Workpackage 2: Network, Dynamics and Control

A coordinated study of coordination: Clustering and synchronization phenomena

Some collaborative investigations within the IAP

IAP Dynamical Systems, Control and Optimization

Study Day 28 / 05 / 2009, Mons

Workpackage 2: Network, Dynamics and Control

Teams involved:

Main themes:

UCL/INMA

KUL/ KUL1 & KUL2

UGent/SYSTeMS

ULB

ULg/SYST

Multi-agent systems

Control and optimization

Infinite dimensional systems

Nonlinear control applications

Workpackage 2: Network, Dynamics and Control

Teams involved:

UCL/INMA

KUL/ KUL1 & KUL2

UGent/SYSTeMS

ULB

ULg/SYST

Main themes:

Multi-agent systems

Control and optimization

Infinite dimensional systems

Nonlinear control applications

Workpackage 2 > Multi-agent systems

Complementary expertise

U Gent	
Distributed state estimation	Clustering phenomena
Platoons and formations	Heterogeneous agents
ULG	
Distributed power systems	Synchronization / clustering
Coordinated motion design	Nonlinear spaces, integrate & fire oscillators
KUL	
Communication networks	Organizing clusters
	Chaotic oscillators, Hodgkin-Huxley
UCL	
Distributed controller synthesis	Information flow
	State-dependent networks

Diverse levels of interaction

Workshop

Synchronization in Complex Networks, KUL (J. Suykens), 17/10/2008 with international & IAP partners.

Seminars exchanging speakers among UCL, ULg, KUL

Coordinated research on synchronization & clustering

UGent: Aeyels

Heterogeneous agents

De Smet PhD < 2008

UCL: Blondel

State-dependent graph Hendrickx PhD = 2008

ULg: Sepulchre
Nonlinear spaces, int.&fire
Sarlette PhD > 2008

Success story I > Global consensus behavior on the circle

U Gent Kuramoto model

 $\frac{d}{dt}\theta_k = \omega_k + \alpha \sum \sin(\theta_i - \theta_k) \qquad \frac{d}{dt}x_k = \sum a_{ik}(x_i - x_k)$

Consensus in IR

UCL Influence of networks, interaction graphs, information flow

Coordinated motion: agree on steering angle θ_k , trajectory curvature ω_k ULg

Consensus on the circle $\frac{d}{dt}\theta_k = \omega_k + \sum a_{jk} \sin(\theta_j - \theta_k)$

Q: Global synchronization behavior?

Success story | > Path A : simple dynamics, full geometry

ULg

$$\frac{d}{dt}\theta_k = \sum a_{jk} \sin(\theta_j - \theta_k)$$

- -local equilibria with undirected graphs
- -alternative control laws for global synchronization
- -extension to compact homogeneous manifolds

UCL

Q: directed

ULg

information flow A: stable nonstationary

behavior

ULg+UCL Global synchronization by stochastic "gossip" communication selection

Success story | > Path B : complex interaction, linear space

UGent Heterogeneous model: $\omega_k \neq \omega_i$

Motion synchronization phenomena for

Nonlinear interactions on IR

UCL State-dependent interaction graph

Cluster formation

"Krause" model on IR

UCL	State-dependent interaction graph
(ULa)	Cluster formation on the circle

Success story | > A closed loop of research

Success story II > Clustering in integrate & fire oscillators

Kuramoto oscillators: continuous, sinusoidal coupling

ULg Quadratic integrate & fire oscillators with impulsive coupling

flow for $x_k \in [x_m , x_M)$

neuron

$$\frac{d}{dt}x_k = S + x_k^2$$

firing

WP5

reset & fire for $\exists k : x_k = x_M$

$$x_k(t_+) = x_m$$

$$x_{i \neq k}(t_+) = x_i(t) + \epsilon$$

Success story II > Clustering in integrate & fire oscillators

ULg A. Mauroy Conjecture: If S > 0, $\epsilon > 0$ and $x_m + x_M > 0$

then there is a **stable** solution with separate traveling clusters

Proof: OK for $x_m > 0$

ULg&UCL

For $x_m+x_M=0$: charact. eq. of the Jacobian is a palindromic polynomial

$$P(z) = \sum_{k \in \mathbb{Z}} e_k (z^k + z^{N-k})$$

0 < e_{k+1} < $e_k \le e_0 = 1$

Hope: prove marginal stability of cluster solution for $x_m + x_M = 0$

Success story II > Clustering in integrate & fire oscillators

UCL&MIT

Prof. A.Megretski (MIT) gets the problem through postdoctoral stay

from J.Hendrickx, UCL.

Proof: palindromic polynomial has all zeros on the unit circle

ULg

Quadratic integrate & fire oscillators feature cluster solutions with

marginal stability for $x_m + x_M = 0$

stability for $x_m+x_M > 0$ if $x^2+\epsilon x -S < 0$ on $[x_m, x_M]$

stability for $\frac{d}{dt}x_k = \exp(x^2)$

Ongoing research: reduce conditions in the proof

Success story II > An open network of research

