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Abstract

The analysis and prediction of the short-run economic dynam-
ics, or the evolution of the business cycle, often require a construc-
tion of the composite economic indicator (CEI). This indicator
may be endowed with nonlinear dynamics to take care of the pos-
sible asymmetries between different phases of the business cycle.
This paper suggests using the smooth transition autoregression
to model the CEIL. The performance of this model is compared
to the already classical CEI with regime switching. Both models
turn out to produce statistically equally good results in terms of
forecasting the business cycle turning points.
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1 Introduction

A great deal of the economic and political decision making depends on
the forecasts of the state of affairs in the economy. One of the proxies
capturing the current business conditions is used to be the so-called com-
posite economic indicator (CEI) estimated using dynamic factor analysis.

The CEI can be constructed assuming that it follows either linear or
nonlinear dynamics. Applying the nonlinear models we are able, firstly,
to incorporate the business cycle asymmetries, if any, and, secondly, to
come up with the endogenous chronologies of the business cycle turns.
Taking advantage of these techniques we can predict the turning points,
which is impossible when one uses the so-called ad hoc methods like the
extremely popular Bry-Boschan method®.

Up to date there was only one nonlinear common factor model con-
sidered — the CEI with Markov switching (CF-MS). In this paper we
suggest the use of another nonlinear model — CEI with smooth tran-
sition autoregressive dynamics (CF-STAR). It might be useful in the
cases where CF-MS does not work properly or it might serve as an alter-
native to the Markovian model when both STAR and regime-switching
dynamics are equally probable. Moreover, in some cases the mix of two
nonlinear models can possibly allow improved forecasts compared to the
predictions of each model made separately.

In the next section we briefly discuss the setup of the two nonlinear
models. In section three the two alternative models are estimated and
their forecasting performance is evaluated using the Post World War 11
US macroeconomic series. Concluding remarks section summarizes the
main findings of the paper. All the tables are contained in the Appendix.

2 Models

The idea behind the two models examined in this section is that the
evolution of the business conditions can be classified into a limited set of
the alternating regimes. In the simplest case one distinguishes between
two regimes, or states, namely: expansion and recession. One may as-
sume that the switches in the regimes are due to some unobserved state
variable.

The economy behaves differently under the different regimes. This
is translated into the state-dependent differences between some of the
model’s parameters. Thus, for example, the growth rates and the volatil-
ity may be different under the expansions and recessions.

The models considered below, although stemming from the same
premise of the existence of a latent state variable, use different mecha-

IFor details see Bry and Boschan (1971).



nisms of representing it.

2.1 Dynamic common factor with regime switching

The model of a single dynamic common factor with Markov switching
(CF-MS) thanks to the works of C.J.Kim (see, for example, Kim and
Nelson (1999)) has almost become classical. Formally in its general form
(all common factor’s parameters are state-dependent) CF-MS is defined
as follows:
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where y; is the n x 1 vector of the observable time series; C} is the dy-
namic common factor in levels; u; is the n x 1 vector of the idiosyncratic
components; s; is the regime variable taking m values, where m is the
number of the regimes; p}'® and (/5%]5 (j=1,2and i = 1,2,...,p) are
the common factor’s state-dependent intercepts and autoregressive coef-
ficients, respectively. Thus, form = 2, s; = 1,0. Given that u° > 3?9
regimes 1 and 2 may be interpreted as an ascending trend and a de-
scending trend states, respectively. In this model the intercept term,
pMS and the residual variance of the common factor, o2(s,), are made
state-dependent, that is, they are different for the different regimes, or
cyclical phases.

The shocks to the common and specific factors are assumed to be

serially and mutually uncorrelated and to be normally distributed:
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where o*?&_ (j = 1,2) is the common factor’s state-dependent residual
variance.

The lag polynomial matrices of the specific factors, ¥, (j =1, ..., q),
are supposed to be diagonal.

The transition probabilities, p;; = Pr(s;, = j|s;—1 = 7), sum up to
one when added across all the possible state for the given regime in the
previous period: >7"; pi; = 1 Vi for m states.



2.2 Dynamic common factor with smooth transi-
tion autoregression

The novelty of this paper is the application of STAR to the unobserved
common factor model. The technique itself as applied to the observed
univariate time series was developed by Chan and Tong (1986) as well as
by Teriisvirta and his coauthors (e.g. Granger and Terisvirta (1993)).

The common factor model with smooth transition autoregression
(CF-STAR) is apparently very similar to its counterpart with regime
switching. However, there is a crucial difference between the two ap-
proaches: while in CF-MS the state variable determining shifts from
one regime to another is unobserved, in CF-STAR the switches between
regimes are conditioned upon the past values of the composite indicator
itself or upon those of some observed regressor. In the present case the
situation is complicated by the fact that we do not observe the CEI itself.
Hence we should condition the changes in regimes on its past estimated
values.

The only difference between the two models is the equation describing
evolution of the common dynamic factor:
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where pf are the state-dependent intercepts; ¢7; (j =
1,2andi = 1,2,...,p) are the state-dependent autoregressive coefﬁcients-
Ft F,(AC;_g4; >\ ,7) is some smooth transition function. In the present
study we are using two specifications of the transition function. Firstly,
it is a logistic specification which allows capturing the asymmetries be-
tween the business cycle phases:
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where A > 0 is the parameter determining the abruptness of transi-
tion (the greater is its value the sharper are the switches between the
regimes); AC; 4 is playing the role of the so-called transition variable;
d > 0 is called the transition delay; r is the transition threshold. Ba-
sically, the shifts between the two different regimes (say, high growth
and low growth, as in the CF-MS) depend on deviation between the
past CEI’s growth rate and some threshold, r. If, for instance, the past
common factor’s growth rate exceeded the threshold, the high growth
regime becomes more probable.
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Secondly, the exponential specification of the transition function is
utilized:

Fy(ACi_g; A,r) = 1 — exp(—=A(ACi_a — 1)*) (6)

Thus, the CF-STAR model where the common factor dynamics is
governed by the equations (4) and (5) will be denoted as CF-LSTAR,
while the model where these dynamics are based on the equations (4)
and (6) will be denoted as CF-ESTAR.

Again as in the CF-MS case, the residual variance of the common
factor can be state-dependent too:
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where o*gj (j = 1,2) is the state-dependent residual variance of the com-
mon factor.

3 Estimation and evaluation

3.1 Estimation

The composite economic indicators were estimated using four US monthly
macroeconomic time series covering the period of 1959:1-1998:12: em-
ployees on nonagricultural payrolls (EMP); personal income less transfer
payments (INC); index of industrial production (IIP); and manufactur-
ing and trade series (SLS).

As a benchmark the linear CF model was used. We started with
determining the optimal lag structure of this benchmark model. By this
we mean the order of the autoregressive polynomials of the common
and specific factors. The Akaike (AIC) and Schwartz (SBIC) informa-
tion criteria were applied. The log-likelihood values of the linear CF
with different orders of autoregressive polynomials of the common and
specific factors together with the corresponding Akaike and Schwartz
quantities are presented in Table 1. The AIC and SBIC come up with
optimal combinations (1,3) and (1,2), respectively. We chose the combi-
nation (1,2) as more parsimonious. It corresponds to the common factor
following AR(1) and the specific factors following AR(2).

Next, we have tested the common factor dynamics for linearity. The
alternative was the logistic STAR dynamics. The LM-type tests based
on the first- and third-order Taylor expansion of the logistic STAR tran-
sition function around A = 0 were conducted as in van Dijk et al. (2000).
For these test the estimated values of the common factor, obtained from
the linear CF(1,2) model, were used.



The first-order Taylor expansion of the logistic transition function
results in:

p p
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where AC, is the linear estimate of the growth rate of the common factor.

The null hypothesis (linear CF) is ¢; = ¢gy = ... = ¢, = 0. This hy-

pothesis can be tested with F-statistic denoted here as LM;. In the case

when only the intercept is different across different regimes? this statistic

will not have power and therefore the third-order Taylor approximation
is utilized:
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Under this condition the null hypothesis is as follows: ¢,; = ¢, =

= ¢;, =0 (i =2,3,4). It is denoted as LMs.

The results of the tests are reported in Table 2. The null of linearity
is rejected at 5% significance level for the delays d = 1 and d = 2. In
other words, the STAR nonlinearity can be accepted when the transition
variable is AC;_1 and/or AC;_,. This circumstance was used to specify
the CF-STAR model. However, since the regime probabilities derived
from the CF-STAR model with d = 2 were too bad predictors of the
NBER dates, we do not present the estimates of this model here.

The CF-MS model is specified as (1,1), because the regime prob-
abilities obtained under CF-MS(1,2) replicate the NBER business cy-
cle chronology much bad. Only common factor’s intercept is taken to
be state-dependent. Both CF-LSTAR and CF-ESTAR are specified as
(1,2) following the optimal lag-structure test conducted for the linear CF
model above. The common factor’s intercept, autoregressive coefficient,
and residual variance are assumed to be state-dependent.

In the case of both CF-STAR models the exponent of the transition
function, F;(AC; 4; A, r), was standardized by division by the common
factor’s residual variance, o2, to make the abruptness parameter \ scale-
free and easier to interpret, as suggested by Skalin and Terisvirta (1999).

Standardized logistic transition function:

1
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Standardized exponential transition function:

2See van Dijk et al. (2000).
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Both models were estimated using the method of maximum likeli-
hood. For more details on the maximum likelihood estimation of the
CF-MS model see Kim and Nelson (1999). The procedure is easily ex-
tended to the case of CF-STAR model. The parameter estimates of
the linear CF, both CF-STAR models, and CF-MS (together with their
standard errors, t-statistics, and p-values) for these nonlinear models are
presented in Tables 3 through 6, correspondingly.

Figure 1 compares the two nonlinear models, on the one hand, with
the linear CF model, on the other hand, in terms of the behavior of
the common factor in levels. It is constructed as a partial sum of the
common factor’s growth rates, AC;, being one of the outputs of the
CF-model estimation. The profiles of the composite economic indicators
constructed using the CF-MS and CF-STAR are pretty similar to that of
the CEI estimated using the linear model. Apart from the differences in
the levels which are easily explained by the nonstationary nature of C},
given the way it is constructed, the upward and downward movements
of the linear indicator are readily replicated by those of the nonlinear
models.
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US nonlinear composite economic indicators
1959:1-1998:12

Linear and logistic STAR indicator
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Figure 1. Linear and nonlinear estimates of the common factor

3.2 Evaluation

The forecasting ability of each of the models in question cannot be ex-
amined directly, since CEI is unobserved and hence we cannot test which
of the models replicates it better. Therefore the performance of the two
nonlinear models is evaluated from the viewpoint of capturing and fore-
casting the turning points of the business cycle. These turns are thought
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to be captured by the conditional low growth regime probabilities de-
rived from each model. In the case of CF-STAR these probabilities are
computed as 1 — F;(AC;_4; A, r), while in the case of CF-MS these are
the conditional filtered and smoothed probabilities.

The informal judgement about the ”goodness-of-fit” of these models
can be made from the visual inspection of Figures 2a-2b displaying the
growing trend regime probabilities derived from the CF-STAR and CF-
MS, on the one hand, and the US business cycle dating provided by the
NBER, on the other hand. The shaded areas correspond to the NBER's
recessions, that is, intervals between a peak and a trough. In the case of
CF-MS model we dispose of the filtered and smoothed regime probabili-
ties. The CF-STAR regime probabilities and the CF-MS filtered regime
probabilities are the most volatile. Anyway, all the regime probabilities
seem to sufficiently accurately recognize the NBER dates.

Figure 2a displays the negative growth regime probabilities derived
from the CF-LSTAR and CF-ESTAR.



Low growth regime probabilities vs. NBER dates
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Figure 2a. Estimated low growth regime probabilities of the CF-STAR
models

The CF-ESTAR model appears to produce less false alarms than CF-
LSTAR. Overall, the CF-ESTAR derived low regime probabilities are
much less volatile than those of the logistic model. CF-LSTAR correctly
detects six true recessions and signals four false recessions, while CF-
ESTAR comes up with six true and two false contractions.

The low growth regime (filtered and smoothed) probabilities corre-
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sponding to the CF-MS are graphed on Figure 2b:

Low growth regime probabilities vs. NBER dates
1959:1-1998:12

CF-MS(1,1) filtered probabilities
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Figure 2b. Estimated low growth probabilities of the CF-MS model

The formal analysis of both in-sample and out-of-sample performance
of CF-STAR and CF-MS was undertaken using the quadratic probability
score (QPS) suggested by Diebold and Rudebusch (1989). This method
compares the recession probabilities derived from some model to a gen-
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erally accepted business cycle dating. In the case of the US economy one
normally takes advantage of the NBER'’s dates as such ”official dating”.
The QPS is defined as (see Layton and Katsuura (2001, p.408)):

T
QPS =3 °(A - DY (1)
t=1
where T' is the number of observations; P, is the model-derived proba-
bility for the ¢-th observation; D; is the binary variable taking value of 1
during the NBER recessions and 0 during the NBER expansions. QPS
is limited within the interval [0,1]. The smaller is QPS the better is the
correspondence between the model-derived probabilities and ”official”
business cycle chronology.

To test whether the differences in the QPS of different models are
statistically significant we use the Diebold-Mariano statistic (with lag
window 5) proposed by Diebold and Mariano (1994).

For the in-sample evaluation we used the conditional recession proba-
bilities — filtered probabilities Pr(low growth regime in period t|/;) and
smoothed probabilities Pr(low growth regime in period ¢|Ir) in CF-MS?,
or Pr(low growth regime in period ¢t|AC;_;) in CF-STAR — estimated
using the whole sample.

The results of the comparison of in-sample forecasting performance
of both nonlinear models are presented in Table 6. The second column of
the table displays the QPS statistic, while the third and fourth columns
report the Diebold-Mariano (DM) statistic and its p-value. The DM-
statistic is computed by comparing the filtered and smoothed regime
probabilities of CF-MS to the regime probabilities of CF-STAR.

The results of the comparison of in-sample forecasting performance
of the three nonlinear models are presented in Table 7. The second
column displays the QPS statistic, while the third and fourth columns
report the Diebold-Mariano (DM) statistic and its p-value. The DM-
statistic is computed by comparing the loss differentials (with respect
to the binary coded NBER dating) of the regime probabilities of CF-
ESTAR as well as of the filtered and smoothed regime probabilities of
CF-MS to the loss differentials of the regime probabilities of CF-LSTAR.

The ranking of different forecasting models according to their point
estimated of QPS would be as follows: the smoothed conditional prob-
abilities of CF-MS are characterized by the smallest QPS, then filtered
probabilities of CF-MS and CF-ESTAR follow, and finally in the end
of the list we find CF-LSTAR. However, when the confidence intervals

31, = {AC;, ACy_4, ..., AC} } is the information set consisting of the whole history
of the CEI up to the period t.
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are taken into account, it turns out that the in-sample performance
of the filtered low growth regime probabilities derived from CF-MS is
statistically as good as that of the regime probabilities derived from CF-
LSTAR. CF-ESTAR in-sample prediction results to be better than that
of CF-LSTAR at 10% significance level. This is not the case when we
compare the CF-LSTAR conditional probabilities and the filtered CF-
MS conditional probabilities. This apparently paradoxical outcome may
be due to the high volatility of the latter. The smoothed CF-MS prob-
abilities greatly outperform both the CF-MS filtered probabilities and
the CF-LSTAR and CF-ESTAR derived probabilities and this difference
is significant at 1% level.

To compare the out-of-sample forecasting accuracy of the three mod-
els examined in this paper, the predictions with forecasting horizons
ranging from 1 month to 6 months were made. The forecasting period
was chosen to be 1980:1-1984:12 since it is characterized by the highest
cyclical activity — there are two recessions over this relatively short pe-
riod. First, each model was estimated for the subsample 1959:1-1979:7
and the 1-, 2-, ..., 6-month ahead forecasts were made. Next, the estima-
tion subsample was augmented by one month and the whole forecasting
procedure was repeated until 1984:11 was reached.

The regime probabilities of the CF-MS model were predicted using
the forecasting formula from Hamilton (1994, p. 694). The CF-STAR
regime probabilities were computed using the following two-step proce-
dure:

. A 1
Friy = Froy (ACy: A7) = S 12
L ey vyrva = B
. . . R . P [~STAR »  ~STAR . A
ACriy = @ Fpp+py (1=Fraa)+)_ o Bty (1 F)|ACr
i=1
(13)

where the parameters and variables with hats are those estimated for
the period from I to T. Based on these data the forecasts are made for
the period covering h following months, that is, T+h, where h is the
forecasting horizon.

In addition to the ”standard” DM-test of the differences in forecast-
ing accuracy, the modified DM-test suggested by Harvey, Leybourne,
and Newbold (1997) was applied. This test is especially designed to
compare the out-of-sample prediction records. As its authors claim, it is
less over-sized than the standard DM-test which tends to over-reject the
null hypothesis of no difference in forecasting accuracy of two models be-
ing compared. The modified DM-test (DM*) is related to the standard
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one (DM) in a following way:

(14)
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n

where n is the sample size; h is the forecasting horizon. Harvey et
al. (1997) report that the best results are obtained when the critical
values of the Student’s t rather than standard normal distribution are
employed. Here we follow their recommendation when computing the
p-values of modified DM-test.

The results of testing the out-of-sample forecasting accuracy are re-
ported in Table 8. The second column contains the point estimates of
the QPS. In the columns 3 to 4 the DM-statistic and its p-value are pre-
sented, while the modified DM-statistic with its p-value can be found in
columns 5 to 6. As a benchmark we use CF-MS forecast probabilities to
which the other two models are compared. Arithmetically CF-ESTAR
dominates both CF-MS and CF-LSTAR over all forecasting horizons.
However, this dominance is only significant up to 3-month ahead fore-
cast. Among CF-MS and CF-LSTAR there seems to be no statistically
significant difference at any forecasting horizon.

4 Concluding remarks

In this paper we have considered three alternative nonlinear single-factor
models of the composite economic indicator: a model with Markov
switching and its two counterparts with smooth transition autoregres-
sion: CF-LSTAR and CF-ESTAR. For the first time in the literature
the composite economic indicator with STAR dynamics is introduced.

The empirical analysis of these three models was conducted based
on the Post World War II US monthly macroeconomic series. Both
in-sample and out-of-sample turning points forecasting abilities of the
models were compared using the quadratic probability score test: the
model-derived datings were contrasted to the NBER’s business cycle
chronology. In the in-sample forecasting it is the CF-MS smoothed
regime probabilities which replicate best the NBER recessions. When
the out-of-sample forecasting accuracy is concerned, it is the CF-ESTAR
who performs the best at 1-; 2-, and 3-month ahead forecast. At higher
forecasting horizons all the models produce statistically equivalent re-
sults.

Moreover, both CF-ESTAR and CF-LSTAR for the moment appear
to be computationally less expensive than the common factor model with
regime switching. Hence it can be concluded that CF with smooth tran-
sition autoregressive dynamics, especially CF-ESTAR, is a reasonable
alternative to the CF-MS model.
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5 Appendix

Table 1. Optimal lag structure of the linear common factor model

Comb | LogLik | AIC | SBIC
(0,0) |-2409.41 | -4818.82 | -4818.82
(0,1) |-2376.59 | -4761.18 | -4777.87
(0,2) |-2331.01 | -4678.02 | -4711.39
(0,3) | -2320.08 | -4664.16 | -4714.22
(1,0) | -2335.86 | -4673.72 | -4677.89
(1,1) |-2312.91 | -4635.82 | -4656.68
(1,2) |-2275.04 | -4568.08 | -4605.63
(1,3) | -2264.05 | -4554.1 | -4608.33
(2,0) |-2331.09 | -4666.18 | -4674.52
(2,1) |-2309.91 | -4631.82 | -4656.85
(2,2) |-2274.08 | -4568.16 | -4609.88
(2,3) | -2263.54 | -4555.08 | -4613.48
(3,0) | -2330.61 | -4667.22 | -4679.74
(3,1) |-2309.46 | -4632.92 | -4662.12
(3,2) |-2273.52 | -4569.04 | -4614.93
(3,3) |-2263.19 | -4556.38 | -4618.96

Comb = lag combination; LogLik = value of the log-likelihood func-
tion; AIC = Akaike information criterion; SBIC = Schwartz Bayesian

information criterion.

Bold entries stand for the minima of the corresponding information
criterion: (1,2) is the optimal lag combination according to SBIC, while
(1,3) is the optimal lag combination according to AIC.

Table 2. Testing linearity against logistic STAR dynamics

LM, LMj;
Delay | F-stat | p-value | F-stat | p-value
1 4.720 | 0.030 2.03 0.003
2 3.780 | 0.023 3.98 0.001
3 1.620 | 0.199 3.31 0.140
4 0.558 | 0.573 5.25 0.764
5 0.429 | 0.651 2.68 0.860
6 0.936 | 0.393 1.62 0.468

Linearity tests: 1st (LM1) and 3rd order (LM3) Taylor approximation
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Table 3. Estimated parameters of linear CF model
(US macroeconomic monthly data, 1959:1-1998:12)
Log-likelihood: -2275.04

‘ Parameter ‘ Estimate | St. error | t-stat | p-value |

YV ine 0927 | 0074 | 125 | 00
Yiip 1.170 | 0.081 | 145 | 0.0
S 0.785 0.060 | 132 | 00

& 0572 | 0048 | 120 | 00

T 0.100 | 0.046 | 2.19 | 0.015

Y nipa 0450 | 0052 | 869 | 00

Yineq | 0016 | 0133 |-0.119 | 0.453

Yines 0.039 | 0.050 | 0.772 | 0.220
. 0.079 | 0.087 |-0.907| 0.182
Uy1p 0.089 | 0070 | -1.28 | 0.101

Voo 0424 | 0052 | -821 | 0.0

Veren 0211 | 0050 | -422 | 0.0

o2 0.335 0041 | 817 | 00
o2p 0316 | 0031 | 102 | 00
e 0.567 | 0044 | 128 | 00
o2 0.315 0037 | 852 | 00
o2, 0554 | 0042 | 134 | 00
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Table 4. Estimated parameters of CF-LSTAR model with delay d=1
(US macroeconomic monthly data, 1959:1-1998:12)
Log-likelihood: -2235.17

‘ Parameter | Estimate ‘ St. error ‘ t-stat | p-value ‘

) 3244 | 1516 | 2.14 | 0.016
r 0.737 | 0199 |-3.70 | 0.0

pw(F,=1) | 0066 | 0036 | 1.85 | 0.033

w(F,=0) | -0.603 | 0564 |-1.07 | 0.143

YinC 0.898 0.069 12.99 0.0
Yirp 1.137 0.089 12.78 0.0
VsLs 0.765 0.061 12.58 0.0

o(F,=1) | 0.402 0.075 | 539 | 0.0

o(F,=0) | 0.320 0.308 | 1.04 | 0.150
Y prpa 0.099 0.047 | 2.12 | 0.017
Y pnrpo 0.463 0.052 | 885 | 0.0

Yinoa -0.022 0.053 -0.41 | 0.342
Yince 0.039 0.053 0.73 | 0.234
Yrrpa -0.071 0.072 -0.99 | 0.161
Yrrpa -0.116 0.068 -1.71 | 0.044
Ysrs1 -0.414 0.051 -8.17 0.0
Ysrso -0.201 0.049 -4.10 0.0

o2(F,=1)| 0209 | 0033 | 635 | 0.0
o2(F,=1)| 1521 0528 | 2.88 | 0.002

oZarp 0289 | 0039 | 7.34 | 0.0
Zne 0.578 | 0.044 |13.16| 0.0
o2p 0320 | 0.043 | 752 | 0.0
oL 0.568 | 0.042 |13.65| 0.0
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Table 5. Estimated parameters of CF-ESTAR model with delay d=1
(US macroeconomic monthly data, 1959:1-1998:12)
Log-likelihood: -2231.94
‘ Parameter | Estimate ‘ St. error ‘ t-stat | p-value ‘

) 0.397 | 0.141 | 2.81 | 0.003

r 1645 | 0215 |-7.65 | 0.0
pw(F,=1) | 0063 | 0028 | 221 | 0.014
p(F,=0) | -0.293 | 0.360 | -0.81 | 0.209

YinC 0.899 0.073 12.32 0.0
Yirp 1.257 0.081 15.43 0.0
VsLs 0.811 0.060 13.41 0.0

o(F,=1) | 0.383 0.067 | 574 | 0.0

O(F,=0) | 0563 0.292 | 1.93 | 0.027
Ypntpi 0.105 0.045 | 2.31 | 0.011
Y nipa 0.462 0.049 | 945 | 0.0
Yined 0.007 | 0028 | 025 | 0.401
YN 0.066 0.051 | 1.20 | 0.099

yp 0.132 | 0.084 |-1.57 | 0.058
Uy 0.163 | 0076 |-2.14 | 0.017
VLo 0400 | 0.050 |-8.00| 0.0
T 0.197 | 0048 | -4.08 | 0.0

o2(F,=1)| 0.174 0024 | 711 | 0.0
o2(F,=1)| 1.661 0.337 | 492 | 00

oZarp 0.326 | 0.031 |10.67| 0.0
Zne 0.613 | 0.045 |13.67| 0.0
o2p 0248 | 0032 | 7.72 | 0.0
oL 0.570 | 0.041 |13.83| 0.0
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Table 6. Estimated parameters of CF-MS model
(US macroeconomic monthly data, 1959:1-1998:12)
Log-likelihood: -2296.78

Parameter ‘ Estimate | St.error ‘ t-stat | p-value

P 0.976 | 0.010 | 101 | 0.0
1— ps 0.156 | 0.079 | 1.95 | 0.026
" 0.143 | 0.039 | 3.62 | 0.080
s 0904 | 0161 | -5.59 | 0.0
Vine 0.823 | 0.055 | 151 | 0.0
Vip 0.950 | 0.057 | 165 | 0.0
S 0.638 | 0049 | 131 | 00
& 0407 | 0.066 | 6.18 | 0.0
Gpnrp -0.010 | 0.037 | -0.20 | 0.421
Une -0.049 | 0054 | -084| 0.2
Yrrp 0.037 | 0.056 | 0.53 | 0.298
Yops 0311 | 0047 | 658 | 0.0
o2 0.312 | 0.039 | 798 | 00
o2rp 0.320 | 0.035 | 9.09 | 0.0
2o 0539 | 0.041 | 13.0 | 0.0
o2p 0.386 | 0.036 | 10.7 | 0.0
o2, g 0.631 | 0.046 | 138 | 0.0

Table 7. In-sample and out-of-sample performance of CF-MS and
CFEF-STAR models
In-sample
Model QPS | DM | p-value

CF-LSTAR | 0.0723 - -
CF-ESTAR | 0.0617 | 1.351 | 0.088
CF-MS:
filtered 0.0611 | 0.942 | 0.173

smoothed | 0.0228 | 3.951 0.0

QPS = quadratic probability score; DM = Diebold-Mariano statistic
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Forecasting sample 1980:1-1984:12

Table 8. Out-of-sample forecasting performance of CF-MS and
CF-STAR models

Model | QPS | DM | p-value | DM* | p-value
Forecasting horizon: 1 month
CF-MS 0.182 - - - -
CF-LSTAR | 0.191 | -0.217 | 0.414 |-0.215| 0.415
CF-ESTAR | 0.125 | 2.86 0.002 2.84 0.003
Forecasting horizon: 2 months
CF-MS 0.247 - - - -
CF-LSTAR | 0.243 | 0.085 | 0.466 | 0.083 | 0.467
CF-ESTAR | 0.165 | 2.83 0.002 2.76 0.004
Forecasting horizon: 3 months
CF-MS 0.280 - - - -
CF-LSTAR | 0.288 | -0.162 | 0.436 | -0.155 | 0.439
CF-ESTAR | 0.204 | 1.40 0.081 1.34 0.093
Forecasting horizon: 4 months
CF-MS 0.316 - - - -
CF-LSTAR | 0.324 | -0.159 | 0.437 | -0.150 | 0.441
CF-ESTAR | 0.254 | 0.986 | 0.162 | 0.928 | 0.179
Forecasting horizon: 5 months
CF-MS 0.341 - - - -
CF-LSTAR | 0.352 | -0.251 | 0.401 |-0.232| 0.409
CF-ESTAR | 0.282 | 1.10 0.136 1.02 0.157
Forecasting horizon: 6 months
CF-MS 0.346 - - - -
CF-LSTAR | 0.370 | -0.556 | 0.289 | -0.505 | 0.308
CF-ESTAR | 0.315 | 0.617 | 0.269 | 0.560 | 0.289

QPS = quadratic probability score; DM = Diebold-Mariano statistic;
DM* = modified Diebold-Mariano statistic
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