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Abstract

This paper revisits the normative properties of search-matching economies when
workers have concave utility functions. A general equilibrium framework is developed
where agents are homogeneous and wages are bargained over. Assuming lump-sum
taxation of profits, the optimal allocation of resources is characterized first when in-
formation is perfect and second when unemployed people freely choose their search
effort. Compared to the first case, the optimum is characterized by imperfect un-
employment insurance and lower levels of search intensity and output in the second
setting. To decentralize these optima, employees should be unable to extract a rent
when information is perfect. An appropriate positive rent is however needed in the
second case. When the bargaining power of the workers is given, these outcomes can
be implemented through a well-designed non-linear tax schedule and an appropriate
level of unemployment benefits. According to the level of the bargaining power, taxa-
tion can be progressive or regressive. Negative marginal tax rates are even needed for
sufficiently low levels of the bargaining power.
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I Introduction

In recent years, the search-matching model has become a major reference in the economics
of unemployment. This approach mainly focuses on the equilibrium implications of fric-
tions and search externalities. Once a worker and a firm have matched, the value of search
costs saved by staying together generate a rent that has to be shared. This is done in
two ways in the literature. The first one assumes that firms post wage offers that workers
take or leave. This paper only considers the second and most commonly-used approach
that assumes a bargaining over wages (see Pissarides (2000) for an overview). The search
matching approach allows for a synthesis between the micro-determinants of unemploy-
ment analyzed by job-search theory, and the macro-determinants of unemployment that
highlights real wage rigidities.

The search-matching framework is actually an alternative paradigm to the walrasian
one. Since wages are match specific, the notions of a walrasian auctioneer and of compet-
itive equilibria become much less natural. Hence, the two theorems of welfare economics
cannot be applied anymore. The optimality of search-matching equilibria is therefore a
non-trivial normative issue '. When agents are risk neutral, the so-called ‘Hosios condi-
tion’ (Hosios (1990)) is sufficient to guarantee that a laissez faire equilibrium is socially
optimal. This condition requires that workers’ bargaining power be equal to the elasticity
of the matching function with respect to unemployment. Employed workers should receive
a certain share of the rent generated by a match in order to compensate them for the cost
inherent to job search activities and to prevent the creation of too many vacancies in
equilibrium. When the bargaining power does not fulfill the Hosios condition, Boone and
Bovenberg (2001a) show how non lump-sum income taxation can be used to decentralize
the optimum. Taxation can restore efficiency because a positive marginal tax rate (resp.
a negative one) decreases (resp. increases) the share of the surplus that accrues to the
workers.

These results hold under the assumption of linear preferences. The social optimum
consists then in maximizing total output net of search costs without any concern for the
way this output is shared between agents. This is problematic if one thinks that labor
market policies should not only reduce the waste of resources due to unemployment but

also poverty and inequality generated by unemployment.

This paper revisits the Hosios problem by introducing risk averse workers. Our social

welfare criterion deals with insurance against the unemployment risk and with redistribu-

'In the wage-posting approach, search frictions are necessarily internalized if workers apply to only one
offer at the time and are perfectly informed about each firm’s wage offer and probability of making an
offer. This is the so-called ‘competitive search’ approach (Moen, 1997).



tion between workers and firm owners. In our model, taxes on labor are levied to finance
unemployment benefits and a lump-sum transfer to the firm owner. For tractability mat-
ters, we keep the assumption of homogenous labor. Hence, we ignore redistribution among
workers with different skills, a topic that is central in the literature following Mirrlees
(1971) (e.g. Saez (2001) or Boone and Bovenberg (2001b)). We consider two polar cases
characterized by different assumptions about the observability of unemployed workers’
job-search intensity.

At the first-best optimum, workers are perfectly insured against the unemployment risk
since their search effort can optimally be monitored. To decentralize this optimum, em-
ployees should not extract a rent from their match. If their bargaining power is exogenous
and positive, a marginal tax rate of 100% must therefore be implemented. Appropriate
levels of unemployment benefits and taxes then prevent the creation of too many vacancies
in equilibrium.

The second-best case assumes that unemployed workers freely choose their search in-
tensity. The solution is characterized by an optimal trade off between the provision of
incentives to unemployed job seekers and the provision of insurance against the unem-
ployment risk. This is done by selecting an optimal share of the rent for the employees.
This moral hazard trade-off has also to take into account firms behavior. We show that,
compared to the first-best optimum, the second-best one is characterized by : i) lower
search intensity and a tighter labor market to compensate for the decrease in job search
intensity; 1) lower (resp., higher) income for unemployed (resp., employed) workers; 4ii) a
positive rent for the employees. Hence, as in Hosios (1990), the rent sharing rule should be
appropriate. An inappropriate bargaining power should be corrected by the introduction
of a well-chosen non-zero marginal tax rate in combination with appropriate levels of taxes

and of unemployment benefits.

This paper also contributes to the literature on the desirability of progressive labor
taxes in equilibrium unemployment models. Malcomson and Sator (1987), Lockwood and
Manning (1993), Holmlund and Kolm (1995) and Pissarides (1998 and 2000) among others
emphasize that, for a given level of taxes, the negotiated wage is a decreasing function of
the marginal tax rate. The higher the marginal tax rate, the lower the increase in after
tax wage for a given increase in the negotiated wage, so the lower the pressure for a higher
wage. Hence, according to these papers, unemployment can be reduced thanks to a more
progressive labor tax schedule. However, the desirability of progressive labor income taxes
has been recently questioned by papers that introduce in-work effort (Hansen 1999, Fuest
and Huber 2000) or training decisions (Boone and de Mooij 2000). A more progressive

tax schedule can reduce productivity per capita so that the total effect on output becomes



ambiguous. In our model, another mechanism is at work. A more progressive tax schedule
reduces the rent extracted by employees. It hence decreases the incentives unemployed
people have to search. At the same time however, more progressive taxes allow to better
insure against the unemployment risk. In the first-best setting, the former effect does not
matter so the optimal marginal tax rate is equal to 100%. In the second-best setting,
the optimal trade-off between the two effects leads to an optimal sharing rule. When the
bargaining power happens to be too high (respectively, too low), a positive (resp. negative)
marginal income tax is needed to decentralize the social optimum. This sheds new light
on the pros and cons of progressive income taxation.

We also make a minor contribution to the literature on optimal unemployment in-
surance (see Holmlund 1998). The seminal articles of Baily (1977) and Mortensen (1977)
formulate the search for optimal unemployment insurance as a moral hazard problem where
the agent is an unemployed worker whose search intensity is not observable. We extend
this partial equilibrium view by including firms behavior and the negotiation of wages. We
highlight that non linear taxation and unemployment insurance are complementary instru-
ments to achieve an optimal compromise between risk-sharing and allocative efficiencies
on the labor market. The literature about optimal unemployment insurance has already
been extended in many directions that we do not consider. On the one hand, Shavell
and Weiss (1979) or Hopenhayn and Nicolini (1997) show that unemployment benefits
should decrease over the unemployment spell. This result was confirmed by Fredriksson
and Holmlund (2001) and was toned down by Cahuc and Lehmann (2000) in general equi-
librium search-matching models that endogeneize firms behavior and wage formation. On
the other hand, sanctions (i.e. withdrawal of unemployment benefits if search effort is
judged insufficient) are an alternative that allows to improve risk-sharing for those who
comply with the rules (Boadway and Cuff (1999), Boone and van Ours (2000), Boone et
al (2001)). This property is expected to hold as long as search effort is observable at a
reasonable cost without (too frequent) errors.

The paper is organized as follows. Section II describes the structure of the economy.
Section III is devoted to the equilibrium, Section IV to the first-best optimum and its
decentralization, Section V to the second best optimum and its implementation. Section

VI concludes.

II Assumptions and Notations

The economy is made of a continuum of homogenous risk-averse workers, a representative
risk-neutral firm and the State. There are no financial markets. Workers can either be

employed or unemployed. Jobs can either be filled or vacant. Agents are infinitely lived.



The model is based on the assumption that the matching between unemployed workers
and vacant jobs is a time-consuming and costly process due to various frictions on the labor
market. Assume a continuous-time setting. The flow of hires M is a function M (S, v) of the
number of job-seekers measured in efficiency units S and of the number of vacancies v. It
is standard to assume that this function is increasing and concave in both arguments (with
M (0,v) = M (S,0) = 0) and that returns to scale are constant (see e.g. Pissarides (2000)).
Denoting by e the average search intensity and by w the mass of unemployed workers, one

has S = e-u. Let # = v/S be tightness on the labor market (measured in efficiency units).

The rate at which a vacant job is filled is m(#) with m (6) = MSp) M (1/6,1), and

v

m’ (.) < 0. An unemployed with search intensity e; > 0 flows out of unemployment at a
rate e; - o (0) = & - W) with o () = M (1,6) = 6-m (0) and o/ () > 0, o () < 0.

=2
(& u

Job matches end at the exogenous rate q.

We normalize the size of the labor force to 1. In steady state, equality between entries
and exits yields the “Beveridge curve” equation:

e-a(f) u=q(l—u) = u=—32I (1)
q+e-a(b)
that negatively links the unemployment rate to tightness 6.

Let r be the discount rate common to workers and firms. An employed worker has an

instantaneous utility function v(w), where w denotes her after-tax income. An unemployed
worker has an instantaneous utility v(z—d(e)) where z denotes her untaxed unemployment
benefits. We assume ¢'(.) > 0, d(.) > 0,d'(.) > 0 and d”(.) > 0 (with lii%d’ (e) = 0 and
lim d' (e) = +00). The risk aversion assumption implies v (.) < 0. For the unemployed,
; ;Zssible interpretation of our specification is that d(e) denotes the monetary cost of
job-search activities. Then, z — d(e) would stand for the net level of consumption of the
unemployed. However, on top of expenses related to job-search activities, d(e) can also
capture the disutility of search effort.

The representative firm is made of L filled jobs and v vacant jobs. Each filled job
produces a flow of y units of output, whereas each vacant job costs ¢ per unit of time.
With a normalized labor force, one ex-post has L = 1 — u. x is a lump-sum transfer or
tax paid to or by the representative firm, with xy < 0. This lump-sum transfer allows
for a redistribution between workers and the firm owner. The representative firm-owner’s

income flow is:
M= (1—u)(y—w)—c-v+x (2)

where w is the gross wage.
A tax T is levied on each filled job by the government, with T'= w—w. These resources

are used to finance unemployed benefits z and the transfer to the firm-owner y. At any



point in time, the public budget is balanced according to:
Tl—uw)=u-z+x <x=T1-u)—u-z (3)
This budget constraint together with (2) gives the following aggregate resource constraint:
l-vww+z-u+l+c-v=_>1-u)y (4)
Rearranging this expression one gets
l-—ww+u(z—d(e)+II=Y (5)

where Y = (1 —u)y — u-d(e) — c¢- v stands for total output net of search and vacancy
costs. “Efficiency” will be achieved when Y is maximized. The redistribution problem

consists in sharing this net output between employed workers (w), unemployed workers
(z —d(e)) and the firm-owner (IT).

IIT The Market equilibrium

II1.1 The representative firm

Intertemporal profits as of time t are:
00
P, = / e L, - dr (6)
t
At time t = 0, the representative firm-owner maximizes:
max Py st. L=m(0)-v—q-L
%

taking tightness 0 as given. Since marginal productivity y is constant, the same conditions
would be reached in the standard model where each firm holds only one job. In this case,
let J denotes the intertemporal expected value of a filled vacancy and JY the expected

value of an open vacancy. J and JV verify the following equations:

rJ—J = y—w+q(J"—=J) (7)
I C —c+m(0)(J—JY) (8)

Assuming free entry of vacancies, a steady-state equilibrium should be characterized

by JY = Jv =0. Hence, in such an equilibrium:

=500 T v g ®)
This leads to:
_ _ . c(r+q



This relationship between the gross wage w and tightness 8 is downward-sloping. The
higher is w, the lower is the value of a filled job J and the lower is the number of vacancies
in the economy and hence the lower is tightness 6. Since 8 is measured in efficiency units,

one should note that this relation does not depend on search intensity e.

I11.2 Search Behavior

Let V and V% denote the expected lifetime utility of respectively an employed and an

unemployed worker. V solves:
rV-V=vw-T)+q(V*=V) (11)

Two cases will be considered. The one where search intensity is observable will be
introduced later. When search cannot be observed, an unemployed worker has to choose
her search intensity at any point in time. With a search intensity e;, her instantaneous
utility is v (2 — d(e;)) and her expected “capital gain” is e; - a(0) (V — V). Hence, the

effort level is the solution of:
r-V“—V“:max{v (z—d(e))+e-a(d) (V-V} (12)

where V, V%, V% and 6 are taken as given. The first-order condition of this problem is 2:

O=a(@)(V-V")—=d (e) v (z—d(e)) (13)

At a steady state where V = V% = 0, equation (13) together with equations (11) and
(12) implicitly define the optimal search level e according to 0 = S (6, w, e) with:

S(0,0,0) = () (0 —T) = v(z = d(e) = (€) -/ (z = d () (r +q+e-a (0))
(14)
It can be verified (see Appendix 1) that the following partial derivatives have unam-
biguous signs 3: S, < 0, S/, > 0, Sp > 0. Therefore, the optimal search intensity increases
with w and 6. It can be checked that an increase in T lowers search intensity (since
7. = =S, < 0) while a rise in the level of unemployment benefits has an ambiguous
effect on e. With the chosen instantaneous utility function, an increase in z reduces the

marginal disutility of search effort 4. It also decreases the marginal gain of search. Hence

the ambiguous net effect on e.

>The second-order condition is satisfied since d”’ (.) > 0 and v” (.) < 0. It should be noticed that similar
conclusions would be obtained if the utility of unemployed worker ¢ was denoted by v (2 — ¢;) and if her
exit rate from unemployment was written as p(c;) - a (), provided that ¢ = d(e) and p() =d ! ().

3For any function f(.,...,.), f5 denotes the partial derivatives of f with respect to z.

{This effect would not be present if the instantaneous utility function was separable.



Microeconometric estimations generally lead to the conclusion that the individual exit
rate out of unemployment is negatively affected by the level of unemployment benefits.

From this evidence, the case where:
S, <0 (15)
is the most plausible one (see Layard et al 1991 and Holmlund 1998 among others).

II1.3 The Wage Bargain

A match generates a surplus that is shared between the worker and the firm-owner. Let
~ be the exogenous bargaining power of the worker, with 0 <« < 1. The gross wage rate

maximizes the following Nash product:
max (V= V%)Y (J = Jo)7

The level of taxes T is a function of the gross wage w. The wage setters realize that a
marginal rise of the gross wage of an amount Aw changes the level of taxes by T, - Aw,
where T}, denotes the marginal tax rate. Taking this relationship and 6 as given, the

first-order condition of the previous maximization can be written as :

V—V“:ﬂ%zm)'“,(w—ﬂ'@—ﬂ) (16)

Let 4 be such that:

’AV _V(I_Tm)
1-4 1—y (17)

4 denotes the employees’ actual bargaining power taking into account the negative effect of
the marginal tax rate on their effective bargaining strength. For given tightness 6, search
intensity e, bargaining power ~ and level of taxes T', a higher marginal tax rate lowers the
change in the after tax wage resulting from a given increase in the negotiated gross wage.
This lowers the employees’ rent V — V* and eventually leads to wage moderation (see e.g.
Malcomson and Sator (1987), Lockwood and Manning (1993)).

Combining (16) with (11) and (12) and the free entry condition (9) yields at a steady
state WS (0,w,e) = 0 with :

YA -Tn) r+q+e-a(f)

WS (O,w,e)=v(w—-T)—v(z—d(e)) — T 0 eV (w=T)
(18)
This equation defines the wage-setting curve. From Appendix 1 one has: WS < 0,
WS, >0, WS, = — 208 8 <0, WSy, >0 and WS, < 0. Conditional on e,

the wage-setting curve is therefore upward-sloping in a (0, w) space. If the marginal tax



rate is fixed and 0 and e are given, increasing the level of taxes T raises the net wage
rate. On the contrary, for given levels of taxes 7', tightness 6 and search intensity e, a
more progressive tax schedule will put a downward pressure on the negotiated wage. More

generous unemployment benefits have the usual positive effect on wages.

II1.4 Steady state Equilibrium

Conditional on z, T, T,,, v, or equivalently, conditional on z, T', 4, a steady-state equilib-

rium (0, w, e) is a solution of the system:
w=¢(0) S(0,w,e) =0 WS (8,w,e) =0 (19)

where ¢ (.), S(.,.,.) and WS (.,.,.) are respectively defined in (10), (14) and (18). Equa-
tion (1) then gives the unemployment rate u and consequently the rate of vacant jobs v.
Finally, equation (3) sets the level of the transfer to the representative firm-owner x.
The equilibrium can be characterized in a more simple way by defining functions
S(0,e) = S(0,06(0),e) and W(0,e) = WS (0,¢(0),e). Since equation (10) depends
neither on search intensity e nor on policy parameters (z,7T,T,,), one gets S, (6,e) =
SL(0,06(0),e) < 0, S (0,e) = S.(0,0(0),e) for = 2z, T, Tp,. Similarly, one has
Wy (0,€) < 0, W, (0,¢) = W, (0,6 (0) ,€) = s and W, (0, €) = W (0,6 (6) , e) for
x = z,T,Ty,. Appendix 2 shows that the system S (0,e) = W (0,e) = 0 admits at most
one solution, so the equilibrium (if any °) is unique. Hence, the issue of multiple equilibria
is ruled out. A vector (z,T,T,,,~) that decentralizes an optimum (0, w, e) then necessarily
leads to this optimal solution. This property will be very convenient later on when optima

will be decentralized.

Exploiting the property that in equilibrium W/, = 0, Appendix 2 shows that:

W W W,
df = ——=2dz — —Lar — —==dT,,
W, W, W,

Since Wy, < 0, W, < 0, Wi, < 0, W7, > 0 one has df/dz < 0, df/dT < 0 and
df/dT,, > 0. These results generalize earlier results of Pissarides (1998, 2000) and
Fredriksson and Holmlund (2001). The direction in which the equilibrium values of tight-
ness and wage vary with the policy parameters is entirely determined by the sign of their
partial effects on the wage setting curve W (., .), independently of search behavior. Finally,
Appendix 2 explains why the marginal effect of 7" and T}, on e can only be signed if ¥
is equal to the elasticity of the matching function with respect to unemployment. Gen-
eral and partial equilibrium effects on e then coincide. Otherwise, in general, we cannot

conclude about the net effects of these policy parameters on search intensity.

"Existence is not always guaranteed. This occurs for instance if z > y. Notice that an equilibrium
exists for some values of the parameters since Lehmann and Van der Linden (2002) are able to simulate it.



Proposition 1 There is (at most) a single steady-state equilibrium in this economy. At
the equilibrium, tightness 6 (respectively, the gross wage w) decreases (resp. increases)
with the levels of unemployment benefits z and taz T and increases (resp. decreases) with

the marginal taz rate Tp,.

IV  The First-Best optimum

In this section, we first look at the optimal allocation of resources that a benevolent social
planner would implement if he could perfectly control search intensity. This section then

explains how to decentralize this optimum.

IV.1 The central planner problem

Consider a benevolent planner in charge of the unemployment insurance and the redistri-
bution systems. For the reasons given in the introduction, we assume that the planner is

concerned with the following social criterion 2:
Q=1-uw)V+u-V¥4+n-P

This criterion €2 is a utilitarian objective that adds two components. The first one,
(1 —u)V 4+u- V" is the sum of the inter-temporal utilities of employed and unemployed
workers weighted by their numbers. The second component is the inter-temporal profit
of the representative firm-owner weighted by a parameter n > 0. This parameter is
therefore the (constant) social marginal value of profits. The first component of  can
also be reinterpreted in an ez-ante perspective as the expected utility of a representative
worker who is aware that she will be unemployed with a probability ¢ « and employed
with probability 1 — w. In what follows, we privilege the insurance interpretation and
the expression “redistribution” will designate the way net income is shared between the
firm-owner and the workers taken as a whole. We assume that the planner maximizes the
present certainty equivalent of {2, namely 7 - €2.

Appendix 3 then shows that:
+o0o
Q:/ e {(1—u)v (W) +u-v(z—d(e) +n- T} dt (20)
=0
At the steady state, maximizing r - Q is equivalent to maximizing (1 —u)v (w) + w -
v(z—d(e)) +n-II. For simplicity, it is standard to ignore the transitional dynamics

and to consider that » — 0 . The social planner therefore maximizes (1 —u)v (w) + u -

®The reinterpretation of u as a probability is made possible by our normalization to 1 of the (exogenous)
size of the labor force.

10



v(z —d(e)) +n-II. Tt is reasonable to impose a nonnegative 7 value for II. However, a
constraint IT > 0 will not explicitly be imposed in the following maximization problems.
It is implicitly assumed that the exogenous value of 7 is sufficiently high so that II is
nonnegative at the optimum. Taking the resource constraint (4) and the flow equilibrium
equation (1) into account and remembering that v = e - 6 - u, the planner’s program then

consists in 8:

max (l—u)-v(w)+u-v(z—d(e)+n-[(1—u)(y—w)—(z+c-e-0)ul(21)

0,w,u,z,e

st.:e-a(f) - u=q(l—u) (61)

Introducing subscript 1 to denote the first-best optimum and denoting §; the Lagrange

multiplier, the first order conditions with respect to w, z, e, u, 6 are respectively:

= (I—w) [V (w1) =] (22)
= w [V (21 —d(e1)) — 1] (23)
m [—v’ (21 —d(e1))-d (e1) —m-c 01+ 6 -« (01)] (24)

= v(z—d(er)) —v(wi) +n(wi—y—2z1—c-e1-01) +61(ex- (1) +q) (25)
(26)

o o o o o
I

= —c-e1-n-up+61-e1-a (01) w
Equations (22) and (23) imply that:

v (w1) =v' (21 —d(e1)) = (27)
Hence:
wp =21 —d(er)

Under perfect information, the social planner can perfectly insure workers against the un-
employment risk. With the instantaneous utility functions chosen above, this is achieved
by making workers indifferent between the unemployment and employment states . Con-

ditions (24) (25) and (26) can therefore be respectively rewritten as:

ﬁ_ d/(61)+c-91_y—|—d(el)_|_el,c,91_ c
<77 _> a(6y) T aal)tq o6y (28)

Consequently, the optimal levels of tightness and search intensity are defined by a

system of two equations that are independent of 1. Put another way, the optimal level of

"When 7 tends to 0, it can be checked that II tends to x at equilibrium.

8 Formally, one should maximize Q with 7 > 0 under the dynamical constraint & = ¢ (1 — u) —e-a () -u,
derive the first-order and enveloppe conditions and take the limits of those conditions for r — 0. It can be
verified that this method and the maximization of the following problem give the same results for » — 0.

If unemployment workers’ instantaneous utility was v (z) — d (e), the first best would equalize instan-
taneous incomes instead of utilities.

11



0 and e can be chosen irrespectively of the way net output is shared between the workers
and the representative firm-owner.

From equalities in (28), we get that the social optimum is determined by either
F(01,e1) = G(01,e1) =0, or F(61,e1) = H(01,e1) =0 or G(b1,e1) = H(01,e1) = 0,

where:

F(0,e) = o (0)(d(e)+c-0)—c-a(f)
G(be) = a(d)(y+d(e)+c-0-e)—(c-0+d (e))(e-a(f)+q)
H0,e) = o) (y+de)+e-c-0)—c(e-a(f)+q)

Conditional upon the optimal conditions (27), function H (6, e) implicitly defines the opti-
mal level of tightness as a function of search intensity whereas function G (6, e) implicitly
defines the optimal level of search intensity as a function of tightness.

Appendix 4 first shows that Fj; < 0 and F, > 0. Consequently, function F(.,.) is
upward-sloping in the (6,e) plane (see figure 1). Second, we show that G, < 0 and
Gy = ﬁF (0,e). Consequently, in the (0,e) plane function G (.,.) is upward-sloping
(respectively downward-sloping) at the left (respectively at the right) of function F'(.,.)
and intersects function F (.,.) horizontally (see figure 1). Third, we show that Hy < 0
and H, = F (0,e). Hence, in the (0, e) space, function H (.,.) is upward-sloping (re-
spectively downward-sloping) above (respectively below) function F'(.,.) and intersects
function F'(.,.) vertically (see Figure 1). This configuration guarantees the unicity of a
solution to the system (28) 10.

We now show that the first-best solution (ej,61,u;) maximizes total output net of
search costs Y:

max Y = (1—-wy—u-d(e)—c-e-0-u (29)

e,u,0

st. + e-al)-u=q(l—u)

Denoting 6¥ the Lagrange multiplier, the first-order conditions are:

(6Y ) d(e)+c-0 _ y+d(e)+e-c-6 __c
a(0) e-a(f)+q o (0)
Comparing these expressions with (28), it is obvious that the solution (e, ) to problem
(29) is exactly the first-best optimum (ej 61). Hence, the unemployment rate u is equal
to up. At the first-best optimum, total output net of costs is therefore maximized. Conse-
quently, efficiency and equity goals can be achieved separately. The following proposition

summarizes the principal results of this section:

0T he proof of the unicity of the solution to F (8, e) = H (f,e) = 0 is similar to the proof of the unicity
of equilibrium. One simply has to replace S by —F and W by H.

12
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Figure 1: The first-best choice of (6, e)

Proposition 2 Under perfect information, the central planner is able to deal separately
with allocative efficiency and with the risk-sharing and redistributive objectives. The first-
best levels of search effort and tightness maximize total output net of costs. Given these
optimal levels, the first-best income levels guarantee a constant level of utility whether

workers are employed or not. This level is higher the lower the social weight attributed to

profits.
IV.2 Decentralization of the First-Best optimum

In this section, we describe the policies required to decentralize the first-best optimum.
Given the unemployment benefits z, tax level T', marginal tax rate T}, and search intensity
e, the equilibrium solves w = ¢ (0) and WS (0,w,e) = 0. The steady-state level of
unemployment w is then given by equation (1).

To implement the first-best optimum, the State has to decentralize an equilibrium in
which workers are perfectly insured against the unemployment risk. According to (18),
implementing this equilibrium requires 4; = 0. Such a low actual bargaining power is
unavoidable to prevent insiders from extracting a rent V—V"* > 0 though wage bargaining.

Whenever the bargaining power v is positive, this can only be achieved with a marginal

13



tax rate Tj, 1 = 1 (see equation (17)). So, the decentralization of the first-best optimum
is then impossible without an ‘extremely’ progressive income tax schedule.

The State can fix the level of unemployment benefits to z;. By assumption, it is
also able to impose a search intensity e;. Therefore, employed workers earn a net income
equal to the first-best one: wy = 21 — d (e1). Knowing the optimal value 61, let then the
level of tax be given by 71 = ¢(#1) — w1. Since, 4; = 0, z = 2z; and e = e;, the wage
bargaining process implies w = w; = wy + 77 according to (18). Given this gross wage, the
representative firm chooses its optimal level of vacancies until the free-entry condition (9)
is met. The equivalence between the free-entry condition (9) and equation (10) guarantees

that @ solves equation w; = ¢ (), which has a unique solution, namely 6;.

Proposition 3 Under perfect information, the State can always decentralize the first-
best optimum with a zero actual bargaining power for the workers (4, = 0). When their

bargaining power 7y is positive, the marginal tax rate should be equal to 100%.

One may wonder why the decentralization with risk averse workers differ so much from
the one under linear preferences (i.e. with v”(.) =0 and v'(.) = 7). In the latter case,
the social planner is only concerned with total output net of search costs Y (defined in
equation (5)), independently of the way this output is shared between the employed, the
unemployed and the firm owner. There is therefore a multiplicity of first-best optima.
Any combination of w, z and II leading to the same total output Y7 is actually a first-best
optimum in this case. Among this infinite number of optima, one usually selects a specific
one, namely the one that can be decentralized without State intervention. Decentralizing
this laissez-faire economy with a bargaining power satisfying the Hosios condition yields
only one of these optima, namely the one where z =T = 0 and w; = w1 > 0. When
preferences tend to the linear case, our decentralization approach leads to another optimum

with z =21 = w1 +d(e1) > 0.
V  The second-Best optimum

V.1 The central planner problem

In this section, we consider the more realistic case where search intensity is not observed
by the State. As in the first best, the tax system and the level of unemployment benefits
are the instruments used to promote efficiency and equity. But now the State faces a
moral hazard problem. An incentive constraint concerning unemployed workers’ search

behavior should now be taken into account by the State. Since r tends to 0, this behavior
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is described at the steady state by:

d'(e) v/ (z=d(e)) (g+e-a(f)) =a(0) (v(w) —v(z—d(e) (30)

According to equations (11), (12) (13), w = w —T'. The second-best optimization consists

in problem (21) extended to include this incentive constraint (30), namely:

max (l—u)-v(w)+u-v(z—d(e)+n[(l—u)(y—w)—2z-u—c-e-0-4]

0,w,u,z,e
O=e-a(f)-u—q(l—u) (62)
0=a(0)(v(w)—v(z—d(e) —d(e)-v'(z—d(e)) (g +e-a(f) (¥2)

Introducing subscript 2 to denote the second-best optimum, let §2 (respectively 15)
denote the Lagrange multiplier associated with the flow equilibrium (respectively the in-

centive constraint). The first order conditions with respect to w, z, e, u and 6 are respec-

tively:
0 = (1—ug) v (wa) —=n] +1by-a(fa)- v (w2) (31)
0 = up [V (22 —d(e2)) — 1] (32)

—thy {a(02) V' (22 —d(e2)) + 0" (22 — d(e2)) - d' (e2) - (¢ + €2 - (62)) }

0 = wuo [—d’(eg)-v’(22 —d(eq)) —n-c-92+62-0z(92)] (
+¢ {—d" (e2) v/ (22 — d(e2)) + (' (e2))* 0" (22 —d (62))} (¢ +e2- ()

0 = v(z2—d(e)) —v(wa) +n(we—y—20—crex-b) +b2(ex-a(b2) +q) (34)

0 = —c-ea-n-us+68y-a (0) es-us+ (
Py - (02) - {v (w2) —v (22— d(e2)) —ez-d (e2) -V (22 — d(e2)) }

If preferences were linear (i.e. with v" = 7)), equations (31) and (32)would imply that
1y = 0. Hence, the three last conditions (33) to (35) would exactly correspond to those
found in the first-best case. So, one gets es = e1, 0o = 01, us = uy and thereby Yo = Y7.
The second best would maximize total output net of costs and the incentive constraint (30)
would then specify the difference in income between employed and unemployed workers.

Under risk aversion, the incentive constraint (30) implies that wy > 22 — d(e2).
Therefore, v’ (wg) < v' (22 —d(e2)). Hence, according to (31) and (32), the property
1y # 0 is required. Appendix 5 explains why 5 > 0. Moreover, Appendix 5 shows that
G (03,e2) > 0 and H (02,e3) < 0. Remembering the properties of functions G and H,

these properties immediately imply the following inequalities:

e2 < e and 0> > 01
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The intuition behind these properties is the following. Because of moral hazard, there
is now a trade-off between efficiency and equity goals. To induce search effort, employed
workers necessarily enjoy higher utility levels than unemployed ones at the second best.
Keeping search effort at its first-best level would however require a difference in utilities
between employed and unemployed workers that would be too detrimental to the objective
of insurance, hence e; < e;. Compared to the first-best optimum, the social planner
integrates the beneficial effect of a tighter labor market on search effort. An increase in
tightness allows to relax the incentive constraint. This intuitively explains why 69 > 6.
This implies that the expected cost of filling a vacancy ¢/m (6) is too high at the second-
best optimum. Since tightness is measured in efficiency units, these properties have no
clear implications on the comparison between vy /ug and vy /u;.

Comparing conditions (31) with (22) yields wa > w;. In the most plausible case where
higher unemployment benefits have a negative impact on search effort, i.e. when S, < 0,
condition (32) and (23) leads to zo — d(e2) < z1 — d(e1). Since, es < ej, these results
imply zo < z1. The intuition behind z9 — d(e2) < 21 — d(e1) and we > w; is similar to
the one underlying 6, > 61. Compared to the first best, the social planner integrates the
beneficial effect of a higher (respectively, a lower) utility level for employed (respectively,
unemployed) workers on search effort.

One can compare the total output net of cost Y at the first-best and at the second-best
optima. We have shown that the first-best levels of tightness and search intensity 61, e;
maximize Y. Search intensity and tightness differ at the second-best compared to their
first-best optima. Hence one has Y5 < Yj.

The following proposition summarizes our main results.

Proposition 4 When search effort in unobservable, allocative efficiency, risk-sharing ef-
ficiency and redistributive objectives cannot be achieved separately anymore. Compared to
the first-best optimum, the second-best one is characterized by lower search effort e and

total net output Y and by higher tightness 6 and net income in employment w.

To end this section, let us briefly emphasize how this general equilibrium analysis en-
riches partial equilibrium studies such as Baily (1977). In a partial equilibrium framework,
both 6 and w are exogenous. So, any conclusion is necessarily contingent on the values
taken by # and w. Let us assume that they are fixed at their second best optimal value !
Recall that G(0,e) = 0 defines the level of search intensity that maximizes net output Y
conditional on 6. In a partial equilibrium perspective, the loss in efficiency when search

effort is unobservable can be captured by the distance between the second-best optimum

1 The second-best value of the wage rate will be made precise in the following sub-section.
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ez and the solution e to equation G(02,e) = 0. This can be illustrated in Figure 1 where
this distance is A-B. In a general equilibrium framework, the loss due to the unobservabil-
ity of search effort is larger because now the second-best outcome, A in Figure 1, has to
be compared to the first-best C where search effort e is higher than e and less vacancies

have to be posted per unemployed worker (measured in efficiency units): 6 < 65.

V.2 Decentralization of the second best

To decentralize the second-best optimum, the policy parameters should necessarily solve
z =29, To = ¢ (02) —wa and WS (02, ¢ (62) ,e2) = 0. This obviously gives a single vector
of policy parameters (29,75, T 2). According to Proposition 1, we know that a single
equilibrium exists for any vector of policy parameters. Hence for the policy parameters
(22,12, Tp,2), we know that the second-best optimum is decentralized.

To implement the second-best optimum '2, the State has to decentralize an equilibrium
in which employed workers are better off than unemployed people. Hence, employee should
extract some rent from a match in order to give unemployed workers an incentive to search.

Therefore, the levels of the actual bargaining power can be ranked:
Y2 > =0.

According to Equation (17), for any positive value of the bargaining power v, implementing

such an equilibrium requires:
T <1=1Tp1.

However, the position of T}, 2 with respect to 0 and to the average tax rate Th/wo is
ambiguous. The tax schedule can be either progressive with T, > T'/w or regressive and
in this case marginal tax rates can be positive or negative.

Finally, since s > 01 and wo > w1, one has
T <1T7.

The level of tax required to decentralize the second-best optimum is lower than the first-
best one. This follows from two effects. First, employed workers’ income has to be higher
at the second best. Second, the inequality 62 > 0 implies that the gross wage is lower at
the second best.

Knowing how the second-best optimum can be decentralized, it is now possible to
characterize the tax schedule in a more precise way. First, from WS (02, ¢ (62),e2) = 0,

it is immediately seen that T, increases with . Second, from the definition of ¥,

TmesO0<—=71s7

12The case with linear preference is presented in Appendix 6.
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Third, combining (10), (16) with the first equality in (9), it can be checked that for » = 0:

1-Tn :l—yv(w)—v(z—d(e))m(ﬁ)-y—c-q
@)~ o) date-a(®)

(36)

where (1-T,,,)/(1—(T'/w)) is the so-called coefficient of residual income progression CRIP
(i.e. dln(w) /dIn(w)). Consequently, for (0,w,e) = (02,6 (02),e2)), the CRIP would be
equal to 1 if v =7, with:

Y _v(wz) —v(z—d(e)) m(b2) - y—c-q
~ wa - v (w2) c(qg+e2-a(b))

L—7
For this particular value of ~, the tax schedule needed to decentralize the second-best

(37)

optimum would actually be linear 3. Otherwise, a non linear tax schedule is required.

Combining these elements, three cases are then possible. Before characterizing them,
recall that T5/wy cannot be negative because of the budget constraint, of the property
z9 > 0 and of our assumption that profits are nonnegative in equilibrium. First, if v > 5
and v > g, then Ty, 20 > Th/we > 0. Second, if 45 < v < 7, then To/wy > Ty 0 > 0.
Third, if 7 < and y < 44, then T}, 2 < 0 < T3 /ws. The fourth case, namely 7 < v < 45,
can be ruled out since it would imply that 75 /wy < T, 2 < 0.

The following proposition summarizes our results.

Proposition 5 To decentralize the second-best optimum, the actual bargaining power of
the workers has to be equal to 74, with 0 < 45 < 1. When their bargaining power vy is
different from 45, non linear tazation s typically necessary to decentralize the optimum.
Then, the marginal tax rate is an increasing function of the bargaining power of the work-
ers. When v < 4y, the marginal tax rate is negative. Otherwise, it is nonnegative. There
exists a threshold value of the workers’ bargaining power, v, below which tazxation is re-
gressive and above which it is progressive. Finally, the level of taxes is lower than at the

first-best optimum.

We are not able to analytically compare the first- and second-best optimal values of
the unemployment rates, of tightness measured in gross units (i.e. v/u ratios) and of the
expected lifetime utilities of workers and of the representative firm-owner. An extensive
numerical exercise has therefore been conducted in Lehmann and Van der Linden (2002).
The following properties appear to be robust since they were systematically found in all
(reported and unreported) simulations in this discussion paper.

First, the v/u ratio is always higher and the unemployment rate u is always lower at the
first-best than at the second-best optimum. Recall that unemployed workers search less

in the second best (e2 < e;1) but that the labor market is then also more tight (62 > 6,).

B From Equation (37), 7 lies in the (0,1) interval.
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Due to these two opposite effects, the net impact on the v/u ratio and the unemployment
rate is theoretically unclear. In all the simulations where the tax schedule is allowed to be
non linear, the increase in tightness 0 is much less important than the decrease in search
intensity es < e;.

Second, the expected utility of the workers (1 —u)v (w) +u-v(z —d(e)) is higher at
the second-best than at the first-best optimum. This is counter-intuitive for two reasons.
First, it has been shown in proposition 4 that total net output is lower at the second best
(Y2 < Y7). So there are less resources to be shared between workers and the firm owner.
Second, it has been shown that unemployment insurance is imperfect at the second-best
optimum. So, for a given level of average income, workers’ expected utility should be lower
at the second-best optimum compared to the first-best one. Since the expected utility of
the workers is higher in the second best, the share of Y accruing to them has to increase
dramatically when search effort becomes unobservable and this increase has to outweigh
the two previous effects. In other words, the unobservability of search intensity not only
leads to imperfect unemployment insurance and lower search intensity (as emphasized in
the literature on optimal unemployment insurance in partial search equilibrium frame-
works) or to higher tightness (as shown in proposition 4). It also modifies the distribution
of utility levels between workers and the firm owner in favor of the formers. Moreover,
this shift is large enough to compensate the negative influences of the decrease in total net
output and of the incompleteness of unemployment insurance on the expected utility of
workers at the second best. The intuition behind this shift goes as follows. Proposition 5
has shown that the level of taxes is lower at the second-best than at the first-best optimum.
Moreover, the unemployment rate is much higher at the second best, suggesting that un-
employment benefits expenditures are probably higher too. Hence, the lump-sum transfer
to the capital owner (y, with II = x when r = 0) should be lower at the second-best

optimum.

VI Conclusion

Since the paper of Hosios (1990), the condition under which a search-matching economy
is efficient is well-known when agents have linear preferences. If the bargaining power
of the workers is appropriate, a laissez-faire economy is then recommended. Otherwise,
other instruments are needed to decentralize the optimum. Income taxation is a natural
candidate (see Boone and Bovenberg (2001a)). The risk-neutrality assumption is conve-
nient but counter-factual. Furthermore, it implies that economists do not take part to the
debate about inequalities in societies with unemployment. For these very reasons, this

paper has revisited the normative properties of a search-matching economy when workers
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have concave utility functions. For this purpose, we have developed a general equilibrium
framework with homogeneous agents, endogenous job-search and wage bargaining.

We have contrasted a first-best optimum where the State can perfectly monitor un-
employed workers’ search intensity and a second-best optimum with moral hazard. In the
first-best setting, efficiency can be achieved independently of the redistributive issues and
the State can perfectly insure workers against the unemployment risk. The implementa-
tion of the first best requires that workers can in no way extract a rent from the match.
If their bargaining power is positive, a 100% marginal tax rate is necessary to decentralize
the optimum.

When unemployed people freely choose their level of search (the second-best case), this
paper has shown that search intensity and total net output should optimally be lower and
that tightness (measured in efficiency units) should be higher than in the first-best opti-
mum. It has also been shown that in comparison with the decentralization of the first-best
allocation, the implementation of the second-best optimum requires a lower marginal tax
rate, a lower level of taxes on labor and typically a lower level of unemployment benefits.
power. Whether, income taxation should be progressive or regressive heavily depends on
the value of the workers’ bargaining power. For sufficiently low values of the latter, the
marginal tax rate could even become negative in order to provide appropriate incentives
to search and to create vacancies. Conversely, when workers have a strong bargaining
power, taxation could become very progressive (as it is illustrated in a companion paper;
see Lehmann and Van der Linden (2002)). This paper therefore sheds new light on the
debate about the pros and cons of progressive income taxation. Except for one partic-
ular level of workers’ bargaining power, a non proportional tax schedule is a necessary
instrument to decentralize the second-best optimum. When agents are homogeneous, a
tax schedule with a constant marginal tax rate and an intercept would do the trick. With
heterogeneous workers, a more complex non-linear tax schedule would be unavoidable to
decentralize the optima.

This paper could be extended in different ways. First, the introduction has cited several
papers that have been concerned with the optimal profile of unemployment benefits over
the unemployment spell rather than a single level of unemployment benefits. Introducing,
say, two levels of unemployment benefits in our analytical framework would introduce
additional instruments to share risks and to redistribute income between firms and workers.
Second, with respect to the monitoring of search effort, we have only considered two polar
cases (namely job-search decisions were either perfectly observed or not observed at all).
However, in a more realistic framework, the State can imperfectly observe search behavior

and therefore introduce an imperfect sanction mechanism, just as in Boone and van Ours
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(2000), or Boone et al (2001). Third, we have assumed an homogenous labor force.

However, workers actually have different levels of productivity in employment (as in the

optimal taxation literature following Mirrlees (1971) and in Boone and Bovenberg (2001b))

and the disutility of search can be heterogeneous too. Introducing such features would

clearly enrich the analysis but are expected to complicate the model a lot.
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Appendix

Appendix 1: Partial Derivatives

From

SO,w,e)=a@) (v(w—-T)—v(z—d(e))) —d(e)-v(z—d(e)(r+q+e-a(@)=0

one has:

Se = a(0)-d'(e)-v'(z=d(e)) —a(f)-d'(e) v (z —d(e)) +

(—d" () (= - d(e)) +[d @) (z=d(e)) (r+q+e-a(h))
Sy = a(@)-v (w-T)>
Sp = ' (0)[o(w-T)- (Z—d(e))—e d (e) -/ (z —d(e))]

(
Since, v” (.) < 0 and d” (.) > 0, it is easily checked that S, < 0. Equation S(.,.,.) =0,
can be rearranged to yield:

v(w—T) —v(z—d(e)) = 7“*‘JCJ{(eQ)'C“(Q)dI(e) W (2 —d(e))
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Therefore,

,_a(0) ' '
Sh= S ) (@) (= d () >0
Finally, one has
o= 0
Sho= —a(d) v (w—T(w))=-S,<0
S, = —a(f)-v'(z—d(e) —d(e) (r+q+e-a0))v’(z—d(e))

From:

r+q+e-a(f)
m (0)

WS (0,w,e) =v(w—T) —v(z—d(e)) — —L (1 —Tp)

T W' (w—-T)=0

the following partial derivatives can be computed:

T _I_Tm e-a _m/(g)(r+Q+e'a(9))
WS = g (e ® () ) <o
g c-7 T+Q+€'a(9) "
ws,, = v(w—T)—l_’Y(l—Tm) ) " (w—=T)>0
WS = d(0)0/ (= d(e) = 11 (1~ T) b/ (w1

After some manipulation, WS (.,.,.) = 0 becomes:

¢y (1-Tn) vVw-T7) vw-T)-v(z—d(e))

1—7 m (6) N r+q+e-a(f)

Taking this equality into account leads to:

WSt )1 (= die) —a0) T Sl

Hence, WS, is equal to zero in equilibrium. Finally, one has:

. - (9)
! — _ _T C ’y l—Tm T+q+e OC( Lol —T
WSh v (w )—&——1_7( ) (0 v (w ) <0
. calb
WS/m — 10_77T+q7;|;(60)04( ) -v'(w—T) >0

WS, = —v'(2—d(e) <0

Appendix 2: Unicity of the equilibrium, comparative statics and dynamic
properties

First we show that the system S(0,e) = W (#,e) = 0 has at most one solution. Since

S, (0,e) < 0, for any 6, the equation S (6,e) = 0 admits at most one solution. Call this
solution E (@) if it exists. The implicit function theorem insures that function E () is

continuous and differentiable wherever it is defined. Now, let W (0) = W (6,E (6)). An
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equilibrium necessarily solves W (¢) = 0. Differentiating function W (.) yields W' (6) =
Wy, (6,E(6)) +E (0) - W, (0,E ()). Since E (0) solves S (0,E (0)) = 0, one has:

W.(0,E(0))=-S(0,E®))/(r+q+E(@®)-0)=0

Hence, W (0) = Wy, (,E(0)) < 0. So equation W (#) = 0 admits at most one solution.
The equilibrium, if any, is therefore unique.

Second, we look at the comparative statics of the equilibrium. Differentiating S (0, e) =
W (8,e) = 0 yields:

(3 (@) =-(3 3 ) (=
S, S, de S, S S i

Since around the equilibrium W/, = 0, one has:

1
ag\  ~wp 0 W, -dz Wy -dT W, -dTy,
de )~ \ So _1 S,-dz Sp-dT Sy -dIn

SSW, T §
Hence:
W W/ W,
do = ——2dz — —L4T7 — —LmgT,,
Wy Wy Wy

Since Wy < 0, W/, < 0, W/, <0, W’Tm > 0 one has df/dz < 0, df/dT < 0 and db/dT,, > 0.
Moreover,

Sy W, —W,-S

Sy WL-W,-S, S Wp—W,-§ S g,

2dz + LAT +

d
‘ S, - W, S, - W, S, - W,

Sp = Sp+¢'(0)-5,
o (6) r+q m ()

= r -d(e)- v (z—d(e o . a(§)v (w—

By equations (13), (9) and (16), one has

Sy = (T+q)(V—V“){0/(9)+9m’(9)ﬁ}

= o -vm@ {1+ S (1 s )

Recall that v/ (1 —49) =~ (1 —Trn) / (1 — ). Then:

Sh=(r+q) (V—-V)m(©) {1 + Qﬂ”z/(g) %}

So, under the Hosios condition, ¥ = —%m—ég), one gets Sj = 0 around the equilibrium, and:

/ / S/
S, dz — S—TdT — “Imary,

de = —grd= = wr S,
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Hence, one has g—; < 0, ddT_fn = 0 but % remains ambiguous. However, whenever § #
!
—%m—(g), Sy has an ambiguous sign, so the marginal effect of z, T, T},, on e cannot be

signed.

Third, consider the dynamic properties. Along the transitional dynamics, given z, T
and Ty, equations (9), (13) and (16) gives #, w and e as a function of J and V — V*
according to:

0= 7 (5) = (@O =d@) @O -V
1—7_V—V“

w = T+(v’)_1< = y >

Hence, the dynamics of (6, w, e) depends only on the evolution of J and V —V*. According
to equations (7), (11) and (12), one has

J = (r+q¢)J—-y+w(J, V-V

V-V = [rqte(,V-V"-a@V -V V-V
—v(w(J,V =V =T)+v(z—d(e(J,V =VY)))
So, X = (J,V —=V") is a vector of state variables that evolves as a function of itself

only. Denote D the dynamics so X = D (X). A steady state equilibrium solves D = 0.
Since all the variables in vector X are forward looking, two cases might appear regarding
to the eigenvalues of the Jacobian of D in the neighborhood of the steady state. If all
the eigenvalues have a strictly positive real part, the transitional dynamics is unique and
the state variables instantaneously reach their steady state value. Otherwise, there is
a multiplicity of transitional dynamics, one of them being the instantaneous jump of the
state variable to their steady-state value. Applying a selection criteria based on simplicity,
one can think that this dynamics would be the more realistic. This is exactly what we
assume. Hence, we consider that X and therefore 6, e and w are always at their steady-
state values. The adjustment of the unemployment rate is then determined by equation
u=¢q(1—u)—e-a(f) where e and 0 always are at their steady state values.

Appendix 3 The Social Welfare Criteria

The social welfare criteria Q = (1 —u) V +u- V" +4n-P can be differentiated with respect
to time. This derivative can then be substracted from r - 2 to yield :

reQ=0 = Q=w)(r-v-v)+u (rve=v") g (r-P=F)+a(v - v

= (I1—wv(w)+u-v(z—d(e)) —{—77(7“-1?—1}.”)
+(V-V)(e-a®) u—q(l—u)+u)
by definition of V' and V*. Moreover, according to (6), one has:

. oo
Pt: —Ht+/ r- e_r(T_t) . H-,— . d’T = —Ht +7r- Pt
t

Since i = q(1 —u) —e-a(f) -u and r - P — P = II one concludes that:
rQ-Q=01-uwvw)+u-v(z—d(e)+n-II
So,

Q:/e—”{(l—u)v(w)+u-v(z—d(e))+77-H}-dt
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Appendix 4: Characterization of the first-best optimum

Since F' (8,e) = o/ (0) (d (e) + c¢-0) —c-«(0), the partial derivatives of F have unambigu-
ous signs:

Fy = o"(0)(d(e)+c-0)+c-a'(0)—c-a' () <0
F. = d'(0)-d"(e) >0

G (0, e) can be rewritten as a(0) (y +d(e)) —c-0-q—d (e) (e-a(#) +q). Then,
G = —d'(e)(e-a(6)+q) <0
Gy = o O)(y+d(e)—e-d () —coq
However, along G (6, e) = 0, one has:

c-0-q+d (e)(e al)+q) q

_ (
yrae= « (6) “a@

Therefore,
9 , .
o ( +d (e )) —c-q

@
_ <c 0+d’ alc(g))

= ( (o’ (0) (c- 0+d’())—c-a(9))=LF(97€)

Finally, differentiating H (0,e) =o' (6) (y +d(e) +e-c-0) —c(e-a(f) + q) yields:

Hy = ") (y+d(e)+e-c-0)+e-c-ad(0)—e-c-a(0)<0
H, = o (0)(d(e)+c-0)—c-a(f)=F(b,e)

Appendix 5: The second-best optimum with risk averse workers
Let us first show ¢, > 0. From first-order condition (33),

by = ug [d' (eg) - v' (22 —d(e2)) +m-c 02 — b2 a(02)] (38)

{_d” (e2) - v' (22 — d (e2)) + (' (e2))” - v" (22 — d(@))} (q+e2-a(2))

The denominator of the last expression is clearly negative. Therefore, its numerator has
to be non positive in order to guarantee that ¢y > 0. To show that this numerator is
negative, one has to extract ds - o (f2) from condition (34). Taking (30) into account, this
yields:

Sy - a(02) =0 (20 —d(e2)) - d (e2) + 1 @ (%) )(y—w2+z2—|—c-eg-92)

g2 + ez - a (62

Substituting this in the numerator of the right hand side of (38), ¥y > 0 is equivalent to:

C'92< &(92)

V2 ceo -0
_q2+62'a(92)(y wo + 29+ c-eg-6s)
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After some simplifications, using (1), 15 > 0 is equivalent to
c-ex-0z-up < (1 —wug)(y—wa+ 22)
or:
(1 —ug) (wa —22) < (1 —wug)y —c- v
But, by (4)
(1—ug)was+ug-29+1a=(1—u2)y —c-va

So 19 > 0 is equivalent to:

(1 —ug) (w2 —22) < (1—wug)wy+ug-22+1ly
—(I—wug)ze < wup-2zp+1I
-z < 1o

This condition is satisfied since, by assumption Il and zo are nonnegative.
Hence, when workers are risk averse, the incentive constraint (30) implies that ws >

29 —d(e2), thereby v’ (w2) < v' (22 —d(e2)). Therefore, ¥, # 0 according to (31) and
(32). Consequently, ¥y > 0.

It will now be shown that one has G (02, e2) > 0 at the second-best optimum. Dividing
first-order condition (34) by 7, adding d(e2) on both sides and rearranging yields:

v(wg) —v (29 —d(e2))
M2

+wy — 29 +d(e2)
(39)

)
y+d(€2)+0-62-92=?2(62-04(92)*“1)—

Multiplying both sides by a (02) yields:

0‘(92)(y+d(62)+c-62-92):—62'a(92)

_a(bs) [v(ws) —v (22 —d(e2))] ta
n

(e2- a(62) + q)

(02) (w2 — 22 +d(e2))

Taking the incentive constraint (30) into account, the previous equality can be rewritten
in the following way:

a(0) (y+d(es) +cey-0y) = 2o@)Fa,

do - (0) —d (eg) v (29 —d (62))]
—+« (92) (OJQ — 29 + d(eg))

The right-hand side of the last equality can be substituted in the definition of function G
evaluated at (f2,es). After some manipulations, this yields:

2002 (5, (00) —  (ea) (e — den) — 02 1]

+a (02) (w2 — 22 +d(e2)) — (e2- a(B2) +q) d' (e2)

Using once again the incentive constraint, G(03,e2) can be restated as:

G(Qg,eg) =

G(0a,e2) = wgﬁﬂ] [62 - @ (82) — d' (e2) - v' (22 — d(e2)) — ¢~ 02 - 1] (40)
b 20D d(en) - (w2 d(en)) — v (wn) + v (22— d(e2))]

v (29 — d(e2))
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However, the first-order condition (33) insures that:
8o -a(f) —d (e2) -v' (20 —d(eg)) —c- 03 -7
= ﬁ d’ (e3) - v (29 — d (e2)) — (d/ (62))2 0" (29 —d(e2))| (g +e2- (b)) >0

U2

So, the first term on the right hand side of (40) is positive. In addition, the concavity of
v (.) implies that :

v(we) —v (22 —d(e2)) <v' (22 —d(e2)) - (wa — 20 +d(e2))

by which the second term on the right hand side of (40) is positive too. Therefore, function
G evaluated at the second-best optimum is positive while the same function was zero and
reached a maximum evaluated at the first-best optimum. So, ey < e;.

Next, it will be shown that H (6,e) < 0 at the second-best optimum. The first-order
condition (35) together with the incentive constraint (30) gives:

V' (22— d(e2)) - d' (e2)

6'62'77'“2:52'0/(92)'62-u2+¢2'a'(92)-a(q92)

Substituting the flow equilibrium (1) yields:

e=a 0 {2 L2 o = de) (o)}

Substituting this expression and equation (39) into H (02, e2),i.e. ina’ (02) (y + d(e2) +c- ez - 02)—
c(ez - a(f2) + q) leads to

v(wg) —v (29 —d(e2))
n

v (29 —d(e2)) - d (e2) - (e2 - a(62) + Q)}

H(Qg,eg) = (92) {(U2 — 22 +d(e2) -

sy
n(1—usg)

Taking (30) into account, this expression can be rewritten as:

v (w2) — v (z2 —d(e2))
n

o (wa) — v (22 — d(egm}

H (92,62) =a (92) {w2 — 22+ d(62) -
PR ()
(1 — up)

From first-order condition (31)

Yy-a(fy) 1 1

7 (1 —ug) v (w2)
Therefore

H (02, e2) = o/ (62) {wz — 2o +d(e2) — viwy) —v(ze — d(eZ))}

V' (w2)
Finally, concavity of function v (.) implies that:

0<v (w2) (wo — 20 +d(e2)) <v(ws) —v(ze—d(ez)) <v' (20 —d(e2)) (wo — 29+ d(e2))

Therefore, function H evaluated at the second-best optimum (69, e2) is always negative.
This implies that 65 > 6.
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Appendix 6 : The second-best optimum with risk-neutral workers

In this appendix, we show that the paper of Hosios (1990) can be seen as a particular case
of our model. To do so, we check that the decentralized equilibrium is the second-best
optimum when search effort is unobservable and workers are risk neutral with v (z) = 7-x.

We consider a laissez-faire equilibrium with T' = T;,, = z = 0 and we assume the so-

called Hosios condition is fulfilled v = —9::(’0()9 ). The proof consists in showing that the

decentralized equilibrium verifies F' (6,e) = H (0,¢e) = 0.
Assuming r = 0 in expressions (11) and (12) measured in steady state, it is easily seen
that:

V- v V-veu w+d(e)

v (w—T) :v’(z—d(e)) qte-a(f)

Substituting this expression in WS (0, w, e) = 0 (adapted to take the above assumptions
into account), one gets:

w+d(e) e B
g+e-a@) 11—~ m(0)

(41)

The optimal search effort level still verifies S (0, w, e) = 0, which can now be rewritten as:

wtd(e)  d(e) v (z=d(e))
qread) a ()

(42)

Equating the left-hand sides of the two last equalities leads to:

y_d(©1-1
c Y
which can be rewritten as:
-0
10_7 =c-0+d (e

Substituting the Hosios condition, one finally has
c c-0+d (e)

o) ah)

which is exactly F'(6,e) = 0.

Adding d(e) on both sides of equality (10) leads to w + d(e) = y + d(e) — %.

N

Combining this equality and equation (41) yields after some manipulation:

y+de)+e-c-0 1 c
qg+e-a(d)  1—v m(0)

Finally, replacing v by the Hosios condition, one ends with H (6,¢e) = 0.

The message is exactly the main one of Hosios (1990). If redistribution (insurance)
is not an issue, i.e. with marginal utilities of all agents equal and constant (n = v’ (.)),
the decentralized equilibrium under laissez faire is a social optimum prov1ded that the
bargaining power of the worker verifies the so-called Hosios condition v = —6m/ (6) /m (6).
This property has been shown under the assumption that search effort is unobservable.
One should also note that, in this case 29 = xo = T5 = 0. Hence, this laissez faire
optimum is the only available with non negative unemployment benefits and profits.
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