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You have probably already used
an operator-theoretic approach to nonlinear systems

z(t) = T"(x(0)) Globally stable equilibrium?

Positive Lyapunov function:
VoT'(z) <V(x)
Vit > 0,Vx
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Operator-theoretic approach:

UV <V  Vt>0

Koopman operator U’ f = f o T" acting on the « observable » f =V



However, this operator-theoretic approach
has been overlooked in nonlinear systems theory

It is surprising to find that Lyapunov's theorem has a close relative {...)

that has been neglected until present date.
A. Rantzer, A dual to Lyapunov stability theorem, Systems & Control Letters, 42 (2001)

Stability analysis

Lyapunov function V'
c. 1890

>100 years

Lyapunov density p
[Rantzer, 2001]
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Stability analysis Operator theory
t

Lyapunov function V < UV <V > Koopman operator

c. 1890 [Koopman, 1930]

adjoint operators

>100 years <UtV’ p) _ (V, Ptp>

duality known
for decades!

t
Lyapunov density p P p<p
[Rantzer, 2001] <

> Perron-Frobenius operator
<1960 [Ulam]

[Vaidya et al., 2008]



The operator-theoretic approach provides general
and systematic linear methods for nonlinear systems
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Stability analysis: a systematic method
Joint work with I. Mezic, University of California Santa Barbara

Nonlinear identification: a lifting method
Joint work with J. Goncalves, University of Luxembourg

Control: recent works and perspectives



Global stability is characterized in terms of
spectral properties of the Koopman operator

Continuous-time nonlinear system & = F'(z) <{—)> T':R" — R"

e )
Koopman eigenfunction ¢, € F

Ut — o Tt _ e)\t
Koopman eigenvalue A € o(U) “ Px = PA A
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Continuous-time nonlinear system & = F'(z) <{—)> T':R" — R"

-
Koopman eigenfunction ¢, € F

"

Ut — o Tt _ e)\t
Koopman eigenvalue A € o(U) “ Px = PA A
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/ Theorem: If there exist eigenfunctions ¢y, € C°(X) with eigenvalues
i € o(U) suchthatt{\;} <0,i=1,...,m, then the set

M = ﬂ{l‘ € X|[px, (x) = 0}

\_ is globally asymptotically stable in X.

\

[AM and Mezic, IEEE Trans. on Aut. Control 2016]



We obtain a systematic approach to global stability,
which mirrors linear stability analysis

Hyperbolic equilibrium ™

Jacobian matrix g—F(x*) has eigenvalues \;
x

(Assume that X C R" is a forward invariant connected set. )

The equilibrium 2™ is globally asymptotically stable in X iff
(i) the eigenvalues \; € o(U) are such that *{\;} < 0 (local stability)
\(ii) there exist 1 eigenfunctions ¢, € C' (X) withVe,, (z*) # 0

J

2.
Example: _
&9

approximation of the o}
basin of attraction

Sth order
10th order |

-2

40th order

[AM and Mezic, IEEE Trans. on Aut. Control 2016]



The spectral approach is related
to classic and (new) concepts in control theory

Lyapunov function ¥ (z) = Z|0’5)\j(1‘)|2

\i=
On - 5 N
-‘s;ﬁ . - R <
* T I ° 5 g 0 2,

N
Contracting metric M(z,y) = \J Z Iqb,\j (x) — Ox, (y)]?
j=1

2 oo o v w s o

]
o

Differential positivity (contracting cone field)
[AM, Forni and Sepulchre, CDC 2015]
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W N =2 O =< N W

Eventual monotonicity
[Sootla and AM, arXiv 1510.01149]
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We propose to “identify” the Koopman operator
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Find Cj such that
Nr

T =F(z) = chgj(iﬁ)
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N g(f) )@=

identification
[AM and Goncalves, CDC2016] L /parameter

[AM and Goncalves, arXiv 1709.02003] estimation



We propose to “identify” the Koopman operator

@kayk) =@ (il?‘k))\

k=1,.... K t; &1

¢

Find Cj such that
Nr

&= F@)=) cg;(x)

E

[AM and Goncalves, CDC2016]
[AM and Goncalves, arXiv 1709.02003]
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1. Lifting of
the data
T'(x)
R™ () g
S8

2. Linear
identification

af _
ot

Lf

Ut — eLt

3. “Lifting back”
Lf=F.-Vf

N

T = F(x)



Step 1: Data are lifted to a higher
dimensional space

P

Zal.
U'f
=4
|
{ §T%ae)
R’I’L

Data Lifted data

Uts f
— s (o Choose N > n 47 Z
Ik ( k) basis functions f; }—:)!; |4 ®

e o

X
f :

(@, yr) = (@p, T (1)) (fi(zw), fi(yr)) = (filzx), U" fi(xr))



Step 2: The Koopman operator is « identified »
in the lifted space

e %f 2 of
v _
5 =) -1y

matrix

linear least squares logarithm
Lifted data > Realization U € RV*N c
of U = e*sin the basis ! !

[Realization L =1/t log(U)]

of the infinitesimal generator L

Remark: Dual method for high-dimensional systems (N > K)






Theoretical and numerical results suggest
that the method is efficient

Theoretical convergence results
The error tends to 0 as N — oo (in “optimal” conditions)
[AM and Goncalves, arXiv 1709.02003]

Numerical results
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The lifting method is efficient to reconstruct
networks with low-sampled data
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The Koopman operator-theoretic framework
has been recently applied to control

linear controller/observer design
@ Observer synthesis [Surana, CDC 2016]

t
f% U's Model predictive control [Korda and Mezic 2016,
arXiv 1611.03537]

f Optimal control [Kaiser et al. 2016, arXiv 1707.01146]
/\ Controllability [Goswami and Paley, CDC 2017]
lifting
T (z,u) i: Only numerical results
R™ () . No theoretical framework

S
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The operator-theoretic approach provides general
and systematic linear methods for nonlinear systems
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What you do with linear systems

can (technically) be done with nonlinear systems

analysis
identification
control...
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