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Topics of this talk

Nonlinear DYnamic Systems
Model Predictive Control

Real-Time Optimization



Dynamic Optimization Applications at OPTEC
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Nonlinear, constrained...how to control optimally?



|dea of Model Predictive Control (MPC)

Always look a bit into the future.

Brain predicts and optimizes:
e.g. slow down before curve




Computations in Model Predictive Control (MPC)
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1. Estimate current system state-(and parameters) from measurements.
2. Solve in real-time an optimal control problem:

x(to) —xo = 0,
oI p j_f(xazsu) — 0: I [IU:ID+TP:|
I';lz]{}f L(I,z, u)dt —|—E(.I(fu—|—Tp)) s.1. g(x,z,u) — O: I cC [fﬂztﬂ“l‘Tp]
i

h(x,z,u) > 0,1 € [to, 50+ T]
r(x(to+71,)) > 0.

3. Implement first control fug for time 6 at real plant. Set r, = ¢, + 6 and go to 1.

Main challenge for MPC.: fast and reliable real-time optimization



Outline of the Talk

® Real-Time Optimization Algorithms:
 Newton Type Optimization

e Parametric Sensitivities



Nonlinear MPC Problem in Discrete Time

N-1
minimize Z Li(xi, zi,ui)  +  E(an)
T,z U "0
subject to 20 = 0,
riv1 — filzi,zisuy) = 0, i=0,....,N—1
gi(xi, zi,u;)) = 0, i=0,...,N—1
hi(zi ziou;) < 0, i=0,...,N—1
r(ry) < 0.

Structured “parametric Nonlinear Program (p-NLP)”
® Initial Value 7z, Is not known beforehand (“online data”)

® Discrete time dynamics often come from ODE simulation cf. “multiple
shooting” [Bock & Plitt 1984]

® “Algebraic States” z implicitly defined via third condition, can come from
DAESs or from collocation discretization



NMPC = parametric NLP

® Solution manifold is piecewise differentiable (kinks at active set changes)

e

® Critical regions are non-polyhedral

S




How to solve Nonlinear Programs (NLPs) ?

o _ GX) = 0
minimize F(X) s.t. {
¥ H(X) < 0
Lagrangian: LIX M\p) =FX)+GX) ' N+HX)

Karush Kuhn Tucker (KKT) conditions: for optimal X* exist A™, i” such that:

VN L(X* N ) =
G(X*) =
0> H(X") L p° >

Newton type methods try to find points satisfying these conditions. But last
condition non-smooth: cannot apply Newton’s method directly. What to do?



Approach 1: Interior Point (IP) Methods

® Replace last condition by smoothed version:

VxL(X" N0 =
G(X7)
- H,(X ), = 7, i=1,...,nH.

Summarize as R(W) = 0

® Solve with Newton’s method, i.e.,
« Linearize at current guess T}/ k= (X;‘} M )u.;“) ;

R(W*®) + VR(W") L (WH+L — k) =0

* solve linearized system, get new trial point

® For 7+ small, duality gap becomes provably small. In convex
case: self-concordance, polynomial time algorithms, ...



(Note: IP with fixed T makes p-NLP smooth)




Approach 2: Sequential Quadratic Programming (SQP)

Mathematical Programming 14 (1978) 224-248.
ALGORITHMS FOR NONLINEAR CONSTRAINTS THAT USE
LAGRANGIAN FUNCTIONS*

M.J.D. POWELL
University of Cambridge, Cambridge, United Kingdom

Received 10 October 1976

® Linearize all problem functions, solve Quadratic Program (QP):

G(X*) + VG(XM)T (X — X*)
H(X*) + VH(X?)T(X — X*)

minimize F(SP(X ) s.t. {
X

IA ]
-

with convex quadratic objective using an approximation of (Lagrange-)Hessian.
Obtain new guesses for both X ™ and \*, ;1* . [cf. Wilson 1963,Robinson 1974]



Difference between IP and SQP ?

® Both generate sequence of iterates X’ﬂ )\"ﬂ, Nj’f
® Both need to linearize problem functions in each iteration.

® But:
 SQP solves a QP in each iteration: more expensive

o SQP quickly identifies active set: fewer iterates

SQP good if problem function evaluations are expensive (shooting methods)
—> can generalize to "Sequential Convex Programming - SCP"



Linear Algebra Issues in Optimal Control

® |n each SQP iteration, solve structured QP (after algebraic reduction):

N—1
minimize E Licagr.i(zi,w;) +  Eqp(zn)
1=0

T, U
subject to vy —To = 0,
riy1 — ¢ — Ay —Biuy, = 0, 1=0,...,N -1
hi+Hiwi+H'ug < 0, i=0,... N-1
v + Rey < 0.

How to solve this structured QP?
® A - Condensing: eliminate all states (for short horizons, many states)
® B - Banded Factorization...



B - Block Banded Factorizations

Factorize large banded KKT Matrix e.g. by Riccati based recursion

I
M =

I
Qo S0
ST Ry
—Ag —bBo

® Advantageous for long horizons and many controls.

® Niels Haverbeke develops fast Riccati QP solvers: e.g.
NMPC with 200 steps, 10 states, 10 controls (6000 x

6000 matrix): 20 ms




Outline of the Talk

e Parametric Sensitivities



Parametric Sensitivities

® In |IP case, smoothed KKT conditions are equivalent to
parametric root finding problem: R(z,, W) = 0

with solution W*(Z() depending on initial condition

Based on old solution, can get “tangential predictor” for new one:
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Sensitivity by Newton Predictor-Corrector

® Can obtain parametric sensitivity for free in Newton type methods:

IR R
W =W - (fm (Zo, W )) {( (20, W) (6 — 70) +R(:z:o,1f1f")}
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“IP real-time iteration” for sequence of NLPs

I =
=,

corrector

i

Problem: overshoot at active set changes
Can we do better?




Generalized Tangential Predictor via SQP  p. 2001

® In each iteration, solve parametric QP with inequalities

minimize  JfeondQP.i (Zo,u)
u

subject to T+ R‘ R'w < 0.

® This “Generalized Tangential Predictor” delivers first order prediction also
at active set changes [D. 2001].
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SQP Real-Time Iteration (RTI) [p. 2001
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® long “preparation phase” for linearization, reduction, and condensing
e fast “feedback phase” (QP solution once Z( is known)



Stability of System-Optimizer Dynamics?

Optimizer
(SQP lterates)

Initial Value Control uq

Real World System |
(System State) |

« System and optimizer are coupled: can numerical errors grow and
destabilize closed loop?

o Stability analysis combines concepts from both, NMPC stability
theory and convergence theory of Newton-type optimization.

o Stability shown under mild assumptions (short sampling times, stable
NMPC scheme) [Diehl, Findeisen, Allgéwer, 2005]

o Losses w.r.t. optimal feedback control are O{«?¢?) after ¢ disturbance
[Diehl, Bock, Schiéder, 2005]



Outline of the Talk

® Software and Applications:
 JpOASES: Predictive Prefilter, Engine Control
« ACADO: Wind Power Generating Kites

e TimeOpt: Time Optimal Robot Arm Control



OPTEC Fast MPC Group
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gpOASES: Tallored QP Solver

Solve p-QP via ,Online Active Set Strategy*:
® (o on straight line in parameter space
from old to new problem data

® solve each QP on path exactly (keep
primal-dual feasibility) g

® Update matrix factorization at boundaries
of critical regions

® Up to 10 x faster than standard QP

gpOASES: open source C++ code by Hans Joachim Ferre  au



Time Optimal MPC: a 100 Hz Application

® Quarter car: oscillating spring
damper system
® MPC Aim: settle at any new
setpoint in in minimal time
__ ® Two level algorithm: MIQP
I ® 6 online data
® 40 variables + one integer
[ ® 242 constraints (in-&output)

position [cm]

® use gpOASES on dSPACE
! ® CPU time: <10 ms

m— o

j Lieboud Van den Broeck in front of
quarter car experiment



Setpoint change without control: oscillations




With LOQR control: inequalities violated




With Time Optimal MPC




Time Optimal MPC: gpOASES Optimizer Contents
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gpPOASES running on Industrial Control Hardware (20 m

Project manager (Dec 2008) e WE
Wwith the quASES code. Y Softw
whole project she reI| ”




Outline of the Talk

« ACADO: Wind Power Generating Kites



ACADO Toolkit

® A Toolkit for ,Automatic Control and Dynamic Optimization®
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® C++ code along with user-friendly Matlab interfaces
® Open-source software (LGPL 3)

® Since mid 2008 developed at OPTEC by
Boris Houska and Hans Joachim Ferreau




ACADO Toolkit — Main Features

® Problem Classes: ® Discretization Methods:
e Optimal control » Single shooting
o State & parameter estimation * Multiple shooting
* Robust optimization « Collocation

 Model predictive control e Integrators:

« RKF and BDF methods
« Efficient sensitivity generation
e Second order sensitivities

® Dynamic Optimization:
 Linear and Nonlinear
« ODE and DAE

e Continuous and discrete time ® NLP solvers:
« Automatic differentiation * Adjoint-based SQP
» Convexity detection  Interior point methods

First beta release available since today on www.acadotoolkit.org
login "DYSCQ", password: ask H. Joachim Ferreau at ACADO poster
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Conventional Wind Turbines
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Conventional Wind Turbines
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Could we construct a wind turbine
with only wing tips and generator ?



Crosswind Kite Power

® Fly kite fast in crosswind direction
® Very strong force

But where could a generator be driven?




New Power Generating Cycle

New cycle consists of two phases:
® Power generation phase:

e unwind cable

e generate power




New Power Generating Cycle

New cycle consists of two phases:
® Power generation phase:

e unwind cable

e generate power

® Retraction phase:
* Reduce tension
e pull back line




Kite Modelling (Boris Houska)

Have to regard also cable elasticity

\ el ODE Model with 12 states and 3 controls

I'\ x:=(rg,r. 0,0, r9,. 7. 0,0, n, . 'f:_'|‘. “?:}I

| [T Differential states:
— L
L Controls: u := (ig, U, C})!

forces at kite Control inputs:
® line length
® roll angle (as for toy kites)
@ lift coefficient (pitch angle)



Solution of Periodic Optimization Problem

™6 °] — extraction phase
601 ----- retraction phase
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0 5 10 15 T =19.9s
Cable 1.3 km long, 7 cm thick,
Kite Area 500 m?, Power 5 MW.




Kite NMPC Problem solved with ACADO

9 states, 3 controls

Penalize deviation from “lying eight”
Predict half period

zero terminal constraint

10 multiple shooting intervals

Solve with SQP real-time iterations N0 [rad] e
1.1 7

1.2 1

1.3 7

[rad]

1.4




























Kite NMPC: ACADO CPU Time per RTI below 50 ms

® [nitial-Value Embedding . 0.03ms
® QP solution (QpOASES) . 2.23 ms
Feedback Phase: 3 ms

(QP after condensing: 30 vars. / 240 constr.)

® Expansion of the QP . 0.10ms
® Simulation and Sensitivities : 44.17 ms
® Condensing (Phase I) . 2.83ms

Preparation Phase: 47 ms

(on Intel Core 2 Duo CPU T7250, 2 GHz)




Model Validation Experiments at K.U. Leuven




Time Optimal Robot Motion (D. Verscheure et al.)




Nonlinear Dynamic Robot Model (6 DOF)

T =M(q)d + C(q, 4)§ + F.(q)sgn(q) + G(q)

Desired: Time Optimal Trajectory

Often

® geometric path fixed

® velocity free for optimization
Then, model can be written as:

T(s) =m(s)s + c(s)sz + g(s)




Nonlinear Time Optimal Robot Control

® Minimize

subject to

time

® Boundary conditions
® Torgue limits

min 71
T!S(')!T(') '

Nonlinear

model - non-convex problem




Transformation into Convex Problem

After time transformation, previous problem is equivalent to:

L |
_“[11111

1(-).6(-).7() Jo  4/b(S)

subject to 7(s) = m(s)a(s) + c(s)b(s) + g(s),

b(0) = &2,
b(1) = $7.
b'(s) = 2a(s),
b(s) > 0,

T(s) < 7(s) <7(s),
for s € [0,1].

Linear model, convex cost = convex problem



TimeOpt Software: Real-Time Control Setup

® Variable horizon length for future path (user decides online)
® require that robot rests at end of horizon (for safety)
® Solve with Interior Point formulation after discretization

K-1 7
: Rk phrly _ = (FHL/2Y gk (pF Ry (o (R 12 ko(pk pl+1y
min } |7 (0, 651 h;h}g (MS I A (N S DTE Y CLanle IS (AN Iu)]

k=0

« use FIXED barrier parameter @\
o exploit banded structure KL’,?“-—-—-;\P// \l%
* use ,IP real-time iterations" for approximate j‘f\/ Y %
_ - S NNVAN )
path-following %ﬂ //Nf z
« Implement in C on OROCOS “y \@ e
control software .,J/ e
= U,
- 2 ms CPU time per 900 var. problem ffj){/@ﬁj; L



Result: Online Optimization with 500 Hz




Path (calculation time: 10.5 ms)

"T- T T T T T T
05 .
D | | | 1 | |
0z 0 -0z 0.4 05 -0.8 -1
Pseudo-velocity (calculation time: 10.5 ms)
i
=
o 015
=
u'll -
:Q o1
EN
G
SwrA
|:| | 1 | | | | i |
0.z 0.4 06 08 1 1.2 14 16
fime {5)
Torques (calcylation time: 10.5 ms)
4':”:' T T T T T T T T
— 200
£
=
o 1]
&
= =z00
—400 ] | ] ] ] ] 1 ]




® Real-Time Optimization needs sophisticated numerical methods

® OPTEC develops open source software for nonlinear dynamic
optimization

® Real-Time Optimization powerful tool in mechatronic MPC applications
« POASES: TOMPC (100 Hz), industrial gas engine
« ACADO: Kite NMPC (20 Hz)
 TimeOpt: Convex time optimal robot NMPC (500 Hz)

® Lots of exciting applications in engineering that need ultra-fast real-
time optimization algorithms



Invitation to Leuven: July 8, 5 p.m.

12th Simon Stevin Lecture on Optimization in Engine  ering

Smon Sevin,

(1548-1620),

. 4y, Flemish mathematician
2l and engineer

Lieven Vandenberghe:
"Convex techniques for sparse and low-
order model selection”

July 8, 2009, 5 p.m., Aud. CS, KUL
- followed by a reception

All DYSCO members and friends are most welcome!
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