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1 Introduction

Ever since the seminal work of Cass (1965) and Koopmans (1965), optimal capital
accumulation models have played a central role in growth theory and macroeco-
nomics. The development of dynamic equilibrium macroeconomics required fur-
ther the integration of optimal capital accumulation and infinite horizon general
equilibrium models: aggregative models of capital accumulation had to be rein-
terpreted as decentralized market economies and optimal accumulation paths as
competitive equilibrium allocations. In this paper we prove existence of a com-
petitive equilibrium for a version of the Ramsey (one sector) model in which net
investment is constrained to be non negative.

Following the early work of Peleg and Yaari (1970) and Bewley (1972) the
literature has often follow an abstract general approach to the question of exis-
tence. After describing the commodity space, the question of existence reduces
to find a price system in a suitable (interpretable) subset of the space dual to the
commodity space. An alternative related strategy first establishes core equiva-
lence (the set of competitive equilibria coincides with the core of the economy) so
that no restrictions on the nature of price systems are made a priori. Aliprantis,
Brown, and Burkinshaw (1990) and Becker and Boyd (1997) are modern exposi-
tions of these approaches. Aliprantis, Border, and Burkinshaw (1997) follow the
first approach and analyze a Ramsey economy in which gross investment k;,; at
period t is required to verify k; 1 > (1 — 0)k, where k; > 0 is current stock of
capital and 6 € (0,1) is the depreciation rate of capital. Their method of proof
is appealing when analyzing complex models: it constitutes a general and elegant
approach to the question of existence. Nevertheless, it remains at a high level
of abstraction and does not provide much results that could help characterizing
competitive equilibria. Here we propose a simpler strategy that does not demand
a strong investment in mathematical techniques. In simple economies like the
one considered in that paper, it is possible to display a price system and prove
afterwards that it is a competitive equilibrium price system.

In the present paper we tackle the question of existence in Aliprantis, Border,
and Burkinshaw’s (1997) model using simple standard techniques and obtain-
ing more detailed results concerning the behavior of equilibrium allocations and
prices. Because of the standard techniques utilized, our approach is amenable to
be adapted by practitioneers to similar models without requiring a strong invest-
ment in sophisticated techniques.



The planner’s problem is first analyzed and optimal paths characterized. The
multipliers system associated with an optimal path is proven to be the support-
ing price system of a competitive equilibrium when the competitive allocation is
the planner’s optimal path. Our strategy of proof relies on a closer look at the
model that allows us: (a) to obtain more general results dropping the assumption
that utility is bounded from below and the Inada conditions on the one period
utility function; (b) to prove more detailed results concerning properties of opti-
mal (equilibrium) paths (monotonicity, convergence to a steady state, and so on)
and actually display the price system explicitly. Our assumptions are those of
Aliprantis, Border, and Burkinshaw (1997) except for that of differentiability of
the one period utility function. This assumption is adopted for the sake of clarity
and does not entail any loss of generality because: first, concave functions are
differentiable almost everywhere; second, the proofs below can be reproduced as
they stand substituting gradients by subgradients.

The next section describes the planner’s problem and proves existence of op-
timal paths when the Inada condition on the one period utility function holds.
These optimal paths are analyzed in section 3 and their properties studied. Section
4 proves existence of a competitive equilibrium while section 5 proves existence
when the Inada-type conditions do not hold.

2 The planner’s problem

This is a one sector growth model with net investment constrained to be non
negative. Time is discrete so ¢t ranges over the integers from zero to infinity.
Production possibilities are represented by a gross production function f and
a physical depreciation rate 6. Preferences are time additively separable and
described by a one period reward function v and a discount factor 3. The planner
of this economy maximizes

Ule) =" fulc)

over non negative sequences (k, c) subject to the feasibility constraints
ct + kt+1 S f(k}t) + (]_ - 6)kt and (]_ - (S)kt S kt+1 (1)

fort =0,1,... with 0 < ky < zp and 2y > 0 given. This model is also described
and analyzed in Aliprantis, Border, and Burkinshaw (1997).
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We introduce now some notation. Under the monotonicity assumptions below,
at maxima kg = xp so that we will work with ky as the initial condition. For
any initial condition kg > 0 when k = (kq, ko, ...) is such that (1 — §)k; < kg <
f(ke) + (1 — 6)k, for all ¢ we say it is feasible from &y and the class of all feasible
accumulation paths is denoted II(kg). A consumption sequence ¢ = (cg, ¢q, ...) 18
feasible from ky > 0 when exists k € II(ko) with 0 < ¢; < f(k;) + (1 — 6) ke — kia
and the class of feasible from ky consumption sequences is denoted X(kg). The
value function associated to this problem is denoted by v.

Assumption 1 The one period reward function v : R, — RU{—o00} is con-

tinuous, strictly increasing, and strictly concave. At zero either u(0) is finite or
u(0) = —oo. Further, 5 € (0,1).

Remark 1 If u(0) is finite we do not loose any generality if we assume further
that u(0) = 0. Otherwise one could add and substract (1 — 8) !u(0), ignore the
positive constant, and work with @(c) = u(c) —u(0) for all ¢ > 0. Hence, hereafter
u is assumed at zero to be either u(0) = 0 or u(0) = —oc.

Strict monotonicity implies u(¢) > —oo for all ¢ > 0. Continuity is explicitly
assumed to ensure it is continuous at zero because concavity implies continuity
in the interior of its domain (and differentiability almost everywhere). Since the
objective function is additive and 3 < 1 we do not loose any generality assuming
u(0) = 0 when u is bounded from below. We assume some Inada-type condition
to prove that optimal consumption is positive:

Assumption 2 The one period reward function u is differentiable in the interior
of its domain. If 4(0) = 0 then «/(0) = oc.

The assumption that u/(0) = oo when u(0) = 0 is relaxed in section 5. Note
that «/(0) = oo is already ensured when u(0) = —oo: for any ¢ > 0 and by
concavity of u we have u'(c) > (u(c) —u(c))/(c — ¢) for all ¢ > 0. Taking the
limit as ¢ — 0 the property follows. The production function is assumed to meet
the standard properties of the neoclassical per capita production function.

Assumption 3 The gross production function f : R, — R, is continuous,
strictly increasing, strictly concave, f(0) =0, and 6 € (0,1).

As in the case of u, continuity is assumed to obtain continuity at zero because
concavity already implies continuity in the interior of its domain. The production
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function should satisfy the Inada conditions so as to make it feasible that optimal
consumption is positive. Sustained growth of the stock of physical capital is ruled
out assuming zero returns to physical capital asymptotically.

Assumption 4 The gross production function is differentiable in the interior of
its domain with f’(0) = oo and f’(c0) = 0.

For all ky > 0, and since f'(0) > 6, there must be some 0 < k' < kg such that
f(K") 4+ (1 —6)K' > K'. Hence, for all ky > 0 there is a feasible interior stationary
consumption-accumulation plan described by & > 0 and ¢ = f(k') — 6k’ > 0.
Further, f'(co0) < 6 implies existence of a maximum sustainable capital stock:
some k > 0 for which f(k) + (1 —8)k < k for all k > k. In order to save notation
we shall often write F'(k) for f(k)+ (1 —6)k.

To prove existence of an optimal path we follow the classical strategy using
continuity of both v and F. While the latter will ensure that II(kg) is compact,
the former will ensure that U is upper semicontinuous in which case Weierstrass
theorem applies. The following has a standard proof.

Lemma 1 For all kg > 0, (a) exists A(ky) > 0 such that k € II(ky) implies
ky < A(ko) for allt, (b) (ko) is compact in the product topology, (c) U is well
defined and bounded from above over ¥(ky), and (d) if ko > 0 and (c, k) is optimal
then U(c) > —oo and ¢; = F(kt) — kiyq for all t.

Observe that (a) follows for A(kg) = max{ko, k} where k is the maximum
sustainable capital stock. Then (b) follows from this bound and Tychonov theorem
while (c) is a consequence of A(kp) also bounding feasible consumption. Finally,
since for all ky > 0 there is an interior stationary feasible path, total utility at
the optimum must be at least the (finite) value of this stationary plan while
monotonicity of u does the rest. Hereafter we will concentrate on non wasting
consumption paths and use the notation

Ulko, k) = > Bu(F (k) — kus1)

for any ko > 0 and k € TI(ky), the associated consumption path understood to be
¢t = F(k;) — kyyq for all t. Existence of an optimal path is ensured if U(kg, .) is
upper semicontinuous over IT(ky).



Lemma 2 For all kg > 0, Ul(ko, .) is upper semicontinuous over Il(ky) with
respect to the relative product topology.

Proof: Let ky > 0 and k € TI(ky) we have

Z Bru( — kyey) < AT max{0, u(A(k))}

t=T+1
for any T > 0 and converging to zero as T — oo. Note that the left hand
expression does not depend on the particular k considered: if (k™) C II(ky) with
k™ — K°, for any € > 0 exists T with

T
U(ko, k") = Zﬂ u — ki) < Z — ki) e
=0
for all n € N. Then
T
limsup U (ko, k™) < lim Zﬁtu(F(kf) — ki) +e
n—00 n—0o0 =0
T
= > BulF(k) —k,) +e
t=0

where the equality is legitimate because u and F' are continuous. This inequality
holds for all T": then, limsup,, ., U(ko, k™) < U(ko,k°) +¢. Since e was arbitrary
limsup,,_,.. U(ko, k") < U(ko,k"). m

Hence, an optimal path exists. Because u and f are strictly concave, it is
straightforward to check that U(ky, .) is strictly concave while II(kg) is convex so
that:

Proposition 1 For all ky > 0 there is a unique optimal accumulation path.

One way to make any further analysis easier is to work with the value function.
We should ensure first, however, that it solves the Bellman equation. From the
properties of f and w it is clear that the value function is strictly increasing. The
proof of the previous lemma will help us also establishing strict concavity.

Lemma 3 The value function v : Ry — RU{—o00} associated to the planner’s
problem is (a) well defined, (b) finite valued in the interior of its domain, (c)
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v(0) = 0 when u(0) =0 and v(0) = —oo when u(0) = —oo, (d) strictly increasing,
(e) strictly concave, and (f) continuous.

Proof: Claims (a) to (c) are direct consequences of lemma 1 and proposition
1. Concavity (e) follows from a standard argument and implies continuity in the
interior of its domain.

Proof of (d): let ky > 0 and k be optimal. For any &, > ko define k' as
k; = max{ky, (1 — 8)k;_;} for all ¢, a feasible plan from k. Consider the first
period’s returns: if k; > (1 — 6)k{, we have

u(F(ky) — k1) = u(F (ko) — k1) > u(F (ko) — k1)
because k| > ko; when k; < (1 — 6)k{, we have
u(F (k) = k1) = u(f (ko)) > u(f (ko)) = u(F (ko) — k1)

again for k) > ko and because k; > (1 — 8)ko. For further periods analogous but
weak inequalities hold so that U(k’) > U (k). Then

(ko) 2 Ulko, K) = u(F(ko) — ky) + BU(K)

> u(F(ko) — k1) + AUK) = U(ko, k) = v(ko)

~

and therefore v(k) > v(ko).

Proof of (f): concavity implies continuity in the interior of its domain. To see
continuity at zero let (k) C Ry, with kj — 0 and let for all n € N be k™ € II(k})
the associated optimal path. Observe that k' < A(k{) for all n and ¢ but since
kg — 0O there is some N € N with k* < k for t and all n > N. Choose any n > N
and T > 1:

3 3 u(F (k)
_ t n T+1 Y
—ZQU(FU‘/}) ki) Z )+ -3
=0 t=0
When 4(0) = 0 we have v(0) = 0 while for all £ > 0 exists 7" with
T
0 <wv(kf) < Z + e.
=0

By feasibility k' — 0 for t = 0,...,7 as n — oo. Then 0 < lim,, , v(kf) < e.
Since £ was arbitrary it must be the case that lim,, .., v(k}) = 0. When u(0) =
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—o0 an identical argument follows because lim,, Ztho Bru(F(k*)) = —o0o. m

The principle of optimality is formally stated in the following proposition. It
will help characterizing basic properties of optimal paths.

Proposition 2 The value function solves the Bellman equation and for all ko >
0 a feasible path k s optimal if and only if

v(k) = u(F(ke) — ki) + Bolkisa) (2)

holds for all t.

Proof: Our case meet the hypothesis of Stokey and Lucas (1989, theorem 4.2) so
that the value function solves the Bellman equation. If k is optimal from kg then
(2) holds by Stokey and Lucas (1989, theorem 4.4). Finally, suppose (2) holds for
all t for some k feasible from ky > 0. Then

T

o(ke) = 57 Bu(F(ky) — ki1) + 87 (ki)

=0
for all T'. Tt rests to prove that 37 T v(kpyi) — 0. Define
Il (ko) = {k € II(ko) : U(ko, k) > —o0},

a non empty class (because at least a stationary interior path exists). Since U is
uniformly bounded from above we know that

lim sup 87 o (kpyy) < 0.

T—00

because v is bounded from above and 5 < 1. Moreover, for any k € II'(ko)

T
Ulko, k) < Bu(F(ke) — k) + 87 o(kr )
t=0
for all T so that

T
0= lim {U(ko, k) — > Bu(F (k) — km)} < lim inf BT o(krge).

T—o00
t=0

and the result follows: limp_, o ﬁT“v(kTH) =0 and v(ko) = U(ko, k). m



3 Properties of optimal paths

In this section we review important properties of optimal paths. Later they will
show useful to prove existence of a supporting price system (planner’s solutions
will turn out to be competitive equilibrium allocations). The following lemma has
several standard proofs and is stated here for further reference.

Lemma 4 If kg > 0 and k is optimal then k is monotone (either ky < kyyq for
all t or ky > kv for all t) and consumption positive (¢, = F(k) — kenq > 0 for
all t).

Several proofs of monotonicity can be found in the literature (e.g.: see Amir
(1996) for the case u(0) = 0). That consumption is positive is a direct consequence
of the Inada condition verified by u, implied in the case u(0) = —oo and assumed
when u(0) = 0 (assumption 2).

In the standard Ramsey model (1 — 6)k; < kyy1 need not be verified for all
t. In other words, in the present case we face the possibility that the non nega-
tivity constraint of net investment is binding at certain periods. The constraint,
however, cannot be always binding in the long run.

Lemma 5 If kg > 0 and k is optimal there cannot be an integer T' such that
kt+1 = (1 — (S)kt fOr all t 2 T.

Proof: Let ky > 0 and k be optimal but assume such 7T exists. Since k, — 0,
under assumption 4 we can choose some integer 7" > T such that Bf'(kr.q) > 1.
Lemma 4 implies that k;q < f(k;)+ (1 —06)k; for all ¢ so that there is € > 0 small
enough to verify

(1—=0)kp < kpria(l4¢) < flkr)+ (1 —08)kp.

Define k" as k; =k, for t =1,...,7" and k; = k(1 4 ¢) for t > 7" + 1. Up to date
T’ + 1 the plan k' is obviously feasible in regard of the choice of €. For t > T" + 2
we have

(1= 80k, = (1= 6)(1+ )by = (1 + Vs = Ky
because k; 1 = (1 — 0)k; for all ¢ > T. The same equality implies
L= (1= 8k < F() + (1— O)K]
9



because f > 0. Hence, k' is feasible from k. We next show that k' dominates k
for some e small enough. First observe that

f(kp) + (1= 6)kp — k/T'H = f(kp) — ekpry1.
Then define ¢(g) = U(ko, k') — U(ko, k), we have:
p(e) = BT ulf (k) = ekrrer) — u(f (k)]

+ BT u(f (ki1 (1 +€))) — u(f(krria))]

+ Y Blulf(k(+2)) = ulf (k).

t>T"+1

where we have used again that k;; = (1 — )k, for all ¢ > T. Since the last term
is positive we can write

ple) > _ﬁTlul(f(k’T’) — ekyry1)ekr
+67 M (f (ki1 (1+€))) f (b1 (1 + €) ek

for € small enough where we have used that v and f are concave and differentiable.
Then

9;%‘,) > ek [ (f (k) — ehoss) + Bl (F (s (14 ) f (b (14 2))]

When ¢ — 0 the term in brackets converges to

W (f (k) f' (k1) B — ' (f (k) > ' (f (ko)) — o' (f (k) >0

where the first inequality is true because 17" was chosen so that Sf'(kpiq) > 1
and the second because kg1 = (1 — )k < kq while «' is strictly decreasing. In
short, ¢(0) = 0 and ¢(g) > 0 for some € small enough: a contradiction. m

The previous result allows us to prove that k; — 0 cannot be optimal, an es-
sential step proving convergence to an interior steady state (together with mono-
tonicity, lemma 4).

Proposition 3 If kg > 0 and k is optimal then k; cannot converge to zero.

Proof: Assume the contrary: ky > 0 and k is optimal but k£, — 0. By lemma 4
it must do so monotonically. That is, k; > ki1 for all ¢. The rest of the proof
follows in two steps.

10



Step 1: We claim that there is some T with (1 — 6)k; < kyyq for all ¢ > T
Suppose the claim is false: for any integer 7" exists 7" > T such that (1—6)kp 1 =
k1. Observe that T” can always be chosen so that (1 — §)k < kgv41 because by
lemma 5 such equality cannot hold residually. Further, since k;, — 0, T” can be

chosen so that SF' (k) > 1.

By lemma 4, kp» < F(kgv_1) so that we can choose £ > 0 small enough so that
kr+e < F(kg—1) and (1 —6) (kg +¢) < k1. Then k’ defined as k] = k; for all
t # 1" and k/., = kp + € is feasible. If k is optimal

QO(Z—:) = U(F(kTI_l) — kTI — 6) + ﬁU(F(kTI + 5) — kT’—i—l)-

must have a maximum at zero. Since (1 — 8)ky_1 = kp we have

o(e) = u(f(kr—1) — &) + Bu(F (b + €) — kyrya).
Differentiate with respect to € to obtain

¢'(0) = —u'(f(krr—1)) + Bu'(F'(kg) — kg1 F' (k)
and use (1 — 6)kp < kyv4q and the fact that «' is decreasing to conclude
¢'(0) > —u'(f(kr-1)) + Bu'(f (k) F' (k)
> = (f(kr-1)) + o' (f (k) 2 0.

The second inequality uses SF'(ky/) > 1 while the third follows from the hy-
pothesis that kp» > kg1 and from ' being decreasing. Hence, ¢'(0) > 0 thus
contradicting that k is optimal. The claim must be therefore true.

Step 2: From the first step we know that there is some T" with (1 — §)k; < k11
for all ¢ > T'. Since lemma 4 ensures that k1 < F'(k;) for all ¢, the Euler equation
implies that

U (F (k) = kiy1) = Bu/(F (k) — keyo) FY (keyr)

for all t > T. If ky — 0 exists T" > T with BF'(kiy1) > 1 for all ¢ > T" in which
case

W (F(ke) = ki) > W/ (F (ki) — Kisa)

for all ¢ > T". But this implies ¢; < ¢;1 for all ¢t > T" and, in particular, ¢; > ¢
for all t > T" while k, — 0 implies ¢; — 0 by feasibility: an absurdity. m

We can now prove that the Euler equations do hold from some period on.
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Proposition 4 Ifky > 0 and k is optimal, exists T with (1—06)k; < ki1 < F(ky)
forallt > T.

Proof: Let ky > 0 and k be optimal. Lemma 4 (consumption positive) estab-
lished kyy1 < F(kt) for all t. Suppose the proposition is not true: then there is
a subsequence (t,,) such that (1 — 6)k;, = k1 for all n € N. Since ky, > ki, 11
lemma 4 (monotonicity of optimal plans) implies k; — 0 thus contradicting propo-
sition 3. m

Continuous behavior of optimal paths under changes in initial conditions will
afterwards ensure that the equilibrium price system will be a continuous function
of initial conditions.

Proposition 5 Let (k}) C Ry with kf — ko > 0 and let k™ denote the optimal
path associated with the nth element of the sequence and k be optimal from k.
Then k' — k; for all t.

Proof: By proposition 2 we have
v(kg) = w(F(kg) — ky') + Bu(ky).

for all n € N. Since kjj — ko we can contain (k}) in a fixed compact set. Then
there is a convergent subsequence k,” — &} in which case continuity of u, F', and
v ensure that

(ko) = u(F (ko) — ) + Bu(k)
but k! = k, because of uniqueness of the solution (proposition 1). Hence, k" — k;

and the result follows from this argument repeated for all periods. m

The last result uses these properties of optimal paths, specially monotonicity,
to prove convergence of optimal paths to a steady state

Proposition 6 There is some k* > 0 with F(k®) —k* > 0 and SF'(k*) =1 such
that for all ko > 0, if k us optimal, then ky — k°.

Proof: Let ky > 0 and k be optimal. By lemma 1 the sequence k is bounded from
above, by proposition 3 is bounded away from zero, and by lemma 4 is monotone.
It must therefore converge to some k° > 0. By continuity of v, F', and v and by
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proposition 2 it must be the case that
v(k*) = u(F(k°) — k%) + Bo(k®).

Hence, proposition 2 also implies that the stationary plan every period equal to
k* is optimal from £*® in which case F'(k®) — k®* > 0 is a consequence of lemma 4.
Proposition 4 implies that the Fuler equation holds along the stationary path so

u(F(k°) = k°) = Bu/(F(k°) — k°)F' (K°)

and therefore SF’(k*) =1 because 0 < v/(F(k*) — k*) < oco. m

4 Existence of a competitive equilibrium

In the standard Ramsey model, when net investment is not constrained to be non
negative, equilibrium prices are given by the valuation of output in the margin
at each period. That is, the Arrow-Debreu price of output in period ¢ relative to
period zero is given by p; = 34/ (c;) where c is the equilibrium consumption alloca-
tion. Such relation between present value prices and discounted marginal utility
should continue to hold in the present case; the reason is that the consumer’s
maximization problem is not directly affected by the non negativity constraint.
Whatever happens to the firm’s problem, the consumer’s decision remains unal-
tered. This intuition is formalized in this section proving that such price system is
indeed an equilibrium price system when c is the planner’s optimal consumption
choice.

In the decentralized economy the household owns the firm and the initial stock
of savings z(. If ¢ > 0 denotes the price of the initial good’s market and 7 total
benefits from the firm the household’s income is given by qzo + 7. The price of
output in all periods will be a sequence p € ¢; — {0} so that the household’s
problem is

maxz Bru(c;) s.t. Zptct <qrog+T
t=0 =0

where the maximum is taken over £%. The firm’s problem is to maximize profits
7 over production plans (ko,k) € R, x £ subject to the feasibility constraints:

13



1t solves

max m= —qkg+ Zpt(F(kt) — ki) (3)
=0
s.t. (1 — 6)]€t S kt+1 S f(kt) + (]_ — (S)kt for all .

A competitive equilibrium is a collection composed of: an initial stock z¢ > 0, a
consumption plan ¢ € £ for the household, a production plan (ko, k) € R, x £Z
for the firm, and a price system (¢,p) € R, x ¢ — {0} such that markets clear

rg = ko
¢t + ki1 = F(k) for all ¢,

the plan ¢ solves the household’s problem at prices (¢,p), and the production
plan (ko,k) solves the firm’s problem at prices (¢, p). We claim that the plan-
ner’s solution is in fact a competitive equilibrium allocation when prices are given
by discounted marginal utility. (Observe that this characterization of equilib-
rium prices is the same as in the standard Ramsey model: the non negativity
constraint on net investment only affects the firm’s problem; the household still
makes decisions equalizing relative prices to the marginal rate of substitution.)
More formally:

Proposition 7 Let xy > 0, then kg = g, (c,k) optimal from ko, p defined as
p = B/ () for all t, and q = poF' (ko) is a competitive equilibrium.

The remaining of this section is devoted to the proof. First observe that ¢; > 0
and ¢; — ¢® = F(k®) — k* > 0 by lemma 4 and proposition 6 respectively. Then
u/(¢;) > 0 is uniformly bounded from above so that 0 < 3 < 1 implies p € ¢{ —{0}.
Further, since pg > 0 we have ¢ = poF”(xo) > 0. It is straightforward to see that if
(ko, k) solve the firm’s problem, then ¢ should maximize utility over all sequences
¢’ with

ZPtC; < Zptct- (4)
=0 =0
To see that this is the case let ¢’ € £} verify (4) and use concavity of u to write
> B uler) —u(c) =D B (e) (e — ) =D pile—d) = 0.
=0 =0 =0

In short, the planner’s consumption path solves the consumer’s problem at prices

14



(¢,p) when (ko,k) solves the firm’s problem. It only rests to prove that the
production plan indeed solves the firm’s problem.

From proposition 4 there is some 7" for which (1 — 6)k; < ki < F (k) for all
t > T. Since k is optimal, (k1, ..., kr) must solve

T
max Y Su(F(k;) — ki)
t=0

st.  (1—=08)ky <k, <F(ky)fort=0,..T,

ko and k7., = kri1 given.

Associate the multiplier p, to the constraint (1—6)k; < ki, and v, to k;,; < F(k})
for t = 0,....,T. Since kry1 < F(kr), the Slater condition is verified: there is a
set of multipliers p,,~y, > 0 for t = 0,...,T such that (k, p,,v;)}_, maximizes the
associated Lagrangian. By lemma 4 we know that v, = 0 for all ¢t = 0,..., 7.
Hence, Kuhn-Tucker first order conditions are

— B (F (ko) = keyr) + B (F(ker1) = ko) F' (keia) + pp = prya (1= 6) = 0 (5)
for t =0,...,T — 1 while the Euler equations hold
— B (F (ki) = ko) + B0 (F (ki) = Kig2) F'(kign) = 0 (6)

for t > T'. For any k' € II(kg) and any 7" > T' define
T/
(T K) = > pF(ky) = kir) — p(F (k) — ki)
=0

= Zﬁtu/(ct)[(F(kt) = k1) — (F(kt) — Ky

If k solves the firm’s problem at prices (g, p) it must be the case that limy o (7", k') >
0. First note that F' is concave so that

T/
P(T'K) =y~ B/ (c)[F' (ko) (ke = k) = (kin = k).
t=0
Rearranging terms we can write
(I, X) = u'(co)F'(ko)(ko — ki) — u/(co) (k1 — k1)
+0u (ex) I (k1) (ky — ky) — Bu'(e1) (ko — k3)
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+B87U (e ) F' (k) (ke — Klpr) — B 4 () (kry — Ko )
and therefore

(T X) > [~u'(co) + Bu'(cr) F'(c1)](Fr — K))
+[—6u/(c1) + B2 (c2) F' (c2)] (K — ki)

H=B" M (eqrmr) + BT (e ) F' (e (ke — Ki)
_ﬁT’uI(CT’)(kTUrl - kill“’+1)‘

For ¢t > T the Euler equation (6) holds so that terms between 7" and 7" vanish
while (5) allows us to write

N~
—_

P(T'K) = =7 (er) (krer = Kpran) + ) (= + pra (1= 0)) (ker — ki ).

t

I
o

Rearraging terms
p(T'K) > =" () (krpr — Ky
—pok1 4+ pr(1 = 8)ky + poky — pr (1 — 6)K)
—prka 4+ po(1 — 8)ky + pksy — po(1 — O)ES

—pr_ikr + pr(1 = 0)kr + pr_ikp — pr(1 — 8)ky

but k., — (1 — 6)k; > 0 and kyy1 — (1 — 6)k, > 0 by feasibility while in this
expression they appear with negative sign and multiplied by p, > 0. Hence, the
inequality is not altered if we suppress these terms:

p(T' X)) > =" () (krr — Ky
—pok1 + poky + pr(1 = 6)kr — pr(1 — 6) k.

Since k1 = (1 — 6)ko and £} = (1 — 6)ko, add and substract p,(1 — 6)ky at the
right hand side of this inequality and note that p; = 0 because kri; > (1 — 6)kr
to conclude that

QD(TI, kl) 2 —ﬁT/u/(cT/)(kT/H — k&_"Jrl) 2 —/BTIUI(CT/)I{JT/+1
but «/(¢qv) and kgv.q are bounded from above while #7° — 0. Then ¢(co, k') > 0

16



as was to be shown.

5 Existence without the Inada-type condition

The Inada-type condition on the utility function are not necessary for the existence
of an equilibrium. In this section we substitute assumption 2 by:

Assumption 5 The one period reward function u is differentiable in the interior
of its domain. Further, u(0) = 0 and «/(0) < oo.

Fix some 6 € (0,1) and for all £ > 0 define u.(c) = u(c) + ¢’ for all ¢ > 0
so that u. converges pointwise to u as ¢ — 0. Clearly, u. does meet assumption
2: fixed x¢ > 0, for all £ > 0 proposition 7 ensures existence of an competitive
equilibrium (c*, k®, ¢°, p®). Observe that A(kg) does not depend on preferences:
k® and c® are contained in the compact set [0, A(ko)]>*°. Then there is a subnet
(denote it again £) and (c k") such that k* — k® and ¢¢ — ¢ pointwise. As
(ko) is closed, (c% k°) is feasible. Finally observe that k* is implicitly defined as
BF'(k*) = 1 (proposition 6) so that kf — k* as t — oo for any . The following
proposition ensures that the net of price systems also converges.

Proposition 8 Let ky > 0, then u.(cj) is uniformly bounded from above.

Proof: Suppose that 0 < ky < k*. Since F'(ky) — k > k* we can fix some T
such that FT*1(ky) > k*. For any £ > 0 we know (lemma 4 and proposition 6)
that kf < k7 ; and kf — k°. Hence, the Euler equations hold and

u;(cf) = ﬁu's(c§+1)F'(kf+l) > u/s(cirl)

because k;,; < k* so that BF"(k; ;) > 1. Then, u.(cf) > u.(cf) for all ¢t > 1. If
ul(cj) is bounded from above uniformly over € the result follows. Otherwise it
must be the case that c¢j — 0 in which case the Euler equation

u'(cp) +e(cg)’™ = Bu'(cf) + e(c)" ) F (ki)

requires ¢§ — 0 (because the remaining elements of the equality converge to finite
numbers). Proceed recursively up to date T' to obtain ¢, ..., ¢ — 0 and therefore
ki1 — FTtY (ko). Then, for e small enough k%, > k*. A contradiction.

The case ko = k* is trivial because u.(c¢f) = ul(c®) — u'(c®).

17



Finally let ko > k°. Since kj > ki, ; and kf — k° there must be some T" with
kipp > (1 =6)ki forall t > T. For 0 <t < T we have ¢; = f(kj) so that
consumption is decreasing (because ki is so). From T on, the Euler equations
hold and

ug () = Puc(ci) F' (ki) <ul(cgy)
because ki, > k* so that BF"(k;,;) < 1. Then ¢; > ¢j,, for all ¢ > T'. In short,
¢; > ¢;q > ¢ and therefore u/(cf) < ul(c®) — v/ (¢°) < oco. ®

By the previous proposition there is some M > 0 such that 0 < u’(¢5) < M so
that there must be a subsubnet (again denoted ¢) and an element p° € ¢ — {0}
such that p® — p® pointwise. Write then ¢° = pSF' (ko) > 0.

Proposition 9 Let (c®, k% p°, ¢°) be as defined above. Then it is a competitive
equilibrium when preferences are represented by the one period utility function u.

Proof: The proof of proposition 7 established optimality of k°® for the firm’s
problem at prices (p%, ¢°) for all e > 0. Then, for all € > 0 and any k' € TI(kq) we
have 7(k’, p%, ¢°) < m(k®, p?,¢°). Taking the limit as ¢ — 0 yields 7 (k’, p%, ¢°) <
7(k° p°, ¢°) so that k° solves the firm’s problem at prices (p?, ¢°).

With this result at hand the same argument as in the proof of proposition
7 ensures that c® solves the household’s problem at prices (p°, ¢"). The goods
markets clear because F is continuous and (c®,k*) — (c° k°) pointwise. m
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