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Abstract
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progress is embodied, the optimal scrapping time of capital goods is constant and
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1. Introduction

A recent and very promising trend in macroeconomic research concentrates on the em-
pirical assessment and theoretical analysis of embodied technological progress. This goes
from worthwhile accounting exercises revealing the importance of embodiment in the
growth performances of some national economies (among them, Greenwood, Hercowitz
and Krusell, 1997) to much more theoretical contributions depicting the speci…c patterns
of optimal capital accumulation under embodiment (for example, Benhabib and Rusti-
chini, 1991, and Boucekkine, Germain and Licandro, 1997). Some computable general
equilibrium models have also been built along the way as an attempt to replicate some
important empirical regularities (as in Cooley, Greenwood and Yorukoglu, 1997).

This paper adopts a much simpler approach compared with the above-mentioned con-
tributions. In particular, we use a representative …rm framework in order to draw some
simple and useful lessons on how and why the embodied nature of technological progress
should be accounted for at the microeconomic level. To this end, we conduct a detailed
comparison between the outcomes of a benchmark …rm model with disembodied tech-
nological progress and the corresponding model under embodiment. The embodiment
characteristic is met through a vintage capital structure in line with the canonical model
of Solow et al. (1966). In addition to capital and labor, production involves energy ex-
penditures. Vintage capital models with energy as an input have been intensively used
in the late seventies by some well-known US economists confronted with the productivity
slowdown puzzle (see for example, Shoven and Slepian, 1978, and Baily, 1981).

In a very famous paper, Baily argued that the productivity slowdown might be due
to a reduction in the utilization rate of capital, namely in the decrease of the e¤ective
stock of capital, in contrast to the traditional interpretation in terms of technological
progress. The keywords, said Baily, are embodied technological change, obsolescence
and the energy cost. The rise in the energy cost following the …rst oil shock caused a
massive capital obsolescence and a subsequent decline in capital services. Following Baily,
“Energy-ine¢cient vintages of capital will be utilized less intensively and scrapped earlier
following a rise in energy prices”. Robert Gordon (1981), after recognizing that Baily’s
hypothesis is indeed highly attractive, pointed at the di¢culty of its empirical validation
in the macroeconomy (as measuring the utilization rate is rather hard for certain sectors,
like the nonfarm non-manufacturing sectors) and reported that in any case, it does not
seem to be supported at all by the evidence available from certain energy-consuming
industries like the airline industry.

Our contribution is based on a vintage capital technology allowing for an endogenous
determination of the scrapping time of old capital goods, in contrast to the vintage capital
models considered by Baily in which only exogenous obsolescence rules are studied. Our
approach is likely to produce di¤erent economic mechanisms. Indeed, we show that in
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our model with complementary capital and energy, a rise in energy price generates an
increase in the e¤ective capital stock, in contrast to the disembodied case. Such an e¤ect
is generated through the endogenous scrapping rule. An increase in the energy price level
decreases the scrapping age, as predicted by Baily, but the resulting lower scrapping time
tends to increase the optimal e¤ective capital stock for our optimal scrapping condition
to hold.

Our paper also provides a very simple study of investment dynamics depending on
the nature of technological progress. As far as investment dynamics at the …rm level are
concerned, Doms and Dunne (1994) have shown that investment is lumpy and occurs
infrequently. This strikingly departs from the standard neoclassical model with convex
adjustment costs of investment. Relaxing the assumption of such adjustment costs is
possible when considering imperfect competition in order to bound the size of the …rm.
Nevertheless this alternative model does not generate an investment dynamics more con-
sistent with the data. Considering uncertainty and irreversible investment may help to
explain periods with no investment (Cf. Pindyck, 1988 or Abel and Eberly, 1994) but it
is not enough to generate discontinuities in the capital stock evolution.

Embodiment is the alternative story as we will show in this paper. This idea has been
previously explored in optimal growth models, as we mention in the beginning of this
introduction. Embodiment implies obsolescence and the latter involves replacement. Re-
placement cycles (or echoes) may arise at equilibrium under some relatively stringent con-
ditions (see Boucekkine, Germain and Licandro, 1997, for example). However, investment
lumpiness is much more a microeconomic property than a phenomenon truly observed on
aggregate data. Hence, a probably more natural way to tackle the problem of investment
dynamics is to restrain the analysis to the …rm level. Partial equilibrium vintage capi-
tal models have already been considered by Terborgh (1961) and Smith (1949). While
these papers assume a constant optimal lifetime for the machines, Malcomson (1975) and
especially Van Hilten (1991) have proven that the optimal lifetime is in fact constant. Nev-
ertheless, they …rst did not turn to the analysis of the investment dynamics. Second, they
only considered a linear technology. This paper proposes a partial equilibrium vintage
capital model under imperfect competition in which the …rm produces using labor, capital
and energy, with energy and capital being complementary while substitution is allowed
between capital and labor. In such a framework, optimal investment is periodic, as in the
optimal growth vintage capital models considered by Boucekkine, Germain and Licandro
(1997), but in sharp contrast to the latter models which typically use linear production
functions, we are able to de…ne an optimal value for the e¤ective capital stock due to
our substitutability assumption between capital and labor. The periodicity of investment
paths will thus come from very di¤erent channels. While this periodicity property comes
from the constancy of labor supply in the equilibrium condition of the labor market in the
above mentioned general equilibrium model, it comes from the constancy of the optimal
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capital stock in our …rm problem.

Another valuable contribution of this paper is that it allows to bring out quite easily
some useful lessons about the implications of the nature of technological progress on
optimal capital accumulation and investment dynamics. Explicit comparative exercises
between the embodiment and the disembodiment cases will be conducted to this end
along the way. The rest of the paper is organized as follows. The next section analyzes the
properties of the benchmark model with disembodied technical progress. The third section
is devoted to study the counter-part model with embodied technical progress. The optimal
scrapping rule is …rst derived; then, the determinants of the optimal e¤ective capital stock
are studied in details with a reference to Baily’s work and a thorough comparison with
the benchmark case. The replacement echoes in investment dynamics are …nally shown
to be optimal under embodiment, and robust to departures from a reference parametric
case. Section 4 concludes.

2. Optimal capital stock and investment dynamics under disem-
bodied technological progress

As a benchmark, we …rst consider that technical progress is purely disembodied. We
consider a standard monopolistic competition economy (Cf. Dixit and Stiglitz, 1997 or
the production side of Boucekkine et al., 1996 for a vintage capital growth model) in
which the …rm has to solve the following problem :

max
Z 1

0
[P (t)Q(t) ¡ Pe(t) E(t) ¡ w(t)L(t) ¡ k(t)I(t)] e¡rtdt

subject to :

P (t) = bQ(t)¡µ with µ < 1 (2.1)

Q(t) = AK(t)¯L(t)1¡¯ (2.2)

dK(t) = I(t)dt (2.3)

Pe(t) = P e e¹t (2.4)

E(t) = K(t)e¡°t (2.5)

w(t) = w e"t (2.6)

I(t) known for t < 0

P (t) is the market price of the good produced by the …rm, Q(t) is the production,
the demand price elasticity is (¡1=µ), K(t) is capital, L(t) is labour E(t) stands for the
energy use and I(t) is investment ; w(t) is the wage rate, Pe(t) is energy price and k(t) is
the purchase cost of capital ; r is the discount rate, ¹ is the energy price rate of growth
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and ° > 0 represents the rate of energy-saving technical progress. Moreover, we assume1

¹ < r and ° < r.

The Cobb-Douglas production function exhibits constant returns to scale but there
exists operating costs whose size depends on the energy requirement of the capital : to any
capital use K(t) corresponds a given energy requirement K(t) e¡°t. Such a complemen-
tarity is assumed …rst in order to be consistent with the results of several studies showing
that capital and energy are complements (see for instance Hudson and Jorgenson„1974 or
Berndt and Wood, 1975) and second, for technical reasons since it allows to analytically
solve the model.

Technical progress is assumed to make machines becoming less energy-consuming over
time. In the disembodied case, the capital goods become more and more energy saving
over time whatever their age. This is a rather unrealistic assumption which will be relaxed
in the next section. We assume that labour may be adjusted immediately and without
any cost and this standard problem reduces to the following conditions for optimal inputs
use :

L¤(t) =

"
A1¡µb(1 ¡ ¯)(1 ¡ µ)

w

# 1
1¡(1¡¯)(1¡µ)

K(t)
¯(1¡µ)

1¡(1¡¯)(1¡µ) (2.7)

KD¤(t) =

"
®B

(rk(t)¡ :

k (t)) + Pe e(¹¡°)t

# 1
1¡®

(2.8)

with B =
³
A(1¡µ)b

´ 1
1¡(1¡¯)(1¡µ) [1 ¡ (1 ¡ ¯)(1 ¡ µ)] [(1 ¡ ¯)(1 ¡ µ)]

(1¡¯)(1¡µ)
1¡(1¡¯)(1¡µ) w

(1¡¯)(1¡µ)
(1¡¯)(1¡µ)¡1 ,

and ® = [¯(1 ¡ µ)] = [1 ¡ (1 ¡ ¯)(1 ¡ µ)]. Note that 0 < ® < 1.
The corresponding optimal investment may be written:

I¤(t) = ¡(®B)
1

1¡®

1 ¡ ®
(¹ ¡ °)P e e(¹¡°)t

h
(rk(t)¡ :

k (t))P e e(¹¡°)t
i ®¡2

1¡®

Assuming that the user cost of capital is constant and positive2 : (rk(t)¡ :

k (t)) = uc
; note that it implies the cost k(t) to grow at a rate r. Without loss of generality, we
also assume that the real cost of labor is constant: w(t) = w. Under these simplifying
assumptions, we are not only able to bring out analytical results along this paper, we

1If ¹ > r, the …rm would have an incentive to in…nitely get into debt to buy an in…nite amount of
energy.

° < r is a standard assumption in the exogenous growth literature since it allows to have a bounded
objective function.

2Such an assumption will be needed for technical reasons when we will consider embodied technical
progress in the next section. Since we would like to compare in a rigorous way the outcomes of the latter
case with those of the disembodied model of the current section, we introduce this simpli…cation here.
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can also concentrate our discussion around the two variables repeatedly invoked in the
introduction, technological progress and the energy cost. Indeed, the dynamics of our
model do depend on the values of the rate of technical progress and of the energy price
trend :

² If ° = ¹, then I¤(t) = 0 and KD¤(t) is constant : investment occurs once at the
beginning of the program and never happens again. The behavior of the optimal
capital stock with respect to the model parameters is such that :

@KD¤

@P e
< 0

@KD¤

@uc
< 0

@KD¤

@w
< 0

An increase in the energy price level decreases the optimal capital stock. This is due
to the fact that the …rm should invest until the marginal productivity of the capital equals
the sum of the user cost of capital and the operating cost P e. Note that such a result
is not inconsistent with the interpretation proposed by Baily (1981) of the productivity
slowdown observed in the 70’s, namely that the lower growth rate of total factor produc-
tivity may well be attributed to a drop in the (optimal) capital stock as energy gets more
expensive. However, no obsolescence scheme is so far involved in the story, and the results
come from a direct operation cost e¤ect.

The remaining comparative statics exercises are completely standard. The user cost
of capital and the real cost of labor negatively a¤ect the optimal capital stock since a
higher uc would require a higher marginal productivity of capital and a higher w would
reduce the marginal productivity of capital.

² If ° < ¹, then I¤(t) < 0 and KD¤(t) is decreasing with time. Moreover :

lim
t!+1 KD¤(t) = 0 and lim

t!+1 I¤(t) = 0

² If ° > ¹, then I¤(t) > 0 and KD¤(t) is increasing with time. Moreover,

lim
t!+1 KD¤(t) =

·
®B

uc

¸ 1
1¡®

which is constant and lim
t!+1 I¤(t) = 0
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Note the asymmetry of the results successively obtained for the cases ° < ¹ and ° > ¹:
The optimal capital stock is produced once its marginal productivity is equal to the sum
of the user cost and the operating cost. If ° < ¹ the operating cost increases inde…nitely
which leads to an optimal capital stock tending to zero. In the opposite cases, namely if
° > ¹, this operating cost vanishes over time but the user cost is constant, and so the
total cost of holding capital does not vanish. As a consequence, the optimal capital stock
tends to a strictly positive constant.

Overall, the …rm problem with disembodied technical progress and complementarity
between capital and energy generates some very useful benchmark (and mostly expected)
results concerning the optimal capital stock properties and the induced investment dy-
namics. Regarding the latter aspect, this model is particularly insu¢cient -no investment
or an investment smoothly going to zero during time- which is far away from the evidence
collected by Doms and Dunne on investment patterns at the …rm level. In this respect
the same model with embodied technological progress will perform much better as we will
see in the next section.

3. Optimal capital stock and investment dynamics under embod-
ied technological progress

We now consider that the technical progress is embodied in the new capital goods acquired
by the …rm. The …rm’s problem becomes:

max
Z 1

0
[P (t)Q(t) ¡ Pe(t) E(t) ¡ w(t)L(t) ¡ k(t)I(t)] e¡rtdt (3.1)

subject to constraints taking embodiment into account :

P (t) = bQ(t)¡µ with µ < 1 (3.2)

Q(t) = AK(t)¯L(t)1¡¯ (3.3)

K(t) =
Z t

t¡T (t)
I(z)dz (3.4)

Pe(t) = Pe e¹t with ¹ < r (3.5)

E(t) =
Z t

t¡T (t)
I(z)e¡°zdz with ° < r (3.6)

w(t) = w (3.7)

The unique additional variable with respect to the benchmark model is T (t) which
denotes the age of the oldest machine still in use at t or scrapping age. Also the capital
variable is now e¤ective capital, since only active machines are taken into account in the
de…nition of the capital stock. Note that only the new machines incorporate the latest
technological advances, i.e. are more energy-saving than the machines acquired in the
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past. Such an assumption is consistent with Terborgh (1961) and Smith (1949) set-ups in
which it is hypothesized that the operation cost of a machine is a decreasing function of
its vintage3. However, the rate of technical progress ° enters linearly into their operation
costs functions while it is exponential in our model.

It is not hard to see that the optimal labour use as a function of the amount of capital
remains the same as in the previous section. The vintage structure does matter in capital
accumulation decisions, investment and scrapping. By using the same de…nitions for B
and ® as in the previous section, and by noting J(t) = T (t+J(t)) the lifetime of a machine
of vintage t4, the problem may be transformed (see appendix 1) into a more tractable one
and it then leads to the following …rst order conditions :Z J(t)+t

t

n
B® [K(¿ )]®¡1 ¡ P e e(¹¡°)t

o
e¡r(¿¡t)d¿ = k(t) (3.8)

®B [K(t)]®¡1 = Pe e¡°[t¡T (t)]+¹t (3.9)

Equation (3.8) gives the optimal investment rule according to which the …rm should
invest at time t until the discounted marginal productivity during the whole lifetime of
the capital acquired in t exactly compensates for both its discounted operation cost and
its marginal purchase cost in t. Equation (3.9) is the scrapping condition: It states that
a machine should be scrapped as soon as its marginal productivity (which is the same for
any machine whatever its age) no longer covers its operating cost (which rises with its
age).

Since the condition (3.8) must hold for any t, so must its derivative with respect to t :

¡
h
®BK(t)®¡1 ¡ Pe e(¹¡°)t

i
+

Z t+J(t)

t

h
r®BK(¿ )®¡1 ¡ (r ¡ °)P e e¹¿¡°t

i
e¡r(¿¡t)d¿ =

:

k (t)

Using equation (3.9) and then equation (3.8), we obtain :

, ¡
h
®BK(t)®¡1 ¡ Pe e(¹¡°)t

i
+

°Pe e(¹¡°)t

¹ ¡ r

h
e(¹¡r)J(t) ¡ 1

i
=

³ :

k (t) ¡ rk(t)
´

)
h
e°T (t) ¡ 1

i
¡ °

¹ ¡ r

h
e(¹¡r)J(t) ¡ 1

i
=

³
rk(t)¡ :

k (t)
´ e(°¡¹)t

Pe
(3.10)

Using the …rst order condition (3.9), one may deduce a characterization of the optimal
capital stock as a function of the optimal scrapping age :

KE¤(t) =
·
®B

P e
e°[t¡T ¤(t)]e¡¹t

¸ 1
1¡®

(3.11)

3On the contrary, Brems (1967) assumes a constant operation cost.
4We are assuming perfect foresight.
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The optimal scrapping age, and then the optimal capital stock and the optimal investment
dynamics may be determined by going further into the model resolution. Note at the
minute that the energy price trend ¹ and the technological progress trend ° have opposite
e¤ects on the optimal lifetime of machines. Indeed, from (3.8), one can immediately see
that a rise in ° (Resp. ¹) reduces (Resp. increases) the lifetime value J(t) since it
results in a diminishing (Resp. augmenting) operating cost and since the unit cost of
capital, k(t), the right-hand side of equation (3.8) is una¤ected. We will concentrate on
the ”balanced” case ° = ¹ to illustrate our arguments, specially because it is the unique
parametric case which allows for an analytical characterization of the short-run dynamics.
The ”unbalanced” model ¹ < ° is also explored to support in a way the robustness of our
results in the balanced case.

3.1. Technical progress, energy price and optimal stock of capital

To go further into the resolution of the model, we consider the case in which ¹ = ° as
announced just above. We …rst derive the optimal scrapping rule.

3.1.1. Optimal scrapping

If ° = ¹, the rate of technical progress is equal to the energy price rate of growth. J¤(t)
and T ¤(t) are then determined by the system :

T ¤(t) = f(J¤(t)) =
1

°
ln

"
1 +

³
rk(t)¡ :

k (t)
´ 1

P e
+

°

° ¡ r

h
e(°¡r)J¤(t) ¡ 1

i#
(3.12)

J¤(t) = T ¤(t + J¤(t)) (3.13)

where (3.12) may be derived from (3.10).
As in the previous section, we assume that the user cost of capital is constant and

positive :
³
rk(t)¡ :

k (t)
´

= uc. In fact Van Hilten (1991) has shown that such a condition
has to be satis…ed to allow the use of a …xed-point argument, which is crucial in the
analytical characterization of the equilibrium dynamics in the embodiment case.5 It can
be easily shown that function f(J¤(t)) is strictly increasing and concave, with f(0) > 0 and
that f(J¤(t)) admits a …nite limit when its argument goes to in…nity (see appendix 2), thus
it admits a unique strictly positive …xed-point. The …xed-point argument of Van Hilten
(1991) follows: The forward-looking system (3.12)-(3.13) has a unique strictly positive
solution, which is precisely the …xed-point of function f(:). Therefore the Terborgh-Smith
result T ¤(t) = J¤(t) = T is also reproduced in our case with T given by:

e¡rT =
° ¡ r

°

"
1 ¡ e¡°T

Ã
r

r ¡ °
+

uc

P e

!#
(3.14)

5Terborgh (1961) and Smith (1949) assume that the price of capital is constant.
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Appendix 2 also gives the proof of the following proposition :

Proposition 1 : The optimal scrapping age T ¤(t) as well as the optimal lifetime of the
machine J¤(t) are such that : T ¤(t) = J¤(t) = T 8t ¸ 0, with T being the …xed-point of
the function f(:).

Some results concerning the behavior of the optimal scrapping age with respect to the
model parameters may be derived from its implicit expression:

@T

@P e
= ¡ uc

P e
2

[°e°T (1 ¡ e¡rT )]
< 0;

@T

@uc
=

1

Pe [°e°T (1 ¡ e¡rT )]
> 0;

As suggested by Baily (1981), the higher the energy price level, the sooner a machine has
to be scrapped. Moreover, the higher the user cost of this machine, the longer a machine
has to be kept in order to be pro…table. Nevertheless, both the rate of technical progress
° and the interest rate a¤ect the optimal scrapping age in an ambiguous way. This is a
standard characteristic of the vintage capital models (Cf. Boucekkine et al., 1998). In
our model, the ambiguity of the comparative statics with respect to these two parameters
is absolutely clear. Indeed, since we are solving the balanced case ° = ¹ and as these two
trends have opposite e¤ects on optimal scrapping, the comparative statics with respect to
° should be ambiguous. As for the interest rate, an increase in r will rise the unit cost of
capital k(t), inducing a lower desired stock of capital K(t) and a smaller discounting factor
of the pro…ts stemming from the use of a particular machine. It is clear from (3.8) that
the resulting overall e¤ect on the optimal lifetime is completely ambiguous. Therefore, to
summarize:

Proposition 2 : In the balanced case ° = ¹, the optimal scrapping age is such that
T = T (uc; r; Pe; °). It decreases with the energy price level and increases with respect to
the user cost of capital. The e¤ect on optimal scrapping of a change in the interest rate
or in the rate of technical progress is ambiguous.

3.1.2. Technical progress and optimal stock of capital

The optimal capital stock (given by (3.11)) becomes :

KE¤(t) =
·
®B

Pe
e¡°T

¸ 1
1¡®

= KE¤ (3.15)

Recall the results obtained in the disembodied technical progress model in this same
balanced case ¹ = °. The optimal capital stock is constant whatever is the nature of
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technological progress. However, its size does depend on the latter characteristic. Indeed,
when technical progress is embodied, the …rms are likely to acquire more new machines but
also to scrap old machines. These two e¤ects work in opposite directions. Nevertheless, it
can be shown (see appendix 3) that the second e¤ect, applying through the endogenous
scrapping rule, always prevails, so that the optimal capital stock is lower when technical
progress is embodied. This leads to the following proposition :

Proposition 3 : (i) The optimal stock of capital, as the optimal scrapping time, remains
constant over time: KE¤(t) = KE¤ 8t ¸ 0.

(ii) The optimal capital stock is lower in the embodied case: KE¤ <
KD¤.

As argued in the introduction section, such results depart to a large extent from
those established for general equilibrium growth models (see Boucekkine, Germain and
Licandro, 1997, Caballero and Hammour, 1996, or Aghion and Howitt, 1994). In our
set-up, as the production function is strictly concave with respect to (e¤ective) capital,
it is possible to de…ne an optimal value for the stock of capital in contrast to the general
equilibrium models mentioned above which typically use linear technologies. This has
some concrete implications in terms of short term dynamics as we will see later with more
details. We will discuss before the relationship between the energy price level and optimal
capital accumulation in line with Baily’s reasoning.

3.1.3. Energy price level and optimal stock of capital

The behavior of the optimal capital stock with respect to the parameters of the model is
as follows :

@KE¤

@T
< 0 (3.16)

@KE¤

@Pe
=

@KE¤(T; Pe)

@Pe
+

@KE¤(T; P e)

@T

@T

@Pe
> 0

@KE¤

@uc
= ¡ @T

@uc
< 0

@KE¤

@w
=

@KE¤

@B
< 0

Two main results are worth pointing out :

(i) As in Baily’s reasoning, we might think of a simple direct e¤ect between the scrap-
ping age and the optimal stock of capital: The longer machines are kept, the larger the
optimal capital stock is. However, equation (3.16) shows that there exists in fact a nega-
tive relationship between KE¤ and a given scrapping age T . The underlying mechanism
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is the following. The higher the age of the operated machines, the bigger the operation
cost associated with those machines, and thus the higher the marginal productivity re-
quired for all machines whatever their age, by the optimality condition (3.9). This in turn
explains the smaller optimal capital stock given our decreasing returns assumption with
respect to capital. Therefore, Baily’s interpretation of the productivity slowdown does
not hold in our framework since an increase in the energy price eventually leads to more
capital.

(ii) As far as @KE¤
@Pe

is concerned there exists a direct e¤ect (for a given optimal scrapping
age, a higher initial energy price leads to a lower optimal capital stock) and an indirect
e¤ect (the optimal scrapping age decreases with P e thus leading to a higher optimal
capital stock). In our model, the indirect e¤ect prevails. Note that in the disembodied
capital case, only the direct e¤ect exists and thus, P e a¤ects the optimal capital stock in
opposite ways depending on the nature of the technical progress.

There are two major departures with respect to Baily’s setting, which help explain-
ing the registered di¤erence in outcomes. In Baily’s framework, obsolescence is simply
modeled through a decreasing e¤ective output (at a given constant rate) as capital ages.
First of all, scrapping is endogenous in our framework and thus, …nite scrapping time is
optimal. Second, in Baily’s set-up, embodied technological progress makes capital goods
less productive over time while in our model, technological progress is primarily energy
saving. This makes a crucial di¤erence and explains to a large extent the obtained op-
posite results. Obviously, embodied technological progress may work in both directions,
but as far as the energy-saving characteristic is accounted for, the implications of a more
costly energy on optimal capital accumulation are complex. The empirical evidence put
forward by Gordon (1981) to question Baily’s simple conclusions makes clear that this
feature is not merely a theoretical outcome.

Finally note that the user cost of capital only a¤ects the optimal capital stock through
the optimal scrapping age (Cf. Proposition 2 for the e¤ect of these parameters on T ).
Also observe that the wage rate negatively a¤ects the optimal capital stock which in turn
reduces the optimal labor use (see equation (2.7)). The proposition below sums up the
main comparative statics properties of the optimal capital stock :

Proposition 4 : The optimal capital stock is such that KE¤ = KE¤(uc; r; Pe; w; °)
(i) The optimal capital stock increases with the energy price level while the relationship

is reversed for a disembodied technical progress.
(ii)The optimal capital stock decreases with the wage and the user cost of capital.
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3.2. Investment dynamics, energy cost and technical progress

We turn now to investment dynamics at the interior solution of the …rm’s optimization
problem6. Assume that T (t) = T , for all t ¸ 0, and thus that the …rm can start from
t = 0 forever with its optimal capital stock KE¤. Investment patterns can be deduced
from equation (3.4): As the optimal capital stock and scrapping time are constant, dif-
ferentiation with respect to time of the latter equation implies that investment dynamics
are periodic of period T :

Proposition 5 : At the interior solution of the …rm’s optimization problem, the invest-
ment dynamics exhibit replacement echoes: I(t) = I(t ¡ T ).

The dynamics depicted in the proposition above are analogous to those pointed out
by Boucekkine, Germain and Licandro (1997) for general equilibrium growth models.
Assuming that the interior solution is implementable from t = 0, endogenous investment
cycles arise, reproducing the past behaviour of this variable. The …rm chooses the optimal
values for scrapping and the capital stock using forward-looking criteria, but investment
reproduces its past pro…le forever once the optimal replacement policy can be imple-
mented. There is however a big di¤erence with respect to the general equilibrium models
mentioned along this text. While the dynamics of investment in these models come from
the speci…c labor market requirements, here the periodicity property of investment comes
from the constancy of the optimal (e¤ective) capital stock, which derives itself from the
constancy of the optimal scrapping time. Indeed, for Leontief technologies with vintage
capital à la Solow et al. (1966), labor demand is given by

R t
t¡T (t) I(z) e¡°z dz with ° the

rate of labor-augmenting technological progress. If labor supply is constant, the clearing
condition in the labor market looks very similar to our equation (3.4) once the scrapping
time and the stock of capital are set equal to their optimal constant values. Di¤erentiation
with respect to time of both equations yields the same periodicity outcome. Thus, while
the periodic investment paths are obtained thanks to the constancy of labor supply in
the general equilibrium model, they are obtained in the …rm problem because the optimal
e¤ective capital stock is constant.

Compared with the disembodied technical progress case where investment occurs at
most once at the beginning of the program, we have a further propagation mechanism
induced by endogenous scrapping giving rise to replacement cycles. Taking account of
the embodied nature of the technical progress allows for an investment dynamics char-
acterization markedly more consistent with the observation. In particular, the obtained
periodicity property implies discontinuous investment patterns if investment is not con-

6We omit here the case where the interior solution is not implementable from t = 0. In such a case, a
…nite time adjustment period typically takes place, after which the interior solution holds forever. This
purely technical point is tackled in Boucekkine, Germain and Licandro (1997), for example, but it is not
necessary here to make the point.
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stant before the interior solution is reached: Investment will ”jump” at the beginning of
each cycle, a property that …ts much better the observation compared to the disembodied
technological progress case.

3.3. Robustness of echoes dynamics under embodiment

If the technical progress grows faster or slower than the energy price, results may only
be obtained when time goes to in…nity. We consider here the case where ° > ¹, the
other unbalanced case delivering trivial and uninteresting results.7Using (3.10) and since
limt!+1 e(°¡¹)t ! +1 and limt!+1 e(¹¡r)J(t) is …nite (because ¹ < r and ¹ < °), the
optimal scrapping condition may be written:

lim
t!+1 T (t) = lim

t!+1
1

°
ln

³
e(°¡¹)t

´
= lim

t!+1(1 ¡ ¹

°
)t ! +1:

Using equations (3.3) and (3.11) we may also obtain the optimal capital stock when
time goes to in…nity:

lim
t!+1 KE¤(t) =

0@ ®B³
rk(t)¡ :

k (t)
´

1A 1
1¡®

= KE¤0

which is constant if the user cost of capital is constant (rk(t)¡ :

k (t) = uc), which may
again be assumed. It might seem surprising that when technical progress grows faster
than energy price, the model generates a constant capital stock at the limit. Things look
clearer when rewriting the …rst order condition as follows :

®B [K(t)]®¡1 = P e e(¹¡°)t| {z }
MEC

e°T (t)

with MEC being the net marginal energy cost of a machine bought at t while the term
e°T (t) alters this marginal cost to account for the fact that the energy cost gets bigger as
active capital ages. MEC tends to zero as times goes to in…nity since ° > ¹ but e°T (t)

increases over time as scrapping rises and tends to in…nity. Indeed, the latter e¤ect o¤sets
the former as it may be immediately inferred from the expression of limt!+1 T (t) given
above. Therefore the marginal cost of the e¤ective capital stock is constant at the limit,
and so is the limit capital stock.

We now turn to the investment dynamics. At …rst, I¤(t) has to satisfy

lim
t!+1

Z t

t¡T (t)
I(z)dz = KE¤0

(3.17)

7It is not hard to prove that when ° < ¹, both the optimal scrapping time and the optimal capital
stock tend to zero.
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Assume that I(t) is continuous.8 Since I(t) ¸ 0 and T (t) is equivalent to (1 ¡ ¹
°
)t

with ¹ < °, the relationship (3.17) is only possible if limt!+1 I¤(t) = 0. However, it is
possible to detect a kind of echo mechanism at work in the short run even in this case.
Indeed, by time di¤erentiation of the de…nition

R t
t¡T (t) I(z)dz = K¤0

(t), with K¤0
(t) being

optimal in t, one gets:

I¤(t) =

Ã
1 ¡ dT (t)

dt

!
I¤(t ¡ T (t)) +

dK¤0
(t)

dt
:

It follows that contemporaneous investment is equal to the sum of a “destruction”
term, (1 ¡ dT (t)=dt) I¤(t ¡ T (t)), and the variation over time of the desired capital
stock. The destruction term includes the amount of capital driven out the …rm plus the
variation of the scrapping time. This destruction term is most likely to induce short-term
‡uctuations, exactly as the corresponding destruction term, namely I¤(t ¡ T ), works in
the balanced case ° = ¹. Especially if the scrapping time T (t) evolves smoothly over
time, as its long-run behaviour suggests, the echo mechanism will be the most important
determinant of the short run dynamics. Again this is not the case in the disembodied
technological progress counterpart model as one can check for the unbalanced case ° > ¹:
The two models share the same long-run desired capital stock (as T (t) tends to in…nity in
the embodied case) but there is no short-term destruction term when technical progress
is disembodied, and hence no corresponding echo ‡uctuations. In the embodied case,
replacement echoes are likely to strongly a¤ect investment dynamics in the short term,
although they should vanish in the long run.

4. Conclusion

In this paper, we have proposed a vintage capital model in a partial equilibrium framework
in which energy and capital are complements, and the returns to (e¤ective) capital are
decreasing. We study two versions of the model, without and with embodied technical
progress. Several lessons can be brought out from our analysis.

First this paper can be considered as a contribution to the vintage capital models
literature. Indeed, it deals with optimal capital accumulation in a vintage capital partial
equilibrium framework with a concave technology while the recent literature has focused
on general equilibrium set-ups with linear preferences and technologies. As a consequence,
we are able to de…ne an optimal (e¤ective) capital stock, and then to establish the period-
icity of the investment paths at the interior solution of the …rm’s problem, a feature that

8exept eventually at a countable set of points, the kind of patterns we may generate in the balanced
case. Note that this kind of functions is perfectly manageable with Riemann integrals, and the usual
theorems, notably the Newton-Leibniz formula, still apply in this case.
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typically comes from the labor market speci…cations in the general equilibrium related
models.

Second, this paper provides a simple theoretical set-up to analyze the interaction be-
tween the energy cost, the scrapping time and optimal capital accumulation. In particular,
it allows to assess the usual interpretations of the productivity slowdown based on the
energy cost. We show that in contrast to Baily’s argument, a rise in the energy price
may well increase the optimal capital stock if scrapping is endogenous and if technical
progress is embodied and energy-saving. If one has to account for more characteristics of
the embodied technological progress (i.e., not only the energy-saving property), the result
would be much more ambiguous, and in any case the relationship between the energy cost
and capital accumulation would be de…nitely much more complex than what is reported
in the traditional productivity slowdown literature.

Thirdly, the paper compares rigorously optimal capital accumulation patterns depend-
ing on the nature of technological progress. It is shown that under embodiment, optimal
investment is periodic in a balanced case and that this property is likely to be robust to
departures from this reference case. These investment cycles are driven by the so-called
echo principle, and it is not hard to show that this mechanism is consistent with an invest-
ment occurring by bursts as the data suggests. In contrast, when technological progress
is disembodied, investment occurs once at the beginning of the program and never again.
Nevertheless, this paper exploits only one hint to reconcile the observed investment dy-
namics with the one generated by models, namely embodiment. Another aspect to exploit
is the irreversibility of investment under uncertain environments. This latter approach
allows to explain periods with no investment but not the lumpiness of investment. Nev-
ertheless, introducing uncertainty in a vintage capital model, and allowing for re-using
previously scrapped machines in the case of good realizations of the uncertain variable
seems …rst to be a more realistic modeling and second to have the ability to generate
signi…cantly di¤erent investment patterns. Note that models of irreversible investment
under uncertainty have largely been developed in partial equilibrium frameworks, anal-
ogous to the one adopted in this paper. Thus, this paper may also be viewed as a …rst
step towards the introduction of an embodied technical progress in models of irreversible
investment under uncertainty.
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Appendix 1 : First order conditions associated with program (3.1)

The program (3.1) may be rewritten :

max
T (t);I(t)

Z t¡dt

0

(
B

"Z ¿

¿¡T (¿)
I(z)dz

#®

¡ Pe(¿ )
Z ¿

¿¡T (¿)
I(z)e¡°zdz ¡ k(¿)I(¿)

)
e¡r¿d¿

+
Z t+J(t)

t

(
B

"Z ¿

¿¡T (¿)
I(z)dz

#®

¡ Pe(¿)
Z ¿

¿¡T (¿)
I(z)e¡°zdz ¡ k(¿)I(¿ )

)
e¡r(¿¡t)d¿

+
Z 1

t+J(t)+dt

(
B

"Z ¿

¿¡T (¿)
I(z)dz

#®

¡ Pe(¿ )
Z ¿

¿¡T (¿)
I(z)e¡°zdz ¡ k(¿)I(¿)

)
e¡r(¿¡J(t)¡t¡dt)d¿

= max
T (t);I(t)

Z t+J(t)

t

(
B

"Z ¿

¿¡T (¿)
I(z)dz

#®

¡ P e(¿)
Z ¿

¿¡T (¿)
I(z)e¡°zdz ¡ k(¿ )I(¿ )

)
e¡r(¿¡t)d¿

since the …rst and third integrals do not involve any control variable. The …rst order
conditions are then :

k(t) =
Z J(t)+t

t

8<:B®

"Z ¿

¿¡T (¿)
I(z)dz

#®¡1

¡ P e(t) e¡°t

9=; e¡r(¿¡t)d¿

and

®B

"Z t

t¡T (t)
I(z)dz

#®¡1

= P e(t) e¡°[t¡T (t)]

from which (3.8) and (3.9) in the text may easily be deduced.

Appendix 2 : Proof of proposition 1

First, we show that f(J(t)) is strictly increasing and concave :

@f(J(t))

@J(t)
=

e(°¡r)J(t)

1 + uc
Pe

+ °
°¡r

[e(°¡r)J(t) ¡ 1]
> 0 since ° < r

@2f(J(t))

@J(t)2
=

(° ¡ r)
h
1 + uc

P e
+ °

°¡r

h
e(°¡r)J(t) ¡ 1

ii
¡ °e(°¡r)J(t)h

1 + uc
P e

+ °
°¡r

[e(°¡r)J(t) ¡ 1]
i2 e(°¡r)J(t) < 0

Second, using the expression of f(J(t)), it can be shown that T · T (t) · T , 8t.
Building sequences xn+1 = f(xn) and yn+1 = f(yn) respectively starting at x0 = T and
y0 = T , it can be shown that both sequences are monotonic and that y1 < y0, with
y1 = f(y0) = f(T ) while x0 < x1 with x1 = f(x0) = f(T ) which implies that both of
them converge to the …xed-point T .
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Appendix 3 : Proof of KE¤ < KD¤

First we, using both the expression (3.15) and (2.8) which respectively give KE¤ and
KD¤, it can be shown that

KE¤ ¸ KD¤ , e¡°T ¸ P e

Pe + uc
(5.1)

Second, the implicit expression for the optimal scrapping age provides some restriction
for T :

Since it has been assumed that r > °, we also have e¡rT < e¡°T . Using equation
(3.14), we then have the following inequality :

° ¡ r

°

"
1 ¡ e¡°T

Ã
r

r ¡ °
+

uc

Pe

!#
< e¡°T

, e¡°T <
Pe

P e + uc

which contradicts equation (5.1). We therefore deduce that we always have KE¤ < KD¤.
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