A Tribute to Paul Van Dooren

D.C. Sorensen

DYSCO Workshop Honoring M. Gevers and P. van Dooren UCL, Louvain-la-Neuve, 2010

Meeting Paul

- Householder Symposium 1981
- Paul wins Householder Prize
- Organized Series of NATO Advanced Study Meetings (1980's)
- Great Food and ABUNDANT Wine!
- Paul is unflappable! - Nothing bothers him.

Persistently calm, whether when facing difficulties or experiencing success; not easily upset or excited

Google: Photos of Paul Van Dooren

Google: Photos of Paul Van Dooren

Paul Introduces Me to Model Reduction 1994

- Visits CRPC at Rice U 1994
- Introduces me to A.C. Antoulas
- This collaboration is still active today
- Thank you Paul !
- With Eric Grimme, we developed paper on IRA for MOR via NS Lanczos during this visit.

Two Papers in 1996

- E. Grimme, D. Sorensen, and P. Van Dooren, Model reduction of state space systems via an implicitly restarted Lanczos method, Numerical Algorithms, 12,1-31, (1996).
- K. Gallivan, E. Grimme, and P. Van Dooren, A rational Lanczos algorithm for model reduction, Numerical Algorithms, 12, 33-63, (1996).

MOR via IRA Lanczos

Main Ideas: Given Large System

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{b} u, \quad \mathbf{y}=\mathbf{c x}
$$

$$
\begin{aligned}
\mathbf{A V} & =\mathbf{V} \mathbf{T}+\mathbf{f} \mathbf{e}_{k}^{T} \\
\mathbf{A}^{T} \mathbf{W} & =\mathbf{W} \mathbf{T}^{T}+\mathbf{g} \mathbf{e}_{k}^{T} \\
\mathbf{W}^{T} \mathbf{V} & =\mathbf{I}, \quad \mathbf{V} \mathbf{e}_{1}=\mathbf{b}, \quad \mathbf{W e}_{1}=\mathbf{c}
\end{aligned}
$$

Take

$$
\hat{\mathbf{A}}=\mathbf{W}^{T} \mathbf{A} \mathbf{V}=\mathbf{T}, \quad \hat{\mathbf{b}}=\mathbf{W}^{T} \mathbf{b}, \quad \hat{\mathbf{c}}=\mathbf{c} \mathbf{V}
$$

Produce Reduced System

$$
\dot{\hat{\mathbf{x}}}=\hat{\mathbf{A}} \hat{\mathbf{x}}+\hat{\mathbf{b}} u, \quad \hat{\mathbf{y}}=\hat{\mathbf{c}} \hat{\mathbf{x}}
$$

Nearly the same response: Moments matched at ∞

Stablize Unstable Reduced System

Problem: T can be unstable!
Used hyperbolic rotations
Implicitly Shifted HR- Algorithm (Bunse-Gerstner)
Obtain Implicitly Restarted NS Lanczos

$$
\begin{aligned}
\mathbf{A}(\mathbf{V H}) & =(\mathbf{V H})\left(\mathbf{H}^{-1} \mathbf{T} \mathbf{H}\right)+\mathbf{f e}_{k}^{T} \mathbf{H} \\
\mathbf{A}^{T}\left(\mathbf{W H}^{-T}\right) & =\left(\mathbf{W} \mathbf{H}^{-T}\right)\left(\mathbf{H}^{-1} \mathbf{T} \mathbf{H}\right)^{T}+\mathbf{g e}_{k}^{T} \mathbf{H}^{-T}
\end{aligned}
$$

\mathbf{H} is S-orthogonal $\left(\mathbf{H}^{T} \mathbf{S H}=\mathbf{S}\right)$
\mathbf{T} is S-symmetric ($\mathbf{T}^{\top} \mathbf{S}=\mathbf{S T}$)

Stablize Unstable Reduced System

Truncate

$$
\begin{gathered}
\mathbf{A} \hat{\mathbf{V}}=\hat{\mathbf{V}} \hat{\mathbf{T}}+\hat{\mathbf{f}} \mathbf{e}_{k-p}^{T} \\
\mathbf{A}^{T} \hat{\mathbf{W}}=\hat{\mathbf{W}} \hat{\mathbf{T}}^{T}+\hat{\mathbf{g}} \mathbf{e}_{k-p}^{T} \\
\sigma(\mathbf{T})=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k-p}\right\} \cup\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right\} \\
\mu^{\prime} s \text { - unstable eigenvalues }
\end{gathered}
$$

IDEA: Purge Unstable Poles from Reduced System

$$
\sigma(\hat{\mathbf{T}})=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k-p}\right\}
$$

Expand NS Lanczos back to k-steps and repeat Get k-th order stable system

Result:

Quite Successful
Cited Often
Didn't Catch On in Practice
Got me hooked on Model Reduction

Rational Krylov Methods for MOR

IDEA: Match moments of Transfer Function at selected points

$$
\begin{aligned}
(\mathbf{A}-\sigma \mathbf{l})^{-1} \mathbf{V} & =\mathbf{V} \mathbf{T}+\mathbf{f e}{ }_{k}^{T} \\
(\mathbf{A}-\sigma \mathbf{I})^{-T} \mathbf{W} & =\mathbf{W T}^{T}+\mathbf{g e}_{k}^{T}
\end{aligned}
$$

Matches leading k moments at the point σ Transfer Function

$$
\mathbf{G}(s)=\mathbf{c}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{b}
$$

Interpolated at point σ to high order (k) by Reduced Transfer Function

$$
\hat{\mathbf{G}}(s)=\hat{\mathbf{c}}(s \mathbf{I}-\hat{\mathbf{A}})^{-1} \hat{\mathbf{b}}
$$

CD Player Freq Resp: Arnoldi, Match at infinity

Freq-Response CD-Player : $\mathrm{n}=120 \mathrm{k}=20$

CD Player Freq Resp: Arnoldi, Match at 0

Freq-Response CD-Player : $\mathrm{n}=120 \mathrm{k}=20$

Interpolation via Rational Krylov

Villemagne and Skelton(1986), Grimme's Thesis (1996)

Theorem

Consider the generalized rational Krylov spaces
$\mathcal{S}_{1}=\operatorname{span}\left\{\cup_{j=1}^{k_{1}} \mathcal{K}_{p_{j}}\left(\mathbf{A}_{\sigma_{j}}^{-1}, \mathbf{b}\right)\right\}$ and $\mathcal{S}_{2}=\operatorname{span}\left\{\cup_{i=1}^{k_{2}} \mathcal{K}_{q_{i}}\left(\mathbf{A}_{\mu_{i}}^{-*}, \mathbf{c}^{*}\right)\right\}$.
Suppose the columns of $\mathbf{V}, \mathbf{W} \in \mathbb{C}^{n \times k}$ provide biorthogonal bases for \mathcal{S}_{1} and \mathcal{S}_{2}; i.e., $\mathcal{S}_{1}=\operatorname{Ran} \mathbf{V}$ and $\mathcal{S}_{2}=\operatorname{Ran} \mathbf{W}$ with $\mathbf{W}{ }^{*} \mathbf{V}=\mathbf{I}_{k}$. Put $\widehat{\mathbf{A}}=\mathbf{W}^{*} \mathbf{A V}, \widehat{\mathbf{b}}=\mathbf{W}^{*} \mathbf{b}$ and $\widehat{\mathbf{c}}=\mathbf{c V}$. Then

$$
\mathbf{c} \mathbf{A}_{\mu}^{-i} \mathbf{A}_{\sigma}^{-j} \mathbf{b}=\widehat{\mathbf{c}} \widehat{\mathbf{A}}_{\mu}^{-i} \widehat{\mathbf{A}}_{\sigma}^{-j} \widehat{\mathbf{b}}
$$

for all possible values μ, σ, i, j.

Optimal \mathcal{H}_{2} reduction via rational interpolation

Lemma

Suppose $\sigma \in \mathbb{C}, \sigma \notin \sigma(\mathbf{A}) \cup \sigma\left(\mathbf{A}_{r}\right)$. Then

$$
\begin{gather*}
(\sigma \mathbf{I}-\mathbf{A})^{-1} \mathbf{b} \in \mathcal{V} \Rightarrow \hat{\mathbf{G}}(\sigma)=\mathbf{G}(\sigma) \tag{1}\\
\left(\mathbf{c}(\sigma \mathbf{I}-\mathbf{A})^{-1}\right)^{*} \in \mathcal{W} \Rightarrow \hat{\mathbf{G}}(\sigma)=\mathbf{G}(\sigma) \tag{2}
\end{gather*}
$$

and if both (1) and (2) hold, then

$$
\begin{equation*}
\mathbf{G}^{\prime}(\sigma)=\hat{\mathbf{G}}^{\prime}(\sigma) . \tag{3}
\end{equation*}
$$

VanDooren, Gallivan and Absil (2008)
Gugercin, Beattie and Antoulas (2008)

Optimal \mathcal{H}_{2} reduction: Iterated Rational Interpolation

1. Select $\sigma_{i}, i=1, \ldots, k$ closed under conjugation.
2. while (relative change in $\left\{\sigma_{i}\right\}>t o l$),
2.1 Construct $n \times k$ matrices \mathbf{V}, \mathbf{W} with

$$
\begin{aligned}
& \operatorname{Range}(\mathbf{V})=\operatorname{Span}\left\{\left(\sigma_{1} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{b}, \ldots,\left(\sigma_{k} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{b}\right\} \\
& \operatorname{Range}(\mathbf{W})=\operatorname{Span}\left\{\left(\sigma_{1} \mathbf{I}-\mathbf{A}^{T}\right)^{-1} \mathbf{c}, \ldots,\left(\sigma_{k} \mathbf{I}-\mathbf{A}^{T}\right)^{-1} \mathbf{c}\right\} \\
& \text { and } \mathbf{W} * \mathbf{V}=\mathbf{I} ; \\
2.2 & \mathbf{A}_{k}=\mathbf{W}^{*} \mathbf{A V} ; \mathbf{b}_{k}=\mathbf{W}^{*} \mathbf{b} ; \mathbf{c}_{k}=\mathbf{c} \mathbf{V} ; \\
2.3 & \operatorname{Set} \sigma_{i}=-\lambda_{i}\left(\mathbf{A}_{k}\right) \text { for } i=1, \ldots, k ;
\end{aligned}
$$

3. end

On Convergence:
[$\left.\mathbf{A}_{k}, \mathbf{b}_{k}, \mathbf{c}_{k}\right]$ satisfy the first order necessary conditions for optimal approximation of $[\mathbf{A}, \mathbf{b}, \mathbf{c}]$ in the \mathcal{H}_{2} - norm.

Summary

- Paul always has deep insights and elegant results
- He continues to this day
- Many times I have said:

I wish I had done it!

CONGRATULATIONS

PAUL

