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Abstract

We consider distributional free inference to test for positive quadrant dependence, i.e. for
the probability that two variables are simultaneously small (or large) being at least as great
as it would be were they dependent. Tests for its generalisation in higher dimensions, namely
positive orthant dependences, are also analysed. We propose two types of testing procedures.
The first procedure is based on the specification of the dependence concepts in terms of
distribution functions, while the second procedure exploits the copula representation. For
each specification a distance test and an intersection-union test for inequality constraints
are developed depending on the definition of null and alternative hypotheses. An empirical
illustration is given for US and Danish insurance claim data. Practical implications for the
design of reinsurance treaties are also discussed.
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1 Introduction

The development and analysis of quantitative models for losses in large portfolios of insur-
ance contracts or financial assets has been an area of interest for practitioners, regulators
and academics for several years. These models purpose to capture the losses due to default
events or adverse movements of asset prices. In fact, most financial institutions are now
routinely using risk management systems to adequately control their risks or to suitably al-
locate their capital. This has been impulsed by either internal requirements (efficient use of
capital invested by shareholders, development of new business lines) or external constraints
(Capital Adequacy Requirement of the Basle Committee on Banking Supervision, prudential
rules imposed by European or American regulators on financial institutions). Clearly, the
dependence between financial instruments materially affects risk measures and asset alloca-
tions resulting from optimal portfolio selections. The analysis of the dependence structure
cannot be neglected and reveals much of the danger associated to a given position.

In actuarial science, the increasing complexity of insurance and reinsurance products has
lead to increased interest in the modeling of dependent risks (think of the emergence of
multi-line products which require sophisticated risk evaluation mechanisms, see Pinquet
(1998) for simple and powerful models applicable to packaged products in car insurance).
Also, Dynamic Financial Analysis (see Kaufmann, Gadmer and Klett (1999) for an
introduction) provides actuaries with an integrated risk management technique. Its main
characteristic is to integrate the investment and underwriting risk to which an insurer is
exposed. DFA necessitates a model that combines information on marginal distributions
together with ideas on interdependencies.

Unfortunately, contemporary techniques too often revolve around the use of linear correla-
tion to describe a dependence between risks and implicitly assume normally distributed risks
(mainly for mathematical convenience). But what does positive correlation really mean? In
the normal world, positive correlation entails strong positive dependence notions, see Tong
(1990). However, as illustrated by Embrechts et al. (2000), dependence properties of the
normal world no more hold in the non-normal world. Modern risk management calls for
an understanding of stochastic dependence going beyond simple linear correlation. In that
respect, dependence concepts like comonotonicity, multivariate total positivity, conditional
increasingness in sequence, association and positive quadrant dependence (and its multivari-
ate extensions) are of prime importance and should correctly be understood by practitioners.

In the management of large portfolios, the main risk is the occurrence of many joint
default events or simultaneous downside evolution of prices. A deep knowledge of the
dependence between financial assets or claims is crucial to better assess this risk of loss
clustering and therefrom achieve a performant risk management in finance and insurance.
This clustering behaviour can be described by a useful concept known as positive quadrant
dependence (PQD) for bivariate distributions (Lehmann (1966)) and positive orthant de-
pendences (POD) for dimensions higher than two. This type of dependence tells us how two,
or more, random variables behave together when they are simultaneously small (or large).
More precisely two random variables are PQD if the probability that they are simultaneously
small is at least as great as it would be were they independent.

One of the main interest of this dependence structure is that it allows the risk man-
ager to compare the sum of PQD random variables with the corresponding sum under the
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independence assumption. The comparison is in the sense of different stochastic orderings
expressing the common preferences of rational decision-makers (in the framework of the
classical von Neuman-Morgenstern expected utility theory, as well as in other theories, like
Yaari (1987)’s one).

Finally let us remark that financial security systems are generally complex, and their
outcomes usually involve several dimensions. Describing relationships among different di-
mensions is a basic technique for explaining the behavior of risk control mechanisms to
concerned business and public policy decision-makers. In that respect, copula functions can
be of great usefulness for risk managers and actuaries. The concept of “copulas” or “cop-
ula functions” as named by Sklar (1959) originates in the context of probabilistic metric
spaces. The idea behind this concept is the following: for multivariate distributions, the
univariate marginals and the dependence structure can be separated and the latter may
be represented by a copula. The word copula is a latin noun that means “couple”, and is
used in grammar and logic to describe that part of a proposition which connects the subject
and predicate. In statistics, it now describes the function that “couples” one-dimensional
distribution functions to form multivariate ones, and may serve to characterize dependence
concepts such as PQD and POD.

The paper is organized as follows. In Section 2, we review several stochastic order re-
lations. In Section 3, we recall the definition of copula functions, as well as the classical
Sklar’s representation theorem for multivariate distributions. Specification of hypotheses in
terms of distribution functions or copulas will lead to different inferences. Section 4 gives
the definition of PQD and of some of its multivariate extensions. In Section 5, we illustrate
the interest of these positive dependence notions with the help of various useful stochastic
inequalities. We provide some relevant examples coming from measurement of inequality
and poverty, as well as from life insurance. In Section 6 we describe the null and alternative
hypotheses we are interested in, and develop testing procedures for such purpose. These pro-
cedures are closely related to the inference tools for traditional first order and second order
stochastic dominance, which also rely on distance and intersection-union tests for inequality
constraints (see Davidson and Duclos (2000) and the references therein). An empirical
illustration on US and Danish insurance claim data is proposed in Section 7. Therein we
provide a comparison of premiums computed under different dependence assumptions, and
discuss effect of PQD on the pricing of reinsurance treaties. Section 8 concludes. Proofs are
gathered in an appendix.

It is worth mentioning that we depart from the actuarial literature by assigning a negative
sign to losses in this paper. This is in line with the agreement in force in finance for asset
returns.

2 Stochastic orderings

Stochastic orderings are binary relations defined on classes of probability distributions. They
aim to mathematically translate intuitive ideas like “being larger” or “being more variable”
for random quantities. They thus extend the classical mean-variance approach to compare
riskiness.

Let us define the following utility classes. Let U1 contain all non-decreasing utilities
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u : R → R. Let U2 be the restriction of U1 to its concave elements. More generally, for
k ≥ 3, let Uk be (k − 1) times continuously differentiable utility functions u such that
limx→+∞ u(x) ≡ u(+∞) is finite, limx→+∞ u(j)(x) = 0 for j = 1, . . . , k−1 and (−1)k−1u(k−1)

is non-decreasing.
In what follows, we assume that decision-makers maximize a von Neumann-Morgenstern

expected utility (but we mention that results involving U1 and U2 still hold in dual theo-
ries for choice under risk, see e.g. Denuit, Dhaene and Van Wouwe (1999) for further
information).

Let Y1 and Y2 be two random variables such that Eu(Y1) ≤ Eu(Y2) holds for all u ∈ U1

(resp. u ∈ U2), provided the expectations exist. Then Y1 is said to be smaller than Y2 in the
stochastic dominance (resp. increasing concave order), denoted as Y1 �d Y2 (resp. Y1 �icv Y2).
From the very definitions of �d and �icv, we see that these stochastic orderings express the
common preferences of the classes of profit-seeking decision-makers, and of profit-seeking
risk-averters, respectively. This provides an intuitive meaning to rankings in the �d- or
�icv-sense.

If Y1 �icv Y2 and EY1 = EY2, then we write Y1 �cv Y2. In this case Eu(Y1) ≤ Eu(Y2) for
all the concave utilities u, so that Y2 is preferred over Y1 by all risk-averters. Furthermore,
if Eu(Y1) ≤ Eu(Y2) for all u ∈ Uk, provided the expectations exist, then Y1 is said to be
smaller than Y2 in the k-increasing concave order, denoted as Y1 �k−icv Y2. By convention
we assume that �k−icv reduces to �icv and �d for k = 2 and k = 1, respectively.

For a more detailed exposition of stochastic orderings, see e.g. the review papers by
Kroll and Levy (1980) and Levy (1992), the classified bibliography by Mosler and
Scarsini (1993) and the book by Shaked and Shanthikumar (1994). For a rigorous
treatment of �k−icv, see Rolski (1976) and Fishburn (1976).

We summarize hereafter the main characterizations of �d, �icv and �cv. Let F1 and F2

be the respective cdf’s for Y1 and Y1. Let F−1
1 and F−1

2 denote the corresponding quantile
transformations, defined as

F−1
j (p) = inf{x ∈ R|Fj(x) ≥ p}, p ∈ [0, 1], j = 1, 2.

Theorem 2.1.

(i) Y1 �d Y2 ⇔ F1(x) ≥ F2(x) for all x;

(ii) Y1 �d Y2 ⇔ F−1
1 (p) ≤ F−1

2 (p) for all p ∈ (0, 1);

(iii) Y1 �icv Y2 ⇔
∫ x
−∞ F1(u) du ≥

∫ x
−∞ F2(u) du for all x;

(iv) Y1 �icv Y2 ⇔
∫ p

0
F−1

1 (u) du ≤
∫ p

0
F−1

2 (u) du for all p ∈ (0, 1);

(v) Y1 �icv Y2 ⇔ there exists a random variable Z such that Y1 �cv Z �d Y2;

(vi) Y1 �k−icv Y2 ⇔
∫ x

−∞

∫ xk−1

−∞
· · ·
∫ x2

−∞
F1(x1) dx1dx2 · · ·dxk−1

≥
∫ x

−∞

∫ xk−1

−∞
· · ·
∫ x2

−∞
F2(x1) dx1dx2 · · ·dxk−1 for all x,
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provided the integrals are finite (the integrals are finite if F1 and F2 have finite (k−1)th
moments).

Statistical inference for �d, �icv and �k−icv is investigated in vast details in Davidson
and Duclos (2000), where connections with economic and social welfare in different pop-
ulations are explicited. Different approaches are possible. Either empirical analogs of the
iterated integrals of the cdf’s are computed and compared at every couple of observations.
This is the route followed e.g. by McFadden (1989) or Kaur, Prakasa Rao and Singh
(1994). Or, which is more often the case, a predetermined grid of a much smaller number
of points (typically, quantiles of the underlying distributions) is used. In the latter case, the
stochastic ranking implies a set of inequalities Di ≥ 0 for i = 1, 2, . . . , d, where d is the
number of points in the predetermined grid. This will be the foundation for the statistical
tests discussed in Section 6. Before moving to that point we need to present a very powerful
theorem due to Sklar (1959).

3 Sklar’s representation for multivariate distributions

We consider a setting made of i.i.d. observations {Y t; t = 1, ..., T} of a random vector Y
taking values in Rn. These data may correspond to either observed individual losses on n
insurance contracts, the amounts of claims reported by a given policy holder on n different
guarantees in a multiline product or observed returns of n financial assets.

We denote by f(y), F (y), the pdf and cdf of Y = (Y1, ..., Yn)
′ at point y = (y1, ..., yn)

′.
The marginal pdf and cdf of each element Yj at point yj, j = 1, ..., n, will be written fj(yj),
and Fj(yj), respectively. As already pointed out, how the joint distribution F is “coupled”
to its univariate margins Fj, can be described by a copula. While the joint distribution
F provides complete information concerning the behaviour of Y , copulas allow to separate
dependence and marginal behaviour of the elements constituting Y . Before defining formally
a copula, we would like to refer the reader to Nelsen (1999) and Joe (1997) for more
extensive theoretical treatments.

A n-dimensional copula C is simply (the restriction to [0, 1]n of) an n-dimensional cdf
with unit uniform marginals. The reason why a copula is useful in revealing the link between
the joint distribution and its margins transpires from the following theorem.

Theorem 3.1. (Sklar’s Theorem)
Let F be an n-dimensional cdf with margins F1, ..., Fn. Then there exists an n-copula C such
that for all y in Rn,

F (y) = C
(
F1(y1), ..., Fn(yn)

)
. (3.1)

If F1, ..., Fn are all continuous, then C is uniquely defined. Otherwise, C is uniquely deter-
mined on rangeF1 × ...× rangeFn. Conversely, if C is an n-copula and F1, ..., Fn are cdf’s,
then the function F defined by (3.1) is an n-dimensional cdf with margins F1, ..., Fn.

Although copulas constitute a less well-known approach to describing dependence than
correlation, they offer the best understanding of the general concept of dependency. In
particular, copulas share the nice property that strictly increasing transformations of the
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underlying random variables result in the transformed variables having the same copula
(what is not true for linear correlation).

As an immediate corollary of Sklar’s Theorem, we have

C(u) = F (F−1
1 (u1), ..., F

−1
n (un)) (3.2)

for any u ∈ [0, 1]n. From Expression (3.2), we may observe that the dependence structure
embodied by the copula can be recovered from the knowledge of the joint cdf F and its
margins Fj. This will be used later to deliver empirical estimates of copulas.

Note that independence between random variables can be characterized through copulas.
Indeed, n random variables are independent if, and only if, their copula is C(u) = C⊥(u) =∏n

j=1 uj, for all u ∈ [0, 1]n. C⊥ is further referred to as the independence copula. This
characterization of independence is the starting point for the analysis of positive quadrant
dependence through the use of copulas, which we wish to develop now.

4 Dependence notions

4.1 Positive quadrant dependence

The concept of positive quadrant dependence (PQD) is introduced in Lehmann (1966) and
describes how two random variables behave together when they are simultaneously small (or
large). As already mentioned, joint occurence of large losses or very negative returns is of
particular interest in risk management.

Since “positive” refers to a comparison with independence, let Y ⊥ denote an independent
version of the random vector Y , that is, Y and Y ⊥ have identical univariate marginals and
Y ⊥ has independent components. Formally, two random variables Y1 and Y2 (or the random
couple Y = (Y1, Y2)) are said to be positively quadrant dependent if, for all y ∈ R2,

P [Y ≤ y] ≥ P [Y ⊥ ≤ y] = P [Y1 ≤ y1]P [Y2 ≤ y2]. (4.1)

This states that two random variables are PQD if the probability that they are simultaneously
small is at least as great as it would be were they independent. Of course, (4.1) is equivalent
to

P [Y > y] ≥ P [Y ⊥ > y] = P [Y1 > y1]P [Y2 > y2] (4.2)

which enjoys a similar interpretation (with “small” replaced with “large”).
Considering (4.1)-(4.2), PQD appears as a comparison of the joint distribution of Y to

that of Y ⊥. It can thus be considered as a special case of comparisons of pairs of bivariate
distributions with identical marginals. This yields the concordance order introduced by
Yanagimoto and Okamoto (1969) and further studied by Tchen (1980) and Kimeldorf
and Sampson (1987). PQD is in particular satisfied when random variables are regression
dependent (see Dachraoui and Dionne (2000) for definition and use of this dependence
concept for optimal portfolio selection in presence of dependent risky assets).

Clearly, Y1 and Y2 are PQD if, and only if, g1(Y1) and g2(Y2) are PQD for any increasing
functions g1 and g2. This shows that PQD is a property of the underlying copula and is

5



not influenced by the marginals. Inequality (4.1) can then also be written in terms of the
copula C of the two random variables, since (4.1) is equivalent to the condition that, for all
u ∈ [0, 1]2,

C(u) ≥ C⊥(u) = u1u2. (4.3)

4.2 Positive orthant dependences

The bivariate notion of PQD has been generalized to higher dimensions in several ways, see
e.g. Newman (1984). We consider here positive orthant dependencies.

Positive orthant dependences offer nice extensions of PQD: in three or more dimensions,
orthants are substituted for quadrants. This yields the following definitions, directly inspired
from (4.1) ands (4.2). A random vector Y is said to be positively lower orthant dependent
(PLOD, in short) when the inequalities

P [Y ≤ y] ≥ P [Y ⊥ ≤ y] =

n∏

i=1

P [Yi ≤ yi] (4.4)

hold for any y ∈ Rn. It is said to be positively upper orthant dependent (PUOD, in short)
when the inequalities

P [Y > y] ≥ P [Y ⊥ > y] =
n∏

i=1

P [Yi > xi] (4.5)

hold for any y ∈ Rn. Of course, (4.4) and (4.5) are no more equivalent when n ≥ 3.
Intuitively, (4.5) means that Y1, Y2, . . . , Yn are more likely simultaneously to have large

values, compared with a vector of independent rv’s with the same corresponding univariate
marginals. Inequality (4.4) is similarly interpreted. When (4.4) and (4.5) simultaneously
hold, then Y is said to be positively orthant dependent (POD, in short). POD is in particular
fulfilled when variables are associated (see Milgrom and Weber (1982) for definition and
use of the association concept in auction theory).

In terms of the copula C associated to the random vector Y , (4.4) can be written as

C(u) ≥
n∏

j=1

uj, (4.6)

and (4.5) as

C(u) ≥
n∏

j=1

(1− uj), (4.7)

for all u ∈ [0, 1]n, where C denotes the survival copula associated with C.
Hence, PQD and PLOD may be characterized in terms of either cdf’s or copulas, and

thus may be checked, once cdf’s or copulas are empirically known. In Section 6 we develop
inference tools for that purpose.
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Finally let us note that other dependence concepts such as negative quadrant dependence
(NQD) and negative orthant dependences (NOD) may also be defined by reversing the sense
of one, or all inequalities in (4.1) and (4.4) (see Nelsen (1999)). Testing procedures similar
to ours may easily be developed for these cases. We focus hereafter to PQD and PLOD since
we believe that they are the most relevant dependence notions in standard risk management
applications. Nevertheless, the other concepts could also be of interest for other applications
as, for instance, to determine whether a risk tends to hedge another one.

5 Applications of positive dependence notions

In the next lines, we illustrate the practical relevance of the positive dependence notions in
measurement of inequality and poverty as well as life insurance.

5.1 PQD

One of the main interest of PQD is for comparison with random couples with identical
marginals but independent components. This comes from the following result of which we
provide a short proof in appendix. It is a straightforward adaptation of the result of Dhaene
and Goovaerts (1996) established in the convex actuarial setting.

Proposition 5.1. If Y1 and Y2 are PQD, then Y1 + Y2 �cv Y ⊥1 + Y ⊥2 .

This means that when PQD holds, every risk-averter agrees to say that Y1 + Y2 is less
favorable than the corresponding sum under independence. Consequently, most insurance
premiums and risk measures will be larger for X1+X2 than for X⊥1 +X⊥2 (since the principles
used to calculate such quantities are in accordance with the common preferences of risk-
averters). For instance, since the function x 7→ −(x− κ)+, with (·)+ = max{0, ·}, is concave
for any κ ∈ R, the inequality E(Y ⊥1 + Y ⊥2 − κ)+ ≤ E(Y1 + Y2 − κ)+ holds true for all κ.
The quantity E(Y1 + Y2 − κ)+ is referred to as the stop-loss premium relating to Y1 + Y2

in actuarial science (κ is called the deductible). In finance, when appropriately discounted,
it can be regarded as the price of a basket option with Y1 and Y2 as underlying assets
and κ as strike price. The convenient assumption of independence may thus lead to serious
underpricing of insurance premiums or option prices. This will be confirmed by the empirical
results of this paper.

The Lorenz order is defined by means of pointwise comparison of Lorenz curves. The
latter is used in economics to measure the inequality of incomes (see Beach and Davidson
(1983), Dardanoni and Forcina (1999) for related inference). More precisely, let Y be
a non-negative random variable with cdf F . The Lorenz curve L associated with Y is then
defined by

L(p) =
1

EY

∫ p

t=0

F−1(u)du, p ∈ [0, 1].

When Y represents the income of the individuals in some population, L maps p ∈ [0, 1] to
the proportion of the total income of the population which accrues to the poorest 100p % of
the population.
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Consider two non-negative random variables Y1 and Y2 with finite expectations. Then,
Y1 is said to be smaller than Y2 in the Lorenz order, henceforth denoted by Y1 �Lorenz Y2,
when L1(p) ≥ L2(p) for all p ∈ [0, 1]. When Y1 �Lorenz Y2 holds, Y1 does not exhibit more
inequality in the Lorenz sense than does Y2. A standard reference for �Lorenz is Arnold
(1987).

From Theorem 2.1(iv), we see that provided EY1 = EY2, Y1 �Lorenz Y2 ⇔ Y2 �cv Y1.
Hence, if Y1 and Y2 are PQD then Y ⊥1 + Y ⊥2 �Lorenz Y1 + Y2 in virtue of Proposition 5.1.
Let us give an interpretation of this stochastic inequality. Let Y1 (resp. Y2) denote the
husbands’ (resp. wives’) income in some population. Saying that Y1 and Y2 are PQD means
that, as the saying goes, “birds of a feather flock together”: men and women earning large
(resp. small) salaries tend to be associated. Such a population exhibits more inequality in
the Lorenz sense than a population where spouses’ earnings are independent. This type of
inequality measurement based on PQD may also be applied to total household incomes in
two countries instead of husbands’ and wives’ incomes in one country.

Let us now provide an application of PQD in life insurance. Standard actuarial theory of
multiple life insurance traditionally postulates the independence for the remaining lifetimes in
order to evaluate the amount of premium relating to an insurance contract involving multiple
lives. Nevertheless, this hypothesis obviously relies on computational convenience rather
than realism. A fine example of possible dependence among insured persons is certainly a
contract issued to a married couple. In such a case, the actuary has to wonder whether
the independence assumption is reasonable and whether it would not be wiser to build an
appropriate price list incorporating possible effects of a dependence among time-until-death
random variables.

Specifically, let Tx1 (resp. Tx2) be the husband’s (resp. wife’s) lifetime, where x1 (resp.
x2) stands for the age of the husband (resp. wife) at the start of the contract. In light
of clinical studies, the PQD assumption for Tx1 and Tx1 seems reasonable. This has been
empirically investigated using official Belgian statistics by Denuit and Cornet (1999) in
a Markovian parametric setting. Of course, the statistical tests developed in this paper are
useful in that respect, since they avoid the parametric assumption often made in actuarial
studies, namely a Gompertz-Makeham distribution for the remaining lifetimes.

For insurance policies sold to married couples, PQD for Tx1 and Tx2 allows the actuary
to know whether the independence assumption generates implicit safety loading or, on the
contrary, leads to insufficient premium amounts. Indeed, this simply comes from the fact
that the PQD assumption for Tx1 and Tx2 ensures that

min{T⊥x1
, T⊥x2
} �d min{Tx1, Tx2} and max{Tx1, Tx2} �d max{T⊥x1

, T⊥x2
}

which readily follow from (4.1)-(4.2). Now, let us consider annuities (i.e. contractual guar-
antees that promise to provide periodic income over the lifetimes of individuals). The n-year
last-survivor (resp. joint-life) annuity pays $ 1 at the end of the years 1, 2, . . . , n as long as
either spouse survives (resp. both spouses survive). The net present value of the insurer’s
payments are obviously increasing functions of max{Tx1, Tx2} for the last-survivor annuity
and of min{Tx1, Tx2} for the joint-life annuity. The net single premium corresponding to
the last-survivor (resp. joint-life) annuity is denoted a(x1x2);n| (resp. a(x1x2);n|); it is simply

the mathematical expectation of net present value of the insurer’s payments (see Gerber
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(1995) for further details on actuarial notations and concepts). Let us denote as a⊥
(x1x2);n| and

a⊥(x1x2);n| the corresponding premiums computed on the basis of the independence assump-

tion for the remaining lifetimes. In case Tx1 and Tx2 are PQD then a(x1x2);n| ≤ a⊥
(x1x2);n| and

a(x1x2);n| ≥ a⊥(x1x2);n| hold true. Similar conclusions can be obtained for most standard life
insurance contracts making the PQD assumption of paramount importance. This has been
pointed out by Norberg (1989) and further analysed by Denuit and Cornet (1999).

5.2 PLOD

Proposition 5.1 no more holds if PLOD is substituted for PQD. Rather, the following result
holds true.

Proposition 5.2. Provided Y is PLOD, the stochastic inequality
∑n

i=1 Yi �n−icv
∑n

i=1 Y ⊥i
holds.

Comparing Propositions 5.1 and 5.2, we see that �cv is replaced with �n−icv in dimen-
sion n. Besides, as it can be seen from Proposition 5.2, we only get weaker orderings in higher
dimensions. To get �cv as in Proposition 5.1, we need another dependence notion callled
positive cumulative dependence (PCD in short) and defined as follows: the random variables
Y1, Y2, . . . , Yn are PCD if the random couples (

∑j−1
i=1 Yi, Yj) are PQD for j = 2, 3, . . . , n.

The following result is inspired from Denuit, Dhaene and Ribas (2001).

Proposition 5.3. Provided Y is PCD, the stochastic inequality
∑n

i=1 Yi �cv

∑n
i=1 Y ⊥i holds.

From (4.4) and (4.5), it is easy to get the following result that reinforces a stochastic
inequality obtained by Baccelli and Makowski (1989).

Proposition 5.4. Let S be a subset of {1, 2, . . . , n}. Provided Y is POD, the stochastic
inequalities mini∈S Y ⊥i �d mini∈S Yi and maxi∈S Yi �d maxi∈S Y ⊥i both hold.

Let us illustrate the interest of Proposition 5.4 in life insurance. Consider n individuals
aged x1, x2, . . . , xn, respectively, with remaining lifetimes Tx1 , Tx2, . . . , Txn , respectively.
The joint life status (x1, x2, . . . , xn) exists as long as all individual statuses exist. This
status has remaining lifetime:

T(x1,x2,... ,xn) = min {Tx1, Tx2 , . . . , Txn} .

The last survivor status (x1, x2, . . . , xn) exists as long as at least one of the individual status
is alive. Its remaining lifetime is given by

T(x1,x2,... ,xn) = max {Tx1 , Tx2, . . . , Txn} .

Let us now assume that T = (Tx1 , Tx2, . . . , Txn) is POD. Let us also introduce the following
straightforward notation:

T⊥(x1,x2,... ,xn) = min
{
T⊥x1

, T⊥x2
, . . . , T⊥xn

}
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and
T⊥

(x1,x2,... ,xn)
= max

{
T⊥x1

, T⊥x2
, . . . , T⊥xn

}
.

From Proposition 5.4, it follows that

T⊥(x1,x2,... ,xn) �d T(x1,x2,... ,xn) and T(x1,x2,... ,xn) �d T⊥
(x1,x2,... ,xn)

,

which in turn implies that

a⊥
(x1,x2,... ,xn);n| ≤ a(x1,x2,... ,xn);n| and a(x1,x2,... ,xn);n| ≤ a⊥

(x1,x2,... ,xn);n|,

where the superscript “⊥” is used to indicate that the annuity is based on T⊥(x1,x2,... ,xn) or

T⊥
(x1,x2,... ,xn)

. This means that for POD remaining lifetimes, the independence assumption

(while leaving the marginal cdf’s unchanged) leads to an underestimation of the net single
premium (and reserves) of a joint life annuity. The opposite conclusion holds for the last
survivor annuity. Similar conclusions can be drawn for endowment and whole life insurance.

6 Hypotheses testing

Now that the relevant theoretical concepts and applications have been presented, we may
turn our attention to inference. We develop two testing methods. The first one is based on
a specification in terms of distribution functions, while the second one relies on copulas.

6.1 Inference based on distribution functions

As in traditional stochastic dominance tests we use a version of the conditions defining PQD
and PLOD on a predetermined grid, and only consider a fixed number of distinct points, say
d points. In actuarial science, these points will cover the whole range of possible losses. The
direct insurer may desire resorting to a truncated distribution when reinsurance has been
bought, while the reinsurer may want to restrict its attention to the conditional distribution
of excesses over a high threshold. If special attention is paid to the joint occurrence of larges
losses, the grid ought to be refined in these regions.

Let us start with the definition (4.4) of PLOD in terms of cdf’s, and take d points
yi = (yi1, ..., yin)

′ in Rn. We define Di
F = F (yi) −

∏n
j=1 Fj(yij), and DF = (D1

F , ..., Dd
F )′.

The null hypothesis of a test for PLOD may be written as

H0
F = {DF : DF ≥ 0},

and we take as alternative hypothesis:

H1
F = {DF : DF unrestricted }.

To examine these hypotheses we will use the usual distance tests for inequality constraints,
initiated in the multivariate one-sided hypothesis literature for positivity of the mean
(Bartholomew (1959a,b)).

10



We may also consider a test for non-PLOD based on the null hypothesis:

H̄0
F = {DF : Di

F ≤ 0 for some i},

and the alternative hypothesis:

H̄1
F = {DF : Di

F > 0 for all i}.

These hypotheses will be tested through intersection-union tests based on the minimum of
a t-statistic.

Both testing procedures will be built from the empirical counterpart D̂i
F of Di

F obtained
by substituting the empirical distributions for the unknown distributions. The joint and
individual empirical distributions are given by

F̂ (yi) =
1

T

T∑

t=1

n∏

j=1

I[Yjt ≤ yij], i = 1, ..., d, (6.1)

F̂j(yij) =
1

T

T∑

t=1

I[Yjt ≤ yij], i = 1, ..., d, j = 1, ..., n. (6.2)

Let us define yk∧l = (yk1 ∧ yl1, ..., ykn ∧ yln)
′ where a ∧ b = min(a, b). Then the following

proposition gives the asymptotic distribution of D̂F .

Proposition 6.1. The random vector
√

T (D̂F − DF ) converges in distribution to a d-
dimensional normal random variable with mean zero and covariance matrix V F whose ele-
ments are

vF,kl = F (yk∧l)− F (yk)F (yl), k, l = 1, ..., d.

A consistent estimate V̂ F of V F can be obtained by replacing the unknown distribution
F by its empirical counterpart F̂ .

6.2 Inference based on copulas

Let us now proceed with the analoguous quantities when we use copulas, and take d points
ui = (ui1, ..., uin)

′, with uij ∈ (0, 1), i = 1, ..., d, j = 1, . . . , n.
We may then define Di

C = C(ui)−
∏n

j=1 uij, and DC = (D1
C , ..., Dd

C)′. As in the previous
lines we may consider the null hypothesis for a test for PLOD:

H0
C = {DC : DC ≥ 0},

together with the alternative hypothesis:

H1
C = {DC : DC unrestricted },

while the test for non-PLOD can be based on the null hypothesis:

H̄0
C = {DC : Di

C ≤ 0 for some i},

11



with
H̄1
C = {DC : Di

C > 0 for all i},
as alternative hypothesis.

We assume hereafter that all cdf are continuous, and that the cdf Fj of Yjt, is such that
the equation Fj(y) = uij admits a unique solution denoted ζij, i = 1, ..., d, j = 1, ..., n, while
fj(ζij) > 0 at each quantile ζij.

In view of (3.2) we may think of estimating C(ui) = F (ζi) by Ĉ(ui) = F̂ (ζ̂i) where
ζ̂i = (ζ̂i1, ..., ζ̂in)

′ is made of the empirical univariate quantiles ζ̂ij. The main difference when
compared with (6.1) is that the levels are no more given deterministic values, but quantiles
estimated on the basis of sample information, and thus random quantities. As we will see in a
moment this slightly complicates matters, but one often prefers to work with predetermined
probability levels instead of loss levels.

Let us put ζk∧j l = (ζk1, ..., ζkj∧ ζlj, ..., ζkn)
′, uk∧l,j = (ukj∧ulj), and Fj1j2(ζk∧l) = P [Yj1 ≤

(ζkj1 ∧ ζlj1), Yj2 ≤ (ζkj2 ∧ ζlj2)], j1, j2 = 1, ..., n, j1 6= j2. Then the following proposition gives

the asymptotic distribution of D̂C .

Proposition 6.2. The random vector
√

T (D̂C − DC) converges in distribution to a d-
dimensional normal random variable with mean zero and covariance matrix V C whose ele-
ments are

vC,kl = b′kAklbl, k, l = 1, ..., d,

where

bi =

(
1
−∂F (

�
i)

∂x1

f1(ζi1)
...
−∂F (

�
i)

∂xn

fn(ζin)

)′
, i = 1, ..., d,

and

Akl =




F (ζk∧l)− F (ζk)F (ζl) F (ζk∧1l)− F (ζk)ul1 ... F (ζk∧nl)− F (ζk)uln
F (ζl∧1k)− F (ζl)uk1 uk∧l,1 − uk1ul1 ... F1n(ζk∧l)− uk1uln

...
...

. . .
...

F (ζl∧nk)− F (ζl)ukn F1n(ζk∧l)− ul1ukn ... uk∧l,n − uknuln


 .

The asymptotic covariance matrix V C involves derivatives of F and the univariate den-
sities fj. These quantities may be estimated by standard kernel methods (see e.g. Scott

(1992)) in order to deliver a consistent estimate V̂ C of V C . For example we may take a
Gaussian kernel and different bandwidth values hj in each dimension, which leads to:

∂F̂ (ζ̂i)

∂xj
= (Thj)

−1

T∑

t=1

ϕ

(
Yjt − ζ̂ij

hj

)
n∏

l 6=j
Φ

(
Ylt − ζ̂il

hl

)
,

f̂j(ζ̂ij) = (Thj)
−1

T∑

t=1

ϕ

(
Yjt − ζ̂ij

hj

)
,

where ϕ and Φ denote the pdf and cdf of a standard Gaussian variable. In the empirical
section of the paper, we opt for the standard choice (rule of thumb) for the bandwiths hj,
that is 1.05T−1/5 times the estimated standard deviation of Yj.
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6.3 Testing procedure

The distributional results of Propositions 6.1 and 6.2 are the building blocks of the testing
procedures. The first testing procedure considers HF

0 (resp. HC
0 ) against HF

1 (resp. HC
1 )

and makes use of distance tests. It will be relevant when one or several components of D̂K

are found to be negative (in such a case one wants to know whether this invalidates PLOD).

Let D̃K, K = F, C, be solution of the constrained quadratic minimisation problem:

inf� T (D − D̂K)′V̂ K

−1
(D − D̂K) s.t. D ≥ 0, (6.3)

where V̂ K is a consistent estimate of V K , and put

ξ̂K = T (D̃K − D̂K)′V̂ K

−1
(D̃K − D̂K).

Roughly speaking, D̃K is the closest point to D̂K under the null in the distance measured
in the metric of V̂ K, and the test statistic ξ̂K is the distance between D̃K and D̂K . The
idea is to reject HK

0 when this distance becomes too large.
The asymptotic distribution of ξ̂K under the null (see e.g. Gouriéroux, Holly and

Monfort (1982), Kodde and Palm (1986), Wolak (1989a,b)) is such that for any posi-
tive x:

P [ξ̂K ≥ x] =
d∑

i=1

P [χ2
i ≥ x]w(d, d− i, V̂ K),

where the weight w(d, d − i, V̂ K) is the probability that D̃K has exactly d − i positive
elements.

Computation of the solution D̃K can be performed by a numerical optimisation rou-
tine for constrained quadratic programming problems available in most statistical software.
Closed form solution for the weights are available for d ≤ 4 (Kudo (1963)). For higher di-
mensions one usually relies on a simple Monte Carlo technique as advocated in Gouriéroux,
Holly and Monfort (1982) (see also Wolak (1989a)). Indeed it is enough to draw a given
large number of realisations of a multivariate normal with mean zero and covariance matrix
V̂ K. Then use these realisations as D̂K in the above minimisation problem (6.3), compute

D̃K, and count the number of elements of the vector greater than zero. The proportion
of draws such that D̃K has exactly d − i elements greater that zero gives a Monte Carlo
estimate of w(d, d − i, V̂ K). If one wishes to avoid this computational burden, the upper
and lower bound critical values of Kodde and Palm (1986) can be adopted.

Let us now turn our attention to the second testing procedure aimed to test H̄F
0 , resp.

H̄C
0 , against H̄F

1 , resp. H̄C
1 , and relying on the intersection-union principle. It will be used

when all the components of D̂K are found to be positive. The question is then whether this
suffices to ensure PLOD.

Let γ̂iK =
√

TD̂i
K/
√

v̂K,ii, K = F, C. Then under H̄0
K, the limit of P [inf γ̂iK > z1−α] will

be less or equal to α, and exactly equal to α if Di
K = 0 for a given i and Dl

K > 0 for l 6= i,
while its limit is one under H̄1

K. Hence the test consisting of rejecting H̄0
K when inf γ̂iK is

above the (1− α)-quantile z1−α of a standard normal distribution has an upper bound α on

13



the asymptotic size and is consistent (see e.g. Howes (1993), Kaur, Prakasa Rao and
Singh (1994)).

Power issues are extensively studied for stochastic dominance and nondominance tests
in Dardanoni and Forcina (1999) (see also the comments in Davidson and Duclos
(2000)). They carry over to our case. First, approaches based on distance tests exploit the
covariance structure, and are thus expected to achieve better power properties relative to
approaches, such as ones based on t-statistics, that do not account for it. In a set of Monte
Carlo experiments, they find that, indeed, distance tests are worth the extra amount of
computational work. Second, it is possible that nonrejection of the null of dominance, here
PLOD, by distance tests occurs along with the nonrejection of the null of nondominance,
here non-PLOD, by intersection-union tests. This is due to the highly conservative nature of
the latter, and will typically occur in our setting if D̂K is close enough to zero for a number
of coordinates.

7 Empirical illustrations

This section illustrates the implementation of the testing procedures described in the previous
section. We provide two empirical applications to insurance. They concern the detection of
PQD in US and Danish insurance claim data, and its effect on premium valuation.

7.1 US Losses and ALAE’s

Various processes in casualty insurance involve correlated pairs of variables. A prominent
example is the loss and allocated loss adjustment expenses (ALAE, in short) on a single claim.
Here ALAE are type of insurance company expenses that are specifically attributable to the
settlement of individual claims such as lawyers’ fees and claims investigation expenses. The
joint modelling in parametric settings of those two variables has been examined by Frees
and Valdez (1998), and Klugman and Parsa (1999). The data used in these empirical
studies were collected by the US Insurance Services Office, and comprise general liability
claims randomly choosen from late settlement lags. Frees and Valdez (1998) choose the
Pareto distribution to model the margins and select Gumbel and Frank copulas (on the
basis of a graphical procedure suitable for Archimedean copulas). Both models express PQD
by their estimated parameter values. Klugman and Parsa (1999) opt for the Inverse
Paralogistic for the losses and for the Inverse Burr for ALAE’s. They use Frank’s copula.
Again, the estimated value of the dependence parameter entails PQD for losses and ALAE’s.
In the following we rely on a nonparametric approach to assess PQD. This assessment has
many implications in insurance, for example, for the computation of reinsurance premiums
(where the sharing of expenses between the ceding company and the reinsurer has to be
decided on) and for the determination of the expense level for a given loss level (for reserving
an appropriate amount to cover future settlement expenses).

The data consist in T = 1, 466 uncensored observed values of the pair (LOSS,ALAE).
Some summary statistics are gathered in Table 7.1. The estimated values for Pearson’s
r, Kendall’s τ and Spearman’s ρ are 0.3805, 0.3067 and 0.4437, respectively. All of them
are judged significantly positive at 1%. Because some very high values of the variables are
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contained in the data set, we will work on a logarithmic scale. This will not alter the results
of our analysis since (LOSS,ALAE) PQD ⇔ (log(LOSS),log(ALAE)) PQD. Note that the
transformation of the margins results in a new Pearson’s r (linear correlation coefficient) of
0.4313, while Kendall’s and Spearman’s values are left unchanged. These are not affected
by strictly increasing transformation of the variables.

LOSS ALAE
Mean 37,109.58 12,017.47
Std Dev. 92,512.80 26,712.35
Skew. 10.95 10.07
Kurt. 209.62 152.39
Min 10.00 15.00
Max 2,173,595.00 501,863.00
1st Quart. 3,750.00 2,318.25
Median 11,048.50 5,420.50
3rd Quart. 32,000.00 12,292.00

Table 7.1: Summary statistics for variables LOSS and ALAE.

Figure 7.7.1 shows the kernel estimator of the bivariate pdf of the couple
(log(LOSS),log(ALAE)), together with its contour plot. This estimation relies on a product
of Gaussian kernels and bandwidth values selected by the standard rule of thumb (Scott
(1992)). The graphs obviously suggest strong positive dependence between both variables.

In order to test whether PQD holds on the whole observation domain, we take 49 points
coming from the equally spaced grid {6, 7, . . . , 12} × {6, 7, . . . , 12}. This leads to a vector

D̂F with only one negative component −0.0002. We wish to check thanks to the distance
test whether this invalidates PQD or not. The distance between D̃F and D̂F is found to be
6.5× 10−12. Lower bounds on the critical values obtained by Kodde and Palm (1986) are
given in Table 7.2 for different levels α. Note that they do not depend on the grid size d. In
view of these bounds we do not reject the null of PQD at any reasonable confidence level.

α 25% 10% 5% 2.5% 1% 0.5% 0.1%
Lower bound 0.455 1.642 2.706 3.841 5.412 6.635 9.500

Table 7.2: Lower bounds on critical values for the distance test.

Let us now consider a positive dependence, but only in the upper tails. We take the grid
{10, 10.3, 10.6, 11, 11.3, 11.6, 12}×{10, 10.3, 10.6, 11, 11.3, 11.6, 12}. All 49 components of D̂F

are strictly positive, which means that HF
0 is automatically not rejected. The intersection-

union test may then be used to know whether the data exhibit PQD. We get min γ̂ iF = 0.1553

which does not allow us to reject H
F

0 in favor of PQD. This non rejection is due to the

closeness of D̂F to zero for a large number of coordinates. This point has already been
discussed at the end of Section 6.
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Figure 7.7.1: Kernel estimation of the bivariate pdf for (log(LOSS),log(ALAE)).
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Let us now turn to copula based tests. For the ui’s, we take the 81 deciles of the grid
{0.1, 0.2, . . . , 0.9}×{0.1, 0.2, . . . , 0.9}. All components of the corresponding D̂C are positive,
so that HC

0 cannot be rejected. For the intersection-union test, we obtain min γ̂iC = 0.9489

which does not allow us to reject H
C

0 in favor of H
C

1 . If we focus on the tails, taking the
high percentiles in {0.91, 0.92, . . . , 0.99}×{0.91, 0.92, . . . , 0.99}, we get that all components

of D̂C are again positive resulting in the non-rejection of HC
0 . Further, min γ̂iC = 0.6983, so

that H
C

0 is not rejected, either.
It has to be pointed out that the choice of the bandwith has very little impact on the

values of the test statistics. They have been computed with half, twice and three times the
standard choice, and this has only resulted in small variations.

Let us now discuss practical implications of the presence of PQD in the previous data. We
look at the impact on premium valuation in reinsurance treaties. We consider a reinsurance
treaty on a policy with unlimited liability and insurer’s retention R. Assuming a prorata
sharing of expenses, the reinsurer’s payment for a given realization of (LOSS,ALAE) is
described by the function

g(LOSS,ALAE) =

{
0 if LOSS ≤ R,

LOSS−R + LOSS-R
LOSS ALAE if LOSS > R.

The pure premium relating to this reinsurance treaty is

π = E[g(LOSS,ALAE)].

The results in Table 7.3 provide the premiums the reinsurer would have assessed to cover
costs of losses and expenses according to various insurer’s retention. Three situations have
been considered:

1. the first one assumes independence, i.e.

π̂ =
1

T 2

T∑

t=1

T∑

t′=1

g(LOSSt, ALAEt′);

2. the second one takes into account the dependence expressed by the data, i.e.

π̂ =
1

T

T∑

t=1

g(LOSSt, ALAEt);

3. and the last one resorts to the classical comonotonic approximation for (LOSS,ALAE),
i.e.

π̂ =
1

T

T∑

t=1

g
(
LOSSt, F̂

−1
2

(
F̂1(LOSSt)

))
.

We see that substantial mispricing could result from the independence hypothesis, while the
comononotic approximation is too conservative. We see that independence generates lower
premiums than those suggested by the data, which themselves are smaller than those based
on the comonotonic assumption (as they are theoretically bound to be under PQD).
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R 10,000 50,000 100,000 500,000 1,000,000
indep. 33,308.9054 19,108.3604 12,402.7515 1,800.9984 804.9684
dep. 36,765.8687 21,227.8071 13,801.1927 1,875.0277 850.1686
comon. 38,962.6734 23,271.1908 15,407.7782 2,308.0139 985.3801

Table 7.3: Pure premiums for a reinsurance treaty with retention R.

7.2 Danish fire losses

These data comprise losses over one million Danish Krone for the years 1980-1989. Loss
figures are classified as damage to buildings (variable Buildings), and damage to furniture
and personal property (variable Contents), and consist in T = 1, 485 data points. Total losses
made of the sum of both losses have been previously studied in the context of tail analysis by
Embrechts, Kluppelberg and Mikosch (1997), McNeil (1997), and Scaillet (2000).

Table 7.4 gives summary statistic for the variables “Buildings” and “Contents”. The
estimated values for Pearson’s r, Kendall’s τ and Spearman’s ρ are 0.5362, 0.0741 and
0.1385, respectively. All of them are significantly positive. Because variables take sometime
very high values, we again decide to work on a logarithmic scale. After this logarithmic
transformation, the new Pearson’s r is 0.2315.

Buildings Contents
Mean 1,731,012 1,391,979
Std Dev. 2,842,519 3,776,137
Skew. 12.102 9.068
Kurt. 217.587 122.316
Min 25,000 10,000
Max 65,000,000 72,500,000
1st Quart. 800,000 250,000
Median 1,100,000 430,000
3rd Quart. 1,775,000 1,000,000

Table 7.4: Summary statistics for variables Buildings and Contents.

Figure 7.7.2 displays a kernel estimate of the bivariate pdf of the couple
(log(Buildings),log(Contents)), as well as its associated contour plot. Again positive de-
pendence is expected in light of these graphs. The shape of the dependence is however
different than for losses and ALAE’s.

Taking the equally spaced grid {11, 12, . . . , 17} × {11, 12, . . . , 17} over the whole obser-

vation domain we get 15 negative components for D̂F . The distance between D̃F and D̂F

is found to be 0.33. Hence we do not reject the null of PQD at any reasonable confidence
level (see the bounds of Table 7.2).

Let us now examine the presence of positive dependence in the upper tails. We take the
grid {15, 15.3, 15.6, 16, 16.3, 16.6, 17} × {15, 15.3, 15.6, 16, 16.3, 16.6, 17}. All components of

D̂F are positive. We have min γ̂iF = 1.015 in the intersection-union test. This does not allow
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Figure 7.7.2: Kernel estimation of the bivariate pdf for (log(Buildings),log(Contents)).
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us to reject H
F

0 in favor of PQD (this is again due to closeness of D̂F to zero for a large
number of coordinates).

For the copula based inference procedures, we take the decile grid {0.1, 0.2, . . . , 0.9} ×
{0.1, 0.2, . . . , 0.9} as before. The resulting vector D̂C exhibits 24 negative components, with
a minimum of -0.0533. The question is: does this invalidate PQD? The distance between
D̃C and D̂C in the metric induced by V̂ C is 0.28. On the basis of the values in Table 7.2,
this does not imply the rejection of HC

0 in favor of HC
1 . If we concentrate on the right tails,

and use the percentile grid {0.91, 0.92, . . . , 0.99} × {0.91, 0.92, . . . , 0.99}, all components of

D̂C are positive. This implies non-rejection of HC
0 . Further, min γ̂iC = 0.3402, so that H

C

0 is
not rejected, either. As it can be observed from the results in both empirical illustrations,
the intersection-union test is extremely conservative and seems to lead to sparse rejection.

To end this empirical section, we propose to analyse the effect of PQD on stop-loss reinsur-
ance premiums. We examine several deductibles κ, and estimate E(Buildings+Contents −
κ)+. Again, we consider three situations: independence, actual dependence and comono-
tonicity. Stop-loss premiums are displayed in Table 7.5. As expected, they are listed in
ascending order. The premium computed under actual dependence considerably exceeds the
price under independence. This is especially true for large values of κ, reflecting the strong
positive dependence in the tails. Besides the comonotonic assumption delivers too heavy
premiums.

κ (×106) 5 7.5 10 12.5 15 17.5 20
indep. 782,667 556,565 420,241 328,537 265,217 219,057 185,606
dep. 919,680 698,131 550,809 439,888 356,078 297,493 254,729
comon. 1,046,330 802,787 652,342 545,302 461,813 397,181 348,361

Table 7.5: Stop-loss premiums for different deductibles κ.

8 Concluding remarks

In this paper we have analysed simple distributional free inference for positive quadrant
and positive lower orthant dependences. The various testing procedures have proven to
be empirically relevant to the analysis of dependencies among US and Danish insurance
claim data. In particular they suggest the strong PQD nature of these data. Hence they
complement ideally the existing battery of inference tools dedicated to joint risk analysis, and
should help to achieve a better design of insurance contracts in terms of premium valuation.
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APPENDIX

A Proof of Proposition 5.1

Let us first note that
∫ x

−∞
P [Y1 + Y2 ≤ t]dt =

[
tP [Y1 + Y2 ≤ t]

]x
−∞
−
∫ x

−∞
tdP [Y1 + Y2 ≤ t] = E(x− Y1 − Y2)+.

So, we want to show that the inequality E(x− Y1− Y2)+ ≥ E(x− Y ⊥1 − Y ⊥2 )+ holds for any
real constant x. Now, let us express E(x − Y1 − Y2)+ in terms of the joint cdf of Y . Note
that ∫ x

−∞
I[y1 ≤ t, y2 ≤ x− t]dt =

∫ x

−∞
I[y1 ≤ t ≤ x− y2]dt = (x− y1 − y2)+

whence it follows that

E(x− Y1 − Y2)+ =

∫ x

−∞
P [Y1 ≤ t, Y2 ≤ x− t]dt.

Finally,

E(x−Y1−Y2)+−E(x−Y ⊥1 −Y ⊥2 )+ =

∫ x

−∞

{
P [Y1 ≤ t, Y2 ≤ x−t]−P [Y1 ≤ t]P [Y2 ≤ x−t]

}
dt

where the integrand {. . . } is non-negative provided Y1 and Y2 are PQD, which ends the
proof.

B Proof of Proposition 5.2

Let u ∈ Un. Then, invoking integration by parts yields

Eu

(
n∑

i=1

Yi

)
=

∫
. . .

∫

� ∈ � n
u

(
n∑

i=1

yi

)
dP [Y ≤ y]

= u(+∞) + (−1)n
∫

. . .

∫

� ∈ � n
P [Y ≤ y]du(n−1)

(
n∑

i=1

yi

)
.

Provided Y is PLOD, we get

Eu

(
n∑

i=1

Y ⊥i

)
− Eu

(
n∑

i=1

Yi

)

= (−1)n
∫

. . .

∫

� ∈ � n

{
P [Y ⊥ ≤ y]− P [Y ≤ y]

}
du(n−1)

(
n∑

i=1

yi

)
≥ 0,

for any u ∈ Un, whence the announced result follows.
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C Proof of Proposition 5.3

We proceed by recurrence. From Proposition 5.1, we know that provided Y is PCD, Y1 +
Y2 �cv Y ⊥1 + Y ⊥2 . Assume now that Y1 + . . . + Yk �cv Y ⊥1 + . . . + Y ⊥k holds true. Then,
Y1 + . . . + Yk �cv Y ⊥1 + . . . + Y ⊥k is also valid since (Y1 + . . . + Yk, Yk+1) is PQD.

D Proof of Proposition 6.1

From standard properties of the empirical distribution, the first term of the difference D̂i
F =

F̂ (yi) −
∏n

j=1 F̂j(yij) is of order T−1/2, while the second term involves a product of order

T−n/2. This means that only the first term contributes to the asymptotic distribution.
The stated result is then a direct consequence of the central limit theorem and a simple
computation of the asymptotic covariance:

lim
T→∞

T Cov (F̂ (yk), F̂ (yl)) = F (yk1 ∧ yl1, ..., ykn ∧ yln)− F (yk)F (yl).

E Proof of Proposition 6.2

Let M = {I[ · ≤ x1]...I[ · ≤ xn] : xj ∈ R, j = 1, ..., n}. Since M satisfies Pollard’s entropy
condition for some finite constant taken as envelope, the sequence

{
F̂ (x) = T−1

T∑

t=1

n∏

j=1

I[Yjt ≤ xj] : T ≥ 1

}

is stochastically differentiable at ζi with random derivative (d× 1)-vector DF̂ (ζi) (see e.g.
Pollard (1985), Andrews (1989,1999) for definition, use and check of stochastic differen-
tiability). It means that we have the approximation:

F̂ (ζ̂i) = F̂ (ζ̂i) + DF̂ (ζ̄i)
′(ζ̂i − ζi) + op(T

−1/2),

where ζ̄i is a mean value located between ζ̂i and ζi.
Similarly we get the approximations:

F̂j(ζ̂ij) = F̂j(ζij) + DF̂j(ζ̄ij)(ζ̂ij − ζij) + op(T
−1/2).

Combining these approximations and using Fj(ζij) = uij = F̂j(ζ̂ij) leads to

F̂ (ζ̂i) = F̂ (ζi)−DF̂ (ζ̄i)
′diagSi + op(T

−1/2),

where Si is the stack of (F̂j(ζij) − uij)/DF̂j(ζ̄ij), j = 1, ..., n, and diag Si is the diagonal
matrix built from this stack.

Using the convergence in probability of DjF̂ (ζ̄i) to ∂F (ζ i)/∂xj , j = 1, ..., n, and DjF̂j(ζ̄ij)
to fj(ζij), we may deduce the stated result from the central limit theorem and computation
of several covariance terms such as:
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lim
T→∞

T Cov [F̂ (ζk), F̂j(ζlj)] = F (ζk1, ..., ζkj ∧ ζlj, ..., ζkn)− F (ζk)Fj(ζlj),

lim
T→∞

T Cov [F̂j(ζkj), F̂j(ζlj)] = Fj(ζkj ∧ ζlj)− Fj(ζkj)Fj(ζlj),

lim
T→∞

T Cov [F̂j1(ζkj1), F̂j2(ζlj2)] = Fj1j2(ζkj1 ∧ ζlj1, ζkj1 ∧ ζlj2)− Fj1(ζkj1)Fj2(ζlj2).
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