1 Introduction

Traditionally, the investigators looking for economic fluctuations or trying to disprove
their existence have considered the actual macroeconomic time series as a linear
combination of distinct, not necessarily mutually independent components. As a
rule, one distinguishes between the following components: (a) trend (if the series
is not stationary, displaying secular upward or downward movement); (b) cycle(s),
which is one of the most disputable concepts of macroeconomic analysis, duration of
which ranges from 2-8 years (common business cycles) to 40-60 years (the so-called
long, or Kondratiev, waves); (c) seasonal component (systematic movements within
one year); and finally (d) white noise (serially uncorrelated, stationary component).
Since all these components are not observable, there has been a large variety of
different signal-extraction methods (SETs) proposed. By the very same reason it is
virtually impossible to judge, which of these methods uncovers the ”true trend” or
"true cycle”.

Even when the methods depart from the same definition of cycle, they can pretty
easily give rise to the completely different pictures of the macroeconomic fluctuations.
This has extremely important implications for the formulation and testing of the
theoretical models of the business cycle as well as for the making and evaluating
economic policy decisions, since it affects the stylized facts (empirical regularities)

and turning points dating of the business cycles, which are based on the estimates of



the cyclical component of the original series.

Therefore some criteria are needed to choose among these methods those which
are the most adequate to the problem of the business cycle research. The principal
criteria one can use to ”sort” these methods from the standpoint of their usefulness
for the analysis of economic fluctuations are the strictness of the underlying model
(that is, how restrictive are the constraints imposed by the corresponding technique
on the trend/cycle behavior), the degree of the distortions introduced by each method
into the signal(s), and the ability to predict the cyclical movements of the economy
in the future.

In this paper we concentrate upon the ”distortion aspect” to test the signal ex-
tracting techniques. Omne can test the signal-extraction methods looking at them
from different angles. Those depend on the uses one makes of the business cycle
estimates. The most important use of the estimates of the cyclical components are
(1) the determination of the so-called stylized facts (moments of various orders) to
build and check the macroeconomic models, (2) localization of the turning points of
the business cycle, which may serve as a basis for the forecasting of the cycle and
hence of timely decision-making in the area of the countercyclical policy.

However, the problem of utmost importance is that the SETs give different results
both in terms of the stylized facts and in terms of the cycle chronology. Therefore,

since we do not know the true DGP of the time series observed in reality, we cannot



choose among these SETSs to say which of them uncover the truth. This ignorance
undermines all the conclusions made based on any of the detrending methods. Indeed,
how can we say that, for example, our model replicates the reality well, if we do not
even imagine this reality?

This paper tries to test several signal-extraction techniques using as a criterion
their performance in terms of the stylized facts. The attempts to figure out the impact
of the techniques on the stylized facts have been already made in the literature. One
can mention, for example, Canova (1995), (1998a), and (1999). However, our research
differs from the previous ones in that it applies the signal-extraction techniques to
the simulated data with known properties and not to the actual macroeconomic time
series, as it does, for instance, Canova (1998a). Thus, we possess the exact knowledge
about all the moments of the generated series. In other words, we know the true
stylized facts.

The idea is to test various signal-extraction techniques from the viewpoint of the
distortions they introduce into the stylized facts of the extracted cycles. Hence it

would be natural to proceed as follows:

1. Generate signal (cycle) with known stylized facts, e.g. first and second order

moments.

2. Add this signal to some kind of trend, apparently reminding those we observe

in the real life.



3. Use a detrending technique to extract the hidden signal.

4. Compute the moments in question of the estimate of the signal and calculate an
aggregate measure of deviation of these moments from those of the generated
true signal as well as some measures of the similarity of the simulated and

extracted series.

5. Do the above exercise for different signal-extraction techniques for a large
enough number of draws, average the results over all the draws, and compare

the resulting aggregate measures of deviations across these methods.

2 Data-Generating Processes

We simulated two signal series, each of which consists of two components: the common
component, which makes them interdependent, and the idiosyncratic component,
which introduces their own dynamics.

To these cyclical series some trends were added so to create the trended series
of the type we generally observe in the real life. We have considered five principal
cases: (1) distinct deterministic trends; (2) common deterministic trend; (3) distinct
stochastic trends; (4) common stochastic trend independent of the cyclical compo-
nents; (5) common stochastic trend correlated with the cyclical components. In each

case the cyclical components were generated in the same way. The only difference

was the DGP of the trend.



The cyclical components are constructed as follows:

c1r = aqug + Biew

Cot = QaUy + ﬂ2€2t

u, ~ NID(0,1)

€1t = P1€1—1 + N1y

Eop = Po€ot—1 + Moy

M2t 0 01

The disturbance term u; is common for both series (c1; and ¢y), while £9; and e3;
are mutually independent — since E(ny,n,,) = 0 Vt, s — and represent the specific
component of each signal series. The common component is not correlated with the
specific components at any lag or lead: E(un,,) =0 Vt,s and i =1, 2.

The trended series for the cases (1) and (3) were created in the following way:

(1) Distinct deterministic trends:

y1; = art + bit* + cyy



Yor = aot + bat® + o

The first two summands on the right-hand side form the trend of the observed
series, y1; and yq, while the last one (c1; or cg) is the cyclical component, or signal.

The parameters a;, ag, (31, B, determine the relative importance of the common
and specific shocks in the dynamics of both cyclical components. The autoregressive
parameters, p; and p,, introduce the ”long memory” into the specific component
processes and, in turn, into the cyclical components themselves. Thus, if p; and p,
are different from zero, the transitory components, c¢;; and ¢y, are no longer white
noise, but display certain persistence in their behavior. We think that this may be a
more realistic approach to the cyclical component, than that reducing this component
to a mere white noise.

(2) Common deterministic trend is obtained from the previous DGP by imposing
two constraints: a; = a9 and b; = bs.

(3) Distinct stochastic trends:

Y1t = g1t + C1t

Yor = gor + Cot

where the trends ¢;; and g¢o; are:



git = 0+ gu—1 + &y

g2t = 0 + gos—1 + &y

The noise terms, &, and &, are independently and identically distributed:

~ NIID :
Eo 0 01

(4) Common stochastic trend independent of the cyclical components is defined as

follows:

Y1t = gt + Cut

Yor = G¢ + C

where

Gt = 0+ g1 + &y

(5) Common stochastic trend correlated with the cyclical components is defined

almost as the process (4), the only difference being:

G =0+ gi—1 + 1y



So that the trend is correlated both with ¢;; and with cy; via their common dis-
turbance, u;.
The theoretical moments of the processes c¢q; and co, regardless of the nature of

the trends, are computed as follows:

E(cit) = E(cat) =0

a%+—612, ift=s
Cov(cyy, 15) =

% 3, otherwise
1
Analogously,
2
a2+ P2 ift=g
2 1-p2>
Cov(cy, Cos) = -

Pa Y .

T 35, otherwise
Also,

aan, ift=s
Cov(cyy, Cas) =

0, otherwise

The third order central moment:

Skewness(cy) = Skewness(ca) =0

The fourth order central moment:

Kurtosis(cit) = Kurtosis(cy) =0



The length of each simulated series was chosen to be 250 observations — a stan-
dard length for the Post World War II macroeconomic variables measured at quarterly
frequency. There were 500 independent draws made, so that we got 500 pairs of the

trended series for each of the five cases corresponding to different DGPs of the trends.

3 Estimation

We tried the following ten signal-extraction methods: First-order difference (FOD),
Linear trend filter (LT), Quadratic filter, or second-order polynomial (QT), Me-
dian filter (MED), Hodrick-Prescott filter (HPF), Bandpass filter (BPF), Frequency-
domain filter (FDF), Locally weighted regression (LWR), Caterpillar (or ”Cat” for
shortness), Aoki’s method, and West’s method. The details of the algorithms and
motivation of some of these methods an interested reader can find in: HPF — Hodrick
and Prescott (1997); BPF — Baxter and King (1995); LWR — Heiler (1999); MED
— Wen and Zeng (1999); Caterpillar — Danilov and Zhigljavsky (1997), Golyandina,
Nekrutkin and Zhigljavsky (2001) or Ghil and Yiou (1996), Ghil and Taricco (1997);
Aoki’s method — Aoki (1994); West’s method — West, Prado, and Krystal (1999).

To compare the performance of different signal-extraction techniques we intro-
duced and computed the average measure of deviations (AM D), which measures the
average distance between the first four moments (means, variances, autocovariances,

covariances, skewnesses, and kurtosises) of the simulated and extracted series:



m

1
AMD = — E 07 — 0
m |’L z|

i=1
where 07 is a moment of the simulated series, and 65 is a moment of the extracted
signal series.

Another measure is constructed in such a way that it is bounded within [0, 1]
interval and that the impact of two large discrepancies between some moments is
attenuated. It is called average exponential measure of deviations (AM DE) and it

is computed as follows:
Lo
AMDE = — ; {1 —exp(—[0; — 07])}

It is also calculated for the first four moments as AMD. In order to disentangle
the influence of the second-order moments, which are currently the most demanded
by the business cycle researchers, we computed AM DFE for these moments only. It is
called AM DE?2 in the below discussion. Both measures are inversely related to the
performance: the closer AMDE or AMDE? is to 1, the poorer is the performance
of the corresponding SET.

There was also one standard measure of the similarities between two series used,
namely the Theil’s inequality coefficient (Theil). The discussion of this measure can
be found, for instance, in Pindyck and Rubinfeld (1991, pp. 337-341). The Theil’s

inequality, U, is defined as:
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The results of the simulation are summarized in the tables of the Appendix.

(1)

Tables la-1c contain the true moments and the sample moments of the simulated
and extracted cyclical series. In the Tables 2a-2e the aggregate measures of the
dissimilarities are presented.

Tables from la to lc compare the true moments with the sample moments of
extracted series across all the ten signal-extraction techniques considered. Since the
results for the processes with distinct and common deterministic trends are similar
as well as those for the processes with distinct and common stochastic trends not
correlated with the cycles, in the Appendix we reproduce only three tables. The
tables with the sample moments for the processes with common deterministic trend
and common stochastic trend not correlated with cycles are available on request.

In order to judge how significant are the differences between the true moments and
the moments of the extracted series, we have found the 1st and the 99th percentiles of
the empirical distributions of the moments of the estimates of the signal. If the true
moment lies outside of the interval between the 1st and the 99th percentiles, then the
difference between the true and estimated moment is thought to be significant. In
order to save space, we do not report the percentiles. The results of the computation
of the extreme percentiles conform to those of calculation of the mean.
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Under the deterministic trend specification (see Table 1a) most of the methods,
save FOD and LWR, estimate well the means of the cycles. FOD and LWR extract
cycles with the mean equal to the slope of the deterministic cycle. However, most
of the SETSs, except for QT and LT, underestimate the variances and covariances of
each individual series. In the same time QT, LT, HPF, BPF, and Caterpillar give
quite good estimates of the crosscovariances. FOD overestimates the crosscovariance
at lag 0 and makes the two cycles dependent at nonzero lags. West’s method, FDF,
MED, and LWR underestimate the crosscovariance of z; and x5 at zero lag. The
higher moments seem to be not distorted by any of the SETSs, with the exception of
MED and LWR, which extract cycles with very high kurtosises, i.e. with large tail
distributions.

Under the stochastic trend uncorrelated with cycles assumption (see Table 1b)
the means and skewnesses remain undistorted by filtering. The largest distortions
are introduced into the second-order moments, especially those for each individual
series. The covariances and autocovariances of the cycles estimated by QT, LT,
HPF, BPF, Caterpillar, and West’s technique are significantly overestimated. FOD
overestimates only the variance and renders autocovariance at higher lags negative,
making the cycle remind an MA(1) process with negative coefficient. FDF and MED
still underestimate the second-order moments. HPF, BPF, and Caterpillar reproduce

the crosscovariances quite closely. It seems that the switch from the deterministic to
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the stochastic trends, which are not correlated to the cycles, does not affect for these
methods the relationships between the cyclical components. Under the stochastic
trends more SETSs (namely QT, LT, West’s method, MED, and LWR) are distorting
the fourth-order moments of the distribution of the cycle.

The assumption of stochastic trend correlated with the cycles (see Table 1¢) leads
to the drastic changes, which affect mainly the second-order moments. First, it
introduces a kind of asymmetry between the cyclical components: the one, which
is positively correlated with trend, has much greater variance than the cycle which
is correlated negatively. It appears that positive (negative) correlation between the
trend and cycle accentuates (attenuates) the variability of the observable series and
hence the SETs extract cycles with higher (lower) variance than in the case with no
correlation. The crosscovariance at lag zero changes its sign (now it is positive) and
gets much higher absolute value. Moreover, the DGP specification change induces a
kind of temporal asymmetry: the estimates of cycles are correlated higher at negative
lags than at the positive ones. In other words, cycle 1 starts to lead slightly cycle
2. The above observations are true for all SETSs, save West and FDF. The first- and
third-order moments remain as usual intact. The kurtosises are significantly negative
for QT and LT and positive for West, MED, and LWR.

The fact that under deterministic trend the second-order moments are generally

underestimated, while under the stochastic trend they are overestimated is because
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the trend extracted by many of the SETs is not smooth enough compared to the
deterministic one and is too smooth compared to the stochastic trend. Therefore
in case of deterministic trend, the SETs do not extract all the cyclical component,
adding part of it to the trend, while in the case of stochastic trend these methods
include into the estimate of the cycle part of the trend variability. This ”leakage” of
variability between different time series components explains also (in the case of the
common trend correlated with the cycles) the positive crosscovariances between the
estimates of the cycles when the true cycles are negatively correlated.

These results can be formalized and summarized as follows. Under any DGP the
estimate of the cyclical component is some linear combination (if, of course, we are
using a linear filter as our SET) of the components of the original time series. If we
assume the series to be composed only of trend and cycle, then the estimate of the

cycle, ¢;, would be:

it = f(yu) = f(gie + cit) = f(gu) + f(cir)

where f(-) is the impulse-response function of a SET; y;; is the original time series;
gi 18 a true trend; ¢ is a true cycle.

Since the objective of a SET extracting cyclical component is to eliminate non-
stationarity from the original series, its impulse-response function can be represented

as follows:
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L) =) oyl
7=0

where L is the lag operator; a; are the SET-specific weights.

In the case of deterministic trends the original series is defined as follows
Yie = hi(t) + ca

where h;(t) is some deterministic function of time, for example, an r-th order poly-
nomial.

The cycle can be expressed as result of interactions of common and idiosyncratic

shocks:

o0

Cit = Wity + Wio g 0 L7,

Jj=0
where wy, is some number (not necessarily positive) determining relative weights of
common and idiosyncratic components of cycle as well as degree and sign of correla-
tion between the cycles; u; is common shock, €, is idiosyncratic shock.

The variance of the true cycle is
x0
Var(ci) = wioy, +wi (Z 9%) o
j=0
and the covariance between two true cycles would be

2
COU(CH: CQt) = W11W210,,
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This is true for any specification of the trend: both deterministic and stochastic.
However, the moments of the extracted cycle, ¢;, will be different, depending on
the DGP of the trend because of the ”leakage” of variability between the estimated
components produced by the SETs.

Deterministic trend(s):

éz’t = Z aiij {hz + Czt} Z azy { + Wity + Wi2 Z 91]L 5zt}
7=0

7=0

More compactly this can be expressed as

6it = Bz (t) + wi1 Z OéiijUt + w;o Z éiijgit

j=0 Jj=0

where h(t) = (1 — L) 3% gy L7h(t), 325000510 = S0 o LI (35 045 L7); d is
the order of differencing. We make impulse-response function of a SET dependent of
the series being detrended, since some of the methods are data-adaptive and hence
their weights are influenced by the time series to which these filters are applied.

Hence the variance of the estimate of cycle is

Var(éy) = w? (Za)a +wd (Z >

For example, for FOD filter, whose impulse-response function is f¥¢P(L) = 1—L,
the variance of the extracted cycle will be Var(¢;) = E(ci—ciu—1) = 27,(0) —2v,(1),
where v,,(7) is autocovariance of ¢;; at lag 7. For the cycle’s specification we are using
here this implies that Var(é;) = 2% (0.944 — 0.556) = 0.776, which can be confirmed
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upon consulting Table 1a of Appendix, where the variances of the cyclical estimates

oscillate around 0.77. For HPF, BPF and Caterpillar the variance is even smaller,

. n co 32 00
since they have Y% ja? € (0,1) and 370, < > 0;, =

7 = 2.77 (recall
that we generated idiosyncratic part of the cycle as an AR(1) with autoregressive
coefficient p = 0.8). For instance, for BPF the former varies from 0.12 to 0.19, while
the latter is approximately equal to 1.75, depending on the number of terms in the
MA representation of the filter’s impulse-response function, n.
Similarly, the cross-covariance is
Cov(éyy, Cor) = wiiwa (Zn: alja2j> ai
5=0
For instance, when we are employing a FOD, the cross-covariance of the extracted

cycle will be twice as large as the covariance between the true cycles:

COU(éﬁODy éngD) =2 [%12(0) - %12(1)] = 2%12(0)

because, fortunately for us, v,.,5(1) = 0.

We can see that this is the case looking at the cross-covariance at lag zero of the
FOD-extracted cycles in Table 1a.

The picture becomes more complicated when we turn to the case of stochastic
trends. Let’s use for the sake of simplicity the I(1) trend, that is, g;z = gix—1+vi. The

trend shocks, v1; and vy, are assumed to be independently and identically distributed
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and mutually uncorrelated as well as not correlated to the cyclical components, cy;
and cy. Then the estimate of cyclical component will look like follows:
Cit = Zazg { (1-L)” Wi + Wiy + Wi Z 9iij€it}
7=0

which can be expressed also as

n n o0
Cit = g Qi L7 v + wa E i L up + wig E Oij L eit
=0 =0 =0
n o~ i -1 0 i
where > ;o ay L) = (1= L) 37 g L.

Distinct stochastic trends not correlated with cycles:

Var(éy) (Z%>a +wh (Z%>a +w} (ié)

and

V3
Cov(éyy, Cot) = wiiwa (E alja2j> 4

5=0

In this case the variances of the extracted cycles would be always higher than
the variances of the estimates of the cycles obtained in case of deterministic trends,
and most probably will be higher than true variances. What for covariances, since
the trends’ disturbances are not correlated, there will be no difference between the
covariances corresponding to the deterministic trends DGP and those corresponding
to the distinct stochastic trends.

Common stochastic trends not correlated with cycles:
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COU Clt,CQt = ( E 041J042J> O' + wiiwo1 ( E alja2j>

When common trend is introduced, not only variances — as in case of distinct
stochastic trends — become upward biased, but also the covariances. It is easy to
show that for FOD Var(e59P) = 02 + 2v,(0) — 2v,,(1), which given that o2 = 1,
is equal to 1.776. The covariance between two cyclical components at zero lag is:
Cov(efPP eEOP) = 02 4 27,,5(0). Hence Cov(ehPP ¢bOP) =1 —0.5 = 0.5. Compare
these results with those presented in Table 1b.

Common stochastic trends correlated with cycles:

Var(éy) {(Z O‘w) + 2win (Z a”aw> + w2 (Z O‘w) } o2 +w? (i éi) o
=0

Here we can see the source of the apparent ”asymmetry” between both cyclical
components. If the cycle is positively (negatively) correlated with the trend, its
variance would be higher (lower) than in the case of distinct stochastic trends. Now,
if there is no correlation between the trend and cycles, we will have the extracted
cycles’ covariance depending only on the variance of the trend disturbance and the

covariance between the true cycles.
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COU(élt,éQt) = {(Z 5&1j5[2j> + wiiwa (Z O41]'052j> +
=0 =0
+wi1 (Z a1j5é2j> + w12 (Z 5413'@23‘) } (712;
j=0 Jj=0

Here the covariances between trend disturbances, on one side, and the cyclical
components, on the other side, may augment or diminish the bias, depending on their
signs. In this particular case wy; = —w1s, and for the non-data-adaptive methods like
FOD, HPF, BPF, whose impulse-responses do not depend on the filtered series, the
last two terms in the above equation offset each other and hence there is no differences
between the covariances under common trend correlated or not with the cycles.

The above discussion implies that the specification of trend’s DGP plays crucial
role with respect to the stylized facts distortions. The randomness of the trend is
itself an important source of bias. The greater is variance of the trend disturbances,
the larger will be this bias. For example, for o> = 1 the contribution of the trend dis-
turbances into the variability of the BPF-extracted cycle (with two distinct stochastic
trends) is around 1.7, or 78%. If the variance of trend disturbances were smaller, the
variance of the extracted cycle would decrease too. Indeed, when we diminish o2 to
0.5, the variance of the estimated cycle falls up to 0.97, which is pretty close to the
true value. However, when o2 is set to zero, the variance of the extracted cycle is 0.59

and its 99%-th percentile is equal to 0.77, that is, the variance is downward biased.
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The last effect is due purely to the filter-dependent distortions. Therefore we have
two major causes of bias: specification of trend (stochastic and/or common trend)
and the impact of the filter. The first is beyond our control, while the second can be
influenced by researcher.

In the case of nonlinear SETs (e.g., MED) it is much more difficult to predict the
behavior of the moments of the extracted cyclical components.

Finally, we analyze the aggregate measures of the performance of each signal-
extraction technique presented in Tables 2a to 2e. There the SETs are ranked ac-
cording to the corresponding values of each measure. The higher is the position of a
SET in the ranking, the better is its performance.

In what concerns the aggregate measures of performance, the results are pretty
similar within each major class of the DGPs. In other words, the ranking and the
values of the performance measures are more or less the same both for the processes
with distinct and common deterministic trends, on one hand, and for both the pro-
cesses with distinct and common (correlated or not with the cycles) trends. However,
there are big differences between these two groups of the DGPs. In fact, the ranking
of the method changes significantly depending on whether one uses deterministic or
stochastic trends.

Out of the three performance measures the more similar among them are the

ADM and Theil. The latter gives the most stable ranking. The only drastic change
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in this ranking is the fall of two SETs (QT and LT) from the highest positions under
the deterministic trends to the lowest positions under the stochastic trends. This is
not surprising, since QT and LT have the same DGP as the deterministic trends.
All other methods almost do not change their positions in the ranking. Thus, if we
exclude QT and LT, we will see that BPF stays at 1st or 2nd positions, HPF — 1st
or 2nd too, Caterpillar — 2nd and 3rd, MED — 1st, 3rd and 4th, FOD — 5th, LWR
— 6th,West — 7th and 8th, and FDF — 8th and 10th.

Some idea of the hierarchy and grouping of the SETSs can be obtained from the
Figures 1 and 2. There the performance measures (ADME and Theil coefficient) of
several of the detrending techniques, we are considering here, are plotted against each
other. Each point estimate — mean value of the coefficient — is circled into an ellipse

whose radii equal to one standard deviation of each measure. Namely

r = E(ADME;) + Var(ADME;)% cos(w)
y=FEUT;) + Var(UT;)" sin(w)

Although, strictly speaking, this is not an appropriate confidence interval, since
the true distribution of the measures is not normal, still serves for the illustration
purposes. Thus, one can see that for the deterministic trends there exist two groups
of SETs: relatively good performers (HPF, BPF, MixFdw) and bad performers (FOD
and MED). When specification is changed to the stochastic trends, the good perform-

ers (the composition of the group remains the same) shift northeastward, i.e. their
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performance worsens and quite significantly — almost twice. Of course, the bad per-

formers move even farther towards the (1,1) point, but now this group is comprised

by LT and QT.

4 Improving performance of signal-extraction techniques

The results obtained above show that the performance of all the SETs are not very
impressing when the trends are stochastic. On the other hand, there exists certain
ranking of SETSs, although not perfectly robust to various performance measures. The
question is whether we can hope to improve the performance and how to achieve this.
It seems that there are at least three ways of improving. The first one is to combine
different filters hoping that their linear combination (mixed filter) will do better than
its components. The second way is to apply some multivariate filter, which uses more
information and is more efficient. The third way would be to use jointly both these
approaches, i.e., construct mixed multivariate filters.

The outcomes of constructing mixed and multivariate filters are summarized in
Tables 2a-2e of Appendix. There we used the following notation: mixed filter with
differentiated weights (MixFdw), mixed filter with equal weights (MixFew), multivari-
ate HPF (MultHPF), mixed multivariate filter with differentiated weights (MMFdw),
mixed multivariate filter with equal weights (MMFew).

Mized filter is just a linear combination of individual SETs. The problem is how
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to set the weights for this filter. One solution is to use the equal weights: w; = %

for Vi € {1,2,...,m}, where m is the number of filters used to construct the mixed
SET. Another solution can be differentiated weights, depending, for example, on the

performance of the individual detrending techniques. For instance,

__ur?
Z;‘nzl UTj_2

W
where UT; is the Theil’s coefficient for the ¢ — th SET.

We constructed mixed filter with equal and differentiated weights computed as
indicated above. The filters we used in the construction are: MED, FOD, and HPF.
They distort the stylized facts least compared with other SET when the trends are
stochastic.

It turned out that mixing various filters improves upon the performance of each of
them applied separately. The mixed SET performs better even than the best of the
filters of which it is comprised. Most of the improvement is due to the combination
effect. Making weights dependent on the performance of the individual filters dimin-
ishes the stylized facts distortions even more, although not significantly, compared
with the equal weights mixed filter. This is because the Theil’s coefficients used as
a basis for the weights are not very different, thus making the weights themselves
quite similar. The above is not true, however, for the deterministic trends case. The
mixed filter performs better than FOD and MED, but worse than HPF. The reason is

obviously that under this DGP the first two detrending techniques display the worst
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performance. Therefore by combining it with a better filter we do not gain anything.
Moreover, they diverge from the true moments in the same direction — they all
underestimate, for instance, the second-order moments and hence do not offset bias
introduced by their counterparts included into the mixed filter. The conclusion is
that one is likely to improve the performance by constructing the mixed filters out
of the SETs producing the cycle estimates, whose sample moments deviate in the
opposite directions from the true moments.

Next approach is that of applying multivariate filters. One such filter — possibly
the simplest one of all the multivariate filters — was proposed in Kozicki (1999).
The idea is that in some cases we can suspect the existence of single trend, i.e., the
fact that the original time series in question are cointegrated. Therefore we can take
advantage of the common trend assumption to detrend these series. One way to do
this is to detrend each series separately with a univariate trend and then find the
common trend as a linear combination of the estimates of individual trends. The
estimates of cycles are computed by subtracting this estimated common trend from
each of the observed series.

Multivariate HPF a la Kozicki performs slightly better than its univariate coun-
terpart. Only for the deterministic trends case, when Theil coefficient is used as a
performance measure, it seems that multivariate filter is significantly better than the

univariate one. However, a drastic improvement is achieved only when the single
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trend restriction is coupled with mixing various SETs. This leads us to the third
solution — that of the mized multivariate filter.

The algorithm may be the following;:

1. We get estimates of the trends using several univariate SETs.

2. Mixed filter is constructed using equal or differentiated weights.

3. The individual trend estimates for different series are combined into a single
trend. Subtracting this trend from the original time series we receive the mixed

multivariate filter estimates of cycles.

As Tables 2d and 2e show, the mixed multivariate filters perform the best. From
Table 2b one can see that the mixed multivariate filters go immediately after the
SETs, whose structure corresponds to the DGP of the simulated series. Both in
the case of single deterministic and stochastic trends the mixed multivariate SET
outperforms the techniques used in its composition. Of course, their application
makes sense only if we assume the existence of common trend. Again, the difference
between the MMFdw and MMFew is not substantial due to little differences between

the weights.
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5 Summary

In this paper we have compared the performance of various — well known in macroe-
conometric analysis and relatively novel — signal-extraction techniques in terms of
the distortions they introduce into the stylized facts of the simulated cycle. There
were 500 pairs series of length 250 observations generated, each of which is constructed
as a sum of two components: cycle and trend. Then the signal-extraction techniques
were employed to estimate the cyclical component. The business cycle stylized facts
(first-, second-, third-, and fourth-order moments) were computed for these cyclical
component estimates — dropping the first 25 and the last 25 observations, so that
the moments are found for 200 middle observations — and then compared to the
sample moments of the simulated series.

There were three aggregate measures of the deviations from the true values cal-
culated. The first three — AMD, AMDE, and AMDE2 are based on the comparison
of the means and covariances of the simulated and extracted cycles. The fourth mea-
sure — Theil’s inequality coefficient directly measures the similarities between the
two time series: simulated and extracted.

Under deterministic trends assumption the SETs are usually underestimating the
variances and autocovariances of the cycles, while under the stochastic trend DGP
they tend to overestimate these moments. Moreover, introduction of the common

trend correlated with the cycles leads to the important distortions in the crossco-
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variances, which were almost exempt of distortions under all other specifications.
This can be explained — at least for the linear SETs — by the fact that the signal-
extraction methods estimate the cyclical components as a linear combination of true
trends and cycles, being unable to separate one from another exactly.

The best SETSs, regardless of the DGP used to simulate the time series, in this
collection of signal-extraction methods turned out to be BPF, HPF, and Caterpillar.
They also give relatively similar results.

One can improve the performance of the SETs by constructing mixed filters,
multivariate filters, and mixed multivariate filters. They are better both in terms
of ADM and Theil’s coefficient. Multivariate SETS, however, deliver rather modest
reduction in the distortions. The largest part of the improvement is achieved by
mixing filters, that is, by computing their linear combinations. Quite surprisingly, it
turns out that linear combination of individual SETs performs better than any of its
components. This is a very valuable property, since it allows to minimize the stylized

facts distortions.
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6 Appendix

The simulation was done using the following values of the parameters:

Cyclical components:

oy =—ag =0, =0,=0.5

py=py =038

(1) Distinct deterministic trends:

ar =0.9,a,=0.3

by = —0.0001, by, = 0.00001

(2) Common deterministic trend:

a=0.5

b= —0.0001

(3) Distinct stochastic trends and (4) common stochastic trend:

6=0.5

In the tables we use the following notation: u, = E(z;), v,(7) = cov(zyzy_.),
Y12(T) = cov(xyix9r_7), sk; = skewness(zy), and kurt; = kurtosis(zy).

The below statistics were computed for the sample size of 200 observations (250
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observations generated originally, dropping then the extreme 50 observations: 25 from
the beginning of the sample and 25 from the end of it) for 500 draws.

MixF means ”Mixed filter”, which is constructed as a linear combination of three
SETs: FOD, MED, and HPF. Abbreviation ”ew” means ”equal weights”, while ”dw”
is "differentiated weights”. The latter are calculated based on the Theil coefficients
corresponding to each of these techniques when being applied individually.

MMEF stands for the ”Mixed multivariate filter”. It is a mixed filter, which is made
also ”multivariate” by imposing single trend computed as an arithmetic average of

two individual trends.
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Table la. True cycles’ moments and the moments of the extracted cycles

DGP: Distinet deterministic trends

True | QT | LT | HPF | BPF | Cat | FOD | West | FDF | MED | LWR

iy 0 | 00] 00| 001 00]| 00104 00] 00] 00 |048
i 0 | 00] 00| 007100/ 007]03]00]|00] 00030
v (0) | 094|085 | 095 | 0.59 | 0.59 | 0.57 | 0.77 | 0.08 | 0.09 | 0.26 | 0.11
v (1) | 056 | 0.46 | 0.56 | 0.20 | 0.19 | 0.19 | -0.27 | 0.02 | 0.08 | -0.04 | 0.06
v(2) | 044|034 | 045 | 0.10 | 0.09 | 0.09 | -0.02 | -0.02 | 0.04 | -0.04 | 0.01
v,(0) | 0.94 | 0.86 | 0.87 | 0.59 | 0.58 | 0.57 | 0.77 | 0.08 | 0.09 | 0.36 | 0.11
vo(1) | 056 | 0.47 | 0.48 | 0.20 | 0.19 | 0.19 | -0.28 | 0.02 | 0.08 | 0.0 | 0.06
v5(2) | 0.44 | 0.36 | 0.37 | 0.10 | 0.09 | 0.09 | -0.02 | -0.02 | 0.04 | -0.04 | 0.01
vo(=2) | 0 | 00 | 0.0 | 001|002 001 00 |002]| 00 | 002 0.01
(=1 | 0 | 00 | 0.0 | 001|002 002|024 00 | 00 | 005 |-001
v15(0) | -0.25 | -0.25 | -0.26 | -0.24 | -0.23 | -0.23 | -0.50 | -0.04 | -0.01 | -0.14 | -0.04
Y12(1) 0 | 00 ] 00 |001]002]|002]|025 | 00| 00| 0.05]|-001

Y12(2) 0 0.0 | 0.0 | 002 0.02| 002 00 |0.02]| 00 | 0.02 | 0.01

sky 0 |-0.01|0.01|-0.01{-0.01]-0.01| 0.0 | 0.01 |-0.02] -0.01 | 0.02
sko 0 0.01 {-0.02| 0.01 | 0.01 {-0.01| 0.0 | 0.02 |-0.01| 0.0 | 0.05
kurty 0 |-0.04|-0.04-0.02{-0.03|-0.01| 0.0 | 0.08 [-0.09| 2.15 | 7.92
kurt, 0 |-0.06 |-0.06|-0.04| 0.02 |-0.03| 0.01 | 0.09 |-0.10 | 1.11 | 7.68
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Table 1b. True cycles’ moments and the moments of the extracted cycles

DGP: Distinct stochastic trends

True | QT | LT | HPF | BPF | Cat | FOD | West | FDF | MED | LWR

1y 0 | 00| 00| 00| 00 [-001]050 |-001] 00| 00 | 050
s 0 | 00| 00| 00|00 [-00L]05 /| 00| 00] 00 | 050
v (0) | 094|932 | 141 | 224 | 212 | 2.16 | 1.77 | 2.21 | 0.09 | 0.88 | 0.40
v (1) | 056 | 835 | 13.0 | 1.37 | 1.26 | 1.29 | -0.28 | 2.05 | 0.08 | 0.19 | 0.28
v, (2) | 044 | 768 | 12.3 | 0.87 | 0.75 | 0.80 | -0.03 | 1.85 | 0.04 | -0.03 | 0.12
vo(0) | 0.94 | 961 | 13.7 | 219 | 2.13 | 2.14 | 1.77 | 2.19 | 0.09 | 0.89 | 0.40
vo(1) | 056 | 864 | 12.9 | 1.33 | 1.26 | 1.28 | -0.28 | 2.05 | 0.08 | 0.20 | 0.28
v5(2) | 044 | 7.96 | 121 | 0.83 | 0.76 | 0.80 | -0.03 | 1.86 | 0.04 | -0.04 | 0.12
vo(=2)| 0 | 016 |-0.49 | 0.01 | 0.02 | 0.01 | 0.0 | 0.01 | 0.0 | 0.02 | 0.01
(=1 | 0 | 017 [-0.49| 0.01 | 0.02 | 0.01 | 0.24 | 0.0 | 0.0 | 0.04 | -0.01
v15(0) | -0.25 | -0.07 | -0.72 | -0.23 | -0.23 | -0.23 | -0.49 | 0.0 |-0.01| -0.15 | -0.04
Y12(1) 0 | 017 |-0.45| 0.03 | 0.02 | 0.01 | 024 | 0.0 | 0.0 | 0.04 | -0.01

Y12(2) 0 0.17 | -0.42 | 0.03 | 0.02 | 0.0 |-0.01| 0.01 | 0.0 | 0.02 | 0.01

sky 0 0.0 | 001 | 00 | 0.01 |-0.04| 0.0 |-0.02]-0.02| 0.02 | 0.01
sky 0 0.01 | 0.01 | 0.0 | 001 {-0.01| 0.0 |-0.02]-0.01| 0.02 | -0.06
kurt, 0 1-0.29|-0.39|-0.07{-0.06 | 0.09 | 0.03 | 1.26 | -0.09 | 1.57 | 2.47
kurt, 0 |-0.30|-0.38 |-0.04|-0.03| 0.05 |-0.01| 1.32 | -0.11 | 1.63 | 2.72
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Table 1c. True cycles’ moments and the moments of the extracted cycles

DGP: Common stochastic trend correlated with the cycles

True | QT | LT | HPF | BPF | Cat | FOD | West | FDF | MED | LWR

iy 0 | 00] 00| 00 00]-002]049|001]| 00| 00 | 049
i 0 | 00] 00| 00 00]-002]049|0.02]| 00 | 00 | 049
v (0) | 094 | 98 | 14.6 | 2.65 | 2.58 | 2.59 | 2.76 | 2.11 | 0.10 | 1.41 | 0.48
v(1) | 056 | 84 | 131 | 1.29 | 1.22 | 1.24 | -0.77 | 1.94 | 0.08 | 0.18 | 0.30
v(2) | 044 | 77 | 124 | 0.79 | 0.73 | 0.76 | -0.04 | 1.72 | 0.04 | -0.07 | 0.11
v,(0) | 094 | 89 | 136 | 1.73 | 1.67 | 1.72 | 0.77 | 2.58 | 0.08 | 0.43 | 0.31
vo(1) | 056 | 84 | 13.1 | 1.37 | 1.31 | 1.35 | 0.21 | 2.44 | 0.07 | 0.22 | 0.25
vy(2) | 044 | 77 | 124 | 0.87 | 0.81 | 0.85 | -0.03 | 2.56 | 0.04 | 0.01 | 0.13
vo(=2)| 0 | 7.8 | 145 | 1.10 | 1.04 | 1.07 | -0.01 | 1.09 | 0.0 | 0.15 | 0.21
vo(=1)| 0 | 84 | 131 | 1.57 | 1.51 | 1.54 | 0.74 | 1.18 | 0.03 | 0.43 | 0.28
v12(0) [-025| 83 | 13.0 | 1.37 | 1.30 | 1.36 | 0.49 | 1.29 | 0.06 | 0.32 | 0.25
Y15(1) 0 | 75 | 122|072 066 | 071 |-026| 1.33 | 0.07 | -0.02 | 0.12

V15(2) 0 | 69 | 11.6 | 040 | 0.34 | 0.39 | -0.01 | 1.29 | 0.06 | -0.11 | 0.02

sk 0 0.0 | 0.01 |-0.01| 0.01 |-0.01 |-0.01|-0.03|-0.01 | -0.01 [ 0.03
sko 0 0.02 | 0.01 | 0.0 | 0.02 |-0.04|-0.01|-0.04|-0.02 | -0.03 | 0.01
kurty 0 |-0.24]-0.36|-0.03|-0.02| 0.04 | -0.03 | 1.25 | -0.10 | 1.10 | 4.86
kurts 0 |-0.30|-0.411]-0.05|-0.03| 0.11 | -0.01 | 1.22 | -0.10 | 3.30 | 0.42
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Table 2a. Comparative performance of SETs
DGP: Two deterministic trends

(Numbers in brackets stand for standard deviations)

Filter ADM Filter ADME Filter ADME2 Filter Theil

0.052 0.048 0.030 0.110
QT QT QT QT

(0.024) (0.021) (0.022) (0.034)

0.081 0.075 0.054 0.152
LT LT LT LT

(0.027) (0.024) (0.026) (0.034)

0.190 0.164 0.170 0.276
HPF HPF HPF HPF

(0.050) (0.037) (0.047) (0.038)

0.197 0.169 0.178 0.282
BPF BPF BPF BPF

(0.053) (0.039) (0.048) (0.037)

0.199 0.170 0.179 0.291
CAT CAT CAT CAT

(0.051) (0.038) (0.046) (0.037)

0.257 0.210 0.225 0.337
MixFdw MixFdw MixFdw MixFdw

(0.055) (0.038) (0.047) (0.035)

0.301 0.238 0.249 0.412
MixFew MixFew MixFew MixFew

(0.058) (0.038) (0.043) (0.032)

0.326 0.251 0.261 0.495
West ‘West FOD MED

(0.060) (0.037) (0.034) (0.031)

0.330 0.25436 0.262 0.539
FOD FDF MED FOD

(0.053) (0.037) (0.047) (0.026)

0.334 0.258 0.279 0.775
FDF FOD West West
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Table 2b. Comparative performance of SETs

DGP: Common deterministic trend

(Numbers in brackets stand for standard deviations)

Filter ADM Filter ADME Filter ADME2 Filter Theil

0.053 0.050 0.031 0.115
QT QT QT QT

(0.024) (0.022) (0.025) (0.038)

0.123 0.112 0.093 0.180
LT LT LT MultHPF

(0.039) (0.033) (0.047) (0.036)

0.140 0.127 0.135 0.203
MultHPF MultHPF MultHPF LT

(0.047) (0.039) (0.049) (0.029)

0.181 0.161 0.172 0.210
MMFdw MMFdw HPF MMFdw

(0.047) (0.037) (0.042) (0.035)

0.190 0.164 0.177 0.262
HPF HPF BPF MMFew

(0.044) (0.034) (0.048) (0.040)

0.196 0.168 0.178 0.276
BPF BPF MMFdw HPF

(0.051) (0.038) (0.046) (0.036)

0.201 0.172 0.181 0.280
CAT CAT CAT BPF

(0.054) (0.040) (0.050) (0.036)

0.218 0.190 0.206 0.289
MMFew MMFew MMFew CAT

(0.056) (0.042) (0.051) (0.038)

0.253 0.29% 0.223 0.337
MixFdw MixFdw MixFdw MixFdw

(0.048) (0.033) (0.041) (0.036)

0.317 0.248 0.256 0.425
MixFew MixFew MixFew MixFew
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Table 2c. Comparative performance of SETs

DGP: Two stochastic trends

(Numbers in brackets stand for standard deviations)

Filter ADM Filter ADME Filter ADME2 Filter Theil

0.246 0.200 0.179 0.525
MixFdw MixFdw MixFdw MixFdw

(0.049) (0.032) (0.035) (0.024)

0.252 0.206 0.184 0.527
MixFew MixFew MED MixFew

(0.051) (0.032) (0.044) (0.024)

0.323 0.247 0.187 0.546
FDF MED MixFew MED

(0.056) (0.038) (0.034) (0.021)

0.381 0.250 0.271 0.551
MED FDF FDF CAT

(0.089) (0.035) (0.041) (0.026)

0.400 0.285 0.296 0.552
CAT CAT West BPF

(0.100) (0.055) (0.127) (0.026)

0.432 0.300 0.330 0.556
BPF West CAT HPF

(0.101) (0.105) (0.078) (0.025)

0.433 0.301 0.345 0.619
FOD BPF FOD FOD

(0.049) (0.055) (0.033) (0.024)

0.470 0.316 0.354 0.716
HPF HPF BPF West

(0.120) (0.060) (0.078) (0.062)

0.988 0.32338 0.380 0.736
West FOD HPF QT

(1.321) (0.030) (0.086) (0.041)

4.6 0.679 0.894 0.768

QT QT QT LT
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Table 2d. Comparative performance of SETs

DGP: Common stochastic trend not correlated with cycles

(Numbers in brackets stand for standard deviations)

Filter ADM Filter ADME Filter ADME2 Filter Theil

0.226 0.187 0.180 0.440
MMFdw MMFdw MMFdw MMFdw

(0.045) (0.031) (0.032) (0.028)

0.231 0.190 0.181 0.444
MMFew MMFew MMFew MMFew

(0.041) (0.029) (0.029) (0.029)

0.312 0.247 0.228 0.522
MixFdw MixFdw MED MixFdw

(0.061) (0.036) (0.043) (0.023)

0.313 0.249 0.251 0.524
MixFew MixFew MixFdw MixFew

(0.058) (0.034) (0.038) (0.023)

0.335 0.257 0.254 0.528
FDF FDF MixFew MultHPF

(0.062) (0.038) (0.039) (0.036)

0.424 0.276 0.280 0.542
MED MED FDF MED

(0.092) (0.037) (0.045) (0.020)

0.465 0.341 0.374 0.552
FOD FOD FOD CAT

(0.052) (0.032) (0.032) (0.027)

0.631 0.358 0.384 0.552
CAT West West BPF

(0.168) (0.189) (0.248) (0.031)

0.673 0.4390 0.525 0.557
BPF CAT CAT HPF

(0.185) (0.073) (0.106) (0.032)

0.740 0.426 0.551 0.617
HPF BPF BPF FOD

/n 100\ n n77 n111 N N9N




Table 2e. Comparative performance of SETs

DGP: Common stochastic trend correlated with cycles

(Numbers in brackets stand for standard deviations)

Filter ADM Filter ADME Filter ADME2 Filter Theil

0.279 0.219 0.225 0.457
MMFew MMFdw MMFew MMFdw

(0.046) (0.032) (0.033) (0.030)

0.281 0.219 0.227 0.457
MMFdw MMFew MMFdw MMFew

(0.052) (0.030) (0.031) (0.030)

0.330 0.255 0.278 0.531
FDF FDF FDF MultHPF

(0.060) (0.038) (0.044) (0.032)

0.354 0.269 0.284 0.540
MixFdw MixFdw MED MixFdw

(0.061) (0.036) (0.036) (0.022)

0.359 0.275 0.284 0.546
MixFew MixFew MixFdw MixFew

(0.061) (0.036) (0.039) (0.021)

0.507 0.322 0.292 0.556
FOD MED MixFew CAT

(0.056) (0.033) (0.038) (0.023)

0.564 0.340 0.371 0.556
MED FOD West BPF

(0.129) (0.033) (0.244) (0.027)

0.641 0.351 0.374 0.560
CAT West FOD HPF

(0.175) (0.188) (0.038) (0.030)

0.666 0.446 0.513 0.566
BPF CAT CAT MED

(0.160) (0.075) (0.112) (0.020)

0.737 0.415 0.532 0.645
HPF BPF BPF FOD
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Figure 1: Comparative performance of SETs for the processes with deterministic

trends

Theil

DGP: Two deterministic trends

0.
DDDDDDDD
o o
g o g
0 ao
Dﬂugﬁb ch
0.5+ o 4 9
9 e}
Q
0, o
9000
0.4+
N33
¢ "
N >
Pk
ﬁ§$@ b”
0.3 LA a3
I 4 a
Vq v A\
Vg 4
V4 R
Vg qaY
R
0.2+
%,
S %
S o
g © 0
% o
o &
Vo
0.1 FOD1
LT1
™ QT1
AAA X HPF1
2,4 BPF1
AA N MIXF1
S MED1
0.0 T T T
0.00 0.10 0.20 0.30
ADME

41

Theil

DGP: Common deterministic trend
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Figure 2: Comparative performance of SETSs for the processes with stochastic trends

DGP: Two stochastic trends
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DGP: Common stochastic trend correlated wit
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