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Bigger picture of the talk

1| Introduction of BSS

2| Core elements of multilinear algebra
3| Tensorization as such

4| Examples of tensorization techniques
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There are many possible solutions ...

» BSS in general does not lead to a unique solution!

X=M-S
=M-(A'A)-S
~ (MA™) - (AS)
—M-§

» Add constraints/assumptions!
» Well-known factorizations are not suitable for BSS:

» SVD: X = M
1

= U

» LQ: X = M S
A .




Specifically tailored BSS techniques

» Independency - Independent Component Analysis (ICA)

X = M S
Ind

» Nonnegativity - Nonnegative Matrix Factorization (NMF)

X = | M S
+ +

» Sparsity - Sparse Component Analysis (SCA)

X = M S
Max0




Multilinear algebra

» Tensor T of size h x I x ... X Iy is a generalization of a
vector t or matrix T:
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» We have matrix decompositions ...
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» We have matrix decompositions ...
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Multilinear algebra

» We have matrix decompositions ...
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» For tensors there is the canonical polyadic decomposition ...
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> Or the block term decomposition ... [De Lathauwer, 2008]
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Tensorization is often the key!
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Overview of the illustrations

Signal model <— Low-rank constraints

Working hypothesis on sources  Tensorization

T1: Exponential polynomials Hankelization
T2: Rational functions Lownerization
T3: Sum of Kronecker products Segmentation
T4: Independent sources (ICA) Higher-order statistics

T5: E.g., independent sources (ICA) Parameter variation



» Talk of Borbala Hunyadi
» Talk of Takaaki Nara

> Poster of Robert Luce

» Talk of Vladimir Kazeev

» Talk of Namgil Lee

» Talk of Gabriel Hollander
» Poster of Philippe Dreesen

» Poster of Esin Karahan



T1: Hankelization: Intermediary

Hankel matrix:
» Given a vector
[hl ho hs hy ]

» We have the Hankel matrix

hi hy hs
hy hs hs
H=|p h, hs



T1: Hankelization

» Consider an exponential signal f(k) = az¥, being sampled:

[a az 322 323 ]

> Let's arrange it in a Hankel matrix H



T1: Hankelization

» Consider an exponential signal f(k) = az¥, being sampled:

[a az 322 323 ]

> Let's arrange it in a Hankel matrix H

a az az 1
az az® az z )
H= (.2 .53 az =a |32 [1 I ]

» H hasrank 1!
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T1: Hankelization

> More general:
> Consider sinusoids: f(k) = cos(27mk) = 1 (e2“i)k +1 (e*27”')k
I. Markovsky

» Consider sum-of-exponentials: f(k) = 3 a,z
r=1

R
» Consider exponential polynomials: f(k) = Y p,(k)z¥
r=1

> If degree D, then the Hankel matrix H has rank D

~ Work of Borbala Hunyadi
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T1: Hankelization: some sum-of-exponential functions
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T1: Hankelization
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T1: Hankelization
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T1: Hankelization

/ X = | M S

/ Hankel transform = Hankelization
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T2: Lownerization

» Sources: not exponential polynomials but rational functions

R

ft) =2 _ s+ 3

t—pr

r=1

~ Work of Takaaki Nara
~ Work of Robert Luce

Van Barel, M.,
@ Debals, O., De Lathauwer, L. “Léwner-based Blind Signal Separation of
Rational Functions with Applications”. |EEE Trans. Signal Processing (2015)
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T2: Lownerization: some rational functions
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Separating rational functions: Example

» Given a mixture of two rational functions, we want to recover
the original signals.

Original sources Mixed signals Recovered sources




T2: Lownerization

Lowner matrix

» Given a function f(t) sampled in point set T

» Partition point set T in two different point sets X and Y
» Define the Lowner matrix L:

f(xi) = (y;)

L)ij =
W=,



T2: Lownerization

Lowner matrix

» Given a function f(t) sampled in point set T

» Partition point set T in two different point sets X and Y
» Define the Lowner matrix L:

f(xi) = (y;)

L)ij =
W=,

Exponential polynomials <+— Hankel matrix

)

Rational functions <— Lowner matrix



T2: Lownerization

» Consider the following signal:




T2: Lownerization

» Consider the following signal:

_ 1
- t4+05

f(t)
» The Lowner matrix will have rank 1:

_ 1
x1+0.5

L=— 1 1 1 .
x2+0.5 y1+0.5  y»+40.5

» Rational function with degree D — Lowner matrix has rank D



T2: Lownerization
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T2: Lownerization

i X = M S
/
!
'(
! . e . .
] Lowner transform = Lownerization
\\
\
1
1
EX : le LSR
1
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T2: Lownerization

/ X = | M S

/ Léwner transform = Lownerization
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T3a: Segmentation

» Consider a sampled exponential signal (k) = z*:

[1 z 7 7 25]

~ Work of Vladimir Kazeev on quantization
~ Work of Namgil Lee on solving linear systems

@ Boussé, M., Debals, O., De Lathauwer, L. “A novel deterministic method for
large-scale blind source separation”. Proceedings of EUSIPCO (2015)




T3a: Segmentation

» Consider a sampled exponential signal (k) = z*:
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» The segments are stacked in the columns of E:

1 23
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T3a: Segmentation

» Consider a sampled exponential signal (k) = z*:
[1 z 22 22 2 25]
I I I |

» The segments are stacked in the columns of E:

1 23 1
E=|z z* = |z [1 23]—>rank1
22 2 22

» Assumption: segmented source signal has rank 1 — CPD



T3a: Segmentation

v

Consider a sampled exponential signal f(k) = z*:

[1 Z‘ 2‘2 Z3 Z4 2‘5]

l L

» The segments are stacked in the columns of E:
1 28 1
E=|z 2| =|=z [1 23]—>rank1
22 25 Z2

possibly fewer parameters! -> large-scale signal separation

v

Assumption: segmented source signal has rank 1 — CPD

v

More realistic: segmented source signal has low rank — BTD
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T3b: Decimation

» Consider a sampled exponential signal (k) = z*:

[1 Z 7 7 25]
I
\ \ |




T3b: Decimation

» Consider a sampled exponential signal (k) = z*:

[1 Z 7 7 25]
I
\ \ |

> The subsampled segments are stacked in the columns of E:

1 =z 1
E= |22 28| = |z [1 z] —rank 1
z 2 7



T4: Higher-order statistics
Let us consider the fourth-order cumulant
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T4: Higher-order statistics
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» If S contains independent signals ...

5(4) is diagonal, with diagonal elements K, .
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T4: Higher-order statistics
Let us consider the fourth-order cumulant
<Cs(4)) o 2 E{sysysisi} — E{sys,} E{ssi}
hni3ig
— = {5;15;3} E {szsiA} —E {5;15;4} E {5,'25;3}.

» If S contains independent signals ...
5(4) is diagonal, with diagonal elements ks, .

> It is quadrilinear:
FX=MS — C®=c®. . MyM:3M:,M

» This can be written as a CPD:

R
@ _
N = Ks,M,@mM,@m,®m,
r=1



T5: Parameter Variation

Procedure

1. We generate a set of matrices from X, for diff. param values

2. Then we stack the matrices to a tensor

— -




T5: Parameter Variation

Procedure

1. We generate a set of matrices from X, for diff. param values

2. Then we stack the matrices to a tensor
] %

» Using lagged covariance matrices
~ ICA with second-order blind identification (SOBI)
~ Work of Esin Karahan

» Stacking Jacobian matrices
~ Work of Gabriel Hollander and Philippe Dreesen  (VUB)

Examples:
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T5: Parameter Variation
> In SOBI, one uses the lagged covariance matrices:
Cs(r) = E{s(t)s(t+7)"}
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> It is bilinear:
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T5: Parameter Variation
» In SOBI, one uses the lagged covariance matrices:
Cs(r) = E{s(t)s(t+7)"}

If s contains independent signals, Cs(7) is diagonal
It is bilinear:

X=MS — Ci(r)=E{x(t)x(t+7)"} =M Cs(r)-M
For different lags 71,...,7.:
C(r1) = M-Cy(m) M7,

vy

v

Ci(r) = M-Cg(r) -MT
Then, (1) is a CPD:

v

Cx = E m,®m, ®Cs,



Not every tensorization technique will work

We are searching for some specific mappings ...

Checklist

v/ The mapping is multilinear
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Not every tensorization technique will work

We are searching for some specific mappings ...

Checklist

v/ The mapping is multilinear

./ A clear and meaningful assumption on the sources exists
v/ A tensor decomposition with uniqueness results exists

v/ Recovery of mixing vectors and source signals is possible



Take-home message

» Multilinear algebra has a high influence in BSS

» Tensorization translates signal models/assumptions into
low-rank constraints

» The tensor decomposition step tackles the identifiability
question

» Many more tensorization techniques: time-frequency,
wavelets, space-frequency, constant modulus, . ..

@ Debals, O., De Lathauwer, L. “Stochastic and Deterministic Tensorization for
Blind Signal Separation”. Latent Variable Analysis and Signal Separation,
Springer Berlin/Heidelberg (2015).




KU LEUVEN Tensorlab 3.0

Tensorization

@ N

Tensorization methods:

» Hankel-based mapping

> Lowner-based mapping

» Segmentation and decimation

» Higher-order and lagged second-order statistics
Also corresponding detensorization methods

<

36
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Efficient representations
» Consider an Nth-order tensor T of size [ X [ x --- x [

» If 7 adheres to, e.g., one of the following structures, efficient
storage methods, operations and decompositions are possible!

Structure #variables, compared to IV
Hankel NI —N+1

Lowner NI

CPD NIR

LL1 NILR

LMLRA NIL 4 LN

BTD NILR + RLN

TT NIR + (N — 2)IR?

» E.g., Hankel tensor of size 334 x 334 x 334: 298 MB
& Efficient representation: 10 kB

37



KU LEUVEN Tensorlab 3.0

Tensorlab 3.0 March 2016 (expand/collapse all)

Tensorlab 3.0 features dedicated algorithms for the decomposition in multilinear rank-(L,, L,, 1) terms, various tensorization
techniques, a more flexible and expanded modeling language for structured data fusion problems, support for efficient
representations of structured tensors in most optimization-based decomposition algorithms, and new algorithms for dealing with
sparse, incomplete and/or large-scale datasets. A new visualization tool is introduced, many existing algorithms have received
performance and flexibility updates, e.g., by using more lenient option parsing, and a number of bugs have been fixed. Finally, the user
guide has been extended significantly and illustrated with practical demos.

In these release notes, all new features and updates are discussed in detail. Structured tensors, algorithms for the decomposition in multilinear rank-(L,, L,, 1)
terms and tensorization are completely new. For the other topics, it is indicated which specific commands are new and which ha
consists of
topic titles t

been updated. Each topic
hort overview and a number of key items. The full description of an item can be uncovered by clicking it. Use the show/hide buttons next to the
(un)cover allitems at once.

Structured tensors  (expand/collapse topic)

Most optim

n-based algorithms are able to exploit the efficient repr
methods have been implemented. This section gives an overview of the diff
> Supported formats  CPD, BTD, LMLRA, TT, Hankel and Loewner

> Core computational routines  frob, inprod, mtkrprod and mtkronprod

entation of structured tensors. To accommodate this, a large number of new
rent formats supported and of the new algorithms.

> Structure detection and validation g

structure, isvalidtensor and detectstructure,
> Extended ful method Expand incomple

, sparse and structured tensors and create subtensors.

> Auxiliary functions  getsize and getorder.

Canonical polyadic decomposition  (expand/collapse topic)

The high-level algorithm cpd has an improved initialization and computation strategy. A new large-scale algorithm cpd_rbs, an improved algorithm for
incomplete tensors, and a method for computing

he Cramér-Rao bound (cpd_
based algorithms and a number of new options are added.

) are introduced. Structured tensors

e supported in most optimization

> Improved high-level strategy for cpd  New compression strateg,

support for structured tensors and complex decompositions.
> cpd_rbs Large-scale algorithm using randomized block sampling.

> Improved performance for incomplete tensors  UseCPDI option for cpd_nls

> Cramér-Raobound Cramér-Rao bound for a CPD and additive i.i.d. Gaussian noise.

> Structured tensor support  Most optimization-based algorithms, line and plane search methods exploit the efficient representation of structured tensors. 44
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