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Brief Outline
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Michel has a good story 

about underpants. You 

should ask him. I forget it. 

But I am certain it is a 

good story
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Brief outline (for Michel)
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Brief outline (for Michel)

TCP network traffic congestion control

A gentle introduction

An observability question arises in stochastic (HMM) systems

Linear systems definitions; deterministic and stochastic

Flexing muscles

Covariance based ideas

Nonlinear system definition

Conditional entropy ideas replace covariances

Careful consideration of complete reconstructibility

Return to TCP congestion control

Reconstructibility and optimal control

Connections to Michel’s work in identification and control
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A heads-up
There are lots of control problems in communications at the many 
different system layers; power control, admission control, congestion 
control

We wish to look at network congestion control in a stochastic 
environment

A natural state estimation problem arises

What do we mean by stochastic observability?

This is our story ...
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TCP as feedback

From the perspective of the source node

packets are sent into the network

a packet arriving at destination produce an ACK packet response

the send rate is controlled into network based on ACK sequence

the aim is to avoid traffic congestion

the competing traffic is stochastic in nature

normally modeled as dominated by a single bottleneck node

This is a stochastic feedback control problem

5
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Destination node behavior

Upon receipt of a packet from the source, the destination node sends 
an acknowledgement packet in reply

Generally ACKs are simple few-bit packets

arriving packet identifier

There are proposals for ACKs to contain more and more useful data

arrival time

data inserted by intervening nodes

buffer state and/or statistics

traffic state and/or statistics

The ACKs have to travel back through the same network

They too can be lost

6
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Source node behavior

Data made up into packets with rate 

Packet rate into network is the mechanism of congestion control

Rate      is adjusted in response to arrival or non-arrival of ACKs

non-arrival: time-out or ACK out of sequence

Common congestion control law AIMD

Additive increase / multiplicative decrease

ACK arrives: increase rate       by one packet

ACK missing: decrease      by a factor of two
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AIMD

Additive increase / multiplicative decrease

ACK arrives: increase rate       by one packet

ACK missing: decrease      by a factor of two
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Bottleneck node behavior

Packets are dropped with a certain probability 

Random Early Detection (RED) algorithm 

         depends on buffer state

Droptail algorithm drops all packets when buffer full 

There are other algorithms

9

bk

ck

rk

Nodes have finite buffers

buffer occupancy  

competing traffic (random)

arrival rate from source 

packets deliberately dropped qk

pk

bkpk bk → full =⇒ pk → 1
bk → empty =⇒ pk → 0
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Hidden Markov Model of Bottleneck Node

State of the bottleneck node

Drop probability

Capacity (traffic) model - Markov chain

Hidden Markov Model for bottleneck node state

Known model - input sequence rk and output (ACK) sequence yk
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xk =

(

bk

ck

)

P (ck+1 = c) =
∑

d

P (ck+1 = c|ck = d)P (ck = d)

Πx(k + 1) = A(rk)Πx(k)
Πy(k) = CΠx(k)

pk = f(bk)
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A control theorist arrives on the scene

Can the source computer reliably estimate the state of the bottleneck node?

Buffer length and capacity value

Available data are input rate history and ACK sequence history

This is an observability question about an HMM

A theory of HMM filtering and smoothing exists

But what about the observability questions?
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Aha!

Does the input-output sequence suffice to estimate 
the state (ck,bk)?
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Stochastic observability

Deterministic linear system

Complete observability: given measurements
    we can compute the initial state,     , exactly 
Complete reconstructibility: given measurements 
    we can compute the current state,         , exactly

Stochastic linear system
What do we now mean?
Generally, there is no exact answer

12

xk+1 = Axk + Buk

yk = Cxk

{u0, y0, . . . , un−1, yn−1}
x0

xn−1

{u0, y0, . . . , un−1, yn−1}

xk+1 = Axk +Buk + vk

yk = Cxk + wk

Suggested (gaussian) stochastic linear system definition
Assume the initial state is gaussian                      . If, for any vector
     either:                            or
then the system is completely observable

ξTΣ0|−1ξ = 0
N

�
x̄0,Σ0|−1

�
ξ

ξTΣ0|n−1ξ < ξTΣ0|−1ξ
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Stochastic reconstructibility
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xk+1 = Axk +Buk + vk

yk = Cxk + wk

Assume the initial state is gaussian                      . If, for any vector
     either:                               or
then the system is completely reconstructible

N
�
x̄0,Σ0|−1

�
ξ

ξTΣn−1|n−1ξ < ξTΣn−1|−1ξξTΣn−1|−1ξ = 0

Property: the system above is completely observable iff 
is full rank O =











C

CA

.

.

.

CAn−1











Property: the system above is completely reconstructible  
if Range(On) ⊇ Range(An)
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Gaussian Systems - proving things

Measurement vector and initial state are jointly gaussian
Simple formula for conditional mean and conditional variance 
for x0

Strict inequality requires
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Σ0|−1 > 0 rank(O) = n R < ∞ Q < ∞ (n > 1)

Σ0|n−1 = Σ0 − Σ0O
T

(

OΣ0O
T + HQHT + R

)−1
OΣ0

These ideas extend easily to non-gaussian systems
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Extension to Nonlinear Stochastic Systems

Is x observable from y?
Depends on the distribution of x

If the distribution is symmetric then sgn(x) is unobservable
Example 1:                                                    y unobservable

Example 2:                       y observable

Ideas of complete observability need rethinking
There is a need to consider the observability of functions of x

Variance might not be the correct quantity to consider
Especially for HMMs where we are reconstructing an 
estimate of the probability density

Use entropy H(x) and conditional entropy H(x|y)

15

y = |x|

x =

�
−1 , with probability 1/2
1 , with probability 1/2

x ∼ N (1,σ2)
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Conditional Entropy
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H(x|y) =
∑

yi∈Y P (y = yi)
∑

xj∈X P (x = xj |y = yi) lnP (x = xj |y = yi)

= H(y, x) − H(x)

Properties of conditional entropy

H(x) ≥ 0

H(g(x)) ≤ H(x) with equality if g(.) is injective

H(x|y) ≤ H(x) with equality iff x and y are independent

H(x) = tr(Σ) N(x̄,Σ)if x is gaussian

Definition: Random quantity x is completely observable from random 
quantity y if, for every, measurable function g(.):              , either H(g(x))=0 
or H(g(x)|y)<H(g(x)) 

X → IR

10

Testable approach for finite state systems like HMM
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Back to the internet

We need to test the conditional entropy of every function of the 
HMM state

Since the output (ACK) sequence is denumerable and the states are 
denumerable, the number of tested functions is finite

The tests can be exhaustively evaluated

The test protocol depends on the specific control (source rate) 
sequence in operation

The bottleneck node state is observable/reconstructible from the source 
when operating with the TCP/IP control

18

Πx(k + 1) = A(rk)Πx(k)
Πy(k) = CΠx(k)

HMM observability

17
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Reconstructibility and optimal control

19
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Reconstructibility and optimal control

For Hidden Markov Model systems
Theorem: if the system is unreconstructible no matter what control 
is applied then the closed-loop optimal control law is the same as 
open-loop optimal control law

Theorem: if the conditional entropy of the reward function given the 
inputs and outputs equals that given the inputs alone then the 
closed-loop optimal control law is the same as the open-loop

So what?
In order to achieve optimal feedback control the control law needs 
to be able to expose the state or at least the reward function value
This is the familiar question of Dual Adaptive Control

A tension between excitation versus regulation

19
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Connection to Michel Gevers’ works
Michel has studied connections between 
system identification & control

Mostly in stochastic contexts
Identifiability is a subset of reconstructibility 
(parameters as states)

Michel: experiment design for 
identification for control

Management of model error quality
Michel: iterative identification and control 
design

Successive optimization
Michel: iterative feedback tuning

Excitation issues
Results presented here attack but do not 
(yet) solve the underlying problem

Too bad!
20
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Bozos

21
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Bonne retraîte Michel!!!

de tes grandes 
amis yanquis

22

et de ta plus 
grande amie 
incarcérée
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Michel, please explain
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Michel, please explain
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Please be reminded 
that the head table 

will need to be moved 

back by one metre by 

9pm to make room for 

the folk dancers
The Management!
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Fin




