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Nonlinear, constrained...how to control optimally? 



Brain predicts and optimizes:
e.g. slow down before curve

Idea of Model Predictive Control (MPC)

Always look a bit into the future.
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Principle of Optimal Feedback Control / Nonlinear MPC: Computations in Model Predictive Control (MPC)

Main challenge for MPC: fast and reliable real-time  optimization



Outline of the Talk 

�Model Predictive Control: A Computational Challenge

�Real-Time Optimization Algorithms:

• Newton Type Optimization

• Parametric Sensitivities

�Software and Applications:

• qpOASES: Predictive Prefilter, Engine Control

• ACADO: Wind Power Generating Kites

• TimeOpt: Time Optimal Robot Arm Control



Nonlinear MPC Problem in Discrete Time

Structured “parametric Nonlinear Program (p-NLP)”
� Initial Value        is not known beforehand (“online data”)
� Discrete time dynamics often come from ODE simulation cf. “multiple 

shooting” [Bock & Plitt 1984]

� “Algebraic States” z implicitly defined via third condition, can come from 
DAEs or from collocation discretization



NMPC = parametric NLP

� Solution manifold is piecewise differentiable (kinks at active set changes)

�Critical regions are non-polyhedral



Lagrangian:

Karush Kuhn Tucker (KKT) conditions: for optimal        exist         such that:

Newton type methods try to find points satisfying these conditions. But last 
condition non-smooth: cannot apply Newton’s method directly. What to do?

How to solve Nonlinear Programs (NLPs) ?



Approach 1: Interior Point (IP) Methods

� Replace last condition by smoothed version:

Summarize as

� Solve with Newton’s method, i.e.,
• Linearize at current guess                                       :

• solve linearized system, get new trial point

� For         small, duality gap becomes provably small. In convex
case: self-concordance, polynomial time algorithms, …



(Note: IP with fixed  τ makes p-NLP smooth)



Approach 2: Sequential Quadratic Programming (SQP)

� Linearize all problem functions, solve Quadratic Program (QP):

with convex quadratic objective using an approximation of (Lagrange-)Hessian. 
Obtain new guesses for both        and                .  [cf. Wilson 1963,Robinson 1974]



Difference between IP and SQP ?

� Both generate sequence of iterates
� Both need to linearize problem functions in each iteration.

� But:
• SQP solves a QP in each iteration: more expensive
• SQP quickly identifies active set: fewer iterates

SQP good if problem function evaluations are expensive (shooting methods)
� can generalize to "Sequential Convex Programming - SCP"



Linear Algebra Issues in Optimal Control

� In each SQP iteration, solve structured QP (after algebraic reduction):

How to solve this structured QP?
� A - Condensing: eliminate all states (for short horizons, many states)
� B - Banded Factorization…



B - Block Banded Factorizations

� Advantageous for long horizons and many controls. 
� Niels Haverbeke develops fast Riccati QP solvers: e.g. 

NMPC with 200 steps, 10 states, 10 controls (6000 x 
6000 matrix):  20 ms 

Factorize large banded KKT Matrix e.g. by Riccati based recursion
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Parametric Sensitivities

� In IP case, smoothed KKT conditions are equivalent to 
parametric root finding problem:

with solution                 depending on initial condition

Based on old solution, can get “tangential predictor” for new one:



Sensitivity by Newton Predictor-Corrector

� Can obtain parametric sensitivity for free in Newton type methods:

predictor                     corrector



“IP real-time iteration” for sequence of NLPs
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Problem: overshoot at active set changes 
Can we do better?



� In each iteration, solve parametric QP with inequalities

� This “Generalized Tangential Predictor” delivers first order prediction also 
at active set changes [D. 2001]. 

Generalized Tangential Predictor via SQP [D. 2001]



SQP Real-Time Iteration (RTI) [D. 2001]

� long “preparation phase” for linearization, reduction, and condensing 
� fast “feedback phase” (QP solution once        is known)
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OPTEC Fast MPC Group
(Electrical and Mechanical Engineering)



Solve p-QP via „Online Active Set Strategy“:

� go on straight line in parameter space 
from old to new problem data

� solve each QP on path exactly (keep 
primal-dual feasibility)

� Update matrix factorization at boundaries
of critical regions

� Up to 10 x faster than standard QP

qpOASES: Tailored QP Solver

qpOASES: open source C++ code by Hans Joachim Ferre au



Time Optimal MPC: a 100 Hz Application

� Quarter car: oscillating spring 
damper system

� MPC Aim: settle at any new 
setpoint in in minimal time

� Two level algorithm: MIQP
�6 online data
�40 variables + one integer 
�242 constraints (in-&output)

� use qpOASES on dSPACE
� CPU time: <10 ms

Lieboud Van den Broeck in front of 
quarter car experiment



Setpoint change without control: oscillations



With LQR control: inequalities violated



With Time Optimal MPC



Time Optimal MPC: qpOASES Optimizer Contents



qpOASES running on Industrial Control Hardware (20 m s) 

Project manager (Dec. 2008): Project manager (Dec. 2008): “…“… we had NO problem at all we had NO problem at all 
with the with the qpOASESqpOASES code. Your Software has throughout the code. Your Software has throughout the 
whole project shown reliable and robust performance .whole project shown reliable and robust performance .””
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ACADO Toolkit

�A Toolkit for „Automatic Control and Dynamic Optimization“

�C++ code along with user-friendly Matlab interfaces

�Open-source software (LGPL 3)

�Since mid 2008 developed at OPTEC by 
Boris Houska and Hans Joachim Ferreau



ACADO Toolkit  – Main Features

� Discretization Methods:
• Single shooting
• Multiple shooting
• Collocation

� Integrators:
• RKF and BDF methods
• Efficient sensitivity generation
• Second order sensitivities

� NLP solvers:
• Adjoint-based SQP
• Interior point methods

� Problem Classes:
• Optimal control
• State & parameter estimation
• Robust optimization
• Model predictive control

� Dynamic Optimization:
• Linear and Nonlinear
• ODE and DAE
• Continuous and discrete time
• Automatic differentiation
• Convexity detection

First beta release available since today on www.acadotoolkit.org
login "DYSCO", password: ask H. Joachim Ferreau at ACADO poster



NMPC of Wind Power Generating Kites



Conventional Wind Turbines

� Due to high speed, wing tips are 
most efficient part of wing

Could we construct a wind turbine 
with only wing tips and generator ?
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Crosswind Kite Power

� Fly kite fast in crosswind direction
� Very strong force

But where could a generator be driven?



New Power Generating Cycle

New cycle consists of two phases:
� Power generation phase:

• unwind cable
• generate power

� Retraction phase:
• Reduce tension
• pull back line
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Kite Modelling (Boris Houska)

forces at kite Control inputs:
� line length
� roll angle (as for toy kites)
� lift coefficient (pitch angle)

ODE Model with 12 states and 3 controls

Have to regard also cable elasticity



Solution of Periodic Optimization Problem
Maximize mean power production:

by varying line thickness, period 
duration, controls, subject to 
periodicity and other constraints:

Cable 1.3 km long, 7 cm thick, 

Kite Area 500 m2, Power 5 MW.



Kite NMPC Problem solved with ACADO

� 9 states, 3 controls
� Penalize deviation from “lying eight”
� Predict half period
� zero terminal constraint
� 10 multiple shooting intervals

Solve with SQP real-time iterations



















Kite NMPC: ACADO CPU Time per RTI below 50 ms

� Initial-Value Embedding       :     0.03 ms
� QP solution (qpOASES)        :   2.23  ms
-----------------------------------------------------------
Feedback Phase:                                  3 ms
(QP after condensing: 30 vars. / 240 constr.)

� Expansion of the QP             :    0.10 ms
� Simulation and Sensitivities  :  44.17 ms
� Condensing (Phase I)            :   2.83 ms
-----------------------------------------------------------
Preparation Phase:                           47 ms

(on Intel Core 2 Duo CPU T7250, 2 GHz)



Model Validation Experiments at K.U. Leuven



Time Optimal Robot Motion (D. Verscheure et al.)



Nonlinear Dynamic Robot Model (6 DOF)

Desired: Time Optimal Trajectory

Often
� geometric path fixed
� velocity free for optimization
Then, model can be written as:



Nonlinear Time Optimal Robot Control

� Minimize time

subject to

Nonlinear model � non-convex problem

� Boundary conditions
� Torque limits



Transformation into Convex Problem

Linear model, convex cost � convex problem

After time transformation, previous problem is equivalent to:



TimeOpt Software: Real-Time Control Setup

� Variable horizon length for future path (user decides online) 
� require that robot rests at end of horizon (for safety)
� Solve with Interior Point formulation after discretization

• use FIXED barrier parameter
• exploit banded structure
• use „IP real-time iterations“ for approximate                   

path-following
• Implement in C on OROCOS                                        

control software 

� 2 ms CPU time per 900 var. problem



Result: Online Optimization with 500 Hz



Example: Time Optimal Robot Motion



Summary

� Real-Time Optimization needs sophisticated numerical methods

� OPTEC develops open source software for nonlinear dynamic 
optimization

� Real-Time Optimization powerful tool in mechatronic MPC applications 

• qpOASES: TOMPC (100 Hz), industrial gas engine

• ACADO: Kite NMPC (20 Hz)

• TimeOpt: Convex time optimal robot NMPC (500 Hz)

� Lots of exciting applications in engineering that need ultra-fast real-
time optimization algorithms



Invitation to Leuven: July 8, 5 p.m.
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Lieven Vandenberghe:
"Convex techniques for sparse and low-
order model selection"

July 8, 2009, 5 p.m., Aud. CS, KUL
followed by a reception

All DYSCO members and friends are most welcome!




