t) as in the following integral function:
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Ib(t) =

Z t

0

exp

½
¡±¯ (1 + ° ¡ ¯)¡ °½

(° ¡ ¯) ¯ s

¾
ds

=
(° ¡ ¯)¯

³
1¡ exp

n
¡±¯(1+°¡¯)¡°½

(°¡¯)¯ t
o´

±¯ (1 + ° ¡ ¯)¡ °½
Then, given the applicability of the transversality condition in the limit as
t tends to in…nity, we can reconsider the previous necessary condition in
terms of the bounding function just introduced, which allows us to write:
lim
t!1

Ib(t) exp
n
¡ ½
¯
t
o
= 0. It is easy to see that, under the prevailing set of

parameter constraints, this condition always holds and no other parameter
constraint is needed.

Second, consider ° < ¯, ± (1 + ° ¡ ¯)¡ ½ < 0 and ¢ = 0. In this case, (33)
simpli…es to:

µ1 =

"µ
½

¯
K0

¶1¡¯
+ C00Q

1+°¡¯
0 I0(t)

# ¡¯
1¡¯

exp f½tg

where C00 =
( 1¡¯¯ )»Ã

( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

!1¡¯ > 0 is the value for the constant C0¢ when

¢ = 0, and I0(t) =
(°¡¯)¯(1¡expf¡ ±¯(1+°¡¯)¡°½

(°¡¯)¯ tg)
±¯(1+°¡¯)¡°½ represents the solution to

the integral function I¢(t) under ¢ = 0. After some substitutions and re-
arranging terms we …nd the following expression for the shadow price of
physical capital:

µ1 = [

(µ
½

¯
K0

¶1¡¯
¡ (¯ ¡ °) ¯C00Q1+°¡¯0

±¯ (1 + ° ¡ ¯)¡ °½

)
exp

½
¡(1¡ ¯) ½

¯
t

¾

+
(¯ ¡ °) ¯C00Q1+°¡¯0

±¯ (1 + ° ¡ ¯)¡ °½ exp
½
(± ¡ ½) (1 + ° ¡ ¯)

(¯ ¡ °) t

¾
]
¡¯
1¡¯ (35)

Thus, given the solution for µ1 and the prevailing set of parameter con-
straints, the transversality condition (21) which imposes the non-explosivity

13



constraint lim
t!1

µ
¡( 1¡¯¯ )
1 exp f¡½tg = 0 will be always met with no additional

constraint on the parameter values. In this case, there exist a unique equi-
librium path for µ1 starting from µ1 (0). The initial value for µ1 depends only
on K0, as shown in (23). However, subsequent values also depend on the
initial natural capital stock Q0. ¥

Finally, using the previous results for the variables µ1, Q and µ2 we can
substitute in (14) in such a way that we get:

²
K= Ã3K ¡ Ã4 (36)

where:

Ã3 =
»

¯
µ
¡( 1¡¯¯ )
2 µ

1
¯
¡1

1 Q
°
¯ =

1

¯
Ã2µ

1¡¯
¯

1

=

1
¯
»

µ
1

1+¢

( °¡¯¯ )(1¡¯)» ¾½
±(1+°¡¯)¡½

¶¯¡1
Q1+°¡¯0 exp

n³
±¡½
¯¡° (1 + ° ¡ ¯) + ½

¯
¡ ½
´
t
o

h
1 + ¢¡¢exp

n
¡±(1+°¡¯)¡½

¯
t
oi °

°¡¯
·³

½
¯
K0

´1¡¯
+ C0¢Q

1+°¡¯
0 I¢(t)

¸
and

Ã4 = µ
¡ 1
¾

1 =

"µ
½

¯
K0

¶1¡¯
+ C0¢Q

1+°¡¯
0 I¢(t)

# 1
1¡¯

exp

½
¡ ½
¯
t

¾
The general solution to (36) is:

K = K0 exp

½Z t

0

Ã3(s) ds

¾
¡
Z t

0

Ã4(r) exp

½Z t

r

Ã3(z) dz

¾
dr (37)

This is an exact solution forK which depends only on the parameters and the
initial conditions. Nevertheless, the above expression is quite complex and
we would like to …nd an alternative way for getting the trajectory solution
for physical capital stock. We can do that by using some previous results
like the one established in Proposition 2.
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Proposition 8 : Under the equilibrium conditions,
I) if ° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 then there exist a continuum of

equilibrium paths for K starting from K0. These paths may be characterized
by the indeterminate value of the parameter ¢.
II) if ° < ¯ and ± (1 + ° ¡ ¯)¡ ½ < 0, hence ¢ = 0 and then there exist

a unique equilibrium path for K starting from K0.
Otherwise it does not exist any equilibrium path for K starting from K0.

Proof. Given de…nition (18) as well as the constant value for X under the
assumption ¾ = ¯, and the general solution for µ1 given in (33), we can write:

K =
¯

½
µ
¡ 1
¯

1 =
¯

½

"µ
½

¯
K0

¶1¡¯
+ C0¢Q

1+°¡¯
0 I¢(t)

# 1
1¡¯

exp

½
¡ ½
¯
t

¾
(38)

Equation (38) shows a continuum of solution trajectories for K depending
on the indeterminate value of the parameter ¢, which correspond to the
following set of parameter constraints: ° > ¯, ± (1 + ° ¡ ¯) ¡ ½ > 0 and
¢ > ¡1. Instead, when the prevailing set of parameter constraints is: ° < ¯,
± (1 + ° ¡ ¯) ¡ ½ < 0 and ¢ = 0, the expression for physical capital stock
simpli…es to:

K =
¯

½
[

(µ
½

¯
K0

¶1¡¯
¡ (¯ ¡ °) ¯C00Q1+°¡¯0

±¯ (1 + ° ¡ ¯)¡ °½

)
exp

½
¡(1¡ ¯) ½

¯
t

¾

+
(¯ ¡ °) ¯C00Q1+°¡¯0

±¯ (1 + ° ¡ ¯)¡ °½ exp
½
(± ¡ ½) (1 + ° ¡ ¯)

(¯ ¡ °) t

¾
]

1
1¡¯ (39)

In this case, there exist a unique equilibrium path for K starting from K0.
Subsequent values of K also depend on the initial natural capital stock Q0.

On the other hand, given the direct dependence of K with respect to µ1, as
established by the constancy of variable X, which arises from the transver-
sality condition, the di¤erent cases considered in Proposition 7 necessarily
have to re‡ect the corresponding ones in Proposition 8. ¥

Lemma 2 : In the case where ° > ¯ and ± (1 + ° ¡ ¯)¡ ½ > 0, if ¢ > ¡1
and ±¯ (1 + ° ¡ ¯)¡°½ < 0 the multiple equilibrium paths for µ1 and K take
only positive values.
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Proof. Looking at (33) and (38), if C0¢ and I¢(t) are always positive then
we get always positive values for µ1 and K. Given the signs of the para-
meter constraints, both C0¢ and I(t) are always positive if ¢ > ¡1 and
±¯ (1 + ° ¡ ¯)¡ °½ < 0. ¥
Lemma 3 : In the case where ° < ¯ and ± (1 + ° ¡ ¯)¡ ½ < 0, and hence
¢ = 0, if ±¯ (1 + ° ¡ ¯)¡ °½ > 0 the unique equilibrium paths for µ1 and K
take only positive values.

Proof. This is a result which arises immediately from (35) and (39). ¥

Proposition 9 : If ° > ¯ and ± (1 + ° ¡ ¯)¡½ > 0 then any of the multiple
equilibrium trajectories for K starting from K0, while describing transitional
dynamics, approaches asymptotically to an undetermined positive balanced
growth path where the physical capital stock grows permanently at a constant
rate g

I

K=
1+°¡¯
1¡¯

³
½¡±
°¡¯
´
? 0, depending on whether ½ ? ±.

Proof. Under the above parameter constraints, looking at (33) we …nd that
in the long-run any of the multiple equilibrium trajectories for µ1 evolves
transitionally approaching to its associated positive balanced growth path:

µ1I=

Ã
¡±¯ (1 + ° ¡ ¯)¡ °½
(° ¡ ¯) ¯C0¢Q1+°¡¯0

! ¯
1¡¯

exp

½¡¯ (1 + ° ¡ ¯)
1¡ ¯

µ
½¡ ±
° ¡ ¯

¶
t

¾
(40)

for any ¢ > ¡1 and ±¯ (1 + ° ¡ ¯)¡ °½ < 0. Consequently, given de…nition
(18) and the constant value for X under the assumption ¾ = ¯, in the long-
run any of the multiple equilibrium trajectories for K evolves transitionally
approaching to its associated positive balanced growth path:

KI=
¯

½

Ã
¡(° ¡ ¯) ¯C

0
¢Q

1+°¡¯
0

±¯ (1 + ° ¡ ¯)¡ °½

! 1
1¡¯

exp

½
1 + ° ¡ ¯
1¡ ¯

µ
½¡ ±
° ¡ ¯

¶
t

¾
(41)

for any ¢ > ¡1 and ±¯ (1 + ° ¡ ¯)¡ °½ < 0. Along these asymptotic paths
K and µ1 grow at a constant rate. It is easy to see that these variables evolve
in opposite directions: K increase (decrease) while µ1 decrease (increase)
depending on whether ½ ? ±. Moreover, these trajectories show a direct
dependence on Q0 as well as on the parameter ¢ but, instead, they are
absolutely independent of K0. ¥
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Proposition 10 : If ° < ¯ and ± (1 + ° ¡ ¯) ¡ ½ < 0 then the unique
equilibrium trajectory for K starting from K0, while describing transitional
dynamics, approaches asymptotically to the unique positive balanced growth
path where the physical capital stock grows permanently at a constant rate
gII
K=

1+°¡¯
1¡¯

³
±¡½
¯¡°
´
? 0, depending on whether ± ? ½.

Proof. Under the constraint of a weak externality that means ° < ¯ and
± (1 + ° ¡ ¯)¡ ½ < 0 then, according to Proposition 7, the constraint ¢ = 0
applies too. Therefore, substituting in (38) we …nd an expression forK, which
is unique and in the long-run approaches to the unique positive balanced
growth path:

KII=
¯

½

Ã
(¯ ¡ °)¯C00Q1+°¡¯0

±¯ (1 + ° ¡ ¯)¡ °½

! 1
1¡¯

exp

½
1 + ° ¡ ¯
1¡ ¯

µ
± ¡ ½
¯ ¡ °

¶
t

¾
(42)

given ±¯ (1 + ° ¡ ¯)¡ °½ > 0. Along this path K grows at a constant rate,
which is positive or negative depending on whether ± ? ½. Once again, we
can see that this asymptotic path for K depends on Q0 but is completely
independent of K0.

In addition, looking for a global description of the solution we use de…nition
(18) and the constant value for X under the assumption ¾ = ¯. Then, we
can see that in the long-run the unique trajectory for µ1 evolves transitionally
approaching to the unique positive balanced growth path:

µ1II=

µ
±¯ (1 + ° ¡ ¯)¡ °½
(¯ ¡ °)¯C00Q1+°¡¯0

¶ ¯
1¡¯
exp

½¡¯ (1 + ° ¡ ¯)
1¡ ¯

µ
± ¡ ½
¯ ¡ °

¶
t

¾
(43)

given ±¯ (1 + ° ¡ ¯)¡ °½ > 0. ¥

Corollary 3 : For any of the cases considered along the two previous Propo-
sitions, the long-run equilibrium trajectories or balanced growth paths to which
asymptotically moves the physical capital stock imply permanent and positive
(negative) growth for K, and a continuous decrease (increase) for its asso-
ciated shadow price µ1. In any case, these two variables always move in
opposite directions and the transversality condition is satis…ed.
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The three next Propositions will give us the complete solution for the two
control variables of the model: the per capita consumption c, and the har-
vesting rate z.

Proposition 11 : Under the equilibrium conditions,
I) If ° > ¯; ± (1 + ° ¡ ¯) ¡ ½ > 0; ±¯ (1 + ° ¡ ¯) ¡ °½ < 0 and ¢ >

¡1 then there exist a continuum of equilibrium paths for c starting from
c(0) = ½

¯
K0. Along each equilibrium path, which may be characterized by

the indeterminate value of the parameter ¢, per capita consumption takes
only positive values. Moreover, while describing transitional dynamics, every
equilibrium trajectory approaches asymptotically to an undetermined positive
balanced growth path, along which c grows permanently at a positive or neg-
ative constant rate, g

I

c=
1+°¡¯
1¡¯

³
½¡±
°¡¯
´
? 0, depending on whether ½ ? ±:

II) If ° < ¯; ± (1 + ° ¡ ¯)¡½ < 0, ±¯ (1 + ° ¡ ¯)¡°½ > 0 and¢ = 0 then
there exist a unique equilibrium path for c starting from c(0) = ½

¯
K0: Along

this equilibrium path per capita consumption takes only positive values. More-
over, while describing transitional dynamics, it approaches asymptotically to
the unique positive balanced growth path, along which c grows permanently
at a positive or negative constant rate, g

II

c =
1+°¡¯
1¡¯

³
±¡½
¯¡°
´
? 0, depending on

whether ± ? ½.

Proof. Given the control function (11), de…nition (18) as well as Proposition
2, which assigns a constant value to X under the assumption ¾ = ¯, we get:

c =
½

¯
K (44)

Consequently, the above statements become a natural extension from those
which have been stated for the variable physical capital stock along the pre-
vious Propositions. ¥

Proposition 12 : Under the equilibrium conditions,
a) if ° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 then there exist a continuum of

equilibrium paths for z. These paths may be characterized by the multiplicity
of initial values z (0) = (1 + ¢)

³
±(1+°¡¯)¡½
(1+±)(°¡¯)

´
, where ¢ ? 0 is indetermi-

nate. Moreover, any of the multiple equilibrium trajectories asymptotically
approaches to the same constant value, which represents the unique balanced
growth path.
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b) if ° < ¯ and ± (1 + ° ¡ ¯)¡½ < 0 then there exist a unique equilibrium
path for z: This unique path for which there is no transitional dynamics, may
be characterized by the initial value z (0) = ¡ ±(1+°¡¯)¡½

(1+±)(¯¡°) , which also represents
the unique balanced growth path.
Otherwise it does not exist any equilibrium path for z:

Proof. Take the control function (12) which, given the constancy ofX ´ µ
1
¾
1 K

according to Proposition 2 and the general solutions for Q and µ2 according
to (28) and (29), may be reduced to the following expression:

z =
1h

1¡ ¢
1+¢

exp
n
¡ ±(1+°¡¯)¡½

¯
t
oi ± (1 + ° ¡ ¯)¡ ½

(1 + ±) (° ¡ ¯) (45)

When ° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 the previous equation gives a con-
tinuum of solution trajectories for z because of the indeterminate value of
the parameter ¢. Moreover, it is easily derived from (45) that, in the long-
run, any of the multiple equilibrium trajectories for z evolves transitionally
approaching to the same constant path:

zI=
± (1 + ° ¡ ¯)¡ ½
(1 + ±) (° ¡ ¯) (46)

When ° < ¯ and ± (1 + ° ¡ ¯) ¡ ½ < 0, hence ¢ = 0, the indetermination
disappears and we …nd a unique and constant equilibrium trajectory:

z =zII= ¡± (1 + ° ¡ ¯)¡ ½
(1 + ±) (¯ ¡ °) (47)

In this case, the above expression means that there is no transitional dynam-
ics for z. This variable remains always constant. ¥

Proposition 13 : Under the equilibrium conditions,
a) In the case where ° > ¯ and ± (1 + ° ¡ ¯) ¡ ½ > 0 the variable z

satis…es the constraint 1 > z > 0, if and only if ± < ½ + (° ¡ ¯) and
(°¡¯)+(½¡±)
±(1+°¡¯)¡½ > ¢ > ¡1:
b) In the case where ° < ¯ and ± (1 + ° ¡ ¯)¡ ½ < 0, along with ¢ = 0,

the variable z satis…es the constraint 1 > z > 0, if and only if ± > ½+(° ¡ ¯) :
Proof: As we have seen along the proof of the previous Proposition, in case
a) any of the multiple equilibrium trajectories for z starting from the inde-
terminate value:
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z(0) = (1 + ¢)

µ
± (1 + ° ¡ ¯)¡ ½
(1 + ±) (° ¡ ¯)

¶
(48)

approaches monotonically to zI , as given in (46). It is immediate to prove
that 1 > z(0) > 0 if and only if (°¡¯)+(½¡±)

±(1+°¡¯)¡½ > ¢ > ¡1, but also that 1 >zI> 0
if and only if ± < ½+ (° ¡ ¯).
On the other hand, in case b) the variable z follows a constant trajectory
associated with the initial value:

z =zII= z(0) = ¡± (1 + ° ¡ ¯)¡ ½
(1 + ±) (¯ ¡ °) (49)

In this case, the constraint 1 > z > 0 holds if and only if ± > ½+ (° ¡ ¯) : ¥
This completes the analytical closed-form solution corresponding to the com-
petitive equilibrium. Along the previous Propositions we have shown several
results, all of them derived under the simplifying assumption ¾ = ¯. How-
ever, given our interest in theoretical properties of the transitional dynamics
and the explicit trajectories for the di¤erent variables, the above assump-
tion does not seem too restrictive. In fact, we can identify the following
shortcomings: …rst, consumption is proportional to physical capital stock;
second, the initial physical capital stock does not contribute to determine
any of the long-run balanced growth paths; and third, transitional dynamics
corresponding to all the variables are partially simpli…ed, although they still
retain the main original features.
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