Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications

Moritz Diehl
Optimization in Engineering Center OPTEC & ESAT, K.U. Leuven

Joint work with H. J. Ferreau*, B. Houska*, D. Verscheure*, L. Van den Broeck*, N. Haverbeke*, J. Swevers*, J. De Schutter*, S. Boyd**, H. G. Bock***, *K.U. Leuven / **Stanford University / ***University of Heidelberg

DYSCO Study Day, Mons, May 28, 2009

Topics of this talk

Nonlinear **DY**namic **S**ystems

Model Predictive Control

Real-Time Optimization

Dynamic Optimization Applications at OPTEC

Distillation column (Stuttgart; Leuven)

Washing machine design and control (with Bauknecht)

Chemical Process Control (with IPCOS)

Combine Harvester Control (with Mebios/CNH)

Walking Robots (with Grenoble/Tsukuba)

Power generating kites (Leuven)

Robot arm time optimal motion (Leuven)

Combustion Engines (Leuven; Linz; Hoerbiger, US)

Solar Thermal Power Plant (Jülich)

Nonlinear, constrained...how to control optimally?

Idea of Model Predictive Control (MPC)

Always look a bit into the future.

Brain predicts and optimizes: e.g. slow down **before** curve

Computations in Model Predictive Control (MPC)

- Estimate current system state (and parameters) from measurements.
- 2. Solve in real-time an optimal control problem:

$$\min_{\substack{x,z,u \\ x,z,u}} \int_{t_0}^{t_0+T_p} L(x,z,u)dt + E(x(t_0+T_p)) \, s.t. \begin{cases} x(t_0)-x_0 = 0, \\ \dot{x}-f(x,z,u) = 0, \, t \in [t_0,t_0+T_p] \\ g(x,z,u) = 0, \, t \in [t_0,t_0+T_p] \\ h(x,z,u) \geq 0, \, t \in [t_0,t_0+T_p] \\ r(x(t_0+T_p)) \geq 0. \end{cases}$$

3. Implement first control u_{θ} for time δ at real plant. Set $t_0 = t_0 + \delta$ and go to 1.

Main challenge for MPC: fast and reliable real-time optimization

Outline of the Talk

- Model Predictive Control: A Computational Challenge
- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities
- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control

Nonlinear MPC Problem in Discrete Time

minimize
$$\sum_{i=0}^{N-1} L_i(x_i, z_i, u_i) + E(x_N)$$

subject to $x_0 - \overline{x_0} = 0$,
 $x_{i+1} - f_i(x_i, z_i, u_i) = 0$, $i = 0, \dots, N-1$,
 $g_i(x_i, z_i, u_i) = 0$, $i = 0, \dots, N-1$,
 $h_i(x_i, z_i, u_i) \leq 0$, $i = 0, \dots, N-1$,
 $r(x_N) \leq 0$.

Structured "parametric Nonlinear Program (p-NLP)"

- Initial Value \bar{x}_0 is not known beforehand ("online data")
- Discrete time dynamics often come from ODE simulation cf. "multiple shooting" [Bock & Plitt 1984]
- "Algebraic States" z implicitly defined via third condition, can come from DAEs or from collocation discretization

NMPC = parametric NLP

Solution manifold is piecewise differentiable (kinks at active set changes)

How to solve Nonlinear Programs (NLPs)?

minimize
$$F(X)$$
 s.t.
$$\begin{cases} G(X) = 0 \\ H(X) \leq 0 \end{cases}$$

Lagrangian:
$$\mathcal{L}(X,\lambda,\mu) = F(X) + G(X)^T \lambda + H(X)^T \mu$$

Karush Kuhn Tucker (KKT) conditions: for optimal X^* exist λ^*, μ^* such that:

$$\nabla_X \mathcal{L}(X^*, \lambda^*, \mu^*) = 0$$

$$G(X^*) = 0$$

$$0 \ge H(X^*) \perp \mu^* \ge 0.$$

Newton type methods try to find points satisfying these conditions. But last condition non-smooth: cannot apply Newton's method directly. What to do?

Approach 1: Interior Point (IP) Methods

Replace last condition by smoothed version:

$$\nabla_X \mathcal{L}(X^*, \lambda^*, \mu^*) = 0$$
 $G(X^*) = 0$
 $-H_i(X^*) \mu_i^* = \tau, \quad i = 1, \dots, n_H.$

Summarize as R(W) = 0

- Solve with Newton's method, i.e.,
 - Linearize at current guess $W^k = (X^k, \lambda^k, \mu^k)$:

$$R(W^{k}) + \nabla R(W^{k})^{T}(W^{k+1} - W^{k}) = 0$$

- solve linearized system, get new trial point
- For τ small, duality gap becomes provably small. In convex case: self-concordance, polynomial time algorithms, ...

(Note: IP with fixed T makes p-NLP smooth)

Approach 2: Sequential Quadratic Programming (SQP)

Mathematical Programming 14 (1978) 224–248.

ALGORITHMS FOR NONLINEAR CONSTRAINTS THAT USE LAGRANGIAN FUNCTIONS*

M.J.D. POWELL

University of Cambridge, Cambridge, United Kingdom

Received 10 October 1976

Linearize all problem functions, solve Quadratic Program (QP):

minimize
$$F_{\mathrm{QP}}^k(X)$$
 s.t.
$$\begin{cases} G(X^k) + \nabla G(X^k)^T (X - X^k) &= 0 \\ H(X^k) + \nabla H(X^k)^T (X - X^k) &\leq 0 \end{cases}$$

with convex quadratic objective using an approximation of (Lagrange-)Hessian. Obtain new guesses for both X^* and λ^*, μ^* . [cf. Wilson 1963,Robinson 1974]

Difference between IP and SQP?

- Both generate sequence of iterates X^k, λ^k, μ^k
- Both need to linearize problem functions in each iteration.
- But:
 - SQP solves a QP in each iteration: more expensive
 - SQP quickly identifies active set: fewer iterates

SQP good if problem function evaluations are expensive (shooting methods)

→ can generalize to "Sequential Convex Programming - SCP"

Linear Algebra Issues in Optimal Control

In each SQP iteration, solve structured QP (after algebraic reduction):

minimize
$$\sum_{i=0}^{N-1} L_{\text{redQP},i}(x_i, u_i) + E_{\text{QP}}(x_N)$$
subject to
$$x_0 - \bar{x}_0 = 0,$$

$$x_{i+1} - c_i - A_i x_i - B_i u_i = 0, \quad i = 0, \dots, N-1,$$

$$\bar{h}_i + \bar{H}_i^x x_i + \bar{H}_i^u u_i \leq 0, \quad i = 0, \dots, N-1,$$

$$r' + Rx_N \leq 0.$$

How to solve this structured QP?

- A Condensing: eliminate all states (for short horizons, many states)
- B Banded Factorization...

B - Block Banded Factorizations

Factorize large banded KKT Matrix e.g. by Riccati based recursion

$$M = \begin{bmatrix} \mathbb{I} & & & & \\ \mathbb{I} & Q_0 & S_0 & -A_0^T & \\ & S_0^T & R_0 & -B_0^T & \\ & -A_0 & -B_0 & \ddots & \mathbb{I} \\ & & \mathbb{I} & Q_N \end{bmatrix}$$

- Advantageous for long horizons and many controls.
- Niels Haverbeke develops fast Riccati QP solvers: e.g. NMPC with 200 steps, 10 states, 10 controls (6000 x 6000 matrix): 20 ms

Outline of the Talk

- Model Predictive Control: A Computational Challenge
- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities
- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control

Parametric Sensitivities

• In IP case, smoothed KKT conditions are equivalent to parametric root finding problem: $R(\bar{x}_0,W)=0$

with solution $W^*(\bar{x}_0)$ depending on initial condition

Based on old solution, can get "tangential predictor" for new one:

Sensitivity by Newton Predictor-Corrector

Can obtain parametric sensitivity for free in Newton type methods:

$$W' = W - \left(\frac{\partial R}{\partial W}(\bar{x}_0, W)\right)^{-1} \begin{bmatrix} \frac{\partial R}{\partial \bar{x}_0}(\bar{x}_0, W) \left(\bar{x}_0' - \bar{x}_0\right) + R(\bar{x}_0, W) \end{bmatrix}$$
 predictor corrector

"IP real-time iteration" for sequence of NLPs

Generalized Tangential Predictor via SQP [D. 2001]

In each iteration, solve parametric QP with inequalities

minimize
$$f_{\text{condQP},i}(\bar{x}_0, u)$$

subject to $\bar{r} + \bar{R}^0(\bar{x}_0) + \bar{R}^u u \leq 0.$

 This "Generalized Tangential Predictor" delivers first order prediction also at active set changes [D. 2001].

SQP Real-Time Iteration (RTI) [D. 2001]

- long "preparation phase" for linearization, reduction, and condensing
- fast "feedback phase" (QP solution once $ar{x}_0$ is known)

Stability of System-Optimizer Dynamics?

- System and optimizer are coupled: can numerical errors grow and destabilize closed loop?
- Stability analysis combines concepts from both, NMPC stability theory and convergence theory of Newton-type optimization.
- Stability shown under mild assumptions (short sampling times, stable NMPC scheme) [Diehl, Findeisen, Allgöwer, 2005]
- Losses w.r.t. optimal feedback control are $O(\kappa^2 \epsilon^2)$ after ϵ disturbance [Diehl, Bock, Schlöder, 2005]

Outline of the Talk

- Model Predictive Control: A Computational Challenge
- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities
- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control

qpOASES: Tailored QP Solver

Solve p-QP via "Online Active Set Strategy":

- go on straight line in parameter space from old to new problem data
- solve each QP on path exactly (keep primal-dual feasibility)
- Update matrix factorization at boundaries of critical regions
- Up to 10 x faster than standard QP

qpOASES: open source C++ code by Hans Joachim Ferreau

Time Optimal MPC: a 100 Hz Application

- Quarter car: oscillating spring damper system
- MPC Aim: settle at any new setpoint in in minimal time
- Two level algorithm: MIQP
 - 6 online data
 - 40 variables + one integer
 - 242 constraints (in-&output)
- use qpOASES on dSPACE
- CPU time: <10 ms

Lieboud Van den Broeck in front of quarter car experiment

Setpoint change without control: oscillations

With LQR control: inequalities violated

With Time Optimal MPC

Time Optimal MPC: qpOASES Optimizer Contents

qpOASES running on Industrial Control Hardware (20 ms)

Outline of the Talk

- Model Predictive Control: A Computational Challenge
- Real-Time Optimization Algorithms:
 - Newton Type Optimization
 - Parametric Sensitivities
- Software and Applications:
 - qpOASES: Predictive Prefilter, Engine Control
 - ACADO: Wind Power Generating Kites
 - TimeOpt: Time Optimal Robot Arm Control

ACADO Toolkit

A Toolkit for "Automatic Control and Dynamic Optimization"

- C++ code along with user-friendly Matlab interfaces
- Open-source software (LGPL 3)
- Since mid 2008 developed at OPTEC by Boris Houska and Hans Joachim Ferreau

ACADO Toolkit – Main Features

- Problem Classes:
 - Optimal control
 - State & parameter estimation
 - Robust optimization
 - Model predictive control
- Dynamic Optimization:
 - Linear and Nonlinear
 - ODE and DAE
 - Continuous and discrete time
 - Automatic differentiation
 - Convexity detection

- Discretization Methods:
 - Single shooting
 - Multiple shooting
 - Collocation
- Integrators:
 - RKF and BDF methods
 - Efficient sensitivity generation
 - Second order sensitivities
- NLP solvers:
 - Adjoint-based SQP
 - Interior point methods

First beta release available since today on www.acadotoolkit.org login "DYSCO", password: ask H. Joachim Ferreau at ACADO poster

NMPC of Wind Power Generating Kites

Conventional Wind Turbines

 Due to high speed, wing tips are most efficient part of wing

Conventional Wind Turbines

 Due to high speed, wing tips are most efficient part of wing

Could we construct a wind turbine with only wing tips and generator?

Crosswind Kite Power

- Fly kite fast in crosswind direction
- Very strong force

But where could a generator be driven?

New Power Generating Cycle

New cycle consists of two phases:

- Power generation phase:
 - unwind cable
 - generate power

New Power Generating Cycle

New cycle consists of two phases:

- Power generation phase:
 - unwind cable
 - generate power
- Retraction phase:
 - Reduce tension
 - pull back line

Kite Modelling (Boris Houska)

Have to regard also cable elasticity

forces at kite

ODE Model with 12 states and 3 controls

Differential states:

$$x := (r_0, r, \phi, \theta, \dot{r}_0, \dot{r}, \dot{\phi}, \dot{\theta}, n, \Psi, C_L, W)^T$$

• Controls: $u := (\ddot{r}_0, \dot{\Psi}, \dot{C}_L)^T$

Control inputs:

- line length
- roll angle (as for toy kites)
- lift coefficient (pitch angle)

Solution of Periodic Optimization Problem

Cable 1.3 km long, 7 cm thick, Kite Area 500 m², Power 5 MW.

Kite NMPC Problem solved with ACADO

- 9 states, 3 controls
- Penalize deviation from "lying eight"
- Predict half period
- zero terminal constraint
- 10 multiple shooting intervals

Solve with **SQP real-time iterations**

Kite NMPC: ACADO CPU Time per RTI below 50 ms

Initial-Value Embedding : 0.03 ms

QP solution (qpOASES) : 2.23 ms

Feedback Phase: 3 ms

(QP after condensing: 30 vars. / 240 constr.)

Expansion of the QP : 0.10 ms

Simulation and Sensitivities: 44.17 ms

Condensing (Phase I) : 2.83 ms

Preparation Phase: 47 ms

(on Intel Core 2 Duo CPU T7250, 2 GHz)

Model Validation Experiments at K.U. Leuven

Time Optimal Robot Motion (D. Verscheure et al.)

Nonlinear Dynamic Robot Model (6 DOF)

Desired: Time Optimal Trajectory

q(t)?

- geometric path fixed
- velocity free for optimization

Then, model can be written as:

$$\boldsymbol{\tau}(s) = \mathbf{m}(s)\ddot{s} + \mathbf{c}(s)\dot{s}^2 + \mathbf{g}(s)$$

Nonlinear Time Optimal Robot Control

Minimize time

subject to

Boundary conditions

Torque limits

$$\begin{aligned} & \min_{T, s(\cdot), \boldsymbol{\tau}(\cdot)} T, \\ & \text{subject to } \boldsymbol{\tau}(t) = \mathbf{m}(s(t)) \ddot{s}(t) \\ & + \mathbf{c}(s(t)) \dot{s}(t)^2 + \mathbf{g}(s(t)), \\ & s(0) = 0, \\ & s(T) = 1, \\ & \dot{s}(0) = \dot{s}_0, \\ & \dot{s}(T) = \dot{s}_T, \\ & \dot{s}(t) \geq 0, \\ & \underline{\boldsymbol{\tau}}(s(t)) \leq \boldsymbol{\tau}(t) \leq \overline{\boldsymbol{\tau}}(s(t)), \\ & \text{for } t \in [0, T], \end{aligned}$$

Nonlinear model → non-convex problem

Transformation into Convex Problem

After time transformation, previous problem is equivalent to:

$$\min_{a(\cdot),b(\cdot),\boldsymbol{\tau}(\cdot)} \int_0^1 \frac{1}{\sqrt{b(s)}} ds,$$
 subject to $\boldsymbol{\tau}(s) = \mathbf{m}(s)a(s) + \mathbf{c}(s)b(s) + \mathbf{g}(s),$
$$b(0) = \dot{s}_0^2,$$

$$b(1) = \dot{s}_T^2,$$

$$b'(s) = 2a(s),$$

$$b(s) \geq 0,$$

$$\underline{\boldsymbol{\tau}}(s) \leq \boldsymbol{\tau}(s) \leq \overline{\boldsymbol{\tau}}(s),$$
 for $s \in [0,1].$

Linear model, convex cost → convex problem

TimeOpt Software: Real-Time Control Setup

- Variable horizon length for future path (user decides online)
- require that robot rests at end of horizon (for safety)
- Solve with Interior Point formulation after discretization

$$\min_{b^k} \sum_{k=0}^{K-1} \left[f_o^k(b^k, b^{k+1}) - \kappa \sum_{i=1}^n \log \left((\overline{\tau}_i(s^{k+1/2}) - f_{c,i}^k(b^k, b^{k+1})) (-\underline{\tau}_i(s^{k+1/2}) + f_{c,i}^k(b^k, b^{k+1})) \right) \right]$$

- use FIXED barrier parameter
- exploit banded structure
- use "IP real-time iterations" for approximate path-following
- Implement in C on OROCOS control software
- → 2 ms CPU time per 900 var. problem

Result: Online Optimization with 500 Hz

Summary

- Real-Time Optimization needs sophisticated numerical methods
- OPTEC develops open source software for nonlinear dynamic optimization
- Real-Time Optimization powerful tool in mechatronic MPC applications
 - qpOASES: TOMPC (100 Hz), industrial gas engine
 - ACADO: Kite NMPC (20 Hz)
 - TimeOpt: Convex time optimal robot NMPC (500 Hz)
- Lots of exciting applications in engineering that need ultra-fast realtime optimization algorithms

Invitation to Leuven: July 8, 5 p.m.

12th Simon Stevin Lecture on Optimization in Engineering

Simon Stevin, (1548-1620), Flemish mathematician and engineer

Lieven Vandenberghe:
"Convex techniques for sparse

"Convex techniques for sparse and loworder model selection"

July 8, 2009, 5 p.m., Aud. CS, KUL followed by a reception

All DYSCO members and friends are most welcome!

14th Belgian-French-German Conference on Optimization

Leuven, September 14-18, 2009

