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Abstract

In this paper we have analyzed existence, uniqueness and stability of
a steady-state equilibrium in an overlapping generations model with mo-
nopolistic competition and free entry and exit of ¯rms. We establish a
strengthened Inada condition that is su±cient to exclude global contrac-
tion for any given set of well-behaved preferences. We also establish su±-
cient conditions for a non-trivial steady-state equilibrium to exist, and also
su±cient conditions for its uniqueness and global stability. We show that
the size of mark-up over marginal cost and the particular mix of ¯xed costs
play a crucial role in these conditions and consequently on the dynamic
behavior of the economy.
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1 Introduction

In this work we analyze existence, uniqueness and stability of stationary equilib-
rium in an overlapping generation model µa la Diamond (1965) with productive
capital. Galor and Ryder (1989) analyzed this model, but here we drop the as-
sumption of perfect competition assuming monopolistic competition, implying
that ¯rms set a mark-up of price over their marginal costs. Dixit and Stiglizt's
(1997) monopolistic competition model is today widely used in macroeconomics.
For this reason we have chosen Dixit Stigliz's framework to introduce imperfect
competition in an overlapping generation model. We also assume increasing re-
turns to scale in production due to ¯xed costs and that the number of ¯rms is
determined by a free entry condition so that pro¯ts are zero. The free entry as-
sumption has been already examined in Chamberlin (1933) who argued that ¯rms
will go in or go out of the market until pro¯ts become zero. We have considered
three kinds of ¯xed costs with the intention of being comprehensive: ¯xed costs
on output, capital and labor. We show that the equilibrium properties depend on
the particular combination of these three kinds of ¯xed costs and the size of the
mark-up. It should be noted that Galor and Ryder's model constitutes a limit
case of our model: when the mark-up tends to one and all ¯xed costs are zero.

Several empirical works support the assumptions of our model. Hall (1986, 1988,
1990) and Morrison (1993) have reported both signi¯cant increasing returns and
mark-ups of price over marginal costs in various U. S. industries. They also ¯nd
that the economic pro¯ts are roughly zero on average, suggesting an industrial
structure along the classic lines of monopolistic competition.1

The paper is organized as follows. In the next section, we describe our model.
In Section 3, equilibrium is characterized. In section 4, possibility of global con-
traction is proved. In Section 5, a strengthen Inada condition avoiding global
contraction is established. In Section 6, we establish su±cient conditions for
nonexistence of non-trivial steady state equilibrium. In Section 7, su±cient con-
ditions for existence, uniqueness and stability of a non-trivial steady state equi-
librium are given. Finally, Section 8 concludes.

2 The Economy

It is a two-period OLG economy, in the line of Diamond (1965), with monopolistic
competition. The speci¯cation of the monopolistic competitive follows Woodford
and Rotemberg (1995). Generation t is a continuum of individuals in the interval
[0; Nt], whereNt grows at the rate n. There is a unique ¯nal good, which serves as

1Rotemberg and Woodford (1995) discuss the empirical evidence on the size of mark-up of
price over marginal cost and increasing returns.
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both consumption and investment goods. It is produced by a representative ¯nal
¯rm and sold in a competitive market. Its production technology has constant
returns to scale and it is de¯ned over a continuum of intermediate goods in the
interval [0; It]. Each intermediate good is produced by a monopolistic competitive
¯rm. There is free entry and exit of intermediate goods ¯rms, implying that It
is endogenous. There are increasing returns in the production of intermediate
goods. The production factors of intermediate goods ¯rms are capital and labor.

The production function of the ¯nal good ¯rm is:

Yt = Gt(Qt),

where Qt is a function [0; It] ! R+ specifying the amount Yj;t ¸ 0 of each
type j 2 [0; It] of intermediate good purchased. We assume that the production
function, Gt, is an increasing, concave, symmetric, and homogeneous of degree
one function of the measure Qt.

2 The production function varies over time, as
the set of inputs changes. We also assume:

Gt (Mt) = It 8t; (1)

Where Mt is the uniform measure. Assumption (1) is a normalization of Gt in
each period.

The producer of each intermediate good set a price for it. Let be Pt a function
[0; It] ! R+ specifying the price pj;t of each type j 2 [0; It] of input purchased.
The ¯rm will distribute its purchase over the inputs so as to maximize its pro¯ts,
Qt 2argmaxfGt (Qt)¡ PtQtg. Because Gt is homogeneous of degree one, it must
be satis¯ed that Qt = YtDt (Pt), where Dt is a homogeneous of degree zero func-
tion of the measure Pt. Furthermore, because Gt is symmetric, the component
Dj;t (Pt) of Dt (Pt) indicating purchases of intermediate good j must depends
only on the price, pjt, charged for that intermediate good and the overall distri-
bution of intermediate goods prices. We will be concerned only with symmetric
equilibria. We will thus consider situations where all ¯rms charges a price pt while
¯rm j charges pj;t. Therefore, since D is homogeneous of degree zero, the demand
for intermediate good j is given by:

Yj;t =
Yt
It
¢t(

pj;t
pt
) (2)

Since Gt is symmetric, assumption (1) implies that ¢t (1) = 1 for all t. We
futhermore assume that

¢t is di®erentiable at one, and ¢
0
t (1) < ¡1 is independent of t; (3)

2As Rotemberg and Woodford (1995), by a symmetric function we mean a function whose
value is unchanged if one exchanges the quantities purchased of any of the individual goods,
so that the value of Yt depends only upon the distribution of quantities purchased of each
intermediate good, and not upon the identities of the intermediate goods purchased.
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and for each t,

8® ¸ 0; ¢t (®) + ®¢
0
t (®) is a monotonically decreasing function of ®, (4)

where ® is the relative price of intermediate good j. Assumption (3) means that
the degree of susbtitutability between di®erent intermediate goods, evaluated in
the case of equal purchases of all intermediate goods, remains the same as addi-
tional intermediate goods are added, and the common elasticity of substitution
is greater than one. Assumption (4) implies the existence of a downward-sloping
marginal revenue curve for each producer of intermediate goods. The result of
these assumptions is that at a symmetric equilibrium, ¯rms face a time-invariant
elasticity of demand.

All intermediate goods ¯rms have the same production function given by

Yj;t = F (Kj;t ¡£; Lj;t ¡ ¤)¡ ©, (5)

where F is a homogeneous of degree one function, Kj;t is the capital stock of
intermediate good ¯rm j at time t, Lj;t is employment in intermediate good ¯rm
j at time t, and ©;£ and ¤ are no negative parameters denoting the ¯xed costs
on output, capital and labor respectively. The depreciation rate of capital is
constant and equal for all inputs ¯rms, 0 � ± � 1.3 The endowment of capital
at time t + 1, Kt+1 = Kj;t+1It+1, is equal to the resources not consumed in the
preceding period,

Kt+1 = Yt + (1¡ ±)Kt ¡ Ct.
Let be xj;t =

Kj;t¡£
Lj;t¡¤ the ratio capital-employment, both net of ¯xed costs,of ¯rm

j at time t,4 given that F is homogeneous of degree one, production of each
intermediate good ¯rm is,

Yj;t = f (xj;t)(Lj;t ¡ ¤)¡ ©.

We assume that the function f is C2, positive, increasing, and strictly concave:

f (x) > 0, f 0(x) > 0 y f 00(x) < 0, 8x > 0.
3We ignore produced materials as productive inputs. As Rotemberg and Woodford (1995)

pointed out, equation (5) would represent the production function for total added value (the to-
tal product net of the value of materials inputs) of imperfectly competitive ¯rms using produced
materials as inputs if we assume a ¯xed-coe±cient technology taking the form

G (Kj;t;Lj;t;Mj;t) = min

�
F (Kj;t ¡£;Lj;t ¡¤) ¡ ©

1 ¡ sM
;
Mj;t

sM

¸
(p)

where Mj;t denotes the materials inputs of ¯rm j at time t, and 0 < sM < 1 corresponds to
the share of materials costs in the value of gross output in a symmetric equilibrium.

4Thereafter, this ratio will be called ratio capital-employment.
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Inada conditions are satis¯ed at the origin,

lim
x!0

f (x) = 0, lim
x!0

f 0(x) = 1, (6)

and there is an upper bound to the ratio capital-employment ex, such that5

f (~x) = (1 + n)~x, (7)

where n ¸ ¡1 is the population growth rate.

By monopolistic competition we mean that each intermediate good ¯rm j takes
as given aggregate demand, Yt, and the price charged by the other intermediate
goods ¯rms, pt, and chooses its own price, pj;t, taking into account the e®ect of
price pi;t on its demand indicated by (2).At a symmetric equilibrium, the ¯rst
order conditions for factor demands take the forms

¹rt = f 0(xj;t) (8)

¹!t = f (xj;t)¡ xtf 0(xj;t), (9)

where ¹ = [1 +¢0(1)¡1]¡1 is the degree of market power, !t represents the wage
at time t and rt is the rental price of capital at time t.6

In each period t Lt individuals are born. Population grows exogenously to the
constant rate n ¸ ¡1. Therefore,

Lt = (1 + n)Lt¡1.

Individuals are identical within as well as across time. Individuals live two pe-
riods. In the ¯rs they work and earn the competitive market wage !t, and in
the second they are retired. During the ¯rst period of their lifetimes individu-
als supply their unit-endowments of labor inelastically and allocate the resulting
income, !t, between ¯rst period consumption, c1t, and savings, st,

st = !t ¡ c1;t.

savings earn the return rt+1 in the following period and enable the cohort to
consume during retirement. Second period consumption is therefore

c2;t+1 = (1 + rt+1 ¡ ±)st.
5Alternatively, we may assume that limx!1f 0(x) = 0, which togheter with (6) su±ces to

assure (7).
6I we assume that intermediate goods ¯rms use produced materials as productive inputs

and the production function of the intermediate goods ¯rms is given by (p) then

¹ =
1 ¡ sM

1 ¡ sM + ¢0(1)¡1
;

higher than the degree of market power. In this case we need assume that ¢0(1) + 1 > sM .to
guarantee that the optimization problem of intermediate goods ¯rms has an interior maximum.
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Individuals born at time t are characterized by their intertemporal utility function
u(c1;t; c2;t+1) de¯ned over non-negative consumption during the ¯rst and second
period of their lives. the intertemporal utility function is C2 and strictly quasi-
concave on the interior of the consumption set <2

+. The utility function is assumed
to be increasing in both variables:7

u1(c1; c2) > 0 para (c1; c2)À 0

u2(c1; c2) > 0 para (c1; c2)À 0:

Future consumption is a normal good,

u1u12 > u2u11para (c1; c2)À 0,

and starvation is avoided in both periods,

lim
c1!0

u1(c1; c2) = 1 para c2 > 0 (10)

lim
c2!0

u2(c1; c2) = 1 para c1 > 0.

Individuals are rationals. Then, they made their choices in the ¯rst period to
maximize the intertemporal utility function,

st = s(!t; brt+1) = argmax u[!t ¡ st; (1¡ ± + brt+1)st],

where brt+1 is the anticipated return on next period's capital. We assume perfect
foresight,

brt+1 = rt+1.
The following section establishes conditions under which a unique self-ful¯lling
expectation exists and is interior for every positive level of initial condition.

3 Characterization of Equilibrium

At a symmetric equilibrium labor market clears, employment in all intermediate
goods ¯rms is the same, Lj;t =

Lt
It
, and the ratio capital-employment is also equal

in all intermediate goods ¯rms, xj;t = xt. Hence, the aggregate production per
capita of intermediate goods is given by

yt = Yj;tit = f (xt)(1¡ ¤it)¡©it, (11)

where it =
It
Lt
is the number of intermediate goods ¯rms per capita. Aggregate

capital at time t + 1 equal savings at time t, Lts(!t; rt+1) = Kt+1, and then,

s(!t; ½t+1) = kt+1(1 + n), (12)

7The following assumptions on the intertemporal utility are standar and identical to that in
Galor and Ryder (1989).
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where kt+1 =Kj;t+1it+1 is aggregate capital per capita at time t+ 1.There is free
entry and exit of intermediate goods ¯rms. The number of intermediate goods
¯rms adjusts so that aggregate pro¯ts are zero,8

It

µ
Yj;t ¡ !t

Lt
It

¡ rt
Kt

It

¶
= 0, (13)

Substituting from (8), (9) and (11) into the zero pro¯ts condition, (13), yields:

it =
(¹ ¡ 1) f (xt)

(¹f (xt)¡ xtf 0 (xt)) ¤ + ¹© + f 0 (xt)£
´ i (xt) . (14)

From the assumption made on f follow that

i (xt) > 0 8xt > 0

and

lim
x!0

i (x) = 0, lim
x!1

i (x) =
¹¡ 1

(¹ ¡ "1) ¤
,

where 0 � "1 = limx!1
f 0(x)x
f (x)

< 1. From the de¯nition of xt follows the following
relation between it, kt and xt at a symmetric equilibrium,

kt = xt ¡ it (xt¤¡£) . (15)

The following two equations characterize the equilibrium of the economy for all
t ¸ 0:

s
¡
¹¡1 (f (xt)¡ xtf 0(xt)) ; ¹¡1f 0(xt)

¢
= kt+1(1 + n), (16)

kt = xt +
(¹ ¡ 1) f (xt) (£ ¡ ¤xt)

(¹f (xt)¡ xtf 0 (xt)) ¤ + ¹©+ f 0 (xt)£
´ k (xt) . (17)

Equation (16) has been obtained from substituting of (8) and (9) into (12), and
equation (17) follows from (14) and (15).). We should note that when ¹ = 1 and
£ = 0, ¤ = 0 and © = 0 then the number of inputs ¯rms, It, is undetermined
and kt = xt. This limit case is analyzed by Galor and Ryder (1989). From the
properties of the production function f follow the two limit properties of function
k,

lim
x!0

k (x) = 0, lim
x!1

k (x) = 1. (18)

The strictly monotony of k (x) is crucial for the existence of only one self-ful¯lling
expectations Lemma 1 establishes that at a symmetric equilibrium there is a one-
to-one relation between aggregate capital and the ratio capital-employment both
net of ¯xed costs.

Lemma 1 kt = k (xt) is an strictly increasing function of xt, 8xt > 0:
8Pro¯ts by ¯rm are also zero.
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Proof. k is an strictly increasing function of x if only if 8x > 0,

k0 (x) = 1¡ ¤i (x)¡ i0 (x) (x¤¡£) > 0. (19)

From the properties of f follows that 1¡ ¤i (x) > 0 8x > 0, since,

¤i (x) =
(¹¡ 1) f (x) ¤

(¹f (x)¡ xf 0 (x))¤ + ¹©+ f 0 (x)£ <
(¹¡ 1) f (x) ¤

(¹f (x)¡ xf 0 (x)) ¤ < 1.

Di®erentiating i (x), after a little of algebra we have that

i0 (x) = i (x)A (x) , (20)

where

A (x) =
f 0 (x)

f (x)
¡ (¹¡ 1) f 0 (x) ¤¡ f 00 (x) (x¤¡£)
(¹f (x)¡ xf 0 (x)) ¤ + ¹©+ f 0 (x)£. (21)

If x¤¡£ < 0 then A (x) > 0, since

A (x) >
f 0 (x)

f (x)
¡ (¹¡ 1) f 0 (x) ¤
(¹f (x)¡ xf 0 (x)) ¤ + ¹© + f 0 (x)£ >

>
f 0 (x)

f (x)
¡ (¹¡ 1) f 0 (x)
(¹f (x)¡ xf 0 (x)) > 0.

and therefore k0 (x) > 0. If x¤¡ £ > 0 and A (x) < 0 then k0 (x) > 0. Hence,
a necessary condition for k0 (x) < 0 is that x¤ ¡£ > 0 and A (x) > 0. But, we
can show that in this case k0 (x) > 0. From (19) and (20), if x¤ ¡ £ > 0 and
A (x) > 0, a su±cient condition for k0 (x) > 0 is

¤ + A (x)x¤ <
1

i (x)
, 8x > 0. (22)

Substituting from (14) and (21) into (22), after a little of algebra yields,

f 00 (x)

f 0 (x)
(x¤¡£) <

µ
D (x)

(¹ ¡ 1) "x¤
¡ 1

¶
C (x) , (23)

where C (x) = (1¡ "x) ¤ + ¹
f(x)
© + f 0(x)

f(x)
£, D (x) = (¹¡ "x) ¤ + ¹

f(x)
© + f 0(x)

f (x)
£

and "x =
xf 0(x)
f (x)

< 1 8x > 0 since f is strictly concave and limx!0 f (x) = 0. Since

f 00 (x) < 0, f 0 (x) > 0 and f (x) > 0 8x > 0; the left hand side of inequality
(23) is negative for all x > £

¤
and the right hand side is always positive. Hence

inequality (23) is hold for all x > £
¤
and therefore k0 (x) > 0 for all x > 0.

From Lemma 1 and limit properties (18) follow that kt = k (xt) > 0 for all xt > 0.
Lemma 1 establishes that k (x) is a strictly increasing function of for all x > 0,
then there exists k¡1, the inverse function of k, such that xt = k¡1 (kt) and
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it = i (k¡1 (kt)). Thus, given kt, a level of kt+1 that is a self-ful¯lling expectation
satis¯es:

s(¹¡1(f(k¡1 (kt))¡ k¡1 (kt) f 0(k¡1 (kt));¹¡1f 0(k¡1 (kt+1))
1 + n

= kt+1 (24)

The following lemma establishes a su±cient condition for uniqueness of equilib-
rium. The condition is the same that in the case of perfect competition.

Lemma 2 Given kt > 0 there exists a unique kt+1 > 0 that is a self-ful¯lling
expectation, if saving is a no decreasing function of the interest rate, that is, if

@s (wt; rt+1)

@rt+1
¸ 0 8rt+1.

Proof. Consider the following equation:

s
¡
!t;¹

¡1f 0
¡
k¡1 (kt+1)

¢¢
= (1 + n) kt+1. (25)

Consider Figure 1, where each side of (25) is plotted as a function of kt+1. Since
s (!t; rt+1) � !t for all (!t; rt+1) ; it follows that 0 � limkt+1!1 s (!t; ¹

¡1f 0 (k¡1 (kt+1))) �
!t. Thus, given kt > 0 (and therefore given !t > 0), there exists kt+1 > 0 which
satis¯es (25) if limkt+1!0 s (!t; ¹

¡1f 0 (k¡1 (kt+1))) > 0. Therefore, given (10), a
su±cient condition for the existence of kt+1 > 0 is

@s (!t; rt+1)

@rt+1
¸ 0; 8rt+1.

Given that k is a strictly increasing function of x and the derivative of the right

hand side of (25) is negative with respect to xt+1, uniqueness is satis¯ed.

From Lemma 2, it follows that if savings are a no decreasing function of the
return rate, then there exists ¡, such that kt+1 = ¡ (kt), where ¡ is a function
from <+ to <+, with ¡ (0) = 0, and

dkt+1
dkt

= ¡0 (kt) =
¡swk¡1 (kt) f 00 (k¡1 (kt)) (k¡1)0 (kt)

(1 + n)¹¡ srf 00 (k¡1 (kt+1)) (k¡1)0 (kt+1)
.

given that k¡1 is a homeomorphism of kt then variables kt and xt have the same
dynamic behavior and it is indi®erent to de¯ne equilibria in terms of a sequence of
kt or in terms of a sequence of xt. Thus, there exists a function ­ from <+ to <+,
with ­ (0) = 0, such that xt+1 = ­ (xt) = (k¡1 ± ¡ ± k) (xt), whose derivatives

dxt+1
dxt

= ­0 (xt) =
¡
k¡1 ± ¡ ± k

¢0
(xt) =

¡swxtf 00 (xt)
¹ (1 + n) k0 (xt+1)¡ srf 00 (xt+1)

,
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s(ωωt , µµ  f'(k  (kt+1)))-1 -1

(1+n)

kt+1
ωωt

kt+1

Figure 1: Existencia de un ¶unico kt+1.

and such that a sequence fxtg1t=0, which satis¯es xt+1 = ­(xt) for all t ¸ 0, has
the same dynamic properties that a sequence fktg1t=0, which satis¯es kt+1 = ¡ (kt)
for all t ¸ 0. We de¯ne a dynamic equilibrium in terms of xt.

De¯nition 1 A dynamic equilibrium is a sequence fxtg1t=0, under which:
s(¹¡1(f (xt)¡ xtf 0(xt)); ¹¡1f 0(xt+1))

1 + n
= k (xt+1) ; (26)

where x0 is exogenously given.

De¯nition 2 A steady-state equilibrium is a stationary value of xt, x, under
which

s(¹¡1(f (x)¡ xf 0(x)); ¹¡1f 0(x))
1 + n

= k (x) .

The following lemma establishes that condition (7) is su±cient to avoid explosive
behaviors, limt!1 xt = 1.

Lemma 3 If xt ¸ ex, being ex such that f (ex) = (1 + n) ex, then xt+1 < xt.

Proof. from the de¯nition of function k, it follows that

k (x) ¸ x
f (x)¡ xf 0 (x)
¹f (x)¡ xf 0 (x) ´ k¤ (x) 8x > 0,

where k¤ is function k when only ¤ is strictly positive. Using (9), given that
¹ > 1 and the properties of f, it follows that

! (x)

(1 + n) k (x)
� ! (x)

(1 + n) k¤ (x)
=
1¡ xf 0(x)

f(x)
¹¡1

(1 + n) x
f(x)

< 1 8x ¸ ex.
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From the previous inequality and the assumptions made on the utility function,
it follows that

k (xt+1) =
s(!t; ½t+1)

1 + n
� ! (xt)

1 + n
< k (xt) 8xt > 0.

Given that k0 (x) > 0 8x > 0, the lemma therefore follows.

From the speci¯cation of the production and utility function, it follows that
if xt = 0 then xt+1 = 0. Therefore, in this economy there always, at least, the
trivial steady-state x = 0. From Lemma 3, it follows that all steady-state lies in
the interval [0; ex). In the following section we show that the trivial steady-state
could be the only one for any set of well-behaved preferences.

4 Global Contraction

A steady-state equilibrium must satisfy

¹c1 = ¹¡1[f (¹x)¡ ¹xf 0(¹x)]¡ (1 + n)k(¹x),
¹c2 = (1 + n)k (¹x) [1¡ ±+ ¹¡1f 0(¹x)].

If the production function is speci¯ed so that

¹¡1[f (x)¡ xf 0(x)]¡ (1 + n)k(x) < 0 8x > 0,

then irrespective of preferences the economy experiences global contraction, and
¹x = 0 is indeed the unique steady-state equilibrium, since

0 < k (xt+1) � !t
1 + n

< k (xt) , 8xt > 0:

And given that k is an increasing function of x then xt+1 < xt 8xt > 0.

Proposition 1 For any given set of well-behaved preferences and any set of
¯xed costs with £ and/or © strictly positives, there exists a function f (x) that
satis¯es the Inada conditions under which the only steady-state equilibrium is the
trivial steady-state, x = 0.

Proof. It is su±cient with an example to prove the proposition. Consider
the function

f (x) =

½
0 x = 0

¯x¡ ®x lnx 0 < x � e
¯¡1
®

, (27)

where 0 < ® < 1 and ¯ > 0. This function is used by Galor and Ryder (1989)
to prove their Proposition 1, and as these authors show, it satis¯es the Inada
conditions. The economy undergoes a global contraction if

! (x) ´ ¹¡1®x < (1 + n) k (x) 8x 2
³
0; e

¯¡1
®

i
. (28)
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If £ ¸ 0, ¤ = 0 and © ¸ 0, then k (x) ¸ x 8x > 0 and for some ® su±ciently near
to zero (28) is satis¯ed. If £ > 0, ¤ > 0 and © ¸ 0 then k (x) > x () x < £

¤
.

If ¯ < 1, for all ® su±ciently near to zero, !
³
e
¯¡1
®

´
= ¹¡1®e

¯¡1
® < £

¤
, and since

! (x) is a strictly increasing function of x, (28) is satis¯ed. If £ = 0, ¤ > 0 and
© > 0, then

lim
®!0

k (x) =
¹©x

(¹¡ 1)¯¤x + ¹© ´ g (x) ,

where g (0) = 0, limx!1 g (x) =
¹©

(¹¡1)¯¤ and g is a strictly increasing and concave

function for all x ¸ 0. Given that k (x) is a continuous function of ®, if ¯ < 1,
for some ® su±ciently near to zero (28) is satis¯ed.

5 A Strengthened Inada Condition

Galor and Ryder (1989) establish a strengthened Inada condition which rules out
the kind of technology that would force contraction to the trivial steady-state
equilibrium. We can also establish a strengthened Inada condition which will
depend on the size of mark-up and the combination of ¯xed costs. Lemma 4
establishes the relation between the strengthened Inada condition under perfect
competition given by Galor and Ryder and our strengthened Inada condition
under monopolistic competition.
Proposition 2 Consider the overlapping generations economy. There exists

x > 0 such that
lim
t!1

xt = x; 8xt > 0;

only if

lim
x!0

¡xf 00 (x)
k0 (x)

> (1 + n)¹. (29)

Proof. If limt!1 xt = x, 8xt > 0, then xt+1 > xt, 8xt 2 (0; x). Given that k
is a strictly increasing function of x, then

k (xt) < k (xt+1) � ! (xt)

1 + n
=
¹¡1 (f (xt)¡ xtf 0 (xt))

1 + n
, 8xt 2 (0; x) .

Rearranging,
f (x)¡ xf 0 (x)

k (x)
> (1 + n)¹, 8x 2 (0; x) .

In the limit, using l'Hôpital's rule,

lim
x!0

f (x)¡ xf 0 (x)
k (x)

= lim
x!0

¡xf 00 (x)
k0 (x)

> (1 + n)¹.
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Remark 1: Proposition 2 establishes a su±cient condition to avoid global
contraction for any set of well-behaved preferences because condition (29) im-
plies that ¹¡1[f (x)¡ xf 0(x)] > (1 + n) k (x) for x su±ciently near to zero, since
functions f and k are continuous. It should be note that the strengthened Inada
condition (29) depends on both mark up over marginal cost and ¯xed costs.

The following lemma establishes the relation between the strengthened Inada
condition under monopolistic competition, the Inada condition, and Galor and
Ryder's strengthened Inada condition under perfect competition.

Lemma 4 (a) If £ > 0, condition limx!0
¡xf 00(x)
k0(x) > (1 + n)¹ implies Galor

and Ryder's condition under limx!0 (¡xf 00 (x)) > (1 + n) and the Inada condition
limx!0 f

0 (x) = 1.
(b) If £ = 0, and © > 0, condition limx!0

¡xf 00(x)
k0(x) > (1 + n)¹ is satis¯ed if

only if Galor and Ryder's condition limx!0 (¡xf 00 (x)) > (1 + n) is satis¯ed, and
it implies the Inada condition limx!0 f 0 (x) = 1.
(c) If £ = 0, ¤ > 0 and © = 0, the Inada condition limx!0 f 0 (x) = 1 im-

plies condition limx!0
¡xf 00(x)
k0(x) > (1 + n)¹. Moreover, condition limx!0

¡xf 00(x)
k0(x) >

(1 + n)¹ is satis¯ed if limx!0 f 0 (x) > (1 + n)
¹
¹¡1 .

Proof. If £ > 0, then k (x) > x, 8x < £
¤
; and therefore f(x)¡xf 0(x)

k(x)
<

f(x)¡xf 0(x)
x , 8x < £

¤ . Given that f and k are continuous functions, then

lim
x!0

f (x)¡ xf 0 (x)
k (x)

= lim
x!0

¡xf 00 (x)
k0 (x)

� lim
x!0

f (x) ¡ xf 0 (x)
x

= lim
x!0

(¡xf 00 (x)) ,

which, together Lemma 2 of Galor and Ryder (1989), implies (a) in Lemma 4. If
£ = 0 and © > 0, then

lim
x!0

¡xf 00 (x)
k0 (x)

= lim
x!0

f (x)¡ xf 0 (x)
k (x)

= lim
x!0

f(x)¡xf 0(x)
x

(f(x)¡xf 0(x))¤+©¹
(¹f(x)¡xf 0(x))¤+©¹

=

= lim
x!0

f (x)¡ xf 0 (x)
x

= lim
x!0

(¡xf 00 (x)) ,.

which, together Lemma 2 of Galor and Ryder (1989), implies (b) in Lemma 4. If
£ = 0;¤ > 0 and © = 0, then

lim
x!0

¡xf 00 (x)
k0 (x)

= lim
x!0

f (x)¡ xf 0 (x)
k (x)

= lim
x!0

¹f (x)¡ xf 0 (x)
x

=

= lim
x!0

((¹¡ 1) f 0 (x)¡ xf 00 (x)) .
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k(xt+1 )

ωω(xt)/(1+n)

xt  , xt+1

kt+1

Figure 2: Nonexistence of Non-trivial Steady-state Equilibrium.

If limx!0 f
0 (x) = 1 then limx!0 ((¹¡ 1) f 0 (x)¡ xf 00 (x)) > (1 + n)¹ and this

last condition is satis¯ed if limx!0 f
0 (x) > (1 + n) ¹

¹¡1 .

Remark 2 From (c) in Lemma 4, it follows that the structure of ¯xed costs
is such that there is only ¯xed costs on labor, £ = 0;¤ > 0 and © = 0, a weaker
condition that the Inada condition is enough to avoid global contraction for any
set of well-behaved preferences. We can give an example: if £ = 0;¤ > 0 and
© = 0 and f satis¯es the Inada conditions, then limx!0

¡xf 00(x)
k0(x) = 1, hence, for

all x su±ciently near to zero, ¹
¡1[f(x)¡xf 0(x)]

1+n
> k (x), which, together. Lemma 3,

implies that for Cobb-Douglas preferences with a marginal propension to save, s,
su±ciently near to zero, there exists a non-trivial steady-state equilibrium.

6 Su±cient Conditions for the Non-existence of

Non-trivial Steady-state equilibrium

Proposition 3 For any given set of well-behaved preferences, if the function f
satis¯es the Inada conditions, the unique steady-state equilibrium is the trivial
equilibrium, x = 0, if
(a) limx!0

¡xf 00(x)
k0(x) < (1 + n)¹

(b) ¡xf 00(x)
k0(x) < (1 + n)¹ 8x > 0

Proof. Suppose that st = !t (i.e., there is no utility from ¯rst period con-
sumption). Clearly, if global contraction is established under the above con-
ditions for st = !t, it can be established for all other feasible set of prefer-
ences under which st � !t. Thus, modifying (26) (1 + n) k (xt+1) = ! (xt) =

14



ΩΩ (xt)

xt

xt+1

Figure 3: Existence of Non-trivial Steady-state Equilibria.

¹¡1 (f (xt)¡ xtf 0 (xt)) and

dxt+1
dxt

=
¡xtf 00 (xt)

(1 + n)¹k0 (xt+1)
.

Consider Figure 2. The unique steady-state is x = 0 if function !(xt)
1+n

intersects
the function k (xt+1) only at the origin. The proposition therefore follows from
Figure 2.

Remark 3: Proposition 3 establishes su±cient conditions for global contrac-
tion. It should be note the importance of the mark up and the structure of ¯xed
cost in the conditions of Proposition 3. So, identical economies except for the size
of the mark up and/or the structure of ¯xed costs, could undergo completely dif-
ferent dynamic behaviors. One of them could irremediably converge to the trivial
steady-state equilibrium while the other converges to a non-trivial steady-state
equilibrium. It should be also note that if £ = 0;¤ > 0;© = 0 and f satis¯es
the Inada conditions, then the conditions of Proposition 3 are never satis¯ed, as
it is followed from Lemma 4.

7 Existence, Uniqueness, and Stability of Non-
trivial Steady-State Equilibrium

Existence of a non-trivial steady-state equilibrium is not guaranteed by the
strengthened Inada condition. We need constraint the interactions between pref-
erences and technology.
Proposition 4 There exists a non-trivial steady-state equilibrium if
(a) s½ (!; r) ¸ 0 8 (!; r) ¸ 0.
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ΩΩ(xt)

xt

xt+1

Figure 4: Existence of a Unique Non-trivial Steady-state Equilibrium.

(b) limx!0
¡s!xf 00(x)

¹(1+n)k0(x)¡s½f 00(x) > 1.

(c) 9 ex such that f (ex) = (1 + n) ex.

Proof. Since:

dxt+1
dxt

=
¡s!xtf 00(xt)

(1 + n)¹k0(xt+1)¡ s½f 00(xt+1)
.

Proposition 3 follows from Figure 3. The ¯rst condition guarantees the existence
of ­, the second condition guarantees that the shape of ­ is higher than one
at the origin, and condition (c) implies that 8xt ¸ ex xt+1 = ­(xt) < xt, as
established in Lemma 3. Then, there exists x > 0, such that ­ (x) = x.

Proposition 5 There exists a unique globally stable non-trivial steady-state
if
(a) limx!0

¡s!xf 00(x)
(1+n)¹k0(x)¡s½f 00(x) > 1.

(b) 9 ex such that f (ex) = (1 + n) ex.
(c) ­0 (x) ¸ 0 8x > 0.
(d) ­00 (x) � 0 8x > 0.
(e) s½ (!; r) ¸ 0 8 (!; r) ¸ 0.

Proof. Consider Figure 4. Uniqueness and global stability of the non-trivial
steady-state equilibrium are satis¯ed if (i) function ­ exists, (ii) the curve ­ (x) is
strictly concave, (iii) limx!0 ­0(x) > 1, and (iv) the curve intersects the bisectriz
of the positive ortant at x > 0. Condition (e) is su±cient for (i). From Lemma 3
follows that condition (b) is su±cient to (iv). Moreover, (a) implies (iii) and (c)
and (d) implies (ii). Therefore, the proposition is veri¯ed.
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Corollary 1 A necessary condition for the existence of a unique globally stable
non-trivial steady-state equilibrium is the strengthened Inada condition,

lim
x!0

¡xf 00 (x)
k0 (x)

> (1 + n)¹.

8 Conclusions

In this paper we have analyzed existence, uniqueness and stability of a steady-
state equilibrium in an overlapping generations model with monopolistic com-
petition and free entry and exit of ¯rms. The Galor and Ryder's (1989) results
appear as a limit case of our analysis in which mark-up over marginal cost go to
one, ¹ = 1, and there is constant returns to scale, £ = ¤ = © = 0.

Our analysis shows that for any given set of well-behaved preferences and any set
of ¯xed costs with the ¯xed costs on output and/or the ¯xed costs on capital being
strictly positive, there exists a production function that satis¯es the Inada con-
ditions under which the only steady-state equilibrium is the trivial steady-state,
characterized by production and consumption being zero We have established
a strengthened Inada condition that is su±cient to exclude global contraction.
However, we have also shown that if there is only ¯xed cost on labor then a weaker
condition than the Inada conditions is su±cient to exclude global contraction.

We have established su±cient conditions for a non-trivial steady-state equilibrium
to exist, and also su±cient conditions for its uniqueness and global stability. We
show that the size of mark-up over marginal cost and the particular mix of ¯xed
costs play a crucial role in these conditions. So, economies that only di®er in
their mark-ups and/or in their mix of ¯xed costs could experiment radically

di®erent dynamic behaviors. One of them could converge to the trivial steady-
state equilibrium, and the other could converge to a strictly positive steady-state
equilibrium.
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