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Abstract
We study the one sector model of growth when a linear produc-

tion technology is combined with adjustment costs and a technology
for capital maintenance. Agents are allowed to under-use the installed
capital and to vary the depreciation rate. This economy decides en-
dogenously how much resources devotes to the accumulation of new
capital and how much to maintenance and repair activities. We …nd
as striking results that the long-run depreciation and capital utiliza-
tion rates are positively related to the population growth rate, and
that both depend negatively on the initial conditions. The long-run
growth rate appears positively correlated with the depreciation rate.
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1 Introduction

In the standard neoclassic growth model, the decision about how much to
save is based on the comparison, in welfare terms, between the costs and
the bene…ts of a higher consumption today rather than tomorrow. Once the
amount of savings has been decided, they are automatically channelled into
investment. Investment thus has an entirely passive role. This model assumes
full installed capital utilization and, moreover, that the depreciation su¤ered
by capital equipment is a constant exogenously determined proportion of
capital stock. These assumptions, however, do not conform to observed facts
as available data shows quite a di¤erent reality. It seems reasonable, from
our point of view, to think that …rms do not always use all of their installed
capital and that they are able to decide and act upon the depreciation rate
that capital stock experiences. This later point is made possible by devoting
resources to the preservation, that is, the repair and maintenance, of capital
stock that has deteriorated either through use in the production process or
simply through the natural process of ageing.

Recently, McGrattan and Schmitz (1999) have highlighted the quantita-
tive relevance of repair and maintenance activities. These authors obtain in
Canada for the period 1961-1993, that up to 6% of gross national product
was devoted to repair and maintenance activities, which is approximately
half the expenditure made on the acquisition of new capital goods. In ad-
dition, Gylfason and Zoega (2001), using data currently published by the
World Bank, have studied the relationship between depreciation and growth.
Among the results they pointed out, we would like to emphasize the following
ones: i) increased population growth accelerates depreciation, ii) increased
e¢ciency increases depreciation, and iii) increased long-run growth also ac-
celerates depreciation. Furthermore, they document an important positive
correlation between the per capita income growth rate and the depreciation
rate over the period 1965-1998 for a sample of 85 countries.

Despite the above cited empirical evidence, the depreciation rate has been
regarded as an exogenous parameter in growth theory which, in the case of
neoclassical models, negatively a¤ects long-run variable levels and short-run
growth rates, and in the case of endogenous growth models, a¤ects also the
long-run rates of growth. In this study, we explore the analytical relationship
between the determinants of both depreciation and growth in the context
of the one sector model of growth when a linear production technology is
combined with adjustment costs and a technology for capital maintenance.
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Agents are allowed to under-use the installed capital as well as to vary the
depreciation rate. So, this economy decides endogenously the amount of re-
sources to be devoted to the accumulation of new capital and also the amount
to be devoted to repair and maintenance activities. This latter decision ap-
pears to be directly related to the matter of the endogeneity of both the
capital utilization rate and the depreciation rate.

The maintenance of capital stock, that allows to break with the strong
hypothesis of a constant depreciation rate even in the absence of obsoles-
cence, has been left aside for many years after the seminal contributions of
the seventies. Nevertheless, various attempts to reintroduce the variability
of the depreciation rate have been made with the implementation of the hy-
pothesis Depreciation-in-Use. That is, the causality line which connects biu-
nivocally high/low rates of capital utilization, usually associated to high/low
levels of economic activity, with higher/lower depreciation rates. This hy-
pothesis has been used in microeconomic studies at the …rm level [Epstein
and Denny (1980), Bischo¤ and Kokkelenberg (1987), Motahar (1992)] as
well as in macroeconomic studies concerning both the neoclassical growth
theory [Rumbos and Auernheimer (1997)] and the real business cycle the-
ory [Burnside and Eichenbaum (1996)]. Although the depreciation rate is
transformed into an endogenous variable, this approach does not seem to
be completely satisfactory because of the residual role assigned to capital
depreciation. More recently, the above hypothesis has been extended to in-
corporate the maintenance activity which allows for the depreciation rate to
be a decision variable analogous to the capital utilization rate. We would like
to mention the e¤ort that has been made at the …rm level by Boucekkine and
Ruiz-Tamarit (2001) as well as at an aggregate level in a neoclassical growth
model by Licandro, Puch and Ruiz-Tamarit (2001) and in a real business
cycle model by Licandro and Puch (2000) and Collard and Kollintzas (2000).

As mentioned above, the basic general equilibrium growth models do not
allow for the separation of the household saving decisions from the invest-
ment decisions of …rms. However, by introducing adjustment costs connected
with gross investment expenditures it is possible to overcome the essentially
passive role of investment in the models1. In this paper, we take the canonical
model of Rebelo (1991) and introduce both an adjustment cost function and a

1The active role of investment has been studied by Abel and Blanchard (1983) in a neo-
classical Ramsey-like model, and also by Barro and Sala-i-Martín (1992) in an endogenous
growth model of the AK type.
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maintenance cost function a¤ecting the objective functional. It is well-known
that in the one-sector models of growth, the linear technology constitutes a
useful referent for easily modeling, directly or asymptotically, the endoge-
nous growth phenomenon. At this respect we would like to know whether
the introduction of those new functions into the model may break the previ-
ous association. In this context, depreciation is no longer a residual variable.
Together with investment and the rate of capital utilization, it becomes one
of the instruments used by economic agents in setting their optimal plans.
In short, we want to elucidate whether incorporating the maintenance and
repair expenditures into a model of aggregate economic activity, the answer
to the question of what happens in the short-run, particularly in terms of the
convergence hypothesis, as well as in the long-run, concerning the determi-
nants of the growth rate and the new endogenous variables, may substantially
change. Our technology assumptions allow us to augment the model in such
a way that well-de…ned investment, depreciation, and utilization functions
may be derived. However, there are no theoretical contributions, that we
know of, aimed at pointing out all these topics. This paper is devoted to this
end and, consequently, it is primarily dedicated to investigating the short-run
dynamics and the balanced growth path. As an anticipation, we may assure
that the big changes will concentrate upon the long-run results.

The article is organized as follows. Section 2 describes the economy and
introduces the assumptions featuring the di¤erent parts of the general equi-
librium model. In section 3, we solve the intertemporal optimization problem
and study the resulting dynamic system which governs the economy. Section
4 is devoted to obtaining and interpreting results, connecting with the empir-
ical literature which parallels the present work. Finally, section 5 summarizes
and highlights the central aspects of the model.

2 The economy

Let us consider an economy populated with many identical in…nitely-lived
individuals, Nt. Population is assumed to grow at a constant and exoge-
nously given rate n ¸ 0. We normalize the initial population to unity and
then we get Nt = ent. Moreover, it is assumed that people facing up to an
in…nite planning horizon will discount the future at a positive constant rate
½ > n. Individual preferences are represented by an instantaneous utility
function U (ct), which is assumed increasing, twice di¤erentiable and strictly
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concave. This function only depends on the per capita consumption ct, and
it is assumed that Inada conditions are satis…ed, limc!0+ U 0 (ct) = +1 and
limc!+1 U 0 (ct) = 0.

On the other hand, there are many identical …rms producing a single
good. For simplicity, we assume that each …rm uses a linear technology2

of the AK type, the capital stock Kt being the only relevant factor. We
interpret capital in a broad sense, so that it includes physical capital as well
as human capital, which usually comes embodied in workers. In this sense,
human capital is considered a rival and excludable factor as physical capital
is. Labour, measured as the number of workers and independently of the
index of human capital that has been considered as perfect substitute for
physical capital, is not necessary for production. Therefore, total current
output Yt is a function of the e¤ectively used capital Ktut, where ut is the
variable proportion of installed capital that …rm decides to use, and the
e¢ciency parameter A represents a constant technological level. Moreover,
this parameter may also be read as the marginal productivity as well as the
average productivity of the e¤ectively used capital. So, given the constant
returns inherent to a linear production function, we write this function in
per capita terms:

yt = Aktut (1)

Because of our interest in long-run endogenous growth paths, we leave
aside the hypothesis of exogenous technological progress. So, it is possible to
identify more easily the consequences of the assumed constant returns to cap-
ital for the rate of growth, the rate of capital utilization and the depreciation
rate.

In this economy, the produced single-good may be allocated to consump-
tion, to the accumulation of new capital or to preserving the inherited capital.
While the present consumption contributes directly to increase welfare, the
other uses of resources are connected with the rise of capital stock which
allows for a greater consumption in the future. In this context, accumulation
of new capital has not only to do with investment purchases but also with
adjustment or installation activities. Moreover, the preservation of old capi-
tal has to do with maintenance and repair activities. Consequently, we have

2Similar results could be derived under a more general production function with con-
stant returns to scale if we introduce, following Romer (1986), the learning-by-investing
device together with the knowledge spillovers assumption.
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to introduce in our framework the two corresponding cost functions.
First, let us assume that adjustment costs, which are internal to the …rm,

are represented by a linearly homogeneous function ©(It; Kt), increasing in
gross investment, It > 0, and decreasing in the total installed capital stock,
Kt > 0. Then ©(It; Kt) = ©(It=Kt; 1)Kt = Á(it)Kt, where it is the rate
of gross investment over capital, and Á(it) is assumed non-negative, twice
di¤erentiable, increasing and strictly convex for it > 0, with limi!0+ Á(i) = 0
and limi!+1 Á

0(i) = +1. Consequently, per capita adjustment costs are
then written as Á(it)kt.

Second, in order to preserve the inherited capital stock, we assume that
period by period it is possible to reduce the depreciation due to the deteri-
oration that arises from equipment ageing and use3, by means of the corre-
sponding maintenance and repair activities. These activities entail speci…c
maintenance costs which are internal to the …rm and, by assumption, will be
represented by a linearly homogeneous function M(Dt; Ktut), decreasing in
total depreciation,Dt > 0, and increasing in e¤ectively used capital. Rede…n-
ing variables we get M(Dt; Ktut) = M(Dt=Kt;Ktut=Kt)Kt = m(±t; ut)Kt,
where ±t > 0 is the endogenous rate of depreciation over capital stock
and ut 2]0; 1[ is the intensity of use of the installed capital stock. The
function m(±t; ut), the average maintenance costs, is assumed non-negative,
twice di¤erentiable, convex and linearly homogeneous. Furthermore, we as-
sume m±(±t; ut) < 0, mu(±t; ut) > 0, m±±(±t; ut) > 0, muu(±t; ut) > 0 and
m±u(±t; ut) < 0 for u 2]0; 1[ and ± > 0 with lim±!1m(±t; ut) = 0 and
limu!0m(±t; ut) = 0. The larger the utilization of capital, the larger the
costs of maintenance, and the larger the maintenance costs, the smaller
the depreciation rate of capital4. The homogeneity assumption implies that
m±±(±t; ut)muu(±t; ut) ¡ m±u(±t; ut)

2 = 0. Consequently, per capita mainte-
nance costs are then written as m(±t; ut)kt.

3Here we are refering strictly to physical wear and tear but, contrary to the standard
procedure, we take this depreciation as an economic phenomenon because …rms are as-
sumed to optimally decide how much resources have to be allocated to maintenance. In
this paper we ignore obsolescence as a source of depreciation. Factors usually causing ob-
solescence are left out of the present analytical framework because of the assumed perfect
malleability of capital.

4An equivalent representation of the problem would correspond to the assumption that
the depreciation rate is a function of both the utilization rate and the rate of maintenance
costs to capital. This alternative view has been adopted by Boucekkine and Ruiz-Tamarit
(2001) in a partial equilibrium context to develop the study of …rm investment and depre-
ciation decisions.
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The aggregate resource constraint is Yt = Ct+It+©(It; Kt)+M (Dt; Ktut)

where
²
Kt= It ¡ ±tKt. In per capita terms the resource constraint appears

determined by the following equalities:

ct + (it + Á(it) +m(±t; ut)) kt = Aktut (2)

²
kt = (it ¡ ±t ¡ n) kt; (3)

where
²
k denotes the time derivative of per capita capital considered in its

broad sense.

3 The optimization problem

In an economy without externalities and no other market failures, such as im-
perfections or incompleteness which could appear in con‡ict with the assump-
tions of any of the two basic welfare theorems, the competitive equilibrium
solution to the intertemporal resources allocation problem will correspond to
the central planner solution. Therefore, in our present setting, every optimal
solution may be decentralized as a competitive equilibrium. The planner’s
optimization problem is to choose at each moment in time the three con-
trols: the rate of capital utilization, the rate of investment and the rate of
depreciation, which solve the following problem.

Max
fut;it;±tg

W =

Z 1

0

u(ct)e
¡(½¡n)tdt (P)

subject to the resource constraints (2) and (3), and given the initial capital
stock, k0.

The assumption of a time-preference rate larger than the population
growth rate together with the properties imposed upon the instantaneous
utility function, ensure that the previous integral is upper bounded5. Then,
the current value Hamiltonian function associated to this problem, after drop-
ping time subscripts, may be written as follow:

Hc = U (Aku¡ [i+ Á (i) +m (±; u)] k) + ¹[i¡ ± ¡ n]k
5Further on it will be shown how this constraint derives from the transversality condi-

tion alone.
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where ¹ is a co-state variable. According to the Maximum Principle6, an
interior optimal solution to problem (P) must satisfy the following set of
…rst-order conditions:

A = mu(±; u) (4)

¹ = U 0(c) [1 + Á0(i)] (5)

¹ = ¡U 0(c) m±(±; u) (6)

the Euler equation:

²
¹= ¡U 0(c) [A u¡ i¡ Á(i)¡m(±; u)] + ¹ [½+ ± ¡ i] (7)

the constraints (2) and (3), as well as the initial condition k0 > 0 and the
corresponding transversality condition:

lim
t!1

e¡(½¡n)t¹tkt = 0 (8)

The multiplier ¹ de…nes the shadow price, measured in units of utility,
of an additional unit of installed capital. The term 1 + Á0(i) is the mar-
ginal opportunity cost of gross investment. Then, equation (5) states that
this marginal cost measured in units of utility must be equal to the shadow
price of capital. On the other hand, ¡m±(±; u) is the marginal saving in
maintenance costs associated to an increase in the depreciation rate. An in-
crease in ± reduces capital stock and, consequently, diminishes maintenance
expenditures. So, equation (6) states that this marginal saving measured in
units of utility must be equal to the shadow price of the lost capital. The
term mu(±; u) is the marginal maintenance cost associated to an increase in
the utilization rate. Equation (4) states that this marginal cost must be
equal to the marginal productivity of such an increase in the utilization rate,
measured by the term A.

Consider now equation (7) and, after some manipulations, solve forward
subject to the transversality condition (8) which avoids explosive solutions.
In doing so we have to use two fundamental relationships:

6Under the more restrictive assumption that the Hamiltonian function is strictly con-
cave with respect to the control variables, the solution functions are continuous and the
…rst order conditions become necessary and su¢cient for a maximum.
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¡m±±(±; u)

m±u(±; u)
= ¡m±u(±; u)

muu(±; u)
=
u

±
(9)

1 + Á0 (i) =
¹

U 0(c)
= ¡m± (±; u) (10)

the …rst one coming from the homogeneity assumption and the second one
arising from equations (5) and (6). As a result from that, the price ¹ must
be equal to the present discounted value of the marginal products:

¹t =

Z 1

t

U 0(cs)[Aus + isÁ
0(is)¡ Á(is)¡m(±s; us)]e¡

R s
t [½+±z ]¢dzds (11)

In this expression, the integrand represents the total marginal product
of installed capital measured in units of utility, and the discount term takes
into account the fact that the depreciation rate is variable.

On the other hand, the …rst order conditions (4)-(6), plus the resource
constraint (2) and the production function (1) implicitly de…ne the optimal
functions relating each control variable to the state and co-state variables.
These control functions may be represented as u = u(k; ¹;£), i = i(k; ¹;£),
± = ±(k; ¹;£), c = c(k; ¹;£) and y = y(k; ¹;£), where £ represents a vector
of structural parameters. In appendix I we widely analyze all these functions
and show, among other things, that investment rate takes a constant value
depending only on the structural parameters of the model. Consequently, we
study now the dynamic system which describes the evolution of state and
costate variables. First, we introduce the control functions and transform
the accumulation equation (3) into the following di¤erential equation:

²
k= [i¡ ± (k; ¹)¡ n] k (12)

Then, making use of the relationship (10) as well as of the linear ho-
mogeneity assumption on the maintenance cost function (9) and the …rst
order conditions (4)-(6), which allow for further simpli…cations as shown in
appendix II, the Euler equation (7) may be written in the following way:

²
¹= [¡H (i) + ½]¹ (13)

In this equation, the constant coe¢cient on the right hand side involves
the use of the function H(i) = i Á0(i)¡Á(i)

1+Á0(i) , which by the assumed convexity
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on Á(i) gives positive values for any i > 0. This function is a monotonous
increasing function given that H(0) = 0 and H 0(i) = i Á00(i)+Á(i) Á00(i)

[1+Á0(i)]2 > 0.
We have previously shown the constancy of the investment rate. So, the

function H(i) gives a constant value and hence a constant coe¢cient for
the di¤erential equation (13). Then, the system (12)-(13) have a structure
very similar to the one characterizing the standard AK models. However,
we cannot go forward as is usually done because of two reasons. First,
we cannot translate the above system from the state-costate space to the
state-control space because our …rst order conditions do not allow for an
immediate substitution as in the basic model, where there is only one con-
trol variable and the transformed dynamic system becomes linear. Second,
the presence of the depreciation rate control function in equation (12) is so
general that we cannot identify any partial and separated linear form with
respect to the state variable. Consequently, if we want to apply an ana-
lytical resolution method for this non-linear system, we have to proceed by
analyzing the dynamic system under the particular forms as were assumed
in appendix I for each structural function in the model. Thus, given that

H(i) =
h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2
=2b"
d
1
"

¡
A
1+"

¢ 1+"
" , we can write our dynamic system

as:

²
k=

2
64

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

¡ n

3
75 k ¡

"
"

d
1
"

µ
A

1 + "

¶ 1+"
"

# 1
©
¡1

¹
¡1
© (14)

²
¹= [¡

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

+ ½] ¹ (15)

This system is non-linear and it does not admit a linearization because
of the lack of a well de…ned steady state. However, its structure allows
for a complete closed solution working sequentially with the equations and
the boundary conditions. Instead of that, we will attach our analysis to
the procedure explained in Ruiz-Tamarit and Ventura-Marco (2000), where
the authors study and solve in closed form a general non-linear modi…ed
Hamiltonian dynamic system for which the previous one may be seen as a
particular case.
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4 Results

In appendix III the reader may …nd an sketch of the method applied to solve
the particular version of the system which drives our economic system. The
unique non-explosive particular solution trajectories for the variables of the
system are:

k(t;£) = k0 exp

8
><
>:
1

©

2
64

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

¡ ½

3
75 t

9
>=
>;

(16)

¹ (t;£) = ¹ (0) exp

8
><
>:

2
64½¡

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

3
75 t

9
>=
>;

(17)

with k0 known and ¹ (0) given by the expression:

¹ (0) =

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i1¡©

2
4¡
1¡ 1

©

¢
·

"

d
1
"
( A
1+")

1+"
" ¡1

¸2

2b"

d
1
"
( A
1+")

1+"
"

+ ½
©

¡ n

3
5
©

1

k©0
(18)

Then, using the results (16) and (17) we can compute the term ¹
¡1
© k¡1

which is needed in order to determine the complete particular trajectories for
the control variables. We …nd ¹

¡1
© k¡1 = ¹(0)

k0
, and substituting in equations

(I.1)-(I.3) from appendix I we get the following trajectories for i(t;£), ±(t;£)
and u(t;£):

i(£) =
1

b

"
"

d
1
"

µ
A

1 + "

¶ 1+"
"

¡ 1
#

(19)

±(£) =

1
2b

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i2
¡ 1

2b

"

d
1
"

¡
A
1+"

¢ 1+"
"

+

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i 1
©
¡©

k1+©0

2
4¡
1¡ 1

©

¢
·

"

d
1
"
( A
1+")

1+"
" ¡1

¸2

2b"

d
1
"
( A
1+")

1+"
"

+ ½
©

¡ n

3
5
©

(20)
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u(£) =

1
2b

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i2
¡ 1

2b

"
¡
A
1+"

¢ +

¡
A
1+"

¢ 1
"

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i 1
©
¡©

k1+©0 d
1
"

2
4¡
1¡ 1

©

¢
·

"

d
1
"
( A
1+")

1+"
" ¡1

¸2

2b"

d
1
"
( A
1+")

1+"
"

+ ½
©

¡ n

3
5
©

(21)
First, we can see that the investment rate, the depreciation rate as well

as the capital utilization rate remain constant along the particular solution
trajectory which, as we will see below, does correspond to the unique bal-
anced growth path arising from the dynamic model. The result concerning
the investment rate could have been anticipated because of the previously
proved independence of the associated control function with respect to the
endogenous variables. However, in the case of the depreciation and utiliza-
tion rates, the aforesaid result is due to the compensating e¤ects exerted by
capital stock and its shadow price on each of the variables along the solution
trajectory.

The previous functions, in turn, show several interesting parameter de-
pendences that we would like to remark on. First of all, the three variables
react together in the same direction face to parameter changes. However, we
can particularize some of those e¤ects in the following way: i) the greater the
productivity of e¤ectively used capital or e¢ciency parameter A, the higher
the investment rate as well as the depreciation and capital utilization rates;
ii) the bigger the rate of population growth, the greater the depreciation and
capital utilization rates, but the same investment rate; iii) the higher the
weight of installation and maintenance costs in gross product, represented
by parameters b and d respectively, the lower the investment rate as well
as the depreciation and capital utilization rates. Moreover, leaving o¤ the
technological parameters and focussing on preferences, our results show that
both the capital utilization rate and the depreciation rate are negatively
related with the level of impatience characterizing economic agents. That
is, iv) the lower the intertemporal elasticity of substitution in consumption
¾ = 1

©
, and/or the greater the rate of discount ½, the lower the depreciation

rate as well as the capital utilization rate, even though the investment rate
appears as independent of such preference parameters7. Finally, as an ad-
ditional and unusual feature arising from this model, we have to point out

7Among the signs re‡ecting the in‡uence of every parameter on the control variables,
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that v) whereas investment rate is independent of initial conditions, both the
depreciation rate and the capital utilization rate show a negative dependence
on the initial capital stock value, k0. All these results are in strong contradic-
tion to the ones appearing throughout the most common endogenous growth
models where the depreciation rate is assumed constant and capital stock is
used at full capacity. However, most of them are consistent with empirical
facts as recently have been reported by Gylfason and Zoega (2001).

On the other hand, from the de…nitions in (1) and (2) and the above
control trajectories, we can also derive the particular solution trajectories for
per capita consumption and output per capita.

y(t;£) = A u(£) k0 exp

8
><
>:
1

©

2
64

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

¡ ½

3
75 t

9
>=
>;

(22)

c(t;£) = ¡(£) k0 exp

8
><
>:
1

©

2
64

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

¡ ½

3
75 t

9
>=
>;

(23)

Here the expression ¡(£) = A u(£)¡ i(£)¡Á(i(£))¡m(±(£); u(£)) > 0
is time independent and represents the ratio c(t;£)

k(t;£)
which will be constant

along the non-explosive solution trajectory. Moreover, given the previous
results it is easy to derive the saving rate corresponding to this model. By
de…nition we have s(t;£) = 1¡ c(t;£)

y(t;£)
. Consequently, we get the value:

s(£) =
A u(£)¡ ¡(£)

A u(£)
=
i(£) + Á(i(£)) +m(±(£); u(£))

A u(£)
(24)

Household saving just …nances the two kind of expenditures related with
the capital accumulation process: gross investment expenditures, including
adjustment costs, and capital maintenance expenditures. This variable, by
construction, is also time independent. So, as usual in AK models, associated
to a constant investment rate we get a constant saving rate and a constant

those corresponding to the impact of A, b and d on the depreciation and utilization rates
could not be analytically proved when © > 1. Nevertheless, for such a case we have
numerically checked the signs of the partial derivatives for a wide range of parameter
values and alternative calibrations.
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consumption-capital ratio. However, given the endogeneity of both the depre-
ciation rate and the utilization rate, their dependence on parameters become
more rich and complex in this model than in others.

The previous solution trajectories allow us to identify a balanced growth
path. Thus, given the complete closed solution for each of the involved
variables, it is easy to conclude about the growth rates in our economy.

°i = °± = °u = 0 (25)

°k = °y = °c = ° =
1

©
[H(i)¡ ½] = 1

©

2
64

h
"

d
1
"

¡
A
1+"

¢ 1+"
" ¡ 1

i2

2b"

d
1
"

¡
A
1+"

¢ 1+"
"

¡ ½

3
75 (26)

The latter constant growth rate depends on the structural parameters
in the following way: i) the greater the e¢ciency level for e¤ectively used
capital A, the higher the growth rate; ii) the higher the weight of installation
and maintenance costs in gross product, represented by parameters b and
d respectively, the lower the rate of growth. But also, iii) the greater the
patience of economic agents, that is, the higher the intertemporal elasticity
of substitution in consumption ¾ = 1

©
and/or the lower the rate of discount

½, the higher the rate of growth. Finally, we …nd that: iv) the economy’s
growth rate does not depend on the population growth rate.

Looking at the relationship between the economy’s growth rate and the
set of macroeconomic variables including the investment rate, the depreci-
ation rate and the rate of capital utilization, we identify a strong positive
correlation between the …rst one and each of the controls. According to the
traditional AK model, the growth rate appears positively related to invest-
ment but negatively to the depreciation rate. In our general endogenous
growth model, the growth rate appears positively related to the investment
rate but also to the depreciation and capital utilization rates. This result is
in accordance to the observed facts concerning growth and depreciation, as
pointed out in the introduction.

One of the main features, inherited from standard AK models, is that
there is no transitional dynamics. Variables like k, y and c, starting from
k0, y(0) = Au(£)k0 and c(0) = ¡(£)k0 respectively, conform a balanced
growth path for which (26) always hold. The remaining variables i, ± and
u satisfy (25). The growth rate associated with non-stationary variables
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does not depend on the initial capital stock k0. The per capita income
growth rate is not related to the initial income level nor to any other per
capita income level either. The absence of convergence may be illustrated by
taking two equally parameterized economies except for their initial capital
stocks. In such a case, any initial per capita income di¤erence among the
two economies will always be increased over time, never reduced. Neverthe-
less, things are not as simple as they might seem at …rst sight. Considering
these two economies with di¤erent levels of capitalization, the poorest one
will experience higher depreciation and capital utilization rates though the
same investment rate. Consequently, we cannot decide which economy will
initially produce a greater per capita production and which one will initially
consume more. Because of the direct in‡uence of the utilization rate, a lower
capital being used more intensively may produce more output than other-
wise. It could be perfectly possible that the economy with a lower capital
stock may produce and consume more than the one with the highest capital
stock. Moreover, because of the compensating in‡uence of u and ± on the
maintenance costs, the greater per capita consumption will usually appear
associated with the greater per capita production, and vice versa. In any
case, the absence of convergence will have as consequence the ampli…cation
of any initial di¤erence.

Finally, this model accounts for most of the growth facts that were pointed
out by Parente and Prescott (1993). To see that, we de…ne the relative per
capita income levels for two equally parameterized countries that only di¤er
in their capital endowments ya=yb = ka0 u(£; k

a
0)=k

b
0 u(£; k

b
0), and then ob-

serve that this ratio remains constant over time and far from unity because
of the di¤erence between initial per capita capital stocks. Consequently,
our model may explain the great disparity between rich and poor countries,
as well as the constancy of that disparity over time8. On the other hand,
associated to the nature of our theoretical results, we notice that all coun-
tries become somewhat richer, the poorest too. Even so, we must recognize
that our model cannot explain the demonstrated ability of some countries
to change their positions within the per capita income distribution. Putting
this in terms of the absolute levels of income per capita, we can say that
countries adopt di¤erent growth patterns: some grow steadily, some do not

8However, in a recent work, Easterly and Levine (2000) …nd in data a massive diver-
gence in the absolute levels of income per capita over the last thirty years, caused because
the rich grew faster than the poor.
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grow for long periods and then suddenly start to grow at high rates, and
others that were growing steadily stop for long periods. In short, we cannot
explain miracles and disasters.

5 Conclusions

As usually occurs in standard AK models, in our model there is no transi-
tional dynamics. Variables like k, y and c conform a unique balanced growth
path from the beginning, while the remaining variables i, ± and u stand at
their initial constant values forever. In addition, associated to the constant
investment rate we get a constant saving rate and a constant consumption-
capital ratio. This is so because the adjustment and maintenance cost func-
tions included here are assumed linear with respect to k. The absence of
convergence implies that the per capita income growth rate is not related
to the initial income level nor to any other per capita income level. Even
though, some parameter dependences have to be pointed out. We …nd that:
i) the bigger the rate of population growth, the greater the depreciation and
capital utilization rates, although this parameter does not a¤ect the invest-
ment rate nor the rate of growth; ii) there is a negative dependence of both
the depreciation rate and the capital utilization rate on initial conditions; iii)
the higher the weight of installation and maintenance costs in gross prod-
uct, the lower the investment, the utilization and the depreciation rates, as
well as the rate of growth; iv) the greater the e¢ciency level for e¤ectively
used capital, the higher the investment, the utilization and the depreciation
rates, as well as the general growth rate; and v) the greater the patience level
of economic agents, the higher the rate of growth but also the greater the
depreciation and utilization rates.

Notwithstanding, looking at the relationship between the economy’s
growth rate and the set of macroeconomic variables including the investment
rate, the depreciation rate and the rate of capital utilization, we identify
a strong positive correlation between the …rst one and each of the latter.
According to the traditional AK model, the growth rate appears positively
related to investment but negatively to the depreciation rate. The capital
stock is assumed to be fully used. In our model, the growth rate appears pos-
itively related to the investment rate but also to the depreciation and capital
utilization rates. This result is in accordance to the observed facts concerning
growth and depreciation but contradicts previous theoretical results.
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Furthermore, because of the direct in‡uence of the utilization rate, a lower
capital being used more intensively may produce more output than otherwise.
It could be perfectly possible that one economy with a lower capital stock
produces and consumes more than other with a higher capital stock. How-
ever, a greater per capita consumption will usually appear associated with a
greater per capita production. In any case, the absence of convergence will
have as consequence the ampli…cation of any initial di¤erence. Hence, our
model may explain the great disparity between rich and poor countries as
well as the constancy of that disparity over time, but we cannot explain the
experiences of growth which are known as miracles.

6 Appendix I

From the …rst order conditions (4)-(6), the resource constraint (2) and the
production function (1) we de…ne implicitly the following control functions:
u = u(k; ¹;£), i = i(k; ¹;£), ± = ±(k; ¹;£), c = c(k; ¹;£) and y =
y(k; ¹;£), where £ represents a vector including the structural parameters
of the model. By total di¤erentiation, the implicit function theorem allow us
to identify the following partial e¤ects:

uk =
¡m±u

muu

Au¡i¡Á¡m
m± k

< 0 ; u¹ =
¡m±u

muu

1
(m±)

2k U 00
< 0

ik = 0 ; i¹ = 0

±k =
Au¡i¡Á¡m

m± k
< 0 ; ±¹ =

1
(m±)

2k U 00
< 0

ck = 0 ; c¹ =
¡1

m± U 00
< 0

yk =
A m±u(i+Á)
m± muu

> 0 ; y¹ =
¡A m±u

muu(m±)
2U 00

< 0

These results show some interesting features of the model. First, assum-
ing that capital stock and its shadow price evolve in opposite directions, it
is very di¢cult to decide at …rst sight the evolution of the variables capi-
tal utilization rate and depreciation rate. Second, the investment rate over
capital stock remains constant for the given parameter values, implying that
gross investment share will move parallel to the capital-output ratio. Finally,
per capita consumption evolves inversely proportional to the movement in
the shadow price of capital stock, as well as per capita production which, in
addition, moves directly proportional to capital stock.

17



Now, we are going to illustrate the previous statements concerning the
control functions by specifying particular forms for each structural function
implied in our model. We will consider a CRRA instantaneous utility func-
tion U (c) = c1¡©¡1

1¡© , where © is a non negative constant representing the
inverse of intertemporal elasticity of substitution. Per capita production is
obtained from a linear technology depending on the e¤ectively used capital
stock according to equation (1). Adjustment costs will be represented by a
quadratic function as Á (i) = bi2

2
, where b is a positive constant. Maintenance

costs are assumed to be represented by the function m (±; u) = d±¡"u1+",
where " > 0 approaches the elasticity of such average maintenance cost with
respect to the depreciation rate and the utilization rate, and d is a positive
constant. These particular functions satisfy all the assumed general proper-
ties.

Solving the optimization problem and focussing on the control functions
for these particular forms, we get the following expressions for investment
rate, depreciation rate, and utilization rate:

i(£) =
1

b

"
"

d
1
"

µ
A

1 + "

¶ 1+"
"

¡ 1
#

(I.1)

±(k; ¹;£) =

1
2b

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i2
¡ 1

2b

"

d
1
"

¡
A
1+"

¢ 1+"
"

+
¹
¡1
© k¡1

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i1¡ 1
©

(I.2)

u(k; ¹;£) =

1
2b

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i2
¡ 1

2b

"
¡
A
1+"

¢ +

¡
A
1+"

¢ 1
" ¹

¡1
© k¡1

d
1
"

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i1¡ 1
©

(I.3)

As previously set down, we can see that the investment rate only depends
on structural parameters and so, it takes a constant value determined by such
parameters as in equation (I.1). Equations (I.2) and (I.3) show the particular
expressions for ± and u, and it is easy to see that both depend negatively on
the state and costate variables. Moreover, these two variables are linearly and
positively related to each other. The particular expressions for consumption
and output, in turn, may be immediately derived substituting the previous
control functions in the resources constraint (2) and the production function
(1). Therefore, we could also check for the sign of their partial derivatives.
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7 Appendix II

Consider the …rst order conditions (4)-(6) and the Euler equation (7) written
as follows:

²
¹=

¹ f¡f 0(k u) u+ Á (i)¡ i Á0 (i) +m (±; u) + [1 + Á0 (i)] (± + ½)g
[1 + Á0 (i)]

(II.1)

where f 0(k u) = A because of the AK nature of our model. Now, de…ne
the function H(i) = i Á0(i)¡Á(i)

1+Á0(i) , which by the assumed convexity on Á(i) gives
positive values for any i > 0. This function is a monotonous increasing
function given that H(0) = 0 and H 0(i) = i Á00(i)+Á(i) Á00(i)

[1+Á0(i)]2 > 0. Moreover, we

know that H(i)¡ i = ¡ i+Á(i)
1+Á0(i) < 0 for any i > 0. Then, equation (II.1) may

be rewritten as:

²
¹= ¹

·
½+ ± +

m(±; u)

1 + Á0(i)
¡H(i)¡ f 0(k u) u

1 + Á0(i)

¸
(II.2)

In this model, by analogy to the standard models, the term f 0(ku)u
1+Á0(i)+H(i)¡

m(±;u)
1+Á0(i) is the total gross marginal product of capital. So, we can de…ne the
total net marginal product of capital as:

r =
f 0(k u) u

1 + Á0(i)
+H(i)¡ m(±; u)

1 + Á0(i)
¡ ± (II.3)

Given our linear homogeneity assumption on the maintenance cost func-
tion, the above expression reduces to r = H(i). Consequently, the Euler
equation may be reduced to:

²
¹= ¡¹ [r ¡ ½] = ¹ [¡H (i) + ½] (II.4)

which corresponds to equation (13) in the main text. Moreover, given the
de…nition of H (i), we know that it express in a summarized way the whole
marginal e¤ects of investment on the Hamiltonian function, that is to say, the
full marginal productivity of investment. Implicitly, this function includes
both the higher investment expenditures and the lower adjustment costs due
to an increase in capital stock.

An alternative but complementary view of that function may be obtained
from the following reorganization of terms:
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H(i) = U 0(c)
i

¹
[Á0(i)¡ Á(i)

i
] (II.5)

where the term on the right hand side shows the di¤erence between marginal
and average adjustment cost, multiplied by the investment rate and divided
by the shadow price of capital. This value appears converted into utility
units when we multiply by the marginal utility factor.

8 Appendix III

The modi…ed Hamiltonian dynamic system analyzed by Ruiz-Tamarit and
Ventura-Marco (2000) in search of a closed form solution, and for which they
study existence, uniqueness vs. multiplicity, positivity, transitional dynamics
and long-run growth, takes the form:

²
k (t) = ¢k k(t)¡§k k(t)a11¹(t)a22 (III.1)

²
¹ (t) = ¢¹ ¹(t) + §¹ k(t)

a11¡1¹(t)1+a22 (III.2)

k(t0) = k0 (III.3)

lim
t!1

¹(t) k(t) exp f¡ (½¡ n) (t¡ t0)g = 0 (III.4)

The elements¢k > 0, ¢¹ > ¡¢k, §k > 0, §¹ > 0, a11 T 0, a22 < 0, k0, t0
and ½ are constant parameters, while k, ¹ and t are the variables. Moreover,
the next general parameter constraints are assumed: §k > §¹, 1 ¡ a11 > 0
and 1 + a22 T 0.

It is easy to show that the above dynamic system simpli…es to (14)-(15)
under the following speci…c parameter values: ¢k = H(i)¡n, ¢¹ = ½¡H(i),
§k =

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i 1
©
¡1
> 0, §¹ = 0, a11 = 0 and a22 = ¡1

©
< 0. From these

values we can see that ¢k + ¢¹ = ½ ¡ n > 0, where the right hand term
represents the e¤ective intertemporal rate of discount. At the same time, we
have ¢k > ½ ¡ n provided that H(i) ¡ ½ > 0 or, according to what we saw
in appendix II, as long as the net marginal product of capital r be always
higher than the rate of time preference ½. This also implies ¢¹ < 0 as well
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as ¢k > 0. Under these conditions the authors apply a method that works
in three steps. First, de…ne the instrumental variable X(t) = k(t)¹(t)

1
© . By

totally di¤erentiating and substituting from equations (III.1) and (III.2) we
get:

²
X (t) = ax X(t)¡ bx (III.5)

This is an autonomous non-homogeneous linear di¤erential equation with
constant coe¢cients ax = ¢k+

¢¹
©
=

¡
1¡ 1

©

¢
H(i)+ ½

©
¡n ? 0 and bx = §k >

0. Given the initial condition k0 and a certain, for the moment unknown,
initial value ¹ (t0) which allow us to determine the initial condition X(t0) =
k0¹(t0)

1
© , any particular solution to (III.5) must be of the form:

X(t) =
bx
ax
+

·
X(t0)¡

bx
ax

¸
exp fax (t¡ t0)g (III.6)

Once we know the …xed value of every parameter and the initial ones of
the variables, the above expression determines the value for the instrumental
variable X(t) at any moment in time. In a second step we transform the ini-
tial non-linear system and get the following two separated, non-autonomous
but homogeneous, linear di¤erential equations for the primary variables:

²
k (t) =

µ
¢k ¡ §k

X(t)

¶
k(t) (III.7)

²
¹ (t) = ¢¹ ¹(t) (III.8)

The expressions for the particular solutions are respectively:

k(t) = k0 exp

8
>><
>>:

Z t

t0

0
BB@H(i)¡ n¡

h
"

d
1
"

¡
A
1+"

¢ 1+"
"

i 1
©
¡1

X(s)

1
CCA ds

9
>>=
>>;

(III.9)

¹(t) = ¹(t0) exp f¡ (H(i)¡ ½) (t¡ t0)g (III.10)

The third step consists in determining the initial value of the costate
variable ¹(t), for which trajectories are non-explosive. Given k0 known, this
may be done by determining X(t0). All what is needed in this step can be
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deduced from the transversality condition. This necessary condition, for the
signs of the parameters that we are considering, may be simpli…ed to:

lim
t!1

¯̄
¯̄bx exp f¡ax(t¡ t0)g

ax X(t0)
+ 1¡ bx

ax X(t0)

¯̄
¯̄ = 0 (III.11)

In particular, given that bx > 0, this condition holds if, and only if, both

ax =
¡
1¡ 1

©

¢
H(i) + ½

©
¡ n > 0 and X(t0) = bx

ax
=

·
"

d
1
"
( A
1+")

1+"
"

¸ 1
©¡1

(1¡ 1
©)H(i)+

½
©
¡n . Com-

ing back to (III.6) we …nd that the instrumental variable X(t) will remain
constant and equal to its initial stationary value X(t0), 8t ¸ t0. Conse-
quently, the non-explosive solution trajectories for the variables involved in
the modi…ed Hamiltonian dynamic system (III.1)-(III.4), are unique and may
be written as in equations (16), (17) and (18). Finally, we would like to point
out that the constraint §¹

¡¢¹ = 0 <
§k
¢k
= §k

H(i)¡n <
bx
ax
= §k

(1¡ 1
©)H(i)+

½
©
¡n also

holds, therefore Proposition 4 from Ruiz-Tamarit and Ventura-Marco (2000)
applies here, and we conclude that H(i) > ½.
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