A linear operator-theoretic approach to nonlinear systems

Alexandre Mauroy

University of Namur

You have probably already used an operator-theoretic approach to nonlinear systems

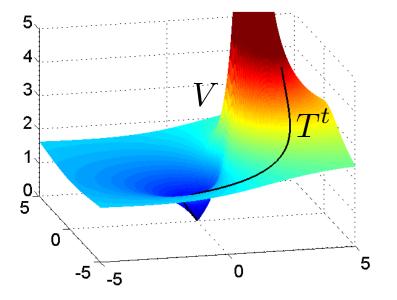
You have probably already used an operator-theoretic approach to nonlinear systems

 $x(t) = T^t(x(0))$

Globally stable equilibrium?

Positive Lyapunov function:

$$V \circ T^{t}(x) < V(x)$$
$$\forall t > 0, \forall x$$



You have probably already used an operator-theoretic approach to nonlinear systems

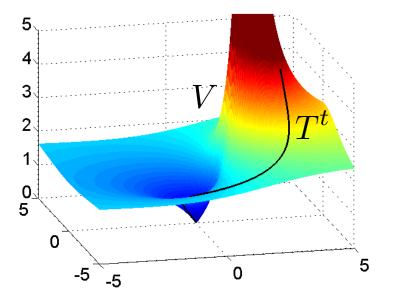
 $x(t) = T^t(x(0))$

Globally stable equilibrium?

Positive Lyapunov function:

$$V \circ T^t(x) < V(x)$$

$$\forall t > 0, \forall x$$



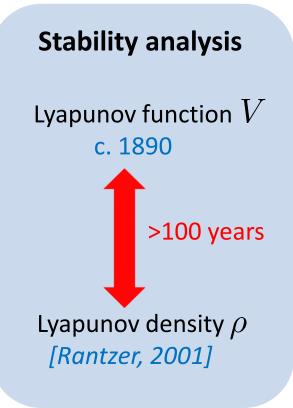
Operator-theoretic approach: $U^t V < V \quad \forall t > 0$

Koopman operator $U^t f = f \circ T^t$ acting on the « observable » f = V

However, this operator-theoretic approach has been overlooked in nonlinear systems theory

It is surprising to find that Lyapunov's theorem has a close relative (...) that has been **neglected until present date**.

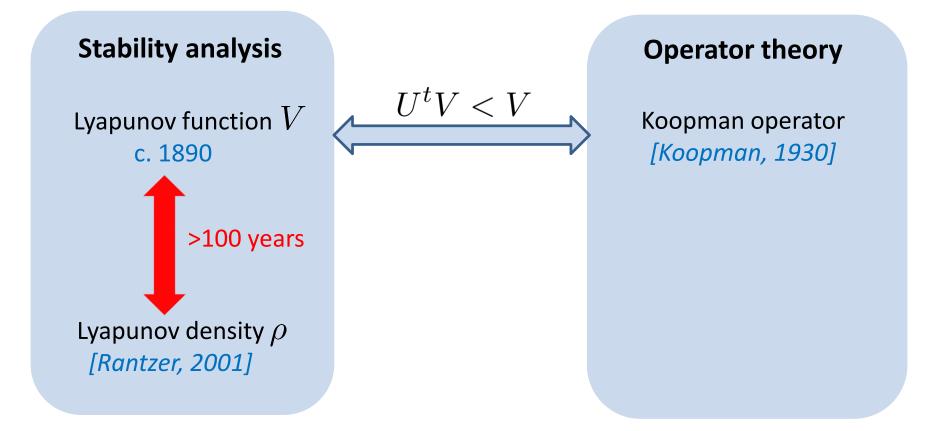
A. Rantzer, A dual to Lyapunov stability theorem, Systems & Control Letters, 42 (2001)



However, this operator-theoretic approach has been overlooked in nonlinear systems theory

It is surprising to find that Lyapunov's theorem has a close relative (...) that has been **neglected until present date**.

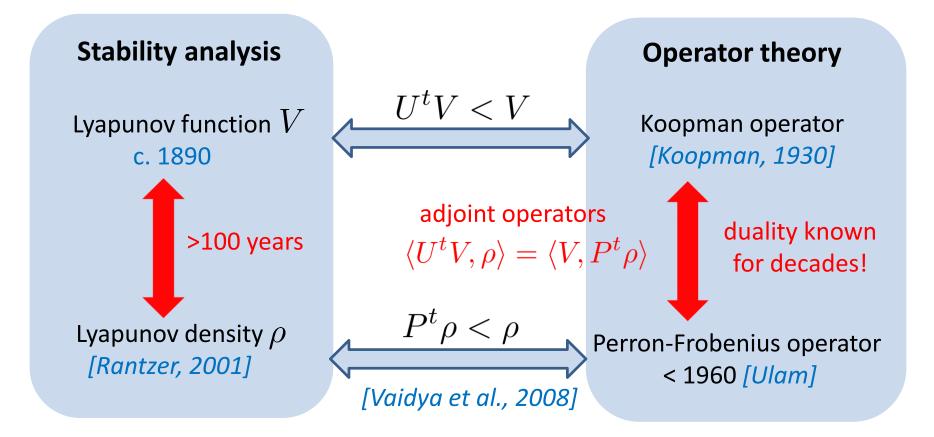
A. Rantzer, A dual to Lyapunov stability theorem, Systems & Control Letters, 42 (2001)



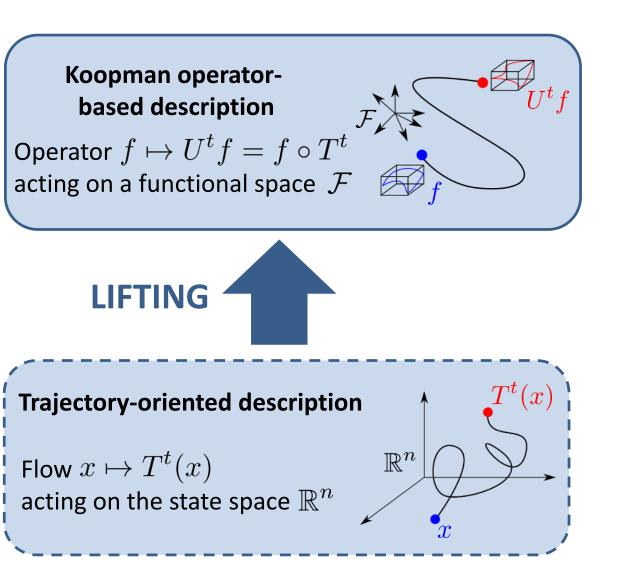
However, this operator-theoretic approach has been overlooked in nonlinear systems theory

It is surprising to find that Lyapunov's theorem has a close relative (...) that has been **neglected until present date**.

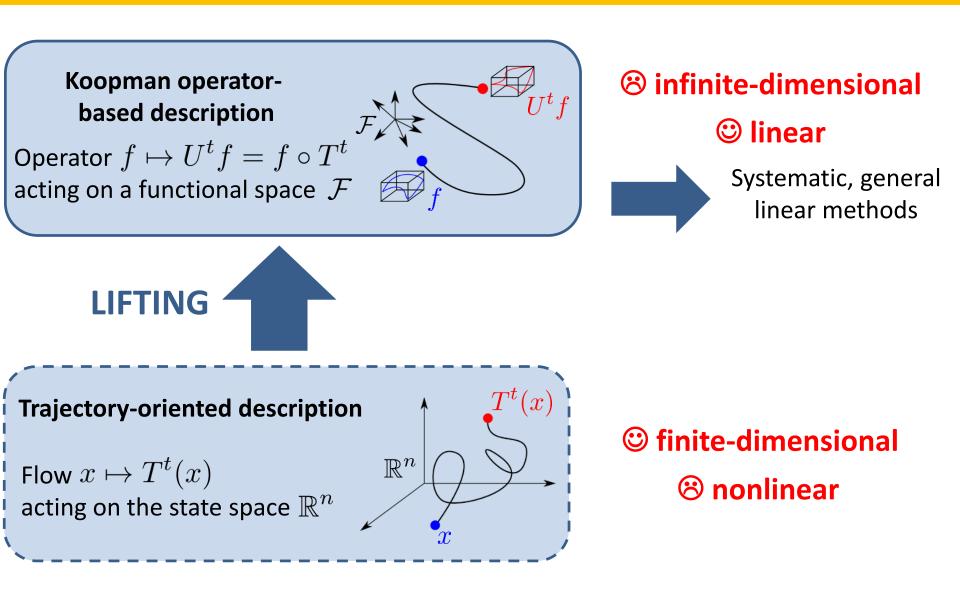
A. Rantzer, A dual to Lyapunov stability theorem, Systems & Control Letters, 42 (2001)



The operator-theoretic approach provides general and systematic linear methods for nonlinear systems



The operator-theoretic approach provides general and systematic linear methods for nonlinear systems



Stability analysis: a systematic method Joint work with I. Mezic, University of California Santa Barbara

Nonlinear identification: a lifting method *Joint work with J. Goncalves, University of Luxembourg*

Control: recent works and perspectives

Global stability is characterized in terms of spectral properties of the Koopman operator

Continuous-time nonlinear system $\dot{x} = F(x)$ \longleftrightarrow $T^t : \mathbb{R}^n \to \mathbb{R}^n$

Koopman eigenfunction
$$\phi_{\lambda} \in \mathcal{F}$$

Koopman eigenvalue $\lambda \in \sigma(U)$
 $U^{t}\phi_{\lambda} = \phi_{\lambda} \circ T^{t} = e^{\lambda t}\phi_{\lambda}$

Global stability is characterized in terms of spectral properties of the Koopman operator

Continuous-time nonlinear system $\dot{x} = F(x)$ \longleftrightarrow $T^t : \mathbb{R}^n \to \mathbb{R}^n$

Koopman eigenfunction $\phi_{\lambda} \in \mathcal{F}$ Koopman eigenvalue $\lambda \in \sigma(U)$ $U^{t}\phi_{\lambda} = \phi_{\lambda} \circ T^{t} = e^{\lambda t}\phi_{\lambda}$

Theorem: If there exist eigenfunctions $\phi_{\lambda_i} \in C^0(X)$ with eigenvalues $\lambda_i \in \sigma(U)$ such that $\Re\{\lambda_i\} < 0, i = 1, ..., m$, then the set $M = \bigcap_{i=1}^m \{x \in X | \phi_{\lambda_i}(x) = 0\}$ is globally asymptotically stable in X.

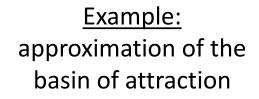
[AM and Mezic, IEEE Trans. on Aut. Control 2016]

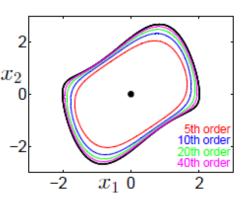
We obtain a systematic approach to global stability, which mirrors linear stability analysis

Hyperbolic equilibrium x^*

Jacobian matrix $\frac{\partial F}{\partial x}(x^*)$ has eigenvalues λ_i

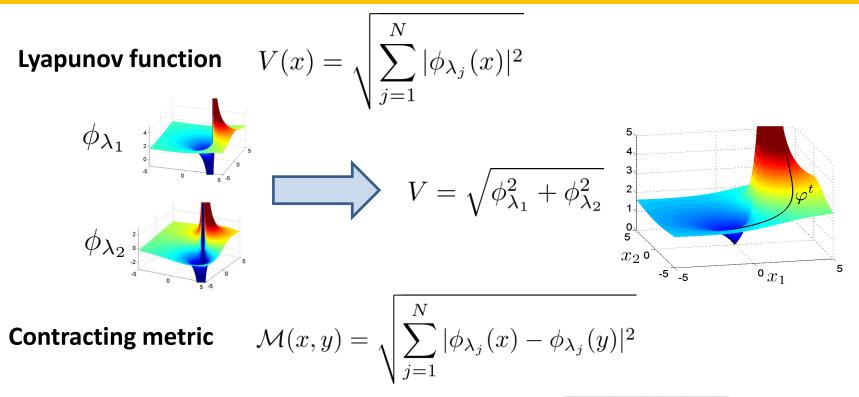
Assume that $X \subset \mathbb{R}^n$ is a forward invariant connected set. The equilibrium x^* is globally asymptotically stable in X iff (i) the eigenvalues $\lambda_i \in \sigma(U)$ are such that $\Re\{\lambda_i\} < 0$ (local stability) (ii) there exist n eigenfunctions $\phi_{\lambda_i} \in C^1(X)$ with $\nabla \phi_{\lambda_i}(x^*) \neq 0$





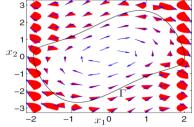
[AM and Mezic, IEEE Trans. on Aut. Control 2016]

The spectral approach is related to classic and (new) concepts in control theory



Differential positivity (contracting cone field) [AM, Forni and Sepulchre, CDC 2015]

Eventual monotonicity [Sootla and AM, arXiv 1510.01149]



Stability analysis: a systematic method Joint work with I. Mezic, University of California Santa Barbara

Nonlinear identification: a lifting method Joint work with J. Goncalves, University of Luxembourg

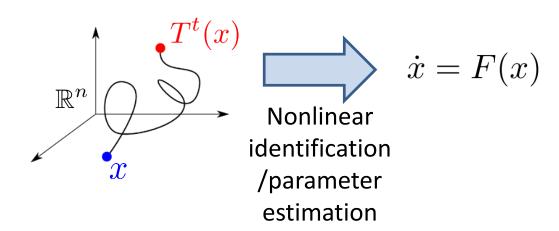
Control: recent works and perspectives

We propose to "identify" the Koopman operator

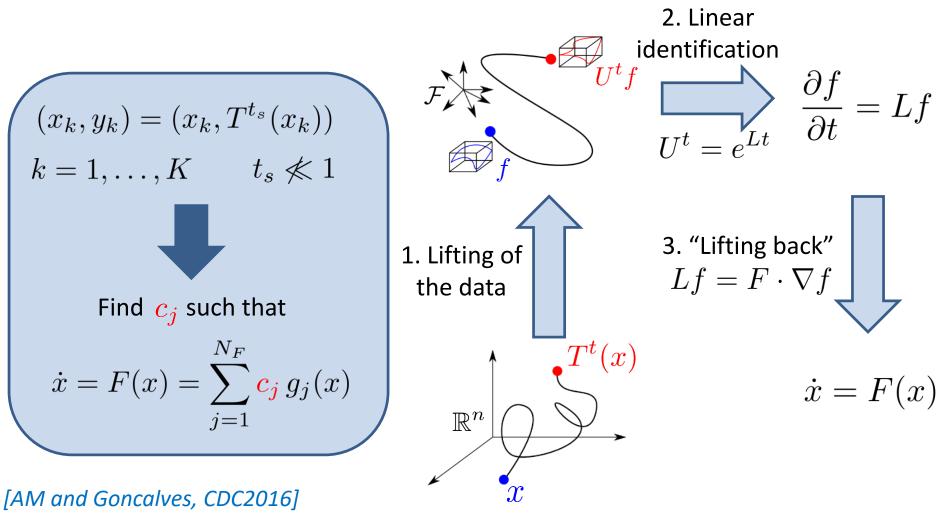
$$(x_k, y_k) = (x_k, T^{t_s}(x_k))$$

$$k = 1, \dots, K \qquad t_s \not\ll 1$$
Find c_j such that
$$\dot{x} = F(x) = \sum_{j=1}^{N_F} c_j g_j(x)$$

[AM and Goncalves, CDC2016] [AM and Goncalves, arXiv 1709.02003]

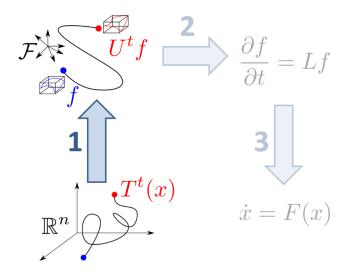


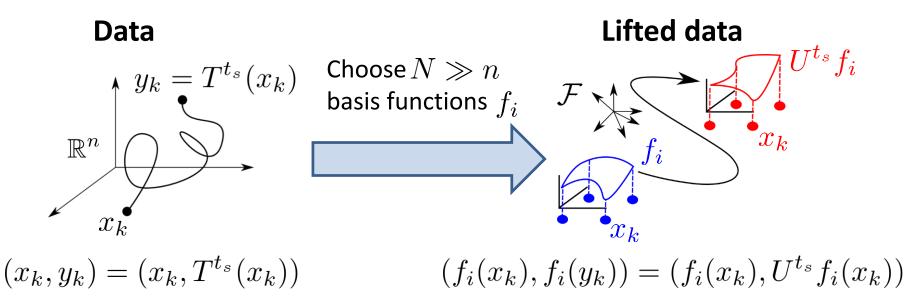
We propose to "identify" the Koopman operator



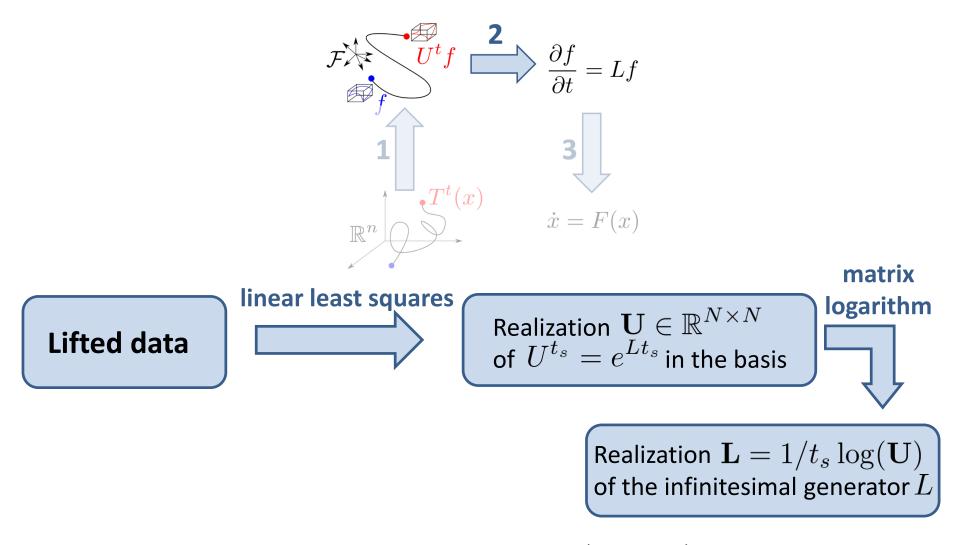
[AM and Goncalves, arXiv 1709.02003]

Step 1: Data are lifted to a higher dimensional space



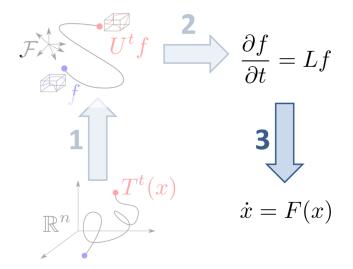


Step 2: The Koopman operator is « identified » in the lifted space



<u>Remark</u>: Dual method for high-dimensional systems (N > K)

Step 3: The nonlinear system is finally identified



Realization
$$\mathbf{L}$$
 of the infinitesimal generator I

$$Lf = F \cdot \nabla f$$

$$F(x) = \sum_{j=1}^{N_F} c_j g_j(x)$$

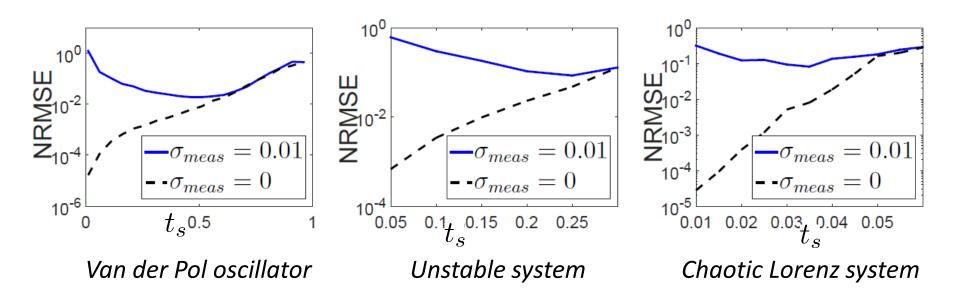
Theoretical and numerical results suggest that the method is efficient

Theoretical convergence results

The error tends to $0 \text{ as } N \to \infty$ (in "optimal" conditions)

[AM and Goncalves, arXiv 1709.02003]

Numerical results

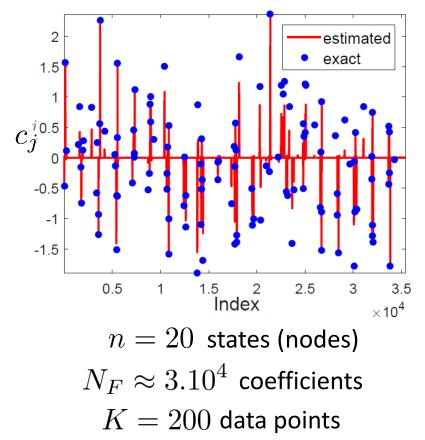


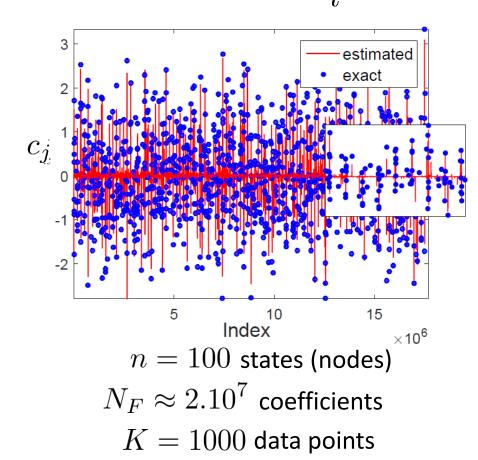
The lifting method is efficient to reconstruct networks with low-sampled data

$$\dot{x}_l = \sum_{j=1}^{N_F} c_j \, g_j(x)$$

$$g_j \equiv x_p^a x_q^b$$
$$a+b \in \{1,2,3\}$$

Sampling period: $t_s = 0.5$





Stability analysis: a systematic method Joint work with I. Mezic, University of California Santa Barbara

Nonlinear identification: a lifting method *Joint work with J. Goncalves, University of Luxembourg*

Control: recent works and perspectives

The Koopman operator-theoretic framework has been recently applied to control

lifting

 \mathbb{R}^{n}

(x, u)

linear controller/observer design

Observer synthesis [Surana, CDC 2016]

Model predictive control [Korda and Mezic 2016, arXiv 1611.03537]

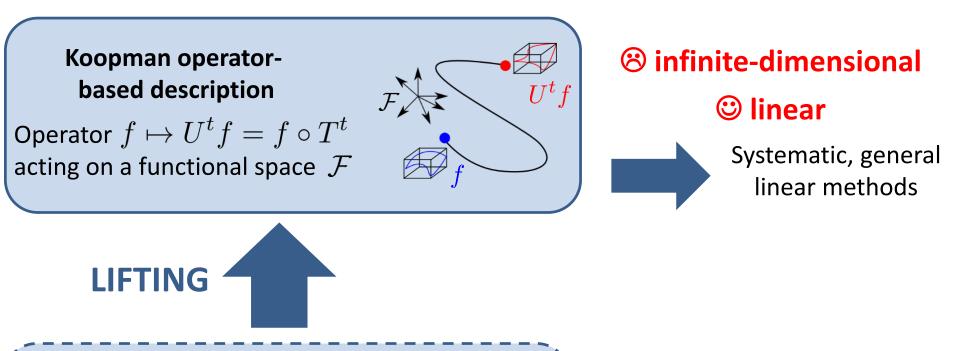
Optimal control [Kaiser et al. 2016, arXiv 1707.01146]

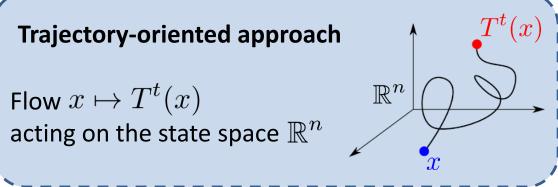
Controllability [Goswami and Paley, CDC 2017]

Only numerical results

No theoretical framework

The operator-theoretic approach provides general and systematic linear methods for nonlinear systems





- Global stability
- Identification
- Control

What you do with linear systems can (technically) be done with nonlinear systems

A linear operator-theoretic approach to nonlinear systems

Alexandre Mauroy (alexandre.mauroy@unamur.be)

University of Namur

