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Abstract

We study how economic growth is a�ected by demographics in an overlapping

generations model with a realistic survival law. Individuals optimally chose the

dates at which they leave school to enter the labor market and at which they retire.

Endogenous growth arises thanks to the accumulation of generation-speci�c human

capital. Favorable shifts in the survival probabilities always induce longer schooling

and later retirement but have an ambiguous e�ect on growth. The relationship

between the growth of population and per-capita growth is hump-shaped. Increases

in longevity can be responsible for a switch from a no-growth regime to a sustained

growth regime and for a positive relationship between fertility and growth to vanish.
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Introduction

The relationship between demographic trends and economics is a challenging area of

research. Life expectancy at birth was below 50 years at the beginning of the century in

Western Europe and it is it now reaching 80. The importance of the economic growth

process in fostering such improvements has been stressed (Fogel, 1994), but the e�ect

of past and future demographic trends on growth remain largely unexplored. One likely

channel through which demographics a�ect growth is the size and quality of the work

force. The aim of this paper is to study the e�ect of key demographic parameters on

human capital accumulation and economic growth.

Figure 1: The decline in mortality { France { Survival laws

Source: Challier and Michel (1996).

A �rst reason to study the e�ect of demographic trends on growth appears when we

consider how big the demographic changes have been in the last centuries. Crude death

rate (deaths in % of population) started to decline in France and United-Kingdom during

the eighteenth century. At the beginning of the twentieth century, the decline in crude

death rate was slowed down by the progressive ageing of the population. Life expectancy

at birth continued to increase (and there is no reason to believe that this increase will not

continue in the future): according to Vallin (1991), it jumped from 25 years in 1740 to 51

years in in the beginning of the twentieth century, and to 75 years in 1980. Much of the

decline in mortality stems from a dramatic reduction in infant mortality during the early

part of the period. In the twentieth century, the increasing distance between the survival

law in 1899 and the one in 1969 for the ages 20{60 indicates that adults' mortality has

been decreased substantially. Moreover, Erlich and Chuma (1990) report that the rate of

increases of the life expectancies of the relatively older cohorts has been larger than that

of the younger ones (for the USA). Despite this huge drop in mortality, the growth rate of

population, which is equal to the fertility rate minus the death rate plus net migrations,
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has not been that a�ected in Western Europe, see Table 1. Indeed, empirical studies show

that the fall in mortality rates is eventually followed by a steady and continuous decline

in fertility (Erlich and Lui, 1997). In most parts of the European continent, fertility has

now reached or even fallen below the replacement level. The future scenario of a zero

population growth is now considered seriously. Finally, one remarkable feature of the last

two centuries is the continuous increase in the time spent at school.

Table 1: Long-run data

date Growth rate of population Years of schooling

Western Europe U.S. U.S. France

1820-1870 0.8 2.9 2.8 n. a.

1870-1913 0.9 2.1 5.9 5.0

1913-1950 0.6 1.2 9.6 8.3

1950-1973 0.8 1.4 12.9 10.6

1973-1992 0.3 1.0 16.3 13.8

Source: Maddison (1995)

The need to model the vintage structure of the population provides the second motiva-

tion of the paper. Indeed the empirical debate on the e�ect of demographics on economic

growth stresses the importance of age-speci�c population characteristics (death rate, ac-

tivity rate, education ...). Let us review briey this literature. In their empirical study of

the determinants of growth, Barro and Sala-I-Martin (1995) stress the importance of life

expectancy: a 13 year increase in life-expectancy is estimated to raise the annual growth

rate by 1.4 percentage points. The authors think that life expectancy has such a strong,

positive relation with growth as it proxies for features reecting desirable performance

of a society. Concerning the e�ect of population growth on per capita GDP growth, the

initial view was that a high rate of population growth can not be supported by a cor-

responding increase in investment, thus lowering growth per capita (Coale and Hoover,

1958). This negative relationship stems for population control policies. In the more re-

cent literature, there is in general non signi�cant correlation in cross-country studies and

a slightly positive causality from population to growth in time-series analyzes (see e.g.

Kapuria-Foreman (1995)). Considering both cross-section and time series data (Kelley

and Schmidt, 1995), the impact of population growth has changed over time: it is not

signi�cant in the sixties and the seventies but becomes large and signi�cantly negative in

the eighties. Moreover, the empirical evidence in Kelley and Schmidt (1995) suggests that

the e�ect of population growth varies with the level of economic development and can be

positive for some developed countries. As far as mortality is concerned, Blanchet (1988)

reports that reductions in crude death rate stimulate per capital economic growth. Kelley

and Schmidt (1995) stand out the ambiguous e�ect of crude death rates. Indeed, growth

is slowed by the deaths of the workers but can be enhanced by the deaths of dependents.

They provide several elements showing the importance of age-speci�c mortality rates.

One central result of Kelley and Schmidt (1995) is that a decrease in the crude death

rate increases economic growth, especially in the least developed countries, where mor-
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tality reduction is concentrated in the younger and working ages. This is less true when

those gains occur in the retired cohort. The importance of the characteristics of the pop-

ulation by age to understand the e�ect of demographic shocks on growth is comforted by

other recent studies.1

One important channel through which demographic trends a�ect growth is obviously

the size and quality of the labor force, which are both determined by schooling and

retirement decisions of agents. As stressed by the study of Ram and Schultz (1979) for

India, improvements in health and longevity conditions induce an increase in investment

in schooling. As a consequence, population growth caused by an increase in longevity

can be favorable to economic growth. A key element is that di�erent generations have

di�erent learning experiences and that the aggregate stock of human capital is built from

the human capital of the di�erent generations. The most important characteristic of a

growth theory designed to shed light on these issues is clearly to capture the vintage

nature of human capital.

Accordingly, we develop an overlapping generations model �a la Blanchard (1985),

in which the aggregate human capital is built from a sequence of generation-speci�c

human capitals.2 To stress the speci�c-role of the di�erent cohorts, we assume that agents

optimally choose the length of the three following activities: learning, working and being

retired. Each individual has thus to decide on the length of time devoted to schooling

before starting to work and on the retirement age. Another desirable characteristic of our

model is that it includes a relatively rich description of demographics and a realistic but

still tractable survival law. This realistic survival law and the fact that the probability

of death is increasing with age clearly represent an improvement with respect to previous

papers on the subject (Galor and Stark (1992), Zhang, Wang and Lee (1998), Kalemli-

Ozcan, Ryder and Weil (1998) and de la Croix and Licandro (1999)). Moreover, contrary

to the literature in which a simpler demographic structure is made endogenous (Erlich

and Chuma (1990), Strulik (1996), Galor and Weil (1998), Blackburn and Cipriani (1998),

and Mateos (1998)), we consider demographics as exogenous and study the e�ects of these

parameters on growth.

In section 1, the model economy is described. We study the individual schooling

and retirement decisions in section 2. This allows us to characterize the e�ect of life

expectancy on these variables. In section, we focus our attention on the balanced growth

path. We analyze the e�ect of population growth on economy growth and characterize

the shift from a Malthusian economy to a modern economy. Dynamics are analyzed in

section 4. We study the replacement echoes and show that we must be careful in using

stationary econometric models to account for population dynamics.

1For instance, Crenshaw, Ameen and Christenson (1997) regress economic growth rates on age-speci�c

population growth rates and conclude that \economies lie fallow during baby booms, but grow rapidly

as boomers age and take up their economic roles in societies."
2Each vintage of human capital is related to a particular generation. This assumption is di�erent

from Chari and Hopenhayn (1991), where individuals of the same generation are associated to di�erent

vintages of human capital.
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1 The model

Time is continuous and the equilibrium is evaluated from time 0 onward. At each point

in time there is a continuum of generations indexed by the date at which they are born, t.

There is a unique material good, the price of which is normalized to 1, that can be used

for consumption. This good is produced from a technology using labor as the only input.

Demographic structure

The set of individuals born in t is an interval of measure � ent, with � 2 R+ and n 2 R.

Each individual has an uncertain lifetime. The unconditional probability for an individual

born in t of being alive in z is given by the function m(z � t):

m(z � t) =
e��(z�t) � �

1� �
(1)

with either � > 1; � < 0 or 0 < � < 1; � > 0. This is a more general formulation than

the one of Blanchard (1985) in which � = 0 and � > 0. The case � < 0 corresponds to a

concave survival law which brings the model closer to the empirical mortality tables. We

thus assume � > 1; � < 0 in the sequel.

Figure 2: Survival laws
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Equation (1) implies that there is an upper bound on longevity. Indeed the maximum

age A that an individual can reach is obtained by setting m(A) = 0, leading to

A =
� log(�)

�
: (2)

Moreover, the unconditional life expectancy is

� =

Z
t+A

t

(z � t)
�e��(z�t)

1� �
dz =

1

�
+

� log(�)

(1� �)�
(3)

and we retrieve �! 1=� (Blanchard, 1985) when �! 0.

From equation (3) a rise in life expectancy can arise either through an increase in the

parameter � or through an increase in the parameter �. As illustrated in �gure 3, these



{5{

two parameter shifts do not lead to the same changes in the survival probabilities. When

� increases, the improvement in life expectancy relies more on reducing death rates for

young agents. When � increases, the old agents bene�t the most from the drop in death

rates.

Figure 3: Changes in the survival laws
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Denoting Vt;z the set of individuals born in t still living in z, the measure of this set is

�(Vt;z) = � ent m(z � t) for z 2 [t; t +A]: (4)

Although each agent is uncertain about the time of his death, the measure of each gener-

ation declines deterministically through time.

The size of the population at time t is given byZ
t

t�A
� enz m(t� z)dz = � en t� with � =

n(1� �)� ��(1� �n=�)

n(1� �)(n+ �)
: (5)

Computing the ratio of the new cohort to total population we �nd that the fertility rate

is equal to 1=�. Hence, given the two parameters of the survival law f�; �g, we can �x n

and deduce the fertility rate 1=�, or alternatively, �x �, from which we deduce the growth

rate of population n. Notice that @�=@n < 0, which stems for the positive relationship

between fertility and population growth.

The households' problem

An individual born at time t; 8t > 0, derives the following expected utility, including

utility from consumption and disutility from studying/working:

Z
t+A

t

c(t; z) m(z � t)dz �
�H(t)

�

Z
t+P(t)

t

(z � t) m(z � t)dz; (6)

c(t; z) is consumption of generation t member at time z. To get closed-form solutions

of the model, the utility drawn from consumption is assumed linear. The pure time
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preference parameter is zero.3 The negative term on the right hand side is the disutility

from studying and working until the retirement age P(t). This disutility is proportional

to the age of the agent, reecting that the hardness of work increases with age. It is also

proportional to the per capita stock of human capital �H(t), which captures the average

level of knowledge of the society. � 2 R+ is a parameter inversely related to the disutility

of work.

We assume the existence of complete markets. All lending and borrowing contracts

between generations are insured by competitive life insurance companies. The inter-

temporal budget constraint of the agent born in t is:Z
t+A

t

c(t; z)R(t; z)dz =

Z
t+P(t)

t+T(t)

!(t; z)R(t; z)dz: (7)

R(t; z) is the contingent price paid by a member of generation t to receive one unit of the

physical good at time z in case he is still alive. By de�nition, R(t; t) = 1. The left-hand

side is the actual cost of the contingent life-cycle consumptions. The right-hand-side is

the actual value of contingent earnings. The agent goes to school until time t + T(t) (if

he is still alive). After this education period, he earns a spot wage !(t; z).

Spot wages depend on individual human capital, h(t):

!(t; z) = h(t)w(z); (8)

where w(z) is the wage per unit of human capital. The individual's human capital is a

function of the time spent at school T(t) and of the average human capital �H(t) of the

society at birth:4

h(t) = � �H(t)T(t): (9)

� 2 R+ is a productivity parameter. The presence of �H(t) introduces the typical exter-

nality (see Lucas (1988) and Azariadis and Drazen (1990)) which relates positively the

future quality of the agent to the cultural ambiance of the society (through for instance

the quality of the school).

The problem of the agent born in t is to select a consumption contingent plan, the

duration of his education and the retirement age in order to maximize his expected utility

subject to his inter-temporal budget constraint, to the constraint P(t) 6 A, and given the

per capita human capital and the sequence of contingent wages and prices. We accordingly

build the following Lagrangean:Z
t+A

t

c(t; z) m(z � t)dz �
�H(t)

�

Z
t+P(t)

t

(z � t) m(z � t)dz

��(t)
"Z

t+A

t

c(t; z)R(t; z)dz � �T(t) �H(t)

Z
t+P(t)

t+T(t)

w(z)R(t; z)dz

#
� �(t) [P(t)� A] ;

where �(t) is the Lagrange multiplier of the inter-temporal budget constraint and �(t)

is the Kuhn-Tucker multiplier associated to the inequality constraint P(t) 6 A. The

3By continuity, all the results derived below hold when we allow for a small subjective discount rate.
4We do not explicitly introduce obsolescence of h(t), although this would not change the results as

long as the individual's human capital never becomes fully depreciated.
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decisions variables are c(t; z), P(t) and T(t). The corresponding �rst order necessary

conditions for a maximum are

m(z � t)� �(t)R(t; z) = 0 (10)

�H(t)

�
P(t)

�
m(P(t))� T(t) �(t) R(t; t + P(t)) � w(t+ P(t))

�
� �(t) = 0 (11)

�(t) > 0; P(t) 6 A; �(t)(P(t)� A) = 0 (12)Z
t+P(t)

t+T(t)

w(z)R(t; z)dz � T(t) R(t; t + T(t)) w(t+ T(t)) = 0: (13)

Since R(t; t) = 1 and m(0) = 1, we obtain from equation (10)

�(t) = 1: (14)

Using this in (9), we may rewrite contingent prices as

R(t; z) = m(z � t): (15)

Equation (15) reects that, with a linear utility, contingent prices are just equal to the

survival probabilities. The �rst order necessary condition for the retirement age is given by

(11). The �rst term between brackets is the marginal utility cost of postponing retirement

and the second term is the marginal utility of additional labor income. At an interior

solution (�(t) = 0) the two should be equal. Using (12), (14) and (15) and solving for

P(t) yields

P(t) = min [T(t) � � w(t+ P(t));A] : (16)

The �rst order necessary condition for the schooling time is (13). The �rst term is the

marginal gain of increasing the time spent at school and the second is the marginal cost,

i.e. the loss in wage income if the entry on the job market is delayed.

The �rms' problem

The production function is assumed to allow one unit of eÆcient labor to be transformed

into one unit of good:

Y (t) = H(t): (17)

Hence, �rms employ the whole labor force to produce as long as the wage per unit of

human capital is lower or equal to one. The equilibrium in the labor market thus implies

that the wage per unit of human capital is constant through time and equal to one:

w(t) = 1 (18)

for all t. Using this result in equations (13) and (16), it appears that, at equilibrium,

P(t) and T(t) are constant through time and do not depend on agent's date of birth. For

this reason, we drop the time argument for these two variables in the following and study

their main determinants.
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2 Equilibrium schooling and retirement decisions

In this section we focus on the derivation of the schooling optimal solution. We �rst de�ne

� = � �

which can be seen as the ratio of the productivity of schooling to its cost in terms of

disutility. We prove that the existence of an interior solution depends crucially on the

value of the parameter �. Using (16) and (18), the interior retirement solution is

P = � T

which requires � > 1. Hence, the productivity of schooling should be greater that the cor-

responding disutility of working/studying time. Using (13) and (15) and the equilibrium

relation (18) the interior solution for T should satisfy:

T m(T) = G(T); (19)

where the function G(x) =
R
� x

x
m(t) dt. G(:) represents the discounted ow of wages

for one unit of human capital as a function of the time spent at school. The restriction

P < A is equivalent to

0 < T <
� ln(�)

� �
� Tmax(�): (20)

It should be noted that equation (19) is checked by the trivial root T = 0. The welfare

comparison between this trivial solution and the interior solution is presented at the end

of this section.

Optimal schooling and the productivity of education

Proposition 1 The household problem has no interior solution if 1 < � 6 2.

Proof: see appendix.

Proposition 1 implies that the optimal period of work must be greater than the optimal

period of schooling. This can be explained using equation (19): since the life-cycle earnings

pro�le is constant, the cost from increasing the schooling time is just equal to the time

spent at school. The bene�t is the sum of future wages (w = 1) discounted by their

respective survival probabilities. Since the survival law is decreasing, we must work a

period longer than the schooling time to meet this optimality condition. For this reason,

we need � > 2 to have an interior solution. This property does not depend on the

particular survival law m(z � t) and should hold for any survival law, which must be

decreasing. To assume � > 2 is then natural. Notice also that, to produce one unit of

good we �rst need to go to school and then to work. For this reason, the productivity

of the education technology, �, must be larger than the disutility of both schooling and

working, say two times 1=�.5

Does an interior solution exists if � > 2? The three following lemmas provide the existence

and uniqueness results in this case.

5However, the assumption of constant life-cycle earnings pro�le is in someway crucial. If the earning

pro�le were increasing, with a steep slope, the discounted income could also be increasing, in which case

� < 2 could be consistent with an interior solution.
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Lemma 1 There exists a unique number �? such that: (i) �? > 2 and Tmax(�
?) solves

equation (19),

(ii) there exists at least one interior solution if 2 < � < �?.

Proof: see appendix.

Lemma 2 Equation (19) has a unique solution on R?

+ when � > 2.

Proof: see appendix.

Lemma 3 An interior solution exists and is unique if and only if 2 < � < �?.

Proof: see appendix.

Lemma 1 has de�ned a threshold on � below which the disutility of work is so strong

and/or the productivity is so weak that it is optimal to never go retired. In order to have

an interior retirement period, we have assumed that the disutility of labor is increasing

in age, to take into account that the hardness of work is increasing when people approach

their maximum age A. In particular, we have assumed that it is linearly increasing.6

However, linearity has the implication that a very high productivity of education can

lead individuals to postpone retirement forever. Alternatively, we could assume that the

disutility function is such that disutility converges to in�nity when the age approaches

A, in which case �? would be in�nite and the solution for the retirement age should be

interior for any � > 2. This assumption should be consistent with the deterioration of

health for relatively old persons. To assume � smaller than �? seems then natural.

We now turn to study the occurrence of corner solutions. What happens if 1 < � 6 2

or if � > �?? The latter case is less trivial and we will study it in details. We should

note here that when � = �?, Tmax(�
?) = � ln(�)

� �?
solves (19). In this case, the retirement

timing decision, evaluated according to the interior solution rule, yields �? Tmax(�
?) =

� ln(�)

�
= A. This makes clear that at � = �?, the \interior"regime reaches the corner

solution regime T < P = A, which can be de�ned by:

T m(T) =

Z A

T

m(t) dt; (21)

subject to 0 < T < A. Note that equation (21) holds when T = A. Since this implies

T = P = A, we disregard this solution. The following lemma establishes the appropriate

existence and uniqueness properties for this corner regime.

Lemma 4 Equation (21) has a unique root strictly comprised between 0 and A.

Proof: see appendix.

Corollary 1 The unique solution of equation (21) strictly comprised between 0 and A is

exactly Tmax(�
?) as de�ned in Lemma 1.

6Notice that, apart from the survival law, disutility is almost quadratic in P, which allows for linearity

in the P-T relation, as represented by equation (16).
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Figure 4: Optimal schooling and retirement as a function of �
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The proof is trivial. By construction, Tmax(�
?) solves (21). Since Tmax(�

?) < A, and

since by Lemma 4, (21) admits a unique positive root strictly lower than A, it follows

that Tmax(�
?) is exactly this solution. We are now able to state a general proposition

describing the conditions under which the di�erent regimes occur.

Proposition 2 (i) There exists a unique interior T?
solution to (19), and P? = �T?

if

and only if 2 < � < �?.

(ii) If � > �?, T? = Tmax(�
?) and P? = A.

(iii) If 1 < � 6 2, T? = P? = 0.

Proof: see appendix. �

Proposition 2 is illustrated in Figure 4 for speci�c values of the parameters. The

values are: � = 5:4365 and � = �:01472 which leads to a life expectancy of 73 years and

a maximum age of 115 years. T, P and A are plotted for di�erent values of � starting

from 1. The optimal schooling length (solid line), and the optimal retirement age (dotted

line) are zero for � 2 [1; 2] and they increase with � as long as 2 < � < �?. When the

retirement age hits the maximum age (at � = �?), T and P remains constant at T = A=�?

and P = A.

Life expectancy and optimal schooling

A key property of our model is that a decrease in the death rates, or equivalently, an

increase in life expectancy induces individuals to study more. This prediction is consistent

with the joint observation of a large increase in both life expectancy and years of schooling

during the last century.

Proposition 3 A rise in life expectancy increases the optimal length of schooling.
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Proof: see appendix.

A rise in life expectancy makes it more pro�table to study longer and to retire later,

since it makes feasible to work for a longer period. The positive e�ect of longevity on

schooling does not depend here on the assumptions made on fertility, as � (or n) does not

intervene in the determination of T.7 Finally, the following corollary establishes that the

elasticity of T to � is equal to 1.

Corollary 2 For any � > 2, there exists a constant A1 > 0 independent of � such that

T = �A1

�
.

Proof: se appendix.

Using (3) we note that the share of expected life devoted to schooling is independent

of �:
T

�
=

�A1(1� �)

1� �+ � log�
: (22)

Hence, although increases in � lead the agents to study more, they will keep the share of

schooling in their (expected) life unchanged. As a consequence, changes in the survival

law caused by shifts in � are useless to model the e�ect of changes in the ratio T=� on

economic growth. However, shifts in � do a�ect the ratio T=� (notice that A1 depends

also on �) making the proposed survival law much more interesting than the Poisson law

generally used in the literature. Section \From Malthus to Solow" gives a nice example

of it.

As far as retirement is concerned, we retrieve in our propositions the typical results of

partial equilibrium analysis: \The comparative statics suggested that you should retire

early to the extent that your circumstances involve high disutility of e�ort, low wages,

low life expectancy ..." (Kingston, 1997) .

3 The balanced growth path

Consistently with the technology (17), the productive aggregate human capital stock is

computed from the capital stock of all generations currently at work:

H(t) =

Z
t�T(t)

t�P(t)
� en z m(t� z)h(z)dz; (23)

where t�T(t) is the last generation that entered the job market at t and t�P(t) is the last
generation that retired at t. Function T(t) evaluated at birth gives the interval of time

spent at school for any generation. Then, T(t) = T(t�T(t)): Given that T(t) = T for all

t > 0, then T(t) = T(t) for all t > T. For simplicity we assume that initial conditions are

such that this also holds for all t 2 [0;T[. The same reasoning applies to P(t): P(t) = P

for all t > 0.

7In a more general set-up where the marginal productivity of labor is decreasing, changes in fertility

could a�ect the expected wage pro�le via the labor market equilibrium, producing some indirect e�ects

on schooling and retirement decisions.
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The average human capital at the root of the externality (9) is obtained by dividing

the aggregate human capital by the size of the population given in (5):

�H(t) =
H(t)

� en t�
: (24)

This assumption presents three advantages. First, it is the simplest way to eliminate scale

e�ects. This allows to de�ne a balanced growth path even in the presence of positive

population growth. Second, �H(t) is the average human capital of a worker times the

activity rate; the strength of the externality depends thus on the density of workers in

the population, without depending on the size of the economy. Indeed, for a given scale

of the economy, the larger is the active population, the stronger is the externality. Third,

this formulation amounts to link the externality to the output per capita (which would

have been the adequate assumption in a learning-by-doing set-up).

The dynamics of human capital accumulation can be obtained by combining (9) with

(23) and (24):

H(t) =

Z
t�T

t�P
m(t� z)

�TH(z)

�
dz (25)

To evaluate H(t), for t > 0, we need to know an entire span of initial conditions for H(t),

from �P to 0. Equation (25) is a delayed integral equation, with delays T and P. We

analyze the balanced growth path in this section and postpone the study of the dynamics

to section 4.

Existence and uniqueness of the balanced growth path

Using (25), there exists a steady state growth path H(t) = He t, with H and  two

constants, H nonzero, if and only if the following integral equation holds:

�T

�

Z P

T

m(z) e�z dz = 1: (26)

The following preliminary results are then easy to establish.

Lemma 5 From (26), we can conclude that

(i) if 0 < T < P,  = 0 is not a solution unless

�T

�

Z P

T

m(z) dz = 1;

(ii) if a solution  6= 0 exists, it should be unique.

The proof is trivial. Property (i) is obtained by setting  = 0 in equation (26). The

uniqueness result (ii) can be proved trivially by contradiction given that the survival law

is continuous and strictly positive in the domain comprised between T and P.
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Hereafter, we assume that 0 < T < P 6 A, and we look for nonzero long run growth rates

solutions. By performing the integration in (26), the existence of  solutions turns out to

be a �xed-point problem Q(x) = x with:

Q(x) � �T

� (�� 1)

�
x

x + �
(e�(x+�) P � e�(x+�)T) + � (e�x T � e�xP)

�
:

Of course, x = 0 is a �xed point of Q(x), but it is a solution to (26) only under the

condition stated in point (i) of Lemma 5. It is now possible to state the following existence-

uniqueness proposition of steady state growth paths:

Proposition 4 Assume that 0 < T < P 6 A. Denote by 	0 � 	
�
A
2

�
, with 	(x) =

x2 m(x). Then:

(i) If 	0 < �

�
, there exists a unique strictly negative growth rate.

(ii) If 	0 > �

�
, we can de�ne T o = 	�1(�

�
). More importantly, there exists a unique

strictly positive (Resp. negative) long run growth rate if and only if T > T o
(Resp.

T < T o
). If T = T o

,  = 0.

Proof: see appendix.

The �rst part of Proposition 4 states that, at given � and �, a too low fertility rate

(1=�) or a too low productivity of education (�) lead inevitably to a negative growth rate.

Low fertility is bad for growth as we reason here about absolute growth and not about

per capita growth. A deeper analysis of the e�ect of fertility on per-capita growth is

provided below. Low productivity of education is also bad for growth for obvious reasons.

The second part of Proposition 4 de�nes a threshold on schooling above which growth is

positive. This threshold depends on fertility. As the private decision on schooling does

not depend on fertility and as the function 	 is increasing, the threshold is less binding if

fertility is high. Let us now go deeper into the study of the e�ect of demographic variables

on growth.

Life expectancy and growth

We �rst consider the e�ect of life-expectancy on per-capita growth. There are two di�erent

ways to analyze this issue. A �rst one is to consider that the growth rate of population

is constant, requiring that fertility adjusts to mortality changes. A second one is to

reason at given fertility rate; we must then take into account that reducing the mortality

rates generates an increase in the population growth rate. In the history of developed

countries in the two last centuries, we do not observe that the huge increase in longevity

has been followed by an increase in the population growth rate. The �rst case seems thus

more adapted to developed countries, while the second can be suited to study developing

countries during the twentieth century. We study both cases in this section.

A rise in life expectancy can come from an increase in � or in �. As explained in

sections \Demographic structure"and \Life expectancy and schooling", changes in these

parameters have di�erent implications on the way life expectancy improves. For simplicity,

this section is devoted to a rise in life expectancy derived from an increase in �, but some

discussion is devoted to the speci�cities of changing �. Moreover, even for changes in �,
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Figure 5: Growth and life expectancy at given n (left panel) and at given � (right panel)
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it is very hard to provide a general treatment for the role of life expectancy on per-capita

growth. In order to have some insight, we �rst present the results of some numerical

computations and then we provide some general results.

Figure 5 shows the relation between life expectancy and growth. In both cases, changes

in life expectancy are derived from shifts in �, taking � as constant. Given that life

expectancy, fertility and population growth are related by de�nition, a change in � should

be simultaneously followed by a movement in the fertility rate or in the growth rate of

population. The left panel of �gure 5 let the fertility rate to adjust in order to have a

constant population rate and right panel supposes that the fertility rate stays constant,

implying that the population growth rate adjusts.8

Both �gures show a hump-shaped relation between life expectancy and the per-capita

growth rate. Starting from a situation in which agents have a short horizon (low �), a

rise in � �rst leads to an increase in the growth rate. After some point, the sign of the

e�ect changes and a rise in life expectancy leads to a drop in . Intuitively, the total

e�ect of an increase in life expectancy results from combining three factors: (a) agents

die later on average, thus the depreciation rate of aggregate human capital decreases;

(b) agents tend to study more because the expected ow of future wages has risen, and

the human capital per capita increases; (c) the economy consists more of old agents who

did their schooling a long time ago. The two �rst e�ects have a positive inuence on

the growth rate but the third e�ect has a negative inuence. When life expectancy is

relatively short, the weight of old population is relatively small and the third factor is

less important than the others. However, when life expectancy is high there is a large

population of old individuals, making the third factor to prevail.

In order to discuss the general validity of these numerical results, Proposition 5 pro-

vides a mathematical proof for the case where the growth rate of population stays constant

for di�erent values of �.

Proposition 5 A rise in life expectancy through � at given population growth has a

8Our reference calibration for the left panel is � = 5:4365, � = �:01472, n = 0, � = :2532 and

� = 8:3242 which leads to a life expectancy of 73 years, a maximum age of 115 years, an optimal

schooling time of 27 years, an optimal retirement age of 57 years and a growth rate of 2% per year. We

then let � vary between -.027 and -.07 and reports the corresponding growth rate . For the right panel,

the fertility rate is �xed at 1=73, � varies again between -.027 and -.07, and we report the corresponding

growth rate  � n as n is now endogenous.
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positive e�ect on economic growth for low levels of life expectancy and a negative e�ect

on economic growth for high levels of life expectancy.

Proof: see appendix.

Observe that as mentioned in the proof of Corollary 2, �? does not depend on � but

well on �. That is why we have chosen the parameter � to study the relationship between

growth and life expectancy. The same analysis through � is analytically intractable.

However, numerical simulations show that under reasonable parameterizations, the rela-

tionship between growth and life expectancy as measured by � is qualitatively similar to

the one theoretically established between the growth rate and �.

From an empirical point of view, we should thus observe that the e�ect of life ex-

pectancy on growth is positive for countries with a relatively low life expectancy, but

could be negative in more advanced countries. The positive e�ect is clearly the one

stressed by Kelley and Schmidt (1995) for less developed countries. In the same direction,

Ram and Schultz (1979) write for India: \In a society where life is short, labor earns a

pittance; (...) A turn towards a better future comes when the span of life increases. Incen-

tives become worthwhile to acquire schooling, and the time spent at work becomes more

productive. The stock of human capital in the form of better health and more schooling

becomes larger, and it enhances the quality of labor. These investments in human capital

matter. In Marshall's perceptive words, capital consists in a great part of knowledge and

knowledge in the most powerful engine of production."

Finally ,we can explore for our numerical example the di�erence between a rise in �

and a rise in �. Let us keep our benchmark case � = 5:4365, � = �:01472, � = 73,

 = :02 and look for the growth-maximizing life expectancy, say, ~�. Keeping � �xed

at its current value, -.01472, ~� is equal to 98:2363 and is obtained with � = 8:72197.

The maximum growth rate is then 2.14 %. Keeping � �xed at 5.4365, ~� is equal to

89:9421 and is obtained with � = �0:0119496. The maximum growth rate is then 2.05

%. In this latter case, the maximum growth is lower and is attained with a lower life

expectancy. Hence, starting from our numerical benchmark, improvements in longevity

are more \growth promoting" if they arise through a shift in � which increases the weight

of young generations.

Population growth and economic growth

We now turn our attention to changes in population growth caused by shifts in fertility,

keeping life expectancy constant. As stressed in the introduction, the empirical evidence

on the e�ect of population growth on economic growth is mixed. To analyze the e�ect

of population growth on the the steady state growth path, one can derive the following

relation by di�erentiating both sides of equation (26) with respect to n:9

@

@n
=

R A

0
z m(z) e�nz dz

� T
R P

T
z m(z) e�z dz

;

since � can be rewritten as � =
R A

0
m(z) e�nz dz. Note that @

@n
> 0 as expected. We would

like to investigate the much less trivial relationship between the population growth n and

9Recall that optimal T and P are independent of n.
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Figure 6: Population and growth
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the per capita growth rate � n (i.e. the position of @

@n
with respect to 1). We will show

that our model is able to generate an interior n-maximizer for the per capita growth rate,

more precisely that the functional relation between these two variables is hump-shaped.

This feature relies on the vintage nature of our economy. Indeed, when n is relatively

low, the share of retired workers in the population is relatively high. Increasing n thus

increases the active population and the growth rate. However, when n is very high, the

students are the main group in the population. Lowering n would then increases the active

population. In the two extreme cases, n very low and n very high, the size of the active

population compared to total population is small which depresses growth. There is thus

a level of n which maximizes the activity rate. There is in fact a growth-maximizing size

of the active population. To this size corresponds a \growth-maximizing" demographic

growth rate.10

To prove the latter claim, observe �rst that given the function in z, m(z) e�z, is

strictly positive in the interval [T;P] except eventually when z = P = A, we have the

10To this \activity" e�ect, one should add a \composition" e�ect bearing on the composition of the labor

force: higher population growth implies a higher proportion of young workers in the active population;

as young workers have more human capital than old workers because they have been educated more

recently. With this e�ect alone, population growth has a positive inuence on economy growth.
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strict inequalities:

T

Z P

T

m(z) e�z dz <

Z P

T

z m(z) e�z dz < P

Z P

T

m(z) e�z dz:

Using (26) and the integral de�nition of � given just above, it is then possible to �nd strict

upper and lower bounds for @

@n
involving only n. Concretely, after some trivial algebra,

we �nd R A

0
z m(z) e�nz dz

P
R A

0
m(z) e�nz dz

<
@

@n
<

R A

0
z m(z) e�nz dz

T
R A

0
m(z) e�nz dz

: (27)

Call (G) these inequalities. We can then state the following proposition:

Proposition 6 Assume that 0 < T < P 6 A. There exists a population growth rate

�nite value n? such that the long run per capita growth rate of the economy reaches its

(interior) maximum at n?.

Proof: see appendix.

Proposition 6 is illustrated by the numerical example displayed in �gure 6 with the

same calibration as above. n varies between -.05 to .05 and the �gures show the corre-

sponding fertility rate 1=� and growth rate per capita �n. In this example, the growth

maximizing n is slightly positive. Positive economic growth arises only for n inside a

closed interval. We also notice the strength of the e�ect of n.

From Malthus to Solow

In a recent paper Galor and Weil (1999) argue that one of the most signi�cant challenges

facing economists interested in growth and development is to model the long transition

process from thousands of years of Malthusian stagnation through the demographic tran-

sition to modern growth. Several authors (see Hansen and Prescott (1999) and Doepke

(1999)) have modelled this transition by assuming an exogenous di�erential in the rate of

technological progress between the agricultural sector and the industrial sector. At some

point in time, industry becomes pro�table and the transition starts.

As an alternative to this assumption of di�erential technological progress, we notice

that demographic and health changes started in the eighteenth century can be at the

root of the transition. One key element to this transition can be the following: an initial

exogenous drop in mortality has risen the expected rate of return to human capital in-

vestments, has led to more schooling and eventually to a higher rate of per capita growth.

In terms of our model, this corresponds to a shift from a regime with almost no schooling

and no growth to a regime with positive schooling and growth.

It is interesting to notice that such a shift has an impact on the relationship between

fertility and growth. In a Malthusian economy, land is in �xed supply and technology is

constant. Exogenous drops in the population level (e.g. the Black Death) are reected

in higher real wages, faster population growth and faster economic growth per capita.

For this reason, there is a positive Malthusian relationship between income per capita

and population growth. In the modern regime of growth, this relationship is no longer in

place.



{18{

Figure 7: From Malthus to Solow

n

0.005

0.01

0.015

0.02

growth per capita

To illustrate how the shift in regime and the relationship between fertility and growth

is a�ected by a rise in life expectancy we compare two di�erent balanced growth path

corresponding to two di�erent set of parameters.

regime � � � � � A T n=0 T=�

Solow 5.44 -.0147 .2531 8.324 73 115 27 .0200 37%

Malthus 2.69 -.0147 .2531 8.324 39 67 13 .0004 33 %

In the �rst economy, Solow, we have kept the same calibration as before. Life ex-

pectancy is 73 years and there is a balanced growth path with a positive growth rate.

The relationship between growth per capita and population is represented by the solid

line in �gure 7 in the range n 2 [�:01; :03]. We next considered a Malthusian economy.

The only di�erence with the Solow economy is in the value of �. All the other techno-

logical and preference parameters are kept the same. The lower � generates an economy

with a lower life expectancy and a very slow pace of growth. The relationship between

growth per capita and population growth is represented by the dotted line in Figure 7.

The last column of the table gives the share of expected life devoted to education. As it

was already clear from equation (22), this share rises with �. The share of education goes

from 33 % to 37 %. This increase is consistent with the empirical evidence over the two

last centuries, and justi�es to model the rise in life expectancy as a shift in � rather than

in �.

From the inspection of the two plots in �gure 7, we observe that the relationship

between fertility and steady state growth around n = 0 is increasing in Malthus and

almost at in Solow. We conclude that a rise in the parameter � leading the economy

from Malthus to Solow can be responsible (provided that the balanced growth path is

stable, see next section) for (1) the switch from a no-growth regime to a sustained growth

regime and (2) the vanishing of the positive relationship between fertility and growth. An

intuitive explanation of this result is as follows: At the growth-maximizing population

growth, an increase in n should increase the weight of the student population by the

same amount it reduces the weight of retired population in order to let the activity rate
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unchanged. An increase in � induces agents to study more in percentage of life and

to retire later, which rises the stationary ratio of the student population to the retired

population for a given n.11 The growth-maximizing level of population growth is thus

lower in the Solow regime, in order to balance the size of young and old population. If n

increases above this threshold, the share of students in population would further increase,

which is already large in the modern economy, and this is not good for growth.

4 The dynamics of human capital

We now turn our attention to the analysis of the stability of the balanced growth path. The

dynamics of human capital accumulation can be derived from the integral equation (25).

This integral equation de�nes a functional �xed-point problem which can be transformed

into a functional di�erential equation as follows. Di�erentiating (25) with respect to time,

we �nd the following equation, 8t > 0:

H 0(t) =
� T

�

�
m(T) H(t� T)�m(P) H(t� P)�

Z
t�T

t�P
�
e��(t�z)

1� �
H(z)dz

�
: (28)

At time t, �m(T) individuals of generation t�T enter the job market with human capital

TH(t� T). �m(P) individuals of generation t� P quit the labor market and retire. The

third term represents the workers who die before the retirement age.

To study the dynamics of this economy, we de�ne detrended human capital as

Ĥ(t) = H(t)e�t;

in which  is the growth rate of the economy along the balanced path. Equation (28)

becomes, 8t > 0,

Ĥ 0(t) =
�T

�(1� �)

h
(e�(�+)T � �e�T)Ĥ(t� T)� (e�(�+)P � �e�P)Ĥ(t� P)

��
Z

t�T

t�P
e�(�+)(t�z)Ĥ(z)dz

�
�  Ĥ(t): (29)

To obtain a usable expression, we di�erentiate once more equation (29) with respect

to time and replace the integral by its value from (29). This leads to

Ĥ 00(t) = �(� + )Ĥ(t)� (� + 2)Ĥ 0(t)

+
�T

(1� �)�

h�
e�(�+)T � �(� + )e�T

�
Ĥ(t� T)

�
�
e�(�+)P � �(� + )e�P

�
Ĥ(t� P)

i
(30)

+
�T

(1� �)�

h�
e�(�+)T � �e�T

�
Ĥ 0(t� T)�

�
e�(�+)P � �e�P

�
Ĥ 0(t� P)

i
:

11Note that this does not happen when longevity increases through �, illustrating the interest of taking

a realistic survival law.
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Figure 8: Eigenvalues of the calibrations \Solow" and \Malthus"
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Stability analysis

The obtained functional di�erential equation is a scalar second order di�erential-di�erence

equation with delayed derivative terms. Using standard auxiliary concatenation rules, it

can be written as a �rst order bi-dimensional delay di�erential equation. No theorem is

available to assess directly the asymptotic behavior of the solutions of this kind of dynamic

system.12 So we study the stability of our system for the di�erent parameterizations given

in the preceding section. To this end, we use the algorithm designed by Engelborghs and

Roose (1999) for numerical stability assessment of delay di�erential equations. Figure 8

gives the distribution of the rightmost roots of the characteristic equation of our delay

di�erential equation as computed by the latter algorithm. All roots have strictly negative

real part except the trivial zero root. Hence, if the economy is not on its balanced growth

path before t = 0, an oscillatory transition to the latter should take place.

It is possible to assess the convergence speed of the economy using the computed

spectra. The closer to zero is the smallest real part (in absolute value) of the nonzero

computed eigenvalues, the slower is convergence. From Figure 8, one can conclude that

the model \Malthus" converges more quickly to the corresponding steady state than the

model \Solow". A rise in life expectancy tends to decrease the convergence speed as it

takes more time to replace the existing stock of human capital.
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Figure 9: Dynamic simulation of a drop in fertility in Solow
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An example of the transitory oscillatory dynamics is provided in Figure 9. The initial

conditions are H0(t) = e0t in which 0 is the stationary growth rate of the Solow economy

with n = 0:01. These parameters imply that 0 = 0:0299 and that the optimal time spent

at school is T = 27:05. We assume that there is a permanent unexpected change in

fertility at t = 0. The size of new generations after time zero is � instead of � e0:01t for

t < 0. The growth rate of total population changes thus slowly from 1 % to 0 %. The new

stationary growth rate is  = 0:02, which is very close to the previous one in per-capita

terms.

Considering the transition from a balanced growth path to the other, we observe that

the change in fertility is �rst followed by a substantial increase in �n. Per capita growth
rises from 2 % to 2.4 % during 27 years (the schooling length). During this period, the

activity rate increases systematically as the weight of students decreases. After this period

the generations born after t = 0, which are smaller, start entering the labor market. This

has a negative e�ect on the externality and dampers growth. After t = P = 57, the old

generations born before 0 are progressively substituted by smaller cohorts in the retired

population, which has a positive e�ect. We then observe the replacement echoes which

are typical to models with delays (see Boucekkine, Germain and Licandro (1997)).

Hence, the e�ect of a baby burst is �rst to increase per capita growth, since it reduces

12Such a theorem, called Hayes theorem as stated in Bellman and Cooke (1963), is only available for

scalar and autonomous delay di�erential equations with a single delay, as e.g. in Boucekkine, del Rio

and Licandro (1999). In particular, no direct stability theorem is available for delay di�erential systems

with more than one delay since in this case the stability outcomes depend on the particular values of the

delays. See Maha�y, Joiner and Zak (1995).
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the weight of children in total population. However, when these cohorts enter the labor

market, the per capita growth rate starts decreasing until this population group attains

retirement. This cycle takes sixty years and it is reproduced in the future due to human

capital replacement echoes. An important consequence of this exercise is that the short-

run dynamics of population shocks takes at least sixty years. Since time series employed

in most empirical studies are shorter than sixty years, we must be careful in taking this

evidence as stationary or in using stationary models to account for it.

Conclusion

We have proposed a simple endogenous growth model in which, generations after gener-

ations, the economy accumulates human capital. The production function is close to a

vintage capital technology where each vintage is related to a generation of agents endowed

with a speci�c human capital. The key arbitrage in this economy lies in the choice by

agents on how long they remain at school before entering the labor market, and when

they retire. The survival law is a central determinant of their decision.

The interest of the model relies in its demographic structure. The human capital of

the society is build from the speci�c human capital of each generation. Demographics is

described by three free parameters: two parameters of the survival law and the fertility

rate. From these three parameters one can infer the maximum lifespan for the agents,

their life expectancy at birth and the growth rate of population.

The bottom line of the paper is to analyze the e�ect of exogenous demographic changes

on growth. We obtained the following results: Favorable shifts in the survival probabilities

always induce longer schooling and later retirement. First, this does not necessarily imply

that growth per capita is enhanced. The e�ect of life expectancy on growth is positive

for low levels of longevity and becomes negative after some threshold. The negative

e�ect comes from the ageing of the work force. The way longevity increases is important:

improvements in longevity have di�erent e�ects depending on whether the reduction in

the death rates a�ects young or old agents. Second, the e�ect of population growth on

per capita growth should be interpreted in the light of the vintage structure of aggregate

human capital. There is a \growth-maximizing" population growth (or fertility rate),

implying an adequate percentage of students and pensioners.

Our model gives an explanation to the transition from a Malthusian economy to a

modern-growth economy on the sole basis of demographic shifts. First, an exogenous rise

in longevity leads people to study longer and this can be responsible for a shift from a

no-growth path to a balanced path with positive growth. Second, a positive relationship

between fertility and growth (for realistic fertility rate) can be observed in the Malthusian

economy but can vanish in the modern regime. This is because rises in fertility further

increase the share of students in population, which is already large in the modern economy.

Finally, as far as the dynamics are concerned, the change in aggregate production are

described by a scalar second order di�erential-di�erence equation with delayed derivatives

terms. For the numerical examples used in the article we have shown that, if the economy

is not on its balanced growth path before t = 0, an oscillatory transition to the latter

should take place.
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Appendix

Proof of Proposition 1

Since an interior solution should be lower than Tmax(�) and the survival law m(x) is

strictly positive and strictly decreasing on the open interval I(�) =]0;Tmax(�)[, we have:

(� � 1) x m(� x) < G(x) =

Z
� x

x

m(t) dt < (� � 1) x m(x);

for all x 2 I(�). Consequently, if � 6 2, we get the strict inequality: G(x) < x m(x),

8x 2 I(�), which means that the equation G(x) = x m(x) has no solution on the latter

interval.

Proof of Lemma 1

Denote by M(x) = x (� � 1)m(x) � G(x). M(x) is continuously di�erentiable. It is

easy to prove that if � > 1 and � > 2, M(x) is strictly negative on an interval ]0; �[ for a

suÆciently small �. Indeed, M(0) = 0, and M 0(0) = (��1) (2��) < 0. In order to prove

that an interior solution exists, it is suÆcient to prove that K(�) =M(Tmax(�)) > 0 since

function K(�) is obviously continuously di�erentiable for � > 2.

Clearly, we have K(2) > 0 since the inequality reported in the proof of Proposition 1,

G(x) =
R
� x

x
(� � 1)m(t) dt < (� � 1) x (� � 1)m(x), is obviously true for � = 2 and

x = Tmax(2). On the other hand, we have lim�!1K(�) = �

�
(ln(�)� 1 + 1

�
). Note that

function ln(�) � 1 + 1
�
takes the value zero at � = 1 and is an increasing function of �

when � > 1. This implies that lim�!1K(�) < 0 since here we take � > 1 and � < 0.

Since K(2) > 0, the latter result implies that Lemma 1 is valid if additionally we can

prove that function K(�) is strictly decreasing for � > 2. To this end, we have to study

in some details the latter function.

We have K 0(�) =
ln(�)

� �2
( 2� � �

1

� (2 +
ln(�)

�
) ). Note that K 0(2) < 0 since if � > 1,

2� � p� (2 + ln(
p
�)) > 0. The latter inequality holds because the left hand side of

the inequality takes the value 0 at � = 1 and is a strictly increasing function of � when

� > 1. Now, observe that K 0(�) < 0 is equivalent to !(�; �) = 2� � �
1

� (2 +
ln(�)

�
) > 0.

By proving that K 0(2) < 0, we have just established that !(2; �) > 0, 8� > 1. However,
@!(�;�))

@�
= �

1

�
ln(�)

�2
(3 +

ln(�)

�
), which is strictly positive for all positive � and for all � > 1.

Since !(2; �) > 0, we conclude that !(�; �) > 0, 8� > 2 and 8� > 1. This means that

K 0(�) < 0, 8� > 2. Given that K(2) > 0 and that lim�!1K(�) < 0, it follows that

there exists (a unique) �? such that properties (i) and (ii) of Lemma 1 hold. Indeed, there

exists a unique �? such that K(�) > 0 for 2 < � < �?, K(�?) = 0, and K(�) < 0 for

� > �?. It follows that M(Tmax(�)) > 0 for 2 < � < �?. Since M(x) is strictly negative

in the neighborhood of x = 0, we conclude that there exists at least an interior solution

T? 2 < � < �?. Note that when � = �?, Tmax(�
?) is a solution of equation (19).

Proof of Lemma 2

Using the notations of the proof of the previous Lemma, we aim at solving the equation

M(x) = x (�� 1)m(x)�G(x) = 0. Trivially, limx!+1M(x) = +1. Since we know that

M(x) is strictly negative in the neighborhood of x = 0, we can deduce that equation (19)

has at least a solution on R?

+. We need more information about M(x) to conclude for
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uniqueness. We compute the �rst and second order derivatives of this function:

M 0(x) = � e�� �x � (2� �x) e��x � � (� � 2);

and

M 00(x) = ��2 � e�� �x � (�2x� 3�) e��x:

Note that M 0(0) = (� � 2)(1 � �) < 0 and that limx!+1M 0(x) = +1. Since M(x) is

strictly negative in the neighborhood of x = 0 and becomes in�nitely large if x grows,

there exists c > 0 such that M 0(c) = 0 and M(c) < 0. Observe that ifM 0(x) has no other

root, M(x) has itself a unique non-zero root. Indeed M 0(x) has a unique root because it

turns out that function M(x) is strictly convex. Given the analytical form of M 00(x), it

is suÆcient to prove the latter claim for � = 2. In this case, M 00(x) > 0 is equivalent to

the inequality (with � 0 = �� > 0): e�
0x > 3

4
+ �0

4
x. Given that the latter inequality is

obvious since ex > 1 + x for all x > 0, function M(x) is indeed strictly convex for any

� > 2. The function M(:) is represented in �gure 10.

Figure 10: The function M(:)

6

-
t

H(t)

0
Tmax(�)T?

Proof of Lemma 3

Uniqueness is a direct consequence of the previous lemma. To prove the lemma, we

only need to prove that no interior solution exists if � > �?. By the proof of Lemma 1, we

know that M(Tmax(�)) < 0 if � > �?. Since as mentioned before limx!+1M(x) = +1,

M(x) has a root greater than Tmax(�). Since by the previous lemma, function M(x)

only admits a unique strictly positive root, there cannot be another root belonging to the

interval I(�) =]0;Tmax(�)[: An interior solution cannot arise in this case.

Proof of Lemma 4

Note that equation (21) is equivalent to the equation: B(x) = (x � 1
�
) (� � e�� x) �

� (A � x) = 0. Note that B(0) = � 1
�
(� � 1 � � ln(�)) < 0 since we can show that

the function in �, (� � 1 � � ln(�)) is zero at � = 1 and is strictly decreasing for all

� > 1. Also note that B(A) = 0. Moreover, B0(x) = 2� � (2� �x) e�� x, which implies

that B0(0) = 2 (� � 1) > 0 and B0(A) = �� ln(�) < 0. The last inequality implies that
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function B(x) is strictly positive in the (left) neighborhood of A. Since B(0) < 0, function

B(x) has at least one root comprised between 0 and A. Now notice that since B0(0) > 0

and B0(A) < 0, there exists d, 0 < d < A, such that B0(d) = 0 and B(d) > 0. As in the

proof of Lemma 2, it is suÆcient to prove that B0(x) has a unique root to conclude for

uniqueness of the roots of B(x). And as in the proof of Lemma 2, this is achieved here

by showing that B0(x) is strictly monotonic. Indeed, B00(x) = �(�2 x� 3�) e�� x < 0 for

all positive x.

Proof of Proposition 2

Given Proposition 1 and Lemmas 1 to 4, we should show that the solution T = P = 0

is always dominated by the interior solution when it exists for the proof to be completed.

This is achieved by comparing the indirect utility function at the two solutions. For

2 < � < �?, the indirect utility is

V(T) / �

Z
�T

T

T
e��t � �

1� �
dt�

Z
�T

0

t
e��t � �

1� �
dt

Simple but tedious computations leads to

V 0(T) =
�
�
�e��T + e���T + T�(e��T + �(� � 2))

�
�(�� 1)

V 00(T) =
�
�
(2� �T)e��T � �e���T + �(� � 2))

�
�� 1

lim
T!0

V 0(T) = 0

lim
T!0

V 00(T) = (� � 2)� > 0

from which we deduce that V has a horizontal slope and is concave at the right of T = 0.

The solution T = 0 is thus dominated by a slightly greater T and is not the optimum.

Proof of Proposition 3

For the interior solution, i.e. when 2 < � < �?, we integrate equation (19), which leads

to

0 = e���T � e��T + T
�
e��T � 2�

�
� + ���T

Using the implicit function theorem, the partial derivatives are:

dT

d�
=
�T
�

> 0 and
dT

d�
=

T(� � 2)

e�� �T � (2� �T) e��T � � (� � 2)
> 0

where the denominator of the last expression is shown to be positive in the proof of Lemma

2.

In the case where � > �?, T = Tmax(�
?) = � log(�)=(��?) and the derivatives are

dT

d�
=

log(�)

�2�?
> 0 and

dT

d�
=

�1
���?

> 0

From these expressions we conclude that an increase in � or in � always lead the agents

to study longer.

Proof of Corollary 2
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From the expressions of the derivatives terms dT
d�

, we can infer that the product �T is

independent of � unless the threshold value �? depends on �. But �? is computed from

equation (19) with T = Tmax(�) as de�ned in Section 2, and one can easily check that the

terms in � vanish from such an equation so that �? does not depend on �. In contrast,

�? does depend on �.

Proof that the function 	(x) = x2 m(x) = x2 (�� e��x)=(�� 1) is strictly increasing on

the interval ]0; A
2
].

Given that (�� 1)	0(x) = e�� x (�x2� 2x)+ 2�x, 	0(x) > 0 on ]0; A
2
] is equivalent to

the inequality e�� x (�x� 2) + 2� > 0 on this interval. Note that this inequality holds in

the neighborhood of x = 0 since � > 1. Observe also that function e�� x (�x � 2) + 2�

is strictly decreasing for all positive x since � < 0. Indeed, the derivative of this function

with respect to x is simply e�� x (��2 x + 3�). Therefore, the Lemma holds if the

inequality e�� x (�x�2)+2� > 0 is ful�lled at x = A

2
. It could be checked that the latter

required property is equivalent to the inequality 2
p
�� 2� log(

p
�) > 0. This is indeed

true 8� > 1 since function 2x � 2 � log(x) takes the value zero at x = 1 and is strictly

increasing for x > 1.

Proof of Proposition 4

One can check easily that

lim
x!+1

Q(x) = 0; lim
x!�1

Q(x) = �1 and lim
x!�1

Q(x)

x
= +1:

Since Q(0) = 0, a strictly positive (Resp. negative) �xed-point exists if Q0(0) > 1 (Resp.

Q0(0) < 1). Uniqueness follows from Lemma 5, property (ii). Note that if Q0(0) = 1, zero

is the unique solution for the growth rate. So to conclude, we have to compute Q0(0).

Since Q(x) is the left-hand-side of (26) multiplied by x, we can easily show that

Q0(0) =
�T

�

Z P

T

m(z) dz

From (19) and P = �T, we get Q0(0) = �

�
	(T). The rest of the proposition is then quite

trivially derived. Indeed, it is shown above that function 	(:) is strictly increasing on the

interval ]0; A
2
] so that 	0 = 	

�
A
2

�
is the maximum of 	 on [0; A

2
]. We know that once

excluded the corner solution T = P = 0, the optimal T values are equal or lower than

Tmax(�) =
� log(�)

� �
for 2 < � 6 �? by Lemma 3 and Proposition 2. So optimal T always

belongs to the interval ]0; A
2
]. The conditions involving To and 	0 are then obvious. Note

that the case T = To recovers exactly the case studied in Lemma 5, property i, in which:

 = 0 is a solution.

Proof of Proposition 5

Proposition 4 is most useful to demonstrate the desired property. Note that by the

latter proposition, the sign of the growth rate depends on the position of �1 = �

�
with

respect to 	0, and on the value of the equilibrium schooling time T. We can write �1 as

�1 =
1

�

0
@ 1

n+ �
�

��

�
1� �

n

�

�
n(1� �)(n+ �)

1
A :
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As for 	0, it is equal by de�nition to A0

�2
where A0 � log(�)2

4

��
p
�

��1 . Finally, the value of

optimal schooling time T can be expressed as an explicit function of � by Corollary 2.

For any �xed � > 2, there exists A1 > 0 such that T = �A1

�
. Since P = �T 6 A = � log(�)

�
,

we have the restriction e�A1 6 �.

We shall prove that a rise in life expectancy has a positive (Resp. negative) e�ect on

economic growth for low (Resp. high) levels of life expectancy. To this end, we will prove

that d
d�

> 0 when � tends to �1, and that d
d�

< 0 when � tends to 0. We will use the

same mathematical strategy in all cases. First, we show that the ratio z = 

�
admits a

limit either when � tends to �1 or to 0. Indeed, the �xed point problem giving rise to

the long run growth rate value, Q(x) = x, can be rewritten in terms of z once T and P

are replaced by their �-functional expressions:

��2 �1(�� 1)

A1

= F�(z) �
e�A1 (1+z) � eA1 (1+z)

1 + z
+ �

eA1z � e�A1z

z
: (31)

Since the left hand side of the equation above admits a limit when � tends either to �1
or 0, z admits a limit in the latter cases if the continuous function F�(z), as de�ned in

(31), is monotonic. The derivative F 0
�
(z) can be written after rearranging terms as the

di�erence

F 0
�
(z) = G(z; �A1)�G(z; A1);

with

G(z; �) = e�z
�
� e�

(1 + z)2
+

�e�

1 + z
+

�

z2
� ��

z

�
:

We shall restrict � to be positive and to ful�ll e� 6 � since e�A1 6 �. It is now easy to

prove that F�(z) is monotonic: Indeed, function G(z; �) is decreasing with respect to �

for any z provided e� 6 �. In e�ect, @G(z;�)

@�
= � e�z (e� � �) 6 0.

Once the limit of the ratio z computed, one can recover the limit of the growth rate since

from the �xed-point equation, Q(x) = x, we can infer that

 = G�(z) =
�A1

��1(�� 1)

�
z
e�A1 (1+z) � eA1 (1+z)

1 + z
+ � (eA1z � e�A1z)

�
: (32)

We will use exactly this strategy for each case study. Let us give some details of the

achieved computations. Consider the limit case � tends to �1. Observe that in this case

the parameter �1 behaves as a function
�!
�

with ! > 0, for � suÆciently big (in absolute

value). Since 	0 = A0

�2
, it follows that �1 > 	0 for suÆciently big �. By Proposition 4,

(i), we conclude that  < 0 for suÆciently big (but �nite) �. What is the limit value of

? From (31), we can deduce that the ratio z = 

�
tends to +1 when � tends to �1.

Indeed, the left hand side of (31) tends to �1, which is only consistent with z going to

+1 in the right hand side of the equality. This implies, even without using equation (32)

that  tends to �1 when � tends to �1. Consequently, d

d�
> 0 when � tends to �1,

which is the demanded property in this limit case.

When � tends to 0, the limit of the left hand side of (31) depends on the sign of the

population growth rate, n, since the limit behavior of �1 in this case depends on this

parameter value. Let us consider the most realistic case n > 0 to illustrate the �nal
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outcome of the computations, which is indeed independent of the sign of n. In this case,

�1 behaves as a function !1 + !2 � for suÆciently small � with !i > 0 for i = 1; 2. Since

	0 = A0

�2
, it follows that �1 < 	0 for suÆciently small �. Moreover since the threshold

value To, as de�ned in Proposition 4 ii), tends to 	�1(!1) when � tends to 0, we get

T = �A1

�
> To for suÆciently small �. Hence by Proposition 4 ii),  > 0 for suÆciently

small �. Let us compute the limit value of . The left hand side of equation (31) tends

to 0, which is only consistent with z going to �1 in the right hand side of the equality.

Now using this result and equation (32), the limit value of  turns out to be 0. Since

 > 0 for suÆciently small �, the zero limit value implies that d
d�

< 0 when � tends to 0.

Proof of Proposition 6

To prove this claim, we prove the strict inequalities

lim
n!+1

@

@n
< 1 and lim

n!�1

@

@n
> 1:

To this end, we use the inequalities (27).

A suÆcient condition for @

@n
to be strictly lower than 1 is

R A

0
z m(z) e�nz dz

T
R A

0
m(z) e�nz dz

6 1:

This is in turn equivalent to U1(T; n) �
R A

0
(z � T) m(z) e�nzdz 6 0. Since U1(0; n) > 0,

U1(A; n) < 0 and since U1(T; n) is trivially strictly decreasing in T, it follows that there

exists a threshold T1(n) such that U1(T; n) 6 0 for every T > T1(n). Note that T1(n)

can be written explicitly in terms of n. Simple but very tedious computations show that

T1(n) decreases from A when n tends to �1 to zero when n tends to 1.

Similarly, we can obtain a suÆcient condition for @

@n
to be strictly greater than 1. In

particular, we can de�ne a function U2(T; n) �
R A

0
(z � �T) m(z) e�nzdz, with � = �� as

de�ned in Lemma 1 when P = A. Using the left side inequality in (27), we know that

a suÆcient condition for @

@n
> 1 is U2(T; n) > 0. For the same reasons as before, there

exists a threshold T2(n) =
T1(n)

�
< T1(n) such that U1(T; n) > 0 for every T 6 T2(n).

We can now conclude. When n tends to +1, T1(n) tends to zero. Since T > 0, we can

conclude that limn!+1
@

@n
< 1. When n tends to �1, T2(n) tends to

A
�
. Since T 6 A

�
,

with equality only when P = A, it follows that limn!�1
@

@n
> 1.


