Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications

Moritz Diehl
Optimization in Engineering Center OPTEC & ESAT, K.U. Leuven

DYSCO Study Day, Mons, May 28, 2009
Topics of this talk

Nonlinear **DY**namic **S**ystems

Model Predictive **C**ontrol

Real-Time **O**ptimization
Dynamic Optimization Applications at OPTEC

- Distillation column (Stuttgart; Leuven)
- Washing machine design and control (with Bauknecht)
- Chemical Process Control (with IPCOS)
- Combine Harvester Control (with Mebios/CNH)
- Walking Robots (with Grenoble/Tsukuba)
- Power generating kites (Leuven)
- Robot arm time optimal motion (Leuven)
- Combustion Engines (Leuven; Linz; Hoerbiger, US)
- Solar Thermal Power Plant (Jülich)

Nonlinear, constrained...how to control optimally?
Idea of Model Predictive Control (MPC)

Always look a bit into the future.

Brain predicts and optimizes:
e.g. slow down *before* curve
Principle of Optimal Feedback Control / Nonlinear MPC: Computations in Model Predictive Control (MPC)

Main challenge for MPC: fast and reliable real-time optimization

1. Estimate current system state, \(x_{0} \) (and parameters) from measurements.
2. Solve in real-time an optimal control problem:

\[
\min_{x,z,u} \int_{t_0}^{t_0+T_p} L(x,z,u)dt + E(\{x(t_0+T_p)\}) \quad \text{s.t.} \quad \begin{cases}
 x(t_0) - x_0 = 0, \\
 \dot{x} - f(x,z,u) = 0, \quad t \in [t_0,t_0+T_p] \\
 g(x,z,u) = 0, \quad t \in [t_0,t_0+T_p] \\
 h(x,z,u) \geq 0, \quad t \in [t_0,t_0+T_p] \\
 r(x(t_0+T_p)) \geq 0.
\end{cases}
\]

3. Implement first control, \(u_0 \), for time \(\delta \) at real plant. Set \(t_0 = t_0 + \delta \) and go to 1.

Main challenge for MPC: fast and reliable real-time optimization
Outline of the Talk

- Model Predictive Control: A Computational Challenge

- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities

- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control
Nonlinear MPC Problem in Discrete Time

\[
\text{minimize} \quad x, z, u \quad \sum_{i=0}^{N-1} L_i(x_i, z_i, u_i) + E(x_N)
\]

subject to

\[
x_0 - \bar{x}_0 = 0,
\]
\[
x_{i+1} - f_i(x_i, z_i, u_i) = 0, \quad i = 0, \ldots, N - 1,
\]
\[
g_i(x_i, z_i, u_i) = 0, \quad i = 0, \ldots, N - 1,
\]
\[
h_i(x_i, z_i, u_i) \leq 0, \quad i = 0, \ldots, N - 1,
\]
\[
r(x_N) \leq 0.
\]

Structured “parametric Nonlinear Program (p-NLP)”

- Initial Value \bar{x}_0 is not known beforehand (“online data”)
- Discrete time dynamics often come from ODE simulation cf. “multiple shooting” [Bock & Plitt 1984]
- “Algebraic States” z implicitly defined via third condition, can come from DAEs or from collocation discretization
NMPC = parametric NLP

- Solution manifold is piecewise differentiable (kinks at active set changes)
- Critical regions are non-polyhedral
How to solve Nonlinear Programs (NLPs)?

Lagrangian: \[\mathcal{L}(X, \lambda, \mu) = F(X) + G(X)^T \lambda + H(X)^T \mu \]

Karush Kuhn Tucker (KKT) conditions: for optimal \(X^* \) exist \(\lambda^*, \mu^* \) such that:

\[
\begin{align*}
\nabla_X \mathcal{L}(X^*, \lambda^*, \mu^*) &= 0 \\
G(X^*) &= 0 \\
0 &\geq H(X^*) \perp \mu^* \geq 0.
\end{align*}
\]

Newton type methods try to find points satisfying these conditions. But last condition non-smooth: cannot apply Newton’s method directly. What to do?
Approach 1: Interior Point (IP) Methods

- Replace last condition by smoothed version:

 $\nabla_X \mathcal{L}(X^*, \lambda^*, \mu^*) = 0$
 $G(X^*) = 0$
 $- H_i(X^*) \mu_i^* = \tau, \quad i = 1, \ldots, n_H.$

 Summarize as $R(W) = 0$

- Solve with Newton’s method, i.e.,
 - Linearize at current guess $W^k = (X^k, \lambda^k, \mu^k)$:
 $R(W^k) + \nabla R(W^k)^T(W^{k+1} - W^k) = 0$
 - solve linearized system, get new trial point

- For τ small, duality gap becomes provably small. In convex case: self-concordance, polynomial time algorithms, …
(Note: IP with fixed τ makes p-NLP smooth)
Approach 2: Sequential Quadratic Programming (SQP)

ALGORITHMS FOR NONLINEAR CONSTRAINTS THAT USE
LAGRANGIAN FUNCTIONS*

M.J.D. POWELL
University of Cambridge, Cambridge, United Kingdom
Received 10 October 1976

- Linearize all problem functions, solve Quadratic Program (QP):

\[
\begin{align*}
\text{minimize} & \quad F_{\text{QP}}^{k}(X) \\
\text{s.t.} & \quad \begin{cases}
G(X^{k}) + \nabla G(X^{k})^T (X - X^{k}) = 0 \\
H(X^{k}) + \nabla H(X^{k})^T (X - X^{k}) \leq 0
\end{cases}
\end{align*}
\]

with convex quadratic objective using an approximation of (Lagrange-)Hessian. Obtain new guesses for both \(X^{*}\) and \(\lambda^{*}, \mu^{*}\). [cf. Wilson 1963, Robinson 1974]
Difference between IP and SQP?

- Both generate sequence of iterates X^k, λ^k, μ^k.
- Both need to linearize problem functions in each iteration.

- But:
 - SQP solves a QP in each iteration: more expensive
 - SQP quickly identifies active set: fewer iterates

SQP good if problem function evaluations are expensive (shooting methods)
⇒ can generalize to "Sequential Convex Programming - SCP"
In each SQP iteration, solve structured QP (after algebraic reduction):

\[
\text{minimize } \sum_{i=0}^{N-1} L_{\text{redQP},i}(x_i, u_i) + E_{\text{QP}}(x_N)
\]

subject to

\[
\begin{align*}
& x_0 - \bar{x}_0 = 0, \\
& x_{i+1} - c_i - A_i x_i - B_i u_i = 0, \quad i = 0, \ldots, N - 1, \\
& \bar{h}_i + \bar{H}_i^x x_i + \bar{H}_i^u u_i \leq 0, \quad i = 0, \ldots, N - 1, \\
& r' + R x_N \leq 0.
\end{align*}
\]

How to solve this structured QP?

- **A** - Condensing: eliminate all states (for short horizons, many states)
- **B** - Banded Factorization…

Factorize large banded KKT Matrix e.g. by Riccati based recursion

\[
M = \begin{bmatrix}
\mathbb{I} & Q_0 & S_0 & -A_0^T \\
\mathbb{I} & S_0^T & R_0 & -B_0^T \\
-S_0 & -B_0 & \ddots & \mathbb{I} \\
& & -A_0 & Q_N \\
\end{bmatrix}
\]

- Advantageous for long horizons and many controls.
- Niels Haverbeke develops fast Riccati QP solvers: e.g. NMPC with 200 steps, 10 states, 10 controls (6000 x 6000 matrix): 20 ms
Outline of the Talk

- Model Predictive Control: A Computational Challenge

- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities

- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control
Parametric Sensitivities

- In IP case, smoothed KKT conditions are equivalent to parametric root finding problem: \(R(\bar{x}_0, W) = 0 \)

 with solution \(W^*(\bar{x}_0) \) depending on initial condition

Based on old solution, can get “tangential predictor” for new one:
Can obtain parametric sensitivity for free in Newton type methods:

\[
W' = W - \left(\frac{\partial R}{\partial W}(\bar{x}_0, W) \right)^{-1} \left[\frac{\partial R}{\partial \bar{x}_0}(\bar{x}_0, W) \left(\bar{x}_0' - \bar{x}_0 \right) + R(\bar{x}_0, W) \right]
\]
"IP real-time iteration" for sequence of NLPs

Problem: overshoot at active set changes
Can we do better?
In each iteration, solve parametric QP with inequalities

\[
\begin{align*}
\text{minimize} \quad & f_{\text{condQP}, i}(\bar{x}_0, u) \\
\text{subject to} \quad & \bar{r} + \bar{R}^{x_0} \bar{x}_0 + \bar{R}^u u \leq 0.
\end{align*}
\]

This “Generalized Tangential Predictor” delivers first order prediction also at active set changes [D. 2001].
- long “preparation phase” for linearization, reduction, and condensing
- fast “feedback phase” (QP solution once \bar{x}_0 is known)
Stability of System-Optimizer Dynamics?

- System and optimizer are coupled: can numerical errors grow and destabilize closed loop?
- Stability analysis combines concepts from both, **NMPC stability theory** and **convergence theory of Newton-type optimization**.
- Stability shown under mild assumptions (short sampling times, stable NMPC scheme) [Diehl, Findeisen, Allgöwer, 2005]
- Losses w.r.t. optimal feedback control are \(O(\kappa^2 \epsilon^2) \) after \(\epsilon \) disturbance [Diehl, Bock, Schlöder, 2005]
Outline of the Talk

- Model Predictive Control: A Computational Challenge
- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities
- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control
OPTEC Fast MPC Group
(Electrical and Mechanical Engineering)
Solve p-QP via „Online Active Set Strategy“:

- go on straight line in parameter space from old to new problem data

- solve each QP on path exactly (keep primal-dual feasibility)

- Update matrix factorization at boundaries of critical regions

- Up to 10 x faster than standard QP

qpOASES: open source C++ code by Hans Joachim Ferreau
Time Optimal MPC: a 100 Hz Application

- Quarter car: oscillating spring damper system
- MPC Aim: settle at any new setpoint in *in minimal time*
- Two level algorithm: MIQP
 - 6 online data
 - 40 variables + one integer
 - 242 constraints (in-&output)
- use qpOASES on dSPACE
- CPU time: <10 ms

Lieboud Van den Broeck in front of quarter car experiment
Setpoint change without control: oscillations
With LQR control: inequalities violated
With Time Optimal MPC
Time Optimal MPC: qpOASES Optimizer Contents
qpOASES running on Industrial Control Hardware (20 ms)

Project manager (Dec. 2008): “…we had NO problem at all with the qpOASES code. Your Software has throughout the whole project shown reliable and robust performance.”
Outline of the Talk

- Model Predictive Control: A Computational Challenge

- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities

- Software and Applications:
 - qpOASES: Predictive Pre-filter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control
ACADO Toolkit

- A Toolkit for „Automatic Control and Dynamic Optimization“

- C++ code along with user-friendly Matlab interfaces

- Open-source software (LGPL 3)

- Since mid 2008 developed at OPTEC by Boris Houska and Hans Joachim Ferreau
ACADO Toolkit – Main Features

- Problem Classes:
 - Optimal control
 - State & parameter estimation
 - Robust optimization
 - Model predictive control

- Discretization Methods:
 - Single shooting
 - Multiple shooting
 - Collocation

- Integrators:
 - RKF and BDF methods
 - Efficient sensitivity generation
 - Second order sensitivities

- Dynamic Optimization:
 - Linear and Nonlinear
 - ODE and DAE
 - Continuous and discrete time
 - Automatic differentiation
 - Convexity detection

- NLP solvers:
 - Adjoint-based SQP
 - Interior point methods

First beta release available since today on www.acadotoolkit.org
login "DYSCO", password: ask H. Joachim Ferreau at ACADO poster
NMPC of Wind Power Generating Kites
Due to high speed, wing tips are *most efficient* part of wing.
Conventional Wind Turbines

- Due to high speed, wing tips are *most efficient* part of wing

Could we construct a wind turbine with only wing tips and generator?
Crosswind Kite Power

- Fly kite fast in crosswind direction
- Very strong force

But where could a generator be driven?
New cycle consists of two phases:

- **Power generation phase:**
 - unwind cable
 - generate power

- Retraction phase:
 - Reduce tension
 - pull back line
New Power Generating Cycle

New cycle consists of two phases:

- **Power generation phase:**
 - unwind cable
 - generate power

- **Retraction phase:**
 - Reduce tension
 - pull back line
Kite Modelling (Boris Houska)

Have to regard also cable elasticity

ODE Model with 12 states and 3 controls

- Differential states:
 \[x := (r_0, r, \phi, \theta, \dot{r}_0, \dot{r}, \dot{\phi}, \dot{\theta}, n, \Psi, C_L, W)^T \]

- Controls:
 \[u := (\ddot{r}_0, \dot{\Psi}, \dot{C}_L)^T \]

Control inputs:
- line length
- roll angle (as for toy kites)
- lift coefficient (pitch angle)
Solution of Periodic Optimization Problem

Maximize mean power production:
by varying line thickness, period duration, controls, subject to periodicity and other constraints:

Cable 1.3 km long, 7 cm thick, Kite Area 500 m², Power 5 MW.
Kite NMPC Problem solved with ACADO

- 9 states, 3 controls
- Penalize deviation from “lying eight”
- Predict half period
- zero terminal constraint
- 10 multiple shooting intervals

Solve with **SQP real-time iterations**
Kite NMPC: ACADO CPU Time per RTI below 50 ms

- Initial-Value Embedding : 0.03 ms
- QP solution (qpOASES) : 2.23 ms

Feedback Phase: 3 ms
(QP after condensing: 30 vars. / 240 constr.)

- Expansion of the QP : 0.10 ms
- Simulation and Sensitivities : 44.17 ms
- Condensing (Phase I) : 2.83 ms

Preparation Phase: 47 ms

(on Intel Core 2 Duo CPU T7250, 2 GHz)
Model Validation Experiments at K.U. Leuven
Time Optimal Robot Motion (D. Verscheure et al.)
Nonlinear Dynamic Robot Model (6 DOF)

\[\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + F_s(q)\text{sgn}(\dot{q}) + G(q) \]

Desired: Time Optimal Trajectory

Often
- geometric path fixed
- velocity free for optimization

Then, model can be written as:

\[\tau(s) = m(s)\ddot{s} + c(s)\dot{s}^2 + g(s) \]
Nonlinear Time Optimal Robot Control

- Minimize time

subject to

- Boundary conditions
- Torque limits

\[
\begin{align*}
\min_{T, s(\cdot), \tau(\cdot)} & \quad T, \\
\text{subject to} & \quad \tau(t) = m(s(t))\ddot{s}(t) + c(s(t))\dot{s}(t)^2 + g(s(t)), \\
& \quad s(0) = 0, \\
& \quad s(T) = 1, \\
& \quad \dot{s}(0) = \dot{s}_0, \\
& \quad \dot{s}(T) = \dot{s}_T, \\
& \quad \ddot{s}(t) \geq 0, \\
& \quad \tau(s(t)) \leq \tau(t) \leq \overline{\tau}(s(t)), \\
& \quad \text{for } t \in [0, T],
\end{align*}
\]

Nonlinear model \rightarrow non-convex problem
After time transformation, previous problem is equivalent to:

\[
\begin{align*}
\min_{a(\cdot), b(\cdot), \tau(\cdot)} & \int_0^1 \frac{1}{\sqrt{b(s)}} ds, \\
\text{subject to } & \tau(s) = m(s)a(s) + c(s)b(s) + g(s), \\
& b(0) = \dot{s}_0^2, \\
& b(1) = \dot{s}_T^2, \\
& b'(s) = 2a(s), \\
& b(s) \geq 0, \\
& \tau(s) \leq \tau(s) \leq \overline{\tau}(s), \\
& \text{for } s \in [0, 1].
\end{align*}
\]

Linear model, convex cost \rightarrow convex problem
TimeOpt Software: Real-Time Control Setup

- Variable horizon length for future path (user decides online)
- require that robot rests at end of horizon (for safety)
- Solve with Interior Point formulation after discretization

\[
\min_{b^k} \sum_{k=0}^{K-1} \left[f_{o,k}^k(b^k, b^{k+1}) - \kappa \sum_{i=1}^{n} \log \left(\tau_i(s^{k+1/2}) - f_{c,i}^k(b^k, b^{k+1}) \right) \left(-\tau_i(s^{k+1/2}) + f_{c,i}^k(b^k, b^{k+1}) \right) \right]
\]

- use FIXED barrier parameter
- exploit banded structure
- use „IP real-time iterations“ for approximate path-following
- Implement in C on OROCOS control software

→ 2 ms CPU time per 900 var. problem
Result: Online Optimization with 500 Hz
Example: Time Optimal Robot Motion
Real-Time Optimization needs sophisticated numerical methods

OPTEC develops open source software for nonlinear dynamic optimization

Real-Time Optimization powerful tool in mechatronic MPC applications
 • qpOASES: TOMPC (100 Hz), industrial gas engine
 • ACADO: Kite NMPC (20 Hz)
 • TimeOpt: Convex time optimal robot NMPC (500 Hz)

Lots of exciting applications in engineering that need ultra-fast real-time optimization algorithms
Invitation to Leuven: July 8, 5 p.m.

12th Simon Stevin Lecture on Optimization in Engineering

Simon Stevin,
(1548-1620),
Flemish mathematician
and engineer

Lieven Vandenberghe:
"Convex techniques for sparse and low-order model selection"

July 8, 2009, 5 p.m., Aud. CS, KUL
followed by a reception

All DYSCO members and friends are most welcome!
14th Belgian-French-German Conference on Optimization

Leuven, September 14-18, 2009

Special Topic: Optimization in Engineering