
Sparsity and decomposition in semidefinite
optimization

Lieven Vandenberghe
ECE Department, UCLA

Joint work with Joachim Dahl, Martin S. Andersen, Yifan Sun, Xin Jiang

DYSCO PAI/IUAP Network Study Day
Leuven, November 28, 2017



Semidefinite program (SDP)

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

variable X is n × n symmetric matrix; X � 0 means X is positive semidefinite

• matrix inequalities arise naturally in many areas (for example, control, statistics)

• used in convex modeling systems (CVX, YALMIP, CVXPY, . . . )

• relaxations of nonconvex quadratic and polynomial optimization

Algorithms

• primal-dual interior-point algorithms (used in SeDuMi, SDPT3, MOSEK)

• nonlinear programming methods based on parameterization X = YYT

• first order methods

This talk: structure in solution X that results from sparsity in coefficients Ai, C

1



Band structure

cost of solving SDP with banded matrices (bandwidth 11, 100 constraints)
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• for bandwidth 1 (linear program), cost/iteration is linear in n

• for bandwidth > 1, cost grows as n2 or faster

[Andersen, Dahl, Vandenberghe 2010]
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Power flow optimization

an optimization problem with non-convex quadratic constraints

Variables

• complex voltage vi at each node (bus) of the network

• complex power flow si j entering the link (line) from node i to node j

Non-convex constraints

• (lower) bounds on voltage magnitudes

vmin ≤ |vi | ≤ vmax

• flow balance equations:

bus i

si j
gi j

s ji

bus j
si j + s ji = ḡi j |vi − v j |2

gi j is admittance of line from node i to j
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Semidefinite relaxation of optimal power flow problem

• introduce matrix variable X = Re(vvH), i.e., with elements Xi j = Re (viv̄ j)

• voltage bounds and flow balance equations are convex in X :

vmin ≤ |vi | ≤ vmax −→ v2
min ≤ Xii ≤ v2

max

si j + s ji = ḡi j |vi − v j |2 −→ si j + s ji = ḡi j(Xii + X j j − 2Xi j)

• replace constraint X = Re(vvH) with weaker constraint X � 0

• relaxation is exact if optimal X has rank two

Sparsity in SDP relaxation:

off-diagonal Xi j appears in constraints only if there is a line between buses i and j

[Jabr 2006] [Bai et al. 2008] [Lavaei and Low 2012], [Molzahn et al. 2013], . . .
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Sparsity graph

1 2

3 4

5 A =


A11 A21 A31 0 A51
A21 A22 0 A42 0
A31 0 A33 0 A53
0 A42 0 A44 A54

A51 0 A53 A54 A55


• sparsity pattern of symmetric n × n matrix is set of ‘nonzero’ positions

E ⊆ {{i, j} | i, j ∈ {1, 2, . . . , n}}

• A has sparsity pattern E if Ai j = 0 if i , j and {i, j} < E

• notation: A ∈ Sn
E

• represented by undirected graph (V, E) with edges E , vertices V = {1, . . . , n}

• clique (maximal complete subgraph) forms maximal ‘dense’ principal submatrix
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Sparse matrix cones

we define two convex cones in Sn
E (symmetric n × n matrices with pattern E)

• positive semidefinite matrices

Sn
+ ∩ Sn

E = {X ∈ Sn
E | X � 0}

• matrices with a positive semidefinite completion

ΠE(Sn
+) = {ΠE(X) | X � 0}

ΠE is projection on Sn
E

Properties

• two cones are convex

• closed, pointed, with nonempty interior (relative to Sn
E)

• form a pair of dual cones (for the trace inner product)
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Sparse semidefinite program

Standard form SDP and dual (variables X, S ∈ Sn, y ∈ Rm)

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

maximize bT y

subject to
∑m

i=1 yi Ai + S = C
S � 0

Equivalent pair of conic linear programs (variables X, S ∈ Sn
E , y ∈ Rm)

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ K

maximize bT y

subject to
∑m

i=1 yi Ai + S = C
S ∈ K∗

• E is union of sparsity patterns of C, A1, . . . , Am

• K = ΠE(Sn
+) is cone of p.s.d. completable matrices with sparsity pattern E

• K∗ = Sn
+ ∩ Sn

E is cone of positive semidefinite matrices with sparsity pattern E
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Outline

1. Sparse semidefinite programs

2. Chordal graphs

3. Decomposition of sparse matrix cones

4. Multifrontal algorithms for logarithmic barrier functions

5. Minimum rank positive semidefinite completion



Chordal graph

• undirected graph with vertex set V , edge set E ⊆ {{v,w} | v,w ∈ V}

G = (V, E)

• a chord of a cycle is an edge between non-consecutive vertices

• G is chordal if every cycle of length greater than three has a chord

e

bf

a

d

c

not chordal

e

bf

a

d

c

chordal

also known as triangulated, decomposable, rigid circuit graph, . . .
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History

chordal graphs have been studied in many disciplines since the 1960s

• combinatorial optimization (a class of perfect graphs)

• linear algebra (sparse factorization, completion problems)

• database theory

• machine learning (graphical models, probabilistic networks)

• nonlinear optimization (partial separability)

first used in semidefinite optimization by Fujisawa, Kojima, Nakata (1997)
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Chordal sparsity and Cholesky factorization

Cholesky factorization of positive definite A ∈ Sn
E :

PAPT = LDLT

P a permutation, L unit lower triangular, D positive diagonal

• if E is chordal, then there exists a permutation for which

PT(L + LT)P ∈ Sn
E

A has a ‘zero fill’ Cholesky factorization

• if E is not chordal, then for every P there exist positive definite A ∈ Sn
E for which

PT(L + LT)P < Sn
E

[Rose 1970]
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Examples

Simple patterns

Sparsity pattern of a Cholesky factor

: edges of non-chordal sparsity pattern

: fill entries in Cholesky factorization

a chordal extension of non-chordal pattern
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Supernodal elimination tree (clique tree)
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• vertices of tree are cliques of chordal sparsity graph

• top row of each block is intersection of clique with parent clique

• bottom rows are (maximal) supernodes; form a partition of {1, 2, . . . , n}
• for each v, cliques that contain v form a subtree of elimination tree
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Positive semidefinite matrices with chordal sparsity pattern

S ∈ Sn
E is positive semidefinite if and only if it can be expressed as

S =
∑

cliques γi

PT
γi

HiPγi with Hi � 0

(for an index set β, Pβ is 0-1 matrix of size |β| × n with Pβx = xβ for all x)

= + +

S � 0 PT
γ1H1Pγ1 � 0 PT

γ2H2Pγ2 � 0 PT
γ3H3Pγ3 � 0

[Griewank and Toint 1984] [Agler, Helton, McCullough, Rodman 1988]
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Decomposition from Cholesky factorization

• example with two cliques:

=
H1

+
H2

H1 and H2 follow by combining columns in Cholesky factorization

= +

• readily computed from update matrices in multifrontal Cholesky factorization
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PSD completable matrices with chordal sparsity

X ∈ Sn
E has a positive semidefinite completion if and only if

Xγiγi � 0 for all cliques γi

follows from duality and clique decomposition of positive semidefinite cone

Example (three cliques γ1, γ2, γ3)

PSD completable X

Xγ1γ1 � 0

Xγ2γ2 � 0

Xγ3γ3 � 0

[Grone, Johnson, Sá, Wolkowicz, 1984]
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Sparse semidefinite optimization

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ K

• E is union of sparsity patterns of C, A1, . . . , Am

• K = ΠE(Sn
+) is cone of p.s.d. completable matrices

• without loss of generality, can assume E is chordal

Decomposition algorithms

• cone K is intersection of simple cones (Xγiγi � 0 for all cliques γi)

• first used in interior-point methods
[Fukuda et al. 2000] [Nakata et al. 2003]

• first order, splitting, and dual decomposition methods
[Lu, Nemirovski, Monteiro 2007] [Lam, Zhang, Tse 2011] [Sun et al. 2014, 2015]
[Pakazad et al. 2017] [Zheng, Fantuzzi, Papachristodoulou, Goulart, Wynn 2017], . . .
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Example: sparse nearest matrix problems

• find nearest sparse PSD-completable matrix with given sparsity pattern

minimize ‖X − A‖2F
subject to X ∈ ΠE(Sn

+)

• find nearest sparse PSD matrix with given sparsity pattern

minimize ‖S + A‖2F
subject to S ∈ Sn

+ ∩ Sn
E

these two problems are duals:

K = ΠE(Sn
+)

−K∗ = −(Sn
+ ∩ Sn

E)
A
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Decomposition methods

from the decomposition theorems, the two problems can be written

Primal: minimize ‖X − A‖2F
subject to Xγiγi � 0 for all cliques γi

Dual: minimize ‖A +∑
i

PT
γi

HiPγi‖2F
subject to Hi � 0 for all cliques γi

Algorithms

• Dykstra’s algorithm (dual block coordinate ascent)

• (fast) dual projected gradient algorithm (FISTA)

• Douglas-Rachford splitting, ADMM

sequence of projections on PSD cones of order |γi | (eigenvalue decomposition)
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Results

sparsity patterns from University of Florida Sparse Matrix Collection

n density #cliques avg. clique size max. clique

20141 2.80e-3 1098 35.7 168
38434 1.25e-3 2365 28.1 188
57975 9.04e-4 8875 14.9 132
79841 9.71e-4 4247 44.4 337
114599 2.02e-4 7035 18.9 58

total runtime (sec) time/iteration (sec)

n FISTA Dykstra DR FISTA Dykstra DR

20141 2.5e2 3.9e1 3.8e1 1.0 1.6 1.5
38434 4.7e2 4.7e1 6.2e1 2.1 1.9 2.5
57975 > 4hr 1.4e2 1.1e3 3.5 5.7 6.4
79841 2.4e3 3.0e2 2.4e2 6.3 7.6 9.7
114599 5.3e2 5.5e1 1.0e2 2.6 2.2 4.0

[Sun and Vandenberghe 2015]
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Sparse SDP as nonsymmetric conic linear program

Standard form SDP

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

maximize bT y

subject to
∑m

i=1 yi Ai + S = C
S � 0

Equivalent conic linear program

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ K

maximize bT y

subject to
∑m

i=1 yi Ai + S = C
S ∈ K∗

• K ∈ ΠE(Sn
+) is cone of p.s.d. completable matrices with pattern E

• K∗ ∈ Sn
+ ∩ Sn

E is cone of p.s.d. matrices with pattern E

• optimization problem in a lower-dimensional space Sn
E

• K is not self-dual; no symmetric primal-dual interior-point methods
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Barrier function for positive semidefinite cone

φ(S) = − log det S, dom φ = {S ∈ Sn
E | S � 0}

• gradient (negative projected inverse)

∇φ(S) = −ΠE(S−1)

requires entries of dense inverse S−1 on diagonal and for {i, j} ∈ E

• Hessian applied to sparse Y ∈ Sn
E :

∇2φ(S)[Y ] = d
dt
∇φ(S + tY )

����
t=0
= ΠE

(
S−1Y S−1

)
requires projection of dense product S−1Y S−1
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Multifrontal algorithms

assume E is a chordal sparsity pattern (or chordal extension)

Cholesky factorization [Duff and Reid 1983]

• factorization S = LDLT gives function value of barrier: φ(S) = −∑
i log Dii

• computed by a recursion on elimination tree in topological order

Gradient [Campbell and Davis 1995] [Andersen et al. 2013]

• compute ∇φ(S) = −ΠE(S−1) from equation S−1L = L−T D−1

• recursion on elimination tree in inverse topological order

Hessian

• compute ∇2φ(S)[Y ] = ΠE(S−1Y S−1) by linearizing recursion for gradient

• two recursions on elimination tree (topological and inverse topological order)
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Projected inverse versus Cholesky factorization
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• 667 patterns from University of Florida Sparse Matrix Collection

• time in seconds for projected inverse and Cholesky factorization

• code at github.com/cvxopt/chompack
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Barrier for positive semidefinite completable cone

φ∗(X) = sup
S
(− tr(XS) − φ(S)), dom φ∗ = {X = ΠE(Y ) | Y � 0}

• this is the conjugate of the barrier φ(S) = − log det S for the sparse p.s.d. cone

• inverse Z = Ŝ−1 of optimal Ŝ is maximum determinant PD completion of X :

maximize log det Z
subject to ΠE(Z) = X

• gradient and Hessian of φ∗ at X are

∇φ∗(X) = −Ŝ, ∇2φ∗(X) = ∇2φ(Ŝ)−1

for chordal E , efficient ‘multifrontal’ algorithms for Cholesky factors of Ŝ, given X
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Inverse completion versus Cholesky factorization
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Nonsymmetric interior-point methods

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ ΠE(Sn
+)

• can be solved by nonsymmetric primal or dual barrier methods

• logarithmic barriers for cone ΠE(Sn
+) and its dual cone Sn

+ ∩ Sn
E :

φ∗(X) = sup
S
(− tr(XS) + log det S) , φ(S) = − log det S

• fast evaluation of barrier values and derivatives if pattern is chordal

• examples: linear complexity per iteration for band or arrow pattern

• code and numerical results at github.com/cvxopt/smcp

[Fukuda et al. 2000], [Burer 2003], [Srijungtongsiri and Vavasis 2004], [Andersen et al. 2010]
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Sparsity patterns

• sparsity patterns from University of Florida Sparse Matrix Collection

• m = 200 constraints

• randomly generated data with 0.05% nonzeros in Ai relative to |E |
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Results

n DSDP SDPA SDPA-C SDPT3 SeDuMi SMCP

1919 1.4 30.7 5.7 10.7 511.2 2.3
2003 4.0 34.4 41.5 13.0 521.1 15.3
3025 2.9 128.3 6.0 33.0 1856.9 2.2
4704 15.2 407.0 58.8 99.6 4347.0 18.6

n DSDP SDPA-C SMCP

7479 22.1 23.1 9.5
10800 482.1 1812.8 311.2
14822 791.0 2925.4 463.8
30401 mem 2070.2 320.4

• average time per iteration for different solvers

• SMCP uses nonsymmetric matrix cone approach [Andersen et al. 2010]
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Minimum rank PSD completion with chordal sparsity

recall that X ∈ Sn
E has a positive semidefinite completion if and only if

Xγiγi � 0 for all cliques γi

PSD completable X

Xγ1γ1 � 0

Xγ2γ2 � 0

Xγ3γ3 � 0

the minimum rank PSD completion has rank equal to

max
cliques γi

rank(Xγiγi)

[Dancis 1992]
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Two-block completion problem

we consider the simple two-block completion problem

?

?

X =


X11 X12 0
X21 X22 X23
0 X32 X33


• a completion exists if and only if

C1 =

[
X11 X12
X21 X22

]
� 0, C2 =

[
X22 X23
X32 X33

]
� 0

• we construct a positive semidefinite completion of rank

r = max{rank(C1), rank(C2)}
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Two-block completion algorithm

• compute matrices U, V , Ṽ , W of column dimension r such that[
X11 X12
X21 X22

]
=

[
U
V

] [
U
V

]T

,

[
X22 X23
X32 X33

]
=

[
Ṽ
W

] [
Ṽ
W

]T

• since VVT = ṼṼT , there exists an orthogonal r × r matrix Q such that

V = ṼQ

(computed from SVDs: take Q = Q2QT
1 where V = PΣQT

1 and Ṽ = PΣQT
2 )

• a completion of rank r is given by


UQT

Ṽ
W




UQT

Ṽ
W


T

=


X11 X12 UQTWT

X21 X22 X23
WQUT X32 X33
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Sparse semidefinite optimization

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

• any feasible X can be replaced by a PSD completion of ΠE(X):

X̃ � 0, ΠE(X̃) = ΠE(X)

• for chordal E , can take X̃ = YYT with rank bounded by largest clique size

minimize tr(YTCY )
subject to tr(YT AiY ) = bi, i = 1, . . . ,m

• proves exactness of some simple SDP relaxations

• useful for rounding solution of SDP relaxations to minimum rank solution
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SDP relaxation of optimal power flow problem

MOSEK 8 SeDuMi v1.05 SDPT3 v4.0

n max.
clique rank(X?) rank(X•) rank(X?) rank(X•) rank(X?) rank(X•)

IEEE-118 118 20 1 1 1 1 1 1
IEEE-300 300 17 5 1 5 1 5 1
2383wp 2383 31 17 1 17 1 17 1
2736sp 2736 30 1 1 1 1 1 1
2737sop 2737 29 44 1 43 1 43 1
2746wop 2746 30 32 1 32 1 32 1
2746wp 2746 31 1 1 1 1 1 1
3012wp 3012 32 346 13 346 13 337 17
3120sp 3120 32 514 27 572 32 519 27
3375wp 3375 33 451 19 451 19 454 21

• benchmark problems from Matpower package

• rank is number of eigenvalues greater than 10−5√nλmax

• X? is the (Hermitian) solution of the relaxation computed by SDP solver

• X• is minimum rank PSD completion of ΠE(X?)
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IEEE-300 solution
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X? is computed by SeDuMi; X• is minimum rank completion of ΠE(X?)
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Summary

Sparse matrix theory: PSD and PSD-completable matrices with chordal pattern

• decomposition of sparse matrix cones as sum or intersection of simple cones

• fast algorithms for evaluating barrier functions and derivatives

• simple algorithms for maximum determinant and minimum rank completion

Applications in SDP algorithms

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

• decomposition and splitting methods

• nonsymmetric interior-point methods
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