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Structured matrices

Structured matrices depend on O(n) data rather than O(n2)
data (like a dense matrix). Examples are

I Sparse matrices
I Patterned matrices (Hankel, Toeplitz, FFT, Wavelet)
I Hierarchical matrices
I Rank structured matrices

Matrix problem complexity is then O(n2) rather than O(n3).

Empty submatrices are low rank and colored ones are full rank
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Structured matrices

Continued collaborations and joint publications between
I KUL1
I KUL2
I UCL

Developed techniques are useful for other workpackages
I WP1 : Identification
I WP5 : Biomedical data analysis
I WP3 : Simulation, graph analysis, structured optimization,

multiresolution analysis
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Example: companion matrix

I Computing the roots of a monic polynomial
p(z) = p0 + p1z + p2z2 + . . . + pn−1zn−1 + zn amounts to
computing the eigenvalues of a ‘companion’ matrix H:

H =


0 −p0

1
. . . −p1
. . .

...
1 −pn−1

 .

I LAPACK solves this problem by the QR-algorithm but
destroys the structure and requires O(n3) flops
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Reformulation of the problem

Rewriting the companion matrix as H = U + R :

H =


0 1

1
. . .
. . .

1 0

 +


0 −p0 − 1

0
. . . −p1
. . . 0

...
0 −pn−1


where H is Hessenberg, U is unitary and R is rank one, allows
to preserve this structure along the QR algorithm iterations.

This results in an O
(
n2

)
algorithm which was succesfully

applied to polynomials of degree up to a few thousands.
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Low-rank approximations: joint publications

KUL1

KUL2

ULg

UCL

FSU

ENS

Mines
...

TUM
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Low-rank approximations: geometry of S+(p, n)

S+(p, n) is the set of all symmetric positive-semidefinite n × n
matrices of rank p:

S+(p, n) = {YY T : Y ∈ Rn×p, rk(Y ) = p}.

S+(p, n) leads to
I various geometries: quotient or embedded;
I various computational problems: geodesics, means,

statistics...;
I various applications:

I covariance matrices (e.g., in finance)
I semidefinite programming (e.g., for maximal cut and sparse

PCA)
I kernels (e.g., in machine learning)
I diffusion tensors (e.g., in medical imaging).
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Low-rank approximations: tensors

A Rank-(R1, R2, R3) approx. Rank-R approx.

Applications of the best rank-(R1, R2, R3) approximation:
I Dimensionality reduction for independent component

analysis (ICA)
I Dimensionality reduction for CANDECOMP
I Image analysis and recognition
I Multi-way data analysis




