Altered gravity: a key to better understand the neural control of movement Philippe Lefèvre and Lab. Neurophysiol.

Multisensory integration process ⇒ Multiple sensors and effectors

Specificity of limb movements

- Gravity plays a major role in the control of limb movements.
- · Gravity affects the dynamics of the limb.
- Internal models need to be updated if gravity is altered.
 - \Rightarrow Altered gravity is a good testing bench for investigating adaptation mechanisms
 - \Rightarrow Dexterous manipulation is crucial for astronauts

Context of the research project

- International Life Sciences Research Announcement (ILSRA-2004) call for projects. Joint selection NASA and ESA.
- Parabolic flights followed by International Space Station (ISS) experiments in 2011.
- Support from ESA and Belspo (IAP and Prodex).

There is always a back-up!

Outline of the results

- Effect of gravity on internal <u>forward</u> models: the Grip Force controller
 - Oscillatory movements
 - Discrete point to point movements
- Effect of gravity on internal <u>inverse</u> models: the arm movement controller
 - Oscillatory movements
 - Discrete point to point movements

Description of the setup

Equipment (1/3)

Manipulandum

Basic Measures:

- Forces
- Torques
- Acceleration

Additional Measures:

- Moisture
- Position

André T, De Wan M, Lefèvre P, Thonnard JL (2008). Skin Research and Technology, 14, 385–389

André T, Lefèvre P, Thonnard JL (2009). Journal of Neuroscience Methods, in press.

Equipment (2/3)

Eye Tracker

Basic Measures:

- · Eye position in the orbit
- Acceleration

Additional Measures:

 Position signal of the head for gaze reconstruction

Ronsse R, White O, Lefèvre P (2007). Journal of Neuroscience Methods, 159, 158–169.

Equipment (3/3)

3D tracking

Basic Measures:

- Manipulandum
- Reference frame
- · Gaze reconstruction

Additional Measures:

EMG

Study 1/2: the Grip Force controller

- · GF: Grip Force
- · LF: Load Force
- GL/LF coupling to avoid slipping
- Coefficient of friction
- Prediction based on internal model

GF = Grip Force

Grip Force controller Efference copy of motor commands ⇒ Prediction of arm trajectory ⇒ Prediction of Load Force Towned Provided Provided Command Command

Grip Force controller $\|\overrightarrow{LF}\| \leq \mu \cdot \|\overrightarrow{GF}\|$ $\overrightarrow{W} = m \cdot \overrightarrow{g}$ $\overrightarrow{LF} = \overrightarrow{W} + m \cdot \overrightarrow{a}$ LF = Load Force

Grip Force controller

- Synchronization between Grip Force and Load Force demonstrates that the Central Nervous System can predict object motion.
- This prediction is based on:
 - An estimation of object trajectory based on motor commands sent to the limb.
 - An estimation of inertial forces based on object trajectory.
 - A combination of gravitational and inertial forces, yielding the total Load Force.
 - \Rightarrow Evidence for internal models !

Study 2/2: the arm movement controller · Many kinds of movements are repetitive in everyday life • Need for efficient execution of rhythmic activities • Évidence for the existence of neurons that control rhythmic movements: \Rightarrow Central Pattern Generators (CPG)

 $(\bar{u}_k, \bar{x}_k).$

Crevecoeur F, Thonnard JL, Lefèvre P (2009). Journal of Neurophysiology, in press

Summary and conclusions

- Synchronization between Grip Force and Load Force demonstrates that the Central Nervous System can predict object motion based on internal forward models
- When the internal representation of arm and object dynamics are adapted to changes in gravity in the forward model, a good prediction of the Load Force variation is possible for dexterous manipulation.
- Gravity influences the internal representation of arm dynamics and affects the arm trajectories.
- Increase in gravity triggers an optimization process in order to minimize the motor command input.
- Loss of interaction with gravity induces complex changes in arm motor commands.

Acknowledgements

Sponsors: ESA and Belspo (Prodex and IAP)

- · Thibaut André (UCLouvain)
- Frédéric Crevecoeur (UCLouvain)
- Renaud Ronsse (ULg -> KULeuven)
- Olivier White (UCL -> ESF)
- ⇒ Joint project with JL Thonnard (UCLouvain)