Workpackage 3

IUAP Study Day

- Teams
- UCL/INMA
- KUL/KUL1
- KUL/KUL2
- ULg/SYST
- UG/SYSTeMS
- Themes
- Optimization
- Stability and Model Reduction
- Linear algebra, Multiresolution and Simulation

Structured matrices

Structured matrices depend on $\mathcal{O}(n)$ data rather than $\mathcal{O}\left(n^{2}\right)$ data (like a dense matrix). Examples are

- Sparse matrices
- Patterned matrices (Hankel, Toeplitz, FFT, Wavelet)
- Hierarchical matrices
- Rank structured matrices

Matrix problem complexity is then $\mathcal{O}\left(n^{2}\right)$ rather than $\mathcal{O}\left(n^{3}\right)$.

Empty submatrices are low rank and colored ones are full rank

Continued collaborations and joint publications between

- KUL1
- KUL2
- UCL

Developed techniques are useful for other workpackages

- WP1 : Identification
- WP5 : Biomedical data analysis
- WP3 : Simulation, graph analysis, structured optimization, multiresolution analysis

Example: companion matrix

- Computing the roots of a monic polynomial $p(z)=p_{0}+p_{1} z+p_{2} z^{2}+\ldots+p_{n-1} z^{n-1}+z^{n}$ amounts to computing the eigenvalues of a 'companion' matrix H :

$$
H=\left[\begin{array}{cccc}
0 & & & -p_{0} \\
1 & \ddots & & -p_{1} \\
& \ddots & & \vdots \\
& & 1 & -p_{n-1}
\end{array}\right]
$$

- LAPACK solves this problem by the $Q R$-algorithm but destroys the structure and requires $\mathcal{O}\left(n^{3}\right)$ flops

Reformulation of the problem

Rewriting the companion matrix as $H=U+R$:

$$
H=\left[\begin{array}{cccc}
0 & & & 1 \\
1 & \ddots & \\
& \ddots & \\
& & 1 & 0
\end{array}\right]+\left[\begin{array}{cccc}
0 & & & -p_{0}-1 \\
0 & \ddots & & -p_{1} \\
& \ddots & 0 & \vdots \\
& & 0 & -p_{n-1}
\end{array}\right]
$$

where H is Hessenberg, U is unitary and R is rank one, allows to preserve this structure along the $Q R$ algorithm iterations.

This results in an $\mathcal{O}\left(n^{2}\right)$ algorithm which was succesfully applied to polynomials of degree up to a few thousands.

Workpackage 3

IUAP Study Day

- Teams
- UCL/INMA
- KUL/KUL1
- KUL/KUL2
- ULg/SYST
- UG/SYSTeMS
- Themes
- Optimization
- Stability and Model Reduction
- Linear algebra, Multiresolution and Simulation

Low-rank approximations: joint publications

$\mathrm{S}_{+}(p, n)$ is the set of all symmetric positive-semidefinite $n \times n$ matrices of rank p :

$$
\mathrm{S}_{+}(p, n)=\left\{Y Y^{\top}: Y \in \mathbf{R}^{n \times p}, \operatorname{rk}(Y)=p\right\} .
$$

$S_{+}(p, n)$ leads to

- various geometries: quotient or embedded;
- various computational problems: geodesics, means, statistics...;
- various applications:
- covariance matrices (e.g., in finance)
- semidefinite programming (e.g., for maximal cut and sparse PCA)
- kernels (e.g., in machine learning)
- diffusion tensors (e.g., in medical imaging).

$\mathcal{A} \quad$ Rank- $\left(R_{1}, R_{2}, R_{3}\right)$ approx. \quad Rank- R approx.

Applications of the best rank-(R1, R2, R3) approximation:

- Dimensionality reduction for independent component analysis (ICA)
- Dimensionality reduction for CANDECOMP
- Image analysis and recognition
- Multi-way data analysis

