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Bigger picture of the talk

1 | Introduction of BSS

2 | Core elements of multilinear algebra

3 | Tensorization as such

4 | Examples of tensorization techniques
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There are many possible solutions ...

I BSS in general does not lead to a unique solution!

X = M · S
= M ·

(
A−1A

)
· S

=
(
MA−1

)
· (AS)

= M̃ · S̃

I Add constraints/assumptions!

I Well-known factorizations are not suitable for BSS:

I SVD: X = M S
⊥ ⊥

I LQ: X = M S
4 ⊥

I . . .
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Specifically tailored BSS techniques

I Independency - Independent Component Analysis (ICA)

X = M S
Ind

I Nonnegativity - Nonnegative Matrix Factorization (NMF)

X = M S
+ +

I Sparsity - Sparse Component Analysis (SCA)

X = M S
Max0

I ...



Multilinear algebra

I Tensor T of size I1 × I2 × . . .× IN is a generalization of a
vector t or matrix T:

T T
t



Multilinear algebra

I We have matrix decompositions ...

= + . . .+ =
R∑

r=1
ar ⊗br

I For tensors there is the canonical polyadic decomposition ...

= + . . .+ =
R∑

r=1
ar ⊗br ⊗ cr

I Or the block term decomposition ... [De Lathauwer, 2008]
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Tensorization is often the key!

X = M S

X

+ . . . +

1 | Tensorization

2 | Tensor tools

3 | Identification

I Tensorization ∼ assumptions

I Tensor tools ∼ uniqueness
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Overview of the illustrations

Signal model ←→ Low-rank constraints

Working hypothesis on sources Tensorization

T1: Exponential polynomials Hankelization
T2: Rational functions Löwnerization
T3: Sum of Kronecker products Segmentation
T4: Independent sources (ICA) Higher-order statistics
T5: E.g., independent sources (ICA) Parameter variation



I Talk of Borbala Hunyadi

I Talk of Takaaki Nara

I Poster of Robert Luce

I Talk of Vladimir Kazeev

I Talk of Namgil Lee

I Talk of Gabriel Hollander

I Poster of Philippe Dreesen

I Poster of Esin Karahan



T1: Hankelization: Intermediary

Hankel matrix:

I Given a vector [
h1 h2 h3 h4 ...

]
I We have the Hankel matrix

H =


h1 h2 h3 · · ·
h2 h3 h4 · · ·
h3 h4 h5 · · ·
...

...
...

. . .





T1: Hankelization

I Consider an exponential signal f (k) = azk , being sampled:[
a az az2 az3 · · ·

]
I Let’s arrange it in a Hankel matrix H

H =


a az az2 · · ·
az az2 az3 · · ·
az2 az3 az4 · · ·

...
...

...



= a


1
z
z2

...

 [1 z z2 · · ·
]

I H has rank 1 !



T1: Hankelization

I Consider an exponential signal f (k) = azk , being sampled:[
a az az2 az3 · · ·

]
I Let’s arrange it in a Hankel matrix H

H =


a az az2 · · ·
az az2 az3 · · ·
az2 az3 az4 · · ·

...
...

...

 = a


1
z
z2

...

 [1 z z2 · · ·
]

I H has rank 1 !



T1: Hankelization

I More general:

I Consider sinusoids: f (k) = cos(2πk) = 1
2

(
e2πi

)k
+ 1

2

(
e−2πi

)k

I Consider sum-of-exponentials: f (k) =
R∑

r=1
arz

k
r

I Consider exponential polynomials: f (k) =
R∑

r=1
pr (k)zkr

I If degree D, then the Hankel matrix H has rank D
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I Consider sum-of-exponentials: f (k) =
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arz
k
r

I Consider exponential polynomials: f (k) =
R∑

r=1
pr (k)zkr

I If degree D, then the Hankel matrix H has rank D

∼ Work of Borbala Hunyadi
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T1: Hankelization: some sum-of-exponential functions
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T1: Hankelization

X = M S

HX

= Hs1
+ . . . + HsR

m1 mR

Hankel transform = Hankelization

= Z1

Z̃t
1G1

+ . . . + ZR

Z̃t
RGR

m1 mR
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T2: Löwnerization

I Sources: not exponential polynomials but rational functions

f (t) =
u(t)

v(t)
= a(t) +

R∑
r=1

1

t − pr

∼ Work of Takaaki Nara
∼ Work of Robert Luce

Debals, O., De Lathauwer, L. “Löwner-based Blind Signal Separation of
Rational Functions with Applications”. IEEE Trans. Signal Processing (2015)
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T2: Löwnerization: some rational functions
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Separating rational functions: Example

I Given a mixture of two rational functions, we want to recover
the original signals.
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T2: Löwnerization

Löwner matrix
I Given a function f (t) sampled in point set T

I Partition point set T in two different point sets X and Y

I Define the Löwner matrix L:

(L)i ,j =
f (xi )− f (yj)

xi − yj

Exponential polynomials ←→ Hankel matrix

m
Rational functions ←→ Löwner matrix
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T2: Löwnerization

I Consider the following signal:

f (t) =
1

t + 0.5

I The Löwner matrix will have rank 1:

L = −


1

x1+0.5

1
x2+0.5

...

[ 1
y1+0.5

1
y2+0.5 · · ·

]

I Rational function with degree D → Löwner matrix has rank D
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T3a: Segmentation

I Consider a sampled exponential signal f (k) = zk :[
1 z z2 z3 z4 z5

]

I The segments are stacked in the columns of E:

E =

 1 z3

z z4

z2 z5



=

 1
z
z2

 [1 z3
]
→ rank 1

I Assumption: segmented source signal has rank 1 → CPD

I More realistic: segmented source signal has low rank → BTD

∼ Work of Vladimir Kazeev on quantization
∼ Work of Namgil Lee on solving linear systems

Boussé, M., Debals, O., De Lathauwer, L. “A novel deterministic method for
large-scale blind source separation”. Proceedings of EUSIPCO (2015)
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T3b: Decimation

I Consider a sampled exponential signal f (k) = zk :[
1 z z2 z3 z4 z5

]

I The subsampled segments are stacked in the columns of E:

E =

 1 z
z2 z3

z4 z5

=

 1
z2

z4

 [1 z
]
→ rank 1



T3b: Decimation

I Consider a sampled exponential signal f (k) = zk :[
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T4: Higher-order statistics
Let us consider the fourth-order cumulant(

C(4)s

)
i1i2i3i4

, E {si1si2si3si4} − E {si1si2}E {si3si4}

− E {si1si3}E {si2si4} − E {si1si4}E {si2si3} .

I If S contains independent signals ...

... C(4)s is diagonal, with diagonal elements κsr .

I It is quadrilinear:

If X = MS → C(4)x = C(4)s ·1 M ·2 M ·3 M ·4 M

I This can be written as a CPD:

C(4)x =
R∑

r=1

κsrmr ⊗mr ⊗mr ⊗mr
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T5: Parameter Variation

Procedure

1. We generate a set of matrices from X, for diff. param values

2. Then we stack the matrices to a tensor

→

Examples:

I Using lagged covariance matrices
∼ ICA with second-order blind identification (SOBI)
∼ Work of Esin Karahan

I Stacking Jacobian matrices
∼ Work of Gabriel Hollander and Philippe Dreesen
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Procedure
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Examples:

I Using lagged covariance matrices
∼ ICA with second-order blind identification (SOBI)
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T5: Parameter Variation

I In SOBI, one uses the lagged covariance matrices:

Cs(τ) = E
{
s(t)s(t + τ)t

}

I If s contains independent signals, Cs(τ) is diagonal
I It is bilinear:

X = MS → Cx(τ) = E
{
x(t)x(t + τ)t

}
= M · Cs(τ) ·Mt

I For different lags τ1, . . . , τL:
Cx(τ1) = M · Cs(τ1) ·Mt,

...
Cx(τL) = M · Cs(τL) ·Mt

(1)

I Then, (1) is a CPD:

Cx =
R∑

r=1

mr ⊗mr ⊗ csr
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Not every tensorization technique will work

We are searching for some specific mappings ...

Checklist

√
The mapping is multilinear

√
A clear and meaningful assumption on the sources exists

√
A tensor decomposition with uniqueness results exists

√
Recovery of mixing vectors and source signals is possible
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Take-home message

I Multilinear algebra has a high influence in BSS

I Tensorization translates signal models/assumptions into
low-rank constraints

I The tensor decomposition step tackles the identifiability
question

I Many more tensorization techniques: time-frequency,
wavelets, space-frequency, constant modulus, . . .

Debals, O., De Lathauwer, L. “Stochastic and Deterministic Tensorization for
Blind Signal Separation”. Latent Variable Analysis and Signal Separation,
Springer Berlin/Heidelberg (2015).



Tensorlab 3.0

Tensorization

v

V
M

M

Tensorization methods:
I Hankel-based mapping
I Löwner-based mapping
I Segmentation and decimation
I Higher-order and lagged second-order statistics

Also corresponding detensorization methods

36



Tensorlab 3.0

Efficient representations

I Consider an Nth-order tensor T of size I × I × · · · × I

I If T adheres to, e.g., one of the following structures, efficient
storage methods, operations and decompositions are possible!

Structure #variables, compared to IN

Hankel NI − N + 1
Löwner NI
CPD NIR
LL1 NILR
LMLRA NIL + LN

BTD NILR + RLN

TT NIR + (N − 2)IR2

I E.g., Hankel tensor of size 334× 334× 334: 298 MB
⇔ Efficient representation: 10 kB
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