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Abstract

In this paper we critique the famous separation theorem (or mutual
fund theorem). We show that, if a portfolio contains stocks and bonds,
then bonds generate a dependence of optimal portfolio composition on
the investors’ temporal horizon. This dependence makes the theorem in-
applicable if all investors have different time horizons. Thus, we state a
new theorem explaining the behaviour of financial advisors recommend-
ing higher percentage of bonds for more risk averse investors. This new
theorem considers the separation theorem as a special case. Finally, we
propose a solution to the so called ”equity premium puzzle”.
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1 Introduction

The Capital Asset Pricing Model (CAPM) proposed by Sharpe (1964), Lintner
(1965), and Mossin (1966) and based on the mean-variance approach used first
by Markowitz (1952), has been for a long time the predominant normative and
positive theory for determining asset returns and prices in financial markets. In
particular, it has been used for solving problems such as the allocation of risky
assets, price predictions, creation of performance indices and market efficiency
tests.

One of the most important results of the CAPM is the so called separation
theorem concerning the portfolio allocation problem. The theorem states that, if
on financial market there exists a riskless interest rate for lending and borrowing,
then all investors should hold the same composition inside the risky subset of
their portfolio. Thus, investors’ decisions can be different only about the holding
percentage between the riskless asset and the risky portfolio.

A lot of empirical efforts have been made for testing the separation theorem.
Unfortunately, there does not exist a general consensus about its validity. For
instance, we refer to the works of Kroll, Levy, and Rapoport (1988) and of Kroll
and Levy (1992) which are, respectively, less and more supportive of separation
theorem.

However, a lot of papers (see for example Canner, Mankiw, and Weil (1997)
and Campbell and Viceira (1998)) find that financial advisors disregard the
separation theorem. In fact, it is well known that financial advisors suggest an
asset allocation having a ratio between stocks and bonds which is higher for more
risk averse investors. The model presented by Campbell and Viceira (1998) is
consistent with this conventional portfolio advice but it fails to complain with
the separation theorem.

According to us, the most important source of trouble is the presence of
both stocks and bonds into investors’ portfolios. In particular, in the most
popular asset allocation strategy, investor’s wealth is first allocated to indices
corresponding to diverse asset classes and then allocated to individual assets
using appropriate models for each asset class. Accordingly, two main portfolio
strategies have been separately developed for stocks and bonds. In particular,
for stocks the most common used technique is the mean-variance approach, while
the hedging theory for bonds is based on the principle of equating a weighted
mean of coupon maturities (duration) to a particular time that we will call
financial horizon (for a review of this approach see Redington (1952), Fisher
and Weil (1971), Cox, Ingersoll and Ross (1979), Fong and Vasicek (1984),
Barber and Copper (1997)).

This expensive method of two-stage decision has been eluded in the optimal
stochastic control approach (see Merton (1969, 1971) and Poncet and Portait
(1993)). In fact, because of a problem of market completeness,’ in these models
no more than one bond is considered. In such a framework, it becomes im-

Lksendal (2000) and Bjork (1998) offer an interesting survey about the problem of market
completeness.



possible to apply the technique of duration matching because of the lack of a
sufficient number of bonds.

A more interesting approach to the problem of unifying the optimal portfolio
rules for a set of stocks and bonds is presented by Konno and Kobayashi (1997).
The authors determine the allocation of the investor’s wealth to each asset in one
stage by solving a large-scale mean-variance model. Unfortunately, according to
us, they do not pay enough attention to the main economic difference between
stocks and bonds: bonds have a maturity date while stocks have not. So,
according to us, it is not appropriate to use the same risk measure for both
stocks and bonds.

In this work, we use the Konno and Kobayashi approach and we maintain
the framework of quadratic programming but we prefer to keep separate the
risk measures for different assets. In particular, we use a result presented in
Barber and Copper (1998). These authors show that the usual linear program-
ming problem for immunizing a bond portfolio against particular interest rate
shifts, can be generalized to a quadratic programming problem immunizing the
portfolio against any interest rate shift.

Because in our model we maintain the duration approach, we obtain an
optimal portfolio depending on investors’ financial horizon. In our framework
the separation theorem stays valid only if all investors have the same financial
horizon. Thus, our result contains the separation theorem as a particular case.

Furthermore, the model developed in this work is consistent with the idea
that in the very long run there are no reasons for holding bonds. In fact,
when the investor’s financial horizon tends to infinity, we find that the optimal
amount of wealth invested in bonds must be equal to zero. In this way, we
are able to reconcile the inconsistencies stressed by Canner, Mankiw, and Weil
(1997) and Campbell and Viceira (1998). In particular, we argue that the asset
allocation strategy suggested by financial advisors is consistent with our model if
the financial horizon can be considered as an indicator of investors’ risk aversion.
This idea is supported by Epstein and Zin (1989).

As we have already underlined, our optimal ratio of bonds to stocks is a
function of financial horizon. Furthermore, thanks to some algebraic considera-
tions and to a numerical example, we find that this function is not monotonic.
In fact, there exists a financial horizon maximizing the bonds to stocks ratio.

This characteristic allows us to explain at least a component of the well
known equity premium puzzle underlined for the first time by Mehra and Prescott
(1985). In particular, if investors’ financial horizon stays around its value im-
plying the maximum ratio of bonds to stocks, then any variation in the risk
aversion degree always implies the same behaviour on financial market: in-
vestors sell bonds. In this way, the great difference between bond and stock
returns (known as equity premium puzzle) does not vanish as a simple arbitrage
argument could imply.

While our work concentrates on the different risk measures for stocks and
bonds, we underline that previous attempts at solving the equity premium puz-
zle have been based on: (i) modeling market crashes (Rietz (1988) and Brown,
Goetzmann, and Ross (1995)), (ii) modeling utility functions with risk aver-



sion index and elasticity of substitution which are unrelated (Weil (1989), and
Epstein and Zin (1989 - 1990)), (iii) restating the calibration methodology for
describing first and second moments of asset returns (Cecchetti, Lam, and Mark
(1993)), and (iv) considering the risk related to the inflation rate (Bagliano e
Beltratti (1997)).

Throughout this work we consider a competitive financial market without
frictions, liquidity constraints, taxes or commissions on asset transactions.

The paper is structured as follows. In Section 2 we recall how to derive, in a
mean-variance framework, the result of the separation theorem. In Section 3 we
expose briefly the classical immunization theory for a bond portfolio, based on
the weighted mean of its coupon flow (the so called duration). Section 4 exposes
two different approaches that can be used in order to solve a simultaneous
problem instead of the two ones presented in the previous sections. Accordingly,
by solving a unique optimal portfolio problem, Section 5 presents our main
results: the confutation of the separation theorem and a proposal for solving
the equity premium puzzle. Section 6 concludes. A numerical simulation can be
found in the Appendix.

2 The classical risk minimization model: the
mean-variance approach

The fundamental idea of the mean-variance approach is to describe the be-
haviour of asset returns through the two first moments of their distribution
(Markowitz (1952)). The mean represents the expected return while the stan-
dard deviation shows how values are spread out around the mean. From this
point of view the standard error can be a measure of risk only if we call ”risk”
the possibility that asset return goes far from its mean value (in any direction).

Accordingly, we can state that a risk averse investor wants to minimize the
standard deviation (or the variance) of his portfolio given a desired expected
return. This result implying only the two first moments of return distribution
can be obtained if we consider an investor having quadratic utility function
in his wealth (the so called "mean-variance utility function”). On the other
hand, there exist precise hypotheses on the density functions of asset returns
(see Chamberlain (1983)) implying mean-variance utility functions for all risk-
averse expected utility maximizers.

Furthermore, de Finetti (1952) found that the risk premium for a small
risk can be approximated by its variance. Let 7 (h) denotes the risk premium
associated to the risk he where € is a random variable such that E [g] = 0. If the
investor has wealth Wy, and utility function « (-), then it must be true that:

Elu(Wo + h)] = u(Wo — 7 (h)).

By differentiating two times this identity with respect to h we have that,



because 7 (0) = 0, and 7’ (0) = 0, thus:

0=~ myE ]

If we expand 7 (h) in Taylor series around h = 0, we obtain:
7 (h) = %h%” (0) +0 ().

This is the so called Arrow-Pratt approximation allowing us to disentangle
the characteristics of risk and preferences to evaluate the impact of the former
on welfare.

Konno and Kobayashi (1997) argue that a mean-variance model can, in
principle, be applied to any financial asset as long as one can adequately estimate
the expected rate of return and correlation coefficients of the rate of return of
each asset. Nevertheless, we outline that, in this framework, the well known
Borch-Feldstein paradox (Borch (1969) and Feldstein (1969)) arises when an
asset return has a positive asymmetry. In fact, in this case, if we minimize its
variance, then we are minimizing the gain possibility and not the risk. The
mean-variance approach is paradox-free if and only if the indifference curves on
the mean-variance axes have a slope lower than 1 or, alternatively, the Sharpe
index for investor’s portfolio is greater than 1.

So, under these hypotheses, we recall the main steps for reaching the sep-
aration theorem according to which the composition of optimal portfolio can
be divided into two funds. In particular, if there exists a riskless asset, one of
the two funds contains only the riskless asset, while the other one contains only
risky assets.

If k is the number of assets on the financial market (or, alternatively, the
number of assets the investor wants to invest in), 2 € R¥*! contains the percent-
age of wealth invested in each asset, u € R¥*! contains the expected return of
each asset, ¥ € R¥** is the variance and covariance matrix of asset returns, m
is the return the investor wants to obtain from his portfolio, e € R*¥*! contains
only 1s, and W is the investor’s wealth (in this framework we can put W =1
without loss of generality), then the one-period variance minimization problem
can be written as follows:

minz’'Yx  s.t.
x

'u=m, (1)
’e=1.

The first constraint indicates that investor wants to obtain a given return
(m) from his portfolio while the second constraint only means that investor
cannot invest more than his wealth.

Since the matrix X is positive semi-definite, then the first order conditions
for this problem are necessary and sufficient for a minimum.



It is simple to show that the solution to problem (1) is:?

* -1 e -1 - 1
= Y e p Y S e p] m | = (2)
i (€N 3 Xty 1 _e’E_l,u Wy
= X ( N N € m+X N =+ N )

where A = (¢/S7te) (WS 1p) — (u’E_le)z. We can see that each component
x} of vector z* is an affine function of return m. This means that the portfolio
variance (02) is a quadratic polynomial in m. Analytically:

/E_le 6/2_1 /2—1

A m? —2 A'um+'uA'u, (3)
and graphically, on the o, m plane, we obtain a branch of an equilateral hyper-
bola.

Now, if we introduce a risk-free rate (r) at which the investor can lend and
borrow any amount of money, then the constraints in problem (1) change while
the objective function is unaffected. In particular, the mere budget constraint
disappears because it is possible to invest more than wealth by borrowing some
money. Thus, the new problem is:

0_2 — QE*/E.T* _

minz’'Yzx  s.t.

4)

x
dp+(1—2a'e)r=m,
and its solution is:

wi=[(n—re) S (u—re)] S (u—re)(m—r). (5)

In this case, the variance of the optimal portfolio is given by:
0% =g¥Yar = (m— r)2 [(,u —re) 2 (pu— re)] -t , (6)

which is no more a branch of an equilateral hyperbola but a straight line on
the o,m plane. It is fundamental to stress that this straight line is tangent
to the locus represented by equation (3). Thus, we have two ”critical” points
in the risk-return plane: the point corresponding to the riskless asset having
coordinates (0;r) and the tangency point between the loci (3) and (6) having
coordinates (op;mp).> The portfolio referring to the point (o p;mp) will be
called "market portfolio”.

2We recall that the solution to the quadratic problem: min { 2/ S =z |st. ' v =
z \1xk kxk kX1 1xk kXg
. . . . _ _1.3—1
1d where g is the number of lincar constraints, is as follows: z = S~ 1w ('U’S 11)) d'.
xXg

3Basy computations show that:

(WS lp) —2('S p)r+ ('S te) 2
[(e2~1y) — (eE~te)r] (p—re) 71 (n—re)’
(W2 tp) — (5t r

e’ —(e¢/z=—te)r
/3 1,“ /-1

ap =

mp =




We know that any point belonging to a straight line (like (6)) can be reached
through a linear combination of two given points on the same line. In this sense,
we can say that any optimal portfolio can be represented as a linear combination
of the riskless asset and the market portfolio.

Thus, we have reached the result (see, for instance, Merton (1990)) of the
well known:

Theorem 1 (Separation theorem) : If it is possible to lend and borrow at
the same risk-free rate, then all investors will hold the same composition for their
portfolio of risky assets and their choices will be different only for the holding
percentage between the riskless asset and the risky portfolio.

This kind of result stays valid also without the riskless asset. Nevertheless,
in this case, the theorem must be expressed as follows (see Merton (1990)):

Theorem 2 Given k assets, there exists a unique (up to a non-singular trans-
formation) pair of "mutual funds” constructed from linear combinations of these
assets such that individuals will be indifferent between choosing from a linear
combination of these two funds or a linear combination of the original k assets.

We underline that, if asset prices are log-normally distributed, then these
theorems stay valid also in the optimal stochastic control approach where, in
particular, the optimal portfolio composition is identical to (5) if the represen-
tative investor has a log-utility function (see Merton (1969, 1971)).

Furthermore, under the assumption of log-normal distributed asset prices,
the separation result is independent of preferences, wealth distribution or time
horizon (Merton (1971)).

3 The classical immunization theory for a bond
portfolio

During our work we will refer to the following:

Definition 3 A bond portfolio is immunized against a liability, occurring at a
certain time, if its value, at this time, is at least equal to the value of liability.

This is the most common definition of ”immunization” (see Fisher and Weil
(1971) or Barber and Copper (1997)). According to this definition, the easiest
way to immunize a portfolio is to buy only a zero coupon bond with the same



maturity date as the time at which the liability is foreseen. Nevertheless, we
cannot be sure that this kind of zero coupon bond exists. If there are only
coupon bonds or zero coupon bonds with maturity dates different from that of
liability, then we must find a right composition immunizing investor’s portfolio.

The value of a coupon bond (at time 0) is given by the present value of all
coupons according to the following formula:*

T

V=> Ci(1+7(0;0,1)7", (7)

t=0

where C} is the coupon paid at time ¢, T is the time to maturity (generally Cr
equals the bond nominal value), and r(¢; s, T) is the forward interest rate, fixed
in ¢, for the period from s to T (t < s < T). If t = s, then r (¢;¢,T) is a spot
rate.

If all coupons can be reinvested at the same interest rates fixed in 0, then,
at time H, the value (V') of a portfolio containing only one bond is given by the
formula:

V(H,r) =Y Ci(1+7(0;t,H)".
t=0

The immunization problem consists in choosing the right time H* at which
it is optimal to sell the bond. Because investor’s portfolio must be immunized
against changes in r, then H* is computed as the time at which the value
V (H,r) does not change with respect to the interest rate. Thus, if we consider
constant interest rates and coupons, the immunization condition can be written
as follows:

) T
V(H7r)=> (H-t)C;(1+n)"" =0,
0

ar -

from which we have:

T
StC (1+7)"
H =22 (8)
SC(1+ r)ft
i=0
Accordingly, the optimal time horizon is equal to the weighted mean of
times at which coupons are paid, where the weights are given by the discounted
coupons. This weighted mean is called duration.
It is easy to show that this result can be extended to the case in which
interest rates are not constant. In particular, we recall the Fisher and Weil’s
theorem (see Fisher and Weil (1971)):

1If we consider a continuous-time interest rate 8§, then our discount factor is:
t
exp (f Jo 6(0;5) ds).



Theorem 4 Given an interest rate term structure evolving according to parallel
shifts, then a portfolio is hedged with respect to a liability occurring at time H,
if:

- the portfolio present value equals the present value of the liability;

- the portfolio duration equals H.

We underline that Redington (1952) had already state this same theorem for
a flow of liabilities. Unfortunately, his theorem is valid only for little changes in
the interest rate structure. Nevertheless, the limitation to have only one liability
can be relaxed because multiple liabilities can be handled as an extension of the
single liability case by immunizing separately for each liability cash flow (see
Bierwag, Kaufman, and Toevs (1983)).

Furthermore, a more general result can be obtained if we consider not only
parallel shifts on interest rates but also convex shifts.”> We recall the following
(see for instance Moriconi (1994)):

Theorem 5 (Hedging General Theorem) : Given an interest rate term
structure evolving according to convex shifts, then a portfolio is hedged with
respect to a sequence of liabilities if:

- the portfolio present value equals the present value of all liabilities;

- the portfolio duration equals the duration of liabilities;

- the MAD (mean absolute deviation) index for liabilities is not greater than
the MAD index for portfolio, at each time of payment.’

As a corollary we have the:

Theorem 6 (Preservation Theorem) : A bond portfolio, hedged at time t
according to the hedging general theorem, stays hedged until an interest rate shift

OCCurs. 7

We underline that this preservation theorem is no more valid if we consider
a stochastic interest rate term structure. In fact, in this case, we can immunize
the investor’s portfolio only instantaneously (Barber and Copper (1997)).

A shift Y (s) on the interest rate structure is convex if the shift factor f(s) =
exp‘(f J7 Y (u) du) has a negative second order derivative, i.e. Y2 (s) > aig_gs)
6The third condition can be algebraically written in the following way:

k T T
@y [t=h|Cii (14T 2> [t—h[L(1+7)"", Vh=0,1,2,...T,
i=1 t=0 t=0

where k is the number of bonds in the investor’s portfolio, x; is the percentage of wealth
invested in asset 4, Cj ¢ is the coupon paid at time ¢ on bond 4, and Ly is the liability due at
time ¢.

"The preservation theorem is valid also for Fisher-Weil’s theorem.



In this context, the bond risk is represented by the changes in its value (V)
due to interest rate shocks. If we consider a small shock in 7, then the percentage
change in V' can be written in the following way:

XT:tCt (]. + T)it
=—(1+n)
SO (1 +7r)"

t=0

ov/or
V

Thus, we have obtained the well known result according to which higher the
duration higher the volatility of bond values. That is to say that long duration
bonds react more widely to interest shocks than short duration bonds.

4 How to unify the stock and bond problems

In the previous sections we have shown that the risk reduction policy implies
the solution of a quadratic problem for stocks and of a linear system for bonds.
Thus, the most common portfolio strategy is to solve a two stage problem: in
the first stage the wealth percentages to be invested in stocks and bonds are
computed and, in the second stage, the optimal composition of each portfolio
subset is determined.

Our work is aimed at eliminating this double choice. The same problem
is considered by Konno and Kobayashi (1997) who determine the allocation of
the investor’s wealth to each asset in one stage by solving a large-scale mean-
variance model. They underline that the return structure of bond changes as
a function of time (see also Barber and Copper (1997)) and, nevertheless, they
do not render explicit this dependence.

Thus, in the following sections, we use the Konno and Kobayashi approach
maintaining the framework of quadratic programming but we prefer to keep
separate the risk measures for different assets. For stocks we use the classical
mean-variance approach and for bonds we use the technique of duration match-
ing. By using the duration approach, the model we present is able to point out
how optimal portfolio composition depends on investors’ financial horizon.

In the following sections, we expose two possible ways to transform the linear
programming problem for bonds into a quadratic programming problem. For
this purpose, a result presented in Barber and Copper (1998) is useful. These
authors show that the usual linear programming problem for immunizing a bond
portfolio against particular interest rate shifts, can be generalized to a quadratic
programming problem immunizing the portfolio against any interest rate shift.

4.1 The minimax risk strategy

The most common immunization techniques are based on the assumption that
interest rate shifts have a precise behaviour (parallel for Fisher and Weil’s the-
orem or convex for the General Hedging Theorem). Barber and Copper (1998)



consider a complete set of feasible interest rate shifts and they propose to choose
the portfolio minimizing its maximum sensitivity over this set of shocks (mini-
maz strategy).

They consider a set of feasible shocks consisting of all directions (that is to
say they present the situation for an investor having no prior information) and
they find a result that is very interesting for our purpose. In their framework,
if the portfolio cash flow stream is discrete, then the minimax strategy requires
minimizing a quadratic form in a symmetric positive definite matrix. This result
is exactly what we need in order to integrate stock and bond problems. Thus,
for our purpose, the model proposed by Barber and Copper gives strong bases
to the idea of using quadratic programming even for the immunization of a bond
portfolio.

The most important steps for reaching this minimax strategy are as follows.
Let « be a Lebesgue-Stieltjes measure on the real number line standing for the
cash flows for a portfolio of assets and liabilities. If we consider any shift on the
forward interest rate structure whose direction is f (¢) and whose magnitude is
x, then the evolution of the current instantaneous forward interest rate can be
represented as:

6(t,x) =060+ f(t)x

Accordingly, after a shift the present value of a monetary unit due in ¢ is

given by:
B (t,z) = B(t)exp < / f(s >

where B (t) = exp( fo s,0) ds) Thus, the present value of cash flows is
B(t) = [ Bdo and the portfolio value after a shift is:

V(x):/ exp< /f ds)dﬁ()

The authors compute the local change in the portfolio value for a shift in a

given direction:
- [ swrsma
=0 0

then, they use the Cauchy-Schwarz inequality:
‘ aV (z)

D < s,

=0

and, finally, they state the following proposition:

8@ //mmst)dﬁ()dﬁ()-

10



Thanks to this result they claim that the minimax strategy can be expressed
as the following minimization problem (where © is a set of feasible cash flows):

mg{/w /Ooomin@,t)dﬁ(s)dmt)}, 9)

and we can immediately see that if the cash flow stream is discrete, then this re-
sult consists in minimizing a quadratic objective function based on a symmetric
positive definite matrix.

4.2 The maximum diversification strategy

The minimum variance problem for stocks implies a diversification in portfolio
composition. This diversification, in fact, is able to reduce the non systematic
risk of the investor’s portfolio. Thus, even for a bond portfolio, we can use
an objective function allowing to obtain a diversification result. This kind of
function must have the form of a weighted mean of the square of portfolio
composition. The weights can be represented, for instance, by bond prices and,
in this case, the diversification problem can be written as follows:3

miny’Agy  s.t.
y

y'AyD =HL[1+r(t,H) HY, (10)
y'V =L[1+r(t H)] Y

where y € R*5*! contains bond portfolio composition, ¢ € R¥5*1 contains bond
prices, Aq € RF5>E5 {5 a diagonal matrix containing the elements of vector g,
V € Rks>1 contains bond values V; (as in formula (7)), Ay € RFsxks s
diagonal matrix containing the elements of vector V, D € R*¥s*1 contains bond
durations D; (as in formula (8)), L is the liability occurring at time H and,
accordingly, L[1 4 (¢, H)]~(# =% is the liability present value.

The two constraints in problem (10) are the duration constraint and the bud-
get constraint respectively. The solution to this problem!? is given by formula
(2) where we have to consider the following changes:

p — AyD,
v (H-1)
e = - [1+47r(t, H)] ,
m — HL[lJrr(t,H)](H_t),
¥ - A,

We underline that if there were transaction costs, then this diversification
should not be optimal but, since in our analysis there are no market frictions,

kp
8Written in scalar notation the objective function is: > qiyiz.
i=1
9If the financial market is efficient, then V = q.
10Also in this case the first order conditions arc necessary and sufficient for a minimum.
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then this result can be considered consistent with the approach used in the
previous sections.

Thanks to above-mentioned results, we can argue that the linear program-
ming problem for a bond portfolio can be restated as a quadratic programming
problem. This result allows us to put together the stock and bond problems
in a very easy way. The following section analyzes the solution to the unified
problem.

5 An asset allocation problem

Canner, Mankiw and Weil (1997) consider the allocation problem for an investor
who can hold cash (a riskless asset), bonds and stocks. They find that the
investment strategy commonly used by financial advisors is inconsistent with
the separation theorem. In particular, financial advisors recommend aggressive
investors to hold a lower ratio of bonds to stocks than conservative investors.
Instead, according to the separation theorem, the optimal portfolio allocation
between stocks and bonds should be the same for all investors.

Here, we analyze the same problem as these authors. We consider a subject
who can invest his wealth in stocks, bonds, and a riskless asset. The riskless
asset return (r) is the rate at which investor can lend and borrow any amount of
money. Furthermore, we suppose investor wants to achieve the two objectives of
minimizing the variance of the stock subset of his portfolio and of immunizing
the bond subset of his portfolio against a liability occurring at a given time H.

Thus, we define our framework as follows:

Definition 7 The M-F-W (Markowitz-Fischer-Weil) framework is the set of
hypotheses:

1) investors can lend and borrow any amount of money at the same risk free
interest rate (r);

2) investors minimize the variance of the stock subset of their portfolio;

3) investors immunize the bond subset of their portfolio with respect to a
liability occurring at a given time H, under parallel shifts of the interest rate
structure;

4) there are no short selling constraints.

Accordingly, in our framework the investor has two different objective func-
tions for stocks and bonds. We use the well known property according to which
we can obtain a Pareto optimal result by optimizing the weighted sum of these
functions (see for example Duffie (1996)). If bond and stock subsets have the
same importance for investors (i.e. they have the same weights in the objective
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function), then the optimization problem can be written in the following way:

. P 0 x
riuyn[a: y][g F][y] s.t.

w—pr Y _
[ y/]{A};n—qr AvD—Hq]_[mr 0]

where the variables not already defined in the previous sections are as follows:
x € R¥4*1 contains stock weights, p € RF4*1 contains stock prices, I' € R¥s>ks
is a symmetric and positive semidefinite matrix (measuring the risk of bonds),!*
and 1 € RF5x1 contains bond returns.

In problem (11) we have formulated the return constraint for stocks and
bonds together and we have maintained the duration constraint for bonds.

We underline that our hypothesis of equal importance for stock and bond
objective functions is just made for simplifying the computations. In fact, the
case of different weights for stocks (A4) and bonds (Ag) can be implemented
in an easy way by considering the following matrices: S =As¥ and T = AgT.
Thus, in the following analysis we put Ay = Ag = 1 without loss of generality.

By solving the quadratic problem (11) we have:!?

(11)

Proposition 8 The optimal portfolio compositions for stocks (x*) and bonds
(y*) in the M-F-W framework are given by:

[ z* } 1 { FH)'T 1 (H) (A—Z"pr) } (m — )
y* 6 | [F(H) T f(H)I-T'f(H) f(H)'] (B—T""qr) ’

(12)

where I is the identity matriz, A =X 1A,u, B=T"1Ayn, f(H) = AyD—Hg,
and, finally, 6, is the determinant of the following 2 x 2 matrix:

[A’EAJrBTB(p’Aq’B)rJr(p’E_qurq’F_lq)rQ (B’ qJT- 17’) f(H)
f(H)' (B=T""qr) f(H)' T f (H)

We can see that the optimal portfolio compositions z* and y* are linear func-
tions of m and are proportional to the ratio between two quadratic polynomials
in H.

We have to underline that the vector function f (H) has a precise meaning:
it measures the distance between the duration of each bond and the investor’s
financial horizon H. This distance can be negative and it is measured in ”time-
money” intensity. From the second constraint in problem (11)!* we can see that
the optimal composition y* must equate this distance to zero.

11 As we have shown in the previous section, matrix I' can stands for the diagonal matrix of
bond prices or for the discrete time version of Barber and Copper matrix in formula (9).

12The following proposition can be checked by applying the formula in the footnote 2 to
problem (11).

13 This constraint can be written as: ' f (H) = 0.
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5.1 The portfolio with one stock and one bond

In this section we point out the case in which the objective function no more
matters. In problem (11), we have two equality constraints and so, if there exist
only one bond and one stock, then the objective function is irrelevant. Indeed,
the solution can be found just by inverting the matrix of the constraints and
the problem becomes as follows:

7 s L=

T = p1 ’EZL_KT) ]
Y1 0

whose solution is:

Because we cannot match the duration of the unique bond with the duration
of other bonds, it is senseless to buy this bond (unless its duration equals H,
and in this case the investor must choose the asset with the highest return). The
optimal stock weight has just to satisfy the constraint: z1py (u; —r) =m —r.

5.2 The separation theorem: only a particular case

In order to check if the separation theorem holds also in our framework, we can
write the optimal portfolio composition as a linear function of the return m, in
the following way:

:1;,*
{ v } =oa(H)+ 6(H)m,
where the Greek coefficients are computed from matrices in (12).

By representing in the same way the case in which there does not exist any
risk-free interest rate, we obtain the same qualitative result that can be written
as:

Given a fixed value for H (i.e. all investors have the same horizon), then
the coefficients of this two linear functions are constant. Thus, as in Se/ction
2, we can find a unique value of m for which the two vectors [ oy ] and

/
[ UC<;, yt;, ] coincide. This value is the abscissa of tangent point between loci

(3) and (6) and it is given by:

_ a(H) —a, (H)
B ()~ 5 (H)’

mp
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and, accordingly, the market portfolio has the following composition:

a(H) — o, (H)
B\ (H) — B(H)

o (H) — o, (H)

B\ (H) — B (H)’
(13)

[ 7k ] — o (H) + B (H) — . (H) + By, (H)

Yp

In this case, we have reached the result of the separation theorem for which,
given the return mp of the market portfolio, all investors choose the same
composition for their risky portfolio. Nevertheless, this result is true only if H
is fixed. In fact, we can see that mp is no more a function of given parameters
but it becomes a function of the preference parameter H. So, we can state the
following:

Proposition 9 (General Separation Theorem) : In the M-F-W framework
all investors hold the same composition (equation 13) for their stock and bond
portfolio only if they have the same investment horizon (H) for their bond port-
folio.

In this way, we claim that the original separation theorem is only a partic-
ular case of a more general one. It holds if we divide investors into different
categories according to their horizon H, and take different optimal portfolio for
each category.

5.3 Asymptotic behaviour of optimal portfolio composi-
tion

In this section we compute the algebraic solutions for the two limit cases con-
cerning the horizon H:

a) H = 0,
b) H — .

After long but easy computations we obtain the following results:

lim {x ] - U ; (14)
H-0| ¥ g(r)D'AyT—IAYD — (A, — ¢'r) T 1Ay D]
. D'AyT='Ay DS~ (App — pr)
[D'AyT~'Ay DI =T Ay DD'Ay | T (Agn —qr) |’
lim {gc* ] = mor 3 (15)
H—oo | Y g(r)¢T—1q — [(D'T — ¢'r)T—1q]
_ ¢T gt (App —pr)
[T gl =T qq'| T= (Agn —qr) |’
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where:

g(r) = ,u'ApE_lApu + n’AqF_lAqn - Q(p’E_lAp,u — qT_lAqn)r +
+(@P'S p+ T g)r?,

By comparing the two limit cases (14) and (15) we see that they can be
equal only in a very particular case. In fact, formulae (14) and (15) coincide if:

q=AvD,
D =T"1An,

but, since in an efficient market the condition ¢ = V must hold, then the first
equation of the system becomes D = e, that is to say that all bonds should have
a duration of one period. This condition is very unlikely. Accordingly, we can
state:

Proposition 10 In the M-F-W framework the investment strategy for an in-
vestor with infinite time horizon equals the strategy for an investor with zero
time horizon only if each bond has one period duration.

In the following section we will investigate the sign of portfolio compositions
(14) and (15) and we will try to answer the question: does it exist a time H for
which there is no interest in holding bonds?

5.4 The investment horizon as a measure of risk aversion
(a solution to the asset allocation puzzle)

We have not yet introduced any ”risk aversion” measure, nevertheless, we can
find in our framework something that can be viewed as an indicator of risk
aversion: the variable H. In fact, it is quite intuitive to imagine that:

1. investors who are more risk averse choose little H, that is to say they
prefer to immunize their portfolio for a short period of time in order to
have their money available as soon as possible;

2. investors who are less risk averse choose big values for H because they
are less afraid of the economic future and they are more willing to bet on
higher and riskier returns.

We underline that, under the hypotheses of the M-F-W framework, the
horizon H is the time at which the portfolio uncertainty is resolved. In fact,
the bond subset of the optimal portfolio is immunized until the time H. Thus,
we can find a support for the hypotheses in points 1. and 2. in the work
of Epstein and Zin (1989). They develop a class of recursive preferences over
intertemporal consumption permitting risk attitudes to be disentangled from
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the degree of intertemporal substitution. The authors use a utility function of
the form:

a

U (c,2) :é [cp—l—ﬁ(ozz)?% "

where c is the present consumption while z is the present expected value of future
consumption. The positive parameter « can be interpreted as a risk aversion
parameter and p as an index of intertemporal substitution. Epstein and Zin find
that the curvature of U (¢, z) is the determinant of attitudes towards timing with
indifference towards timing prevailing only if U (¢, z) is linear, while early (late)
resolution is preferred if « is less (greater) than p. This means that higher the
risk aversion lower the investor’s time horizon.

From equation (12) we can compute the amount of money invested in stocks
and bonds: respectively z*'p and y*'q. Then, in order to explain the investor’s
behaviour analyzed by Canner, Mankiw and Weil (1997), we should find a ratio
of bonds to stocks decreasing with respect to H. We call this function ”prefer-
ence for bonds” (Pp) whose value can be computed from (12) as follows:

¢y ¢ [fH)TFH)I-T 1 f(H) f(H)] (B-T 'qr)

e f(H)'T=1f (H)p' (A= S"pr)

Pp (H)

Because we want to outline the dependence of Py on the investor’s horizon
H, then this ratio can be simplified in the following way:

ng nqg+neH +ngH?
Pg(H)=— — 16
5 (H) ds  di+doH +dsH?' (16)

where:
ny = (¢T'AyD)D'AVT YA — qr),
ny = —[(¢T'AyD)d + (T 'q)D'Av|T (Agn — gr),
ng = (¢T7'Q)dT~ (Agn — qr),
di = D’AVF_lAVDp’E_l(Ap,u —pr),
dy = —[D’Avf‘*lq + qT’lAvD]p’E’l(Apu — p’)“),
d3 = (¢T'qp'S™ (App —pr).

Obviously, if Pg > 1 then the investor prefers bonds in the sense that he
invests more money in bonds than in stocks. On the contrary, if Pg < 1 then
the investor puts more money in stocks than in bonds.

It is interesting to underline that the ratio Pg does not depend on m, and
this means that the relative amount of money that must be invested in bonds
with respect to stocks is not affected by the return the investor wants to obtain
from his portfolio. Accordingly, we can state:
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Proposition 11 In the M-F-W framework the ratio of wealth invested in bonds
to wealth invested in stocks (q'y*/p'x*) is independent of the rate of return
investor wants to obtain from his portfolio (m).

Unfortunately, the derivative of Pp with respect to H has not a clear sign
(and no more the second derivative). In fact, this indetermination can be seen
in the following formula:

8PB - (7’L1d2 — n2d1) + 2 (7’L1d3 — n3d1) H + (7’L2d3 — n3d2) H2

oOH (dy + doH + d3H?)?

)

from which we are not able to determine if the function Pg (H) is monotonic.
Thus, it is interesting to check the behaviour of index Pg in the two limits
H —0and H — oo . From (16) we obtain:

: _ g M
A P = ds  d (17)

gT (A —gr) (¢T7'AyvD) D'AyI~ (Agn — qr)

YT By —pr) (DA TAUD) pE T (At —pr)’
; — s _ M3 _
g Ppo= g =0 (18)

By recalling our result in Proposition 10, according to which the two lim-

its lim [ R Viad ]/ and lim [ ¥y ]/ cannot be equal unless each bond
H—0 H—oo

has the same one period duration, then result (17) implies that: fIIimOPB # 0.

Accordingly, we can state:

Proposition 12 In the M-F-W framework when the investor’s financial hori-
zon equals zero (H = 0) he never holds an arbitrage bond subset portfolio

(q'y* #0).

Obviously, Proposition 12 must not be misinterpret: when we state that for
H = 0 it is true that ¢'y* # 0, we are not stating that ¢’y* is high enough to
be non-negligible.

Result (18) means that if the investor does not care about his financial
horizon (that is to say he does not want to obtain a certain amount of money
at a fixed date), then he puts all his money in stocks and uses an arbitrage
portfolio for bonds. Thus, we can state:

Proposition 13 In the M-F-W framework if the time horizon of an investor
tends to infinity, then he holds an arbitrage bond subset portfolio (¢'y* =0) and
he invests all his wealth in stocks.
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There is an obvious consideration to underline: Proposition 13 holds if it is
possible to buy short, if not we can restate the proposition in the following way:

Proposition 14 In the M-F-W framework, if it is not possible to buy short
and if investor’s time horizon tends to infinity, then he does not hold any bond
(y* =0) and he invests all his wealth in stocks.

Accordingly, for an investor whose financial horizon tends to infinity, we can
restate the maximization problem (11) in the following way:

. P > 0 T
rinyn[x Y ][Q F}[y} s.t.

App—pr 0
[ y/][Azﬁ;—qT q}_[m—r 0],

(19)

where we have substituted ¢ for Ay D — Hg.

Now, thanks to Propositions 13 and 14, we are able to explain the asset
allocation puzzle found by Canner, Mankiw and Weil (1997). They claim that
financial advisors suggest aggressive investors hold a lower ratio of bonds to
stocks than conservative investors and this advice is inconsistent with Theorem
1 (separation theorem). If H can be considered as a good proxy for the investor’s
aggressiveness, then our result stated in Proposition 9 is consistent with financial
advisors’ suggestion. In fact, when H is high enough (that is to say when we
consider an aggressive investor) the ratio Pg measuring the preference for bonds
is low.

Figure 1: Index of bond preference Pg(H)
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A numerical example can confirm this result. By putting, for instance, ny =
1, ng = =3, n3 =1, d; =4, dp = =5, and d3 = 3, we find the behaviour of
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Pp represented in Figure 1. We can see that the preference for bonds has a
maximum level corresponding to a time horizon we will call H*.

A more articulated numerical example is considered in Appendix A where
the behaviour of function Pg shown in Figure 1 is confirmed.

5.5 The ”equity premium puzzle”: a proposal for a solu-
tion

According to Proposition 11 in the previous section, we can propose a solution
for the well known ”equity premium puzzle”. This puzzle has been outlined by
Mehra and Prescott (1985) who find that from 1889 to 1978 on the New York
Stock Exchange, the average annual return for the S&P500 index is about 7%,
while the average annual real return for bonds is about 1%. The authors claim
that this difference (about 6%) cannot be explained through a reasonable level
of risk aversion and a lot of attempts have been made in order to solve this
puzzle. One of the most fruitful attempt was aimed at defining more accurate
forms for investors’ utility function (see Weil (1989), and Epstein and Zin (1990
- 1991)). Other attempts concerned the restatement of the calibration method-
ology for describing first and second moments of asset returns (Cecchetti, Lam,
and Mark (1993)) or the inclusion of the inflation risk into the asset risk mea-
sure (Bagliano e Beltratti (1997)). Also the problem of market crashes has been
considered (Rietz (1988) and Brown, Goetzmann, and Ross (1995)). In par-
ticular, Brown, Goetzmann, and Ross (1995) find that all markets survived to
wars and other political or economic troubles, have an index characterized by
mean reversion. For a short review of this literature see Campbell (2000) who
outlines the importance of each contribution.

In our framework, we are able to present at least a reason for which the
great difference between returns on stocks and bonds does not shrink as a simple
arbitrage argument could imply.

In fact, in the M-F-W framework, after choosing their optimal allocation
between stocks and bonds, investors never change it even if they want to obtain
a greater return (m) from their portfolio (see Proposition 11). So, for every long
time period, if the time horizon of investors (H) and the market parameters
(1,m, %, T, p,q,V, D) remain stable, also the ratio Pg does not change (that is
to say for investors there are no reasons for altering their portfolio composition).

Thus, by using Proposition 11 we claim that, if the objective of investors is
described by the M-F-W hypotheses and the problem parameters do not change
(at least do not significantly change from a statistical point of view), then the
equity premium behaviour is consistent with our framework developed so far.
In fact, even if on the market there is a high difference between stock and bond
returns, it doesn’t vanish.

Unfortunately, the data after Mehra and Prescott show a great variation in
parameters during the considered period (as it can be seen in Table 2), and
because the 6% difference is not constant during the period 1889-1978, then we
cannot directly apply Proposition 11. Nevertheless, thanks to the functional
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Figure 2: Returns on stocks and bonds, and consumption growth rate

Growth (%) for Return (%) on Return on S&P Difference
Period real per capita bonds (B) 500 index (A) (A) - (B)
Mean | Sd.Dev. | Mean | Sd.Dev. | Mean | Sd.Dev. | Mean | Sd.Dev.
1889-1978  1.83 357 0.8 567 6.98 16.54 6.18 16.67
Sd. Error| (0.38) (0.6) (1.74) (1.76)
1889-1989 2.30 490 5.80 323 7.58 10.02 1.78 1157
1899-1908 2.55 531 262 259 771 17.21] 5.08 16.86
1909-1918 0.44 3.07 -1.63 9.02| -0.14 12.81 1.49 9.18
1919-1928  3.00 397 430 6.61| 18.94 16.18| 14.64 15.94
1929-1938 -0.25 528 239 6.50] 256 27.90] 0.18 31.63
1939-1948  2.19 252 -582 4.05( 3.07 1467 8.89 14.23
1949-1958  1.48 1.00| -0.81 1.89] 17.49 13.08] 18.30 13.20
1959-1968  2.37 100 1.07 0.64f 5.58 1059] 450 10.17
1969-1978 2.41 140 -0.72 2.06] 0.03 13.11] 0.75 11.64
Source: Mehra and Prescott [1985], p 147.

form of index Pg, we are still able to find a solution to the equity premium
puzzle.

In particular, we suppose to start in a situation where the investor’s financial
horizon H equals H* (the horizon giving the maximum Ppg), and the changes
in parameters are such that the maximum of the curve Pg oscillates around the
investor’s financial horizon. Under these hypotheses, we can see from Figure
1 that in both cases when H > H* and H < H* the optimal behaviour for
investor is to sell bonds for buying stocks. In this way, the high difference
between returns on stocks and bonds is maintained in spite of any arbitrage
argument.

The above-mentioned hypotheses are not too restrictive. Thanks to the
numerical example presented in the appendix, we can see that the point H*
is near the portfolio duration. Because this duration reflects the preference of
investors with respect to the immunization length for the bond subset of their
portfolio, then, we can suppose that the hypothesis of having a value of H*
oscillating around the investors’ actual financial horizon H is quite likely. In fact,
the optimal portfolio composition we have computed represents the investors’
asset demand, and if supply conforms itself to demand, then, in equilibrium,
it must be true that H = H*. Each shift from this equilibrium implies that
investors sell bonds maintaining the high difference between stock and bond
returns.
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6 Conclusion

In our work we have presented a model aimed at considering in a single problem
the two portfolio decisions concerning investment in stocks and bonds.

We consider a framework in which investors hold bonds for immunizing, at
a certain time, a part of their portfolio against interest rate fluctuations. In
particular, we use the approach of duration matching.

We introduce an index for measuring the investors’ preference for bonds. We
find that this index is not a monotonic function of investors’ financial horizon
(H) but it is an increasing function for low values of H and it becomes a decreas-
ing function for high values of H. Thus, if time horizon is considered as a proxy
of investors’ risk aversion, then, for a sufficiently high value of H, our model is
consistent with the financial advisors’ strategies which, instead, are inconsistent
with the separation theorem. In fact, we have shown that in our approach the
separation theorem is valid only if all investors have the same financial horizon
but this condition is even more demanding than that prescribing homogeneous
expectations on asset prices.

Thus, our work confutes the separation theorem and solves the inconsistency
between practice and theory often underlined by the literature.

Finally, thanks to the index of preference for bonds developed in this paper,
we can also propose a possible solution for the equity premium puzzle. A simple
arbitrage argument shows that the financial horizon giving the maximum value
for the bond preference index should oscillate around investors’ actual financial
horizon. This allows us to argue that after each shift in market parameters,
investors are willing to sell their bonds. This behaviour contributes to maintain
a high difference between returns on stocks and bonds.
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A A numerical example

In this appendix we consider a numerical example for investment problem (11).
In order to avoid inconsistencies, we consider the year as the time measure unit.
For the stock subset we take four stocks whose values can be represented, for
eight periods, in the pay-off matrix Y (Y;; = pay-off of stock ¢ in period t) to
which corresponds the return matrix R containing the percentage changes in
the elements of Y (and more precisely: Ry = Yit1,i/Ye — 1):

100 100 100 100
108 105 107 106
113 111 118 111
v _ |10 10 115 108
121 119 120 119 |
118 119 118 124
130 124 125 130
137 136 130 138 |
8.0 5.0 7.0 6.0
16296 5.7143  10.28  4.717
L 26549 0009 25424 —2.7027
— — | 100 81818 4.3478  10.185
100 1 9 4793 0 —1.6667 4.2017
10.169  4.2017 5.9322  4.8387
| 5.3846  9.6774 40  6.1538 |

If we consider the first period as period zero, then we can see that in period
3 there is a financial crisis during which the price growth is broken. Instead, in
period 5 the price of stock 4 increases while the other prices do not increase (in
this case stock 4 is very appealing). The vector p in problem (11) contains the
mean value of each column of matrix R and the matrix ¥ is the variance and
covariance matrix associated with R. Accordingly:

/
po= qog l 47213 45535 3.9073 4.7705 ],
2.9166 1.5836 1.8447 1.5521

1 1.5836 1.5262 1.1783 1.1758
T 1000 | 1.8447 1.1783 2.1191 .95806
1.5521 1.1758 .95806 1.482

For the first subset of investor’s portfolio we still lack stock prices. Since the
minimization problem for stocks is based on past values, then we can consider
the last row in matrix Y as the (transposed) vector of last prices:

p=1[137 136 130 138 ]

Now, for bond portfolio we can consider the following (spot) interest rate
structure: 7 (0,t) = 0.03 + 0.001¢, and we can define a cash flow matrix (C) in
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which each element Cj; represents the coupon paid on bond ¢ at time ¢. For
instance, we can have:

0 0 0 0 100 0 0 O

- 0 0 0 0 O 0 0 100
0 12 0 12 0 12 0 112 |~
5 5 5 5 5 105 0 O

where we have four bonds and eight periods. The first two bonds are zero
coupon bonds. By applying the following formulae:

T

Vi = ) Call+r(0,0)] 7",
t=1
T
S tCyt [1 47 (0,8)] "
-Di - =l )

icﬁ 147 (0,8)]"

t=1

we can compute bond values and durations:

V = [ 841973 74.2030 114.5781 107.5884 |',
D = [5 8 68741 53532 ] .

In order to find the vector 7 of bond returns, we have to solve the following
equations:

T

‘/i - Zczt [1 + T]i]it .

t=1

For the two zero coupon bonds returns coincide with the interest rates
r(0, D;) and so:

1

=g [ 35 3.8 3747 3.5651 ]

n

We suppose that the market is efficient and so: ¢ = V and in order to
complete the bond parameters let I' = A, (= Ay). We suppose that the riskless
interest rate is » = 0.02. Thus, in this framework: u; >n; >r Vi,j € [1,4].
Now, we have all the elements in order to compute the solution for problem
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(11). This solution is given by:

1 [ —15085 + 4674H — 373.98 H?

T 31881 — 9878.1H + 790.37H?

x3 —265.89 + 82.386H — 6.5919H?

T4 — 5 69882 — 21653 H + 1732.5H?

Y1 o 628 — 3.0288H — 11.511H? ’
Y2 —837.28 4 88.628H + 11.324H?

Y3 —104.54 — 2.4058H + 7.2844 H?

| Ya | | 546.9 — 20.542H — 6.5596 H? |
50m —1

— -5
©160.69 — 49.692H + 3.9811 H? 107"

Graphically, for the bond subset of optimal portfolio we can see, from figure
3, that:

- there exists a critical value of H (say H*); when H # H* bond portfolio
rapidly falls to zero and even when H = H* the bond weight is very low;

- the weight of bond portfolio is an increasing function of the expected return
on the whole portfolio (m).

Figure 3: Weight of bond subset portfolio (¢'y*)

BN W b

For the stock subset of the optimal portfolio the result is summarized by
Figure 4 where we can see that its weight does not heavily depend on the time
horizon H.

We can see from Figure 5 (where m = 0.04) that p’z* depends on H accord-
ing to a relation that is the inverse of those describing the behaviour of ¢'y*.
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Figure 4: Weight of stock subset portfolio (p’z*)

Nevertheless, H affects p’z* in a negligible way (as we can observe from the
ordinate values).

Finally, in Figure 6, we can see the behaviour of index Pp (preference for
bonds). Here we confirm the behaviour described in Figure 1. In particular,
there exists (due to the behaviour of bond portfolio) a critical value of time
horizon (H*) for which the total amount of wealth invested in bonds is maximum
(and in this example wealth invested in bonds must not exceed 13.79%'* of
wealth invested in stocks and bonds).

17f we call W4 and Wg the wealth invested respectively in stocks and bonds, then Pp =
Wpg /W4 and so, for a given value of Pg (Pg) the ratio between the wealth invested in stocks

; s i S in stocks ¢ $ g Wa 1
and the wealth invested in stocks and bonds is: WalWs — 1755
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Figure 5: Weight of stock subset portfolio (as a function of H)
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Figure 6: Index of bond preference Pg (H)
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