
Computational Intelligence and Learning Doctoral School

An Introduction to Conditional Random
Fields and Other Discriminative
Sequence LabelingMethods

Masashi Shimbo

Computational Linguistics Lab
Graduate School of Computer Science
Nara Institute of Science and Technology
Ikoma, Nara, Japan

5 November 2007 @ Université Catholique de Louvain

Part I

Introduction

Background

Many natural language processing tasks can be formulated as
that of sequence labeling.

I part-of-speech tagging
I base noun phrase chunking
I named entity recognition
I …

Sequence labeling

Given an observation sequence x

x = (x1, x2, . . . , xk)

output correct label sequence

y = (y1, y2, . . . , yk) yi ∈ Y ∀i.

The �nite set Y of labels each yi can take is known a priori.

Example: part-of-speech tagging

Y = {Noun, Verb, Prep, Det}

x x1

Time
x2

�ies
x3

like
x4

an
x5

arrow

Example: part-of-speech tagging

Y = {Noun, Verb, Prep, Det}

x x1

Time
x2

�ies
x3

like
x4

an
x5

arrow

y y1 y2 y3 y4 y5

? ? ? ? ?

Example: part-of-speech tagging

Y = {Noun, Verb, Prep, Det}

x x1

Time
x2

�ies
x3

like
x4

an
x5

arrow

y y1 y2 y3 y4 y5

Noun Verb Prep Det Noun

Example: part-of-speech tagging

Y = {Noun, Verb, Prep, Det}

x x1

Time
x2

�ies
x3

like
x4

an
x5

arrow

y y1 y2 y3 y4 y5

Noun Noun Verb Det Noun

Sequence learning problem

The labeling rules are usually learned from a
human-annotated corpus.

By human-annotated,wemean the texts in the corpus are
tagged with correct labels for the task at hand.

Ô Supervised learning

Sequence learning problem

Let D = {(x(n),y(n))} be a set of training data, where y(n) is a
correct label sequence for observed sequence x(n).

As before, the set Y of possible labels is �nite and known.

Given Y and D, infer a sequence label predictor which, given
an unknown observed sequence x, output correct label
sequence y.

Notation

x = (x1, . . . , x|x|) observed sequence
y = (y1, . . . , y|y|) hidden label sequence
z = (x,y) all variables combined
j index of variables in sequences
n index of training examples

HiddenMarkovmodels
[Rabiner, 1989]

Traditionally, the hidden Markov models (HMMs) were the
dominant approach to sequence learning.

HiddenMarkovmodels

A generative model —models the joint probability p(x,y) of

I observed variables (evidence) x
I hidden variables (states) y

A Bayesian network— directed graphical model

Places a strong conditional independence assumption
among variables

HiddenMarkovmodels

Graphical model representation of HMM

y1

x1

y2

x2

y3

x3

yN

xN

HMM for part-of-speech tagging

y1

x1

Time

y2

x2

�ies

y3

x3

like

y4

x4

an

y5

x5

arrow

HMM factorization

yi−1

xi−1

yi

xi

Conditional independence assumptions:

I Given yi, xi is independent from other variables.
I Given yi−1, yi is independent from

I y1, . . . , yi−2 —all preceding states before time (i− 1)
I x1, . . . , xi−1 —all observations before time i
I …

HMMparameters

Parameters of an HMMmodel are hence

p(yi|yi−1) = P (Yi = yi | Yi−1 = yi−1) transition probability
p(y1) = P (Y1 = y1) initial state probability

p(xi|yi) = P (Xi = xi | Yi = yi) output probability

HMM factorization

p(x,y) = p(y1)p(x1|y1)p(y2|y1)p(x2|y2) . . . p(yK |yK)p(xK |yK)

= p(y1)
N−1∏
k=1

(p(xk|yk)p(yk+1|yk)) p(xK |yK)

=
N∏

k=1

p(xk|yk)p(yk|yk−1)

The last simpli�ed formula is obtained if we introduce a
dummy singleton state Y0 ∈ {start} and de�ne
p(y1|y0)

def= p(y1).

HMMprediction

If we have a model p(x,y), the most likely y for given x can
be found by

arg max
y

p(y | x) = arg max
y

p(y,x)
p(x)

= arg max
y

p(y,x)

HMM training

Maximum likelihood parameter estimation in HMMwith
labelled training data {(x(n),y(n))} boils down to counting
observations and state transitions in the data— no need of
inference.

HMMparameter estimation

p(yi|yj) =
Count(y(n)

k = yj , y
(n)
k+1 = yi)

Count(y(n)
k = yj)

p(xi|yj) =
Count(x(n)

k = xi, y
(n)
k = yj) + s

Count(y(n)
k = yj) + s|X |

I X : vocabulary (all possible observations)
I s: smoothing parameter — to deal with observations

unseen in the training data

Note that more clever smoothing schemes exist. The above is
just for illustration.

Limitations of HMMs

I Smoothing usually indispensable
I Hard to incorporate non-independent overlapping

features due to strict independence assumption
between variables.

I spelling
I su�xes
I capitalization
I whether a word is found in a dictionary of location names
I …

Discriminative methods

Do not try to model the joint probability p(x,y)

Instead, estimate conditional probability p(y|x) directly

—we are just concerned with �nding the most likely y given
x.

Discriminative methods— advantage?

We can now introduce arbitrary non-independent features on
observed sequence.

I Since p(x) needs not be modelled, we can break down
x ∈ x into arbitrary features, and introduce them as
factors determining p(y | x).

Discriminative methods— advantage?

Smoothing e�ect can be obtained through these
�ne-grained but generic features— such as whether x ends
in a su�x “ing”— in a data driven manner.

I Even if an encountered word is not in training data set,
there may be some features that are shared by the word
and other words observed in the training data set.

E.g., word “smoothing” may not occur in training data
set, but there ought to be many words in training data
set that end with “ing”— and these words often share
common characteristics.

History

I Hidden Markov models (a generative model)
I Maximum entropy Markov models
I Conditional random �elds
I Perceptron-based sequence labeling
I Margin-maximization methods

I Max-margin Markov networks
I SVMstruct

Rabiner, L. R. (1989).
A tutorial on Hidden Markov Models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286.

Part II

Conditional random �elds

Conditional random �elds

Proposed in 2001 by J. La�erty, A. McCallum, and F. Pereira.
[La�erty et al., 2001]

A conditional random �eld (CRF) consists of

I Markov random �eld (MRF) with all hidden variables
conditioned by observations

MRF = undirected graphical model

I Log-linear potential functions
I Parameter estimation through conditional likelihood

maximization

Conditional random �elds

I Applicable to non-sequential labeling as well (but the
inference will be harder)

I We will focus on sequential labeling in this tutorial.

HMM

Instead of a Bayesian network (directed graphical model)

y1

x1

y2

x2

y3

x3

yN

xN

CRFs

We have a Markov random �eld (undirected graphical model).

y1

x1

y2

x2

y3

x3

yN

xN

CRFs

We have a Markov random �eld (undirected graphical model).
Moreover, we only model p(y|x), so x is always observed.

y1

x1

y2

x2

y3

x3

yN

xN

CRFs

Each yi can be made dependent not just on xi but on an
entire observation sequence x = (x1, . . . , xN).

y1 y2 y3 yN

x

If you wish, you can even use the �rst observation x1 to
determine the last label yN !

Hammersley-Cli�ord theorem

A positive continuous joint probability distribution over z
obeys the conditional independence properties depicted by
a Markov random �eld i� it factorizes into a product of
positive potential functions associated with cliques.

p(z) =
1
Z

∏
C

ψC(zC)

where

zC z restricted to nodes in clique C
ψC(zC) > 0 potential function for C

Z =
∑

z

∏
C

ψC(zC) normalization constant

Potential function ψC interacts with z only through zC .

Cliques

Set of nodes such that there exists an arc between every pair
of nodes (i, j) in the set.

Note however that we use C to denote clique identity, not
the set of nodes it contains.

Cliques in chain CRFs

In the chain CRF model, cliques are {yi}, {yi,x}, {yi−1, yi},
{yi−1, yi,x} for all i, and {x}.

As far as MRF factorization is concerned, it is su�cient to
consider only maximal cliques (because potential function
over clique {u, v} can also contain a factor that depends only
on {u} or {v}, etc.).

In chain CRF, {yi−1, yi,x} are maximal.

y1 y2 y3 yN

x

Partition function

Note that each ψC is not a probability distribution (does not
necessarily sum to one)

Hence the need of a normalization constant, or partition
function.

Z =
∑

z

∏
C

ψC(zC)

Hammersley-Cli�ord theorem

A proof can be found in, e.g.,
Stephen L. Lauritzen
Graphical Models
Oxford University Press
1996
ISBN 0 19 852219 3

Conditional probability

We have a generic form of joint probability p(z)

p(z) =
1
Z

∏
C

ψC(zC)

But CRFs are concerned with conditional probability
distribution p(y|x)

—not the joint distribution p(z) = p(x,y).

Let us derive p(y|x).

Conditional probability

From

p(x,y) =
1
Z

∏
C

ψC(xC ,yC),

we have

p(y|x) =
p(x,y)
p(x)

=
p(x,y)∑
y′ p(x,y′)

=
1
Z

∏
C ψC(xC ,yC)∑

y′
1
Z

∏
C ψC(xC ,y′

C)

=
∏

C ψC(xC ,yC)∑
y′
∏

C ψC(xC ,y′
C)

Note that ψC for which C does not contain a variable from y
also cancels out, so we can safely ignore such cliques.

Conditional probability

So we have obtained

p(y|x) =
∏

C ψC(xC ,yC)∑
y′
∏

C ψC(xC ,y′
C)

De�ning a (conditional) partition function

Z(x) def=
∑
y′

∏
C

ψC(xC ,y
′
C)

yields a form similar to the joint probability

p(y|x) =
1

Z(x)

∏
C

ψC(xC ,yC)

CRFmodel— not yet

p(y|x) =
1

Z(x)

∏
C

ψC(xC ,yC)

where

C a clique
xC , yC x and y restricted to C
ψC(yC ,xC) > 0 potential function for C

Z(x) =
∑
y

∏
C

ψC(xC ,yC) partition function

Clique potentials: alternative form

Without loss of generality, let

ψC(xC ,yC) = exp (−EC(xC ,yC))

(because exp(x) > 0 for any x, and we require ψC > 0)

Clique potentials: alternative form

Then,

p(y|x) =
1

Z(x)

∏
C

ψC(xC ,yC)

=
1

Z(x)

∏
C

exp (−EC(xC ,yC))

=
1

Z(x)
exp

∑
C

(−EC(xC ,yC))

and

Z(x) =
∑
y

exp
∑
C

(−EC(xC ,yC))

Features in CRF

CRFs further impose a speci�c form of EC — that it be a linear
function of features.

Let

f(x,y, C) = (f1(xC ,yC , C), . . . , fM (xC ,yC , C))

be a vector of features. Each feature fm is implicitly associated
with a set of cliques Cm

— Cm determines its applicability to a given clique C .

If C 6∈ Cm, it is not applicable to C , and feature fm takes a
value of 0. If C ∈ Cm, fm is applicable to C , and it is a function
of x and y through variables in xC and yC only.

Features in CRF

Now de�ne EC as

−EC(xC ,yC) =
M∑

m=1

wmfm(xC ,yC , C)

= w · f(x,y, C)

where w = (w1, . . . , wM) is the weight of features.

Feature examples

...

f140(x, yi−1, yi) =

1, if xi begins with a capital letter

and yi = Noun
0, otherwise

...

f150(x, yi−1, yi) =

1, if yi−1 = Det, yi = Noun

and xi = xj for some j < i

0, otherwise
...

CRFmodel

With the global feature vector for y de�ned as

f(x,y) def=
∑
C

f(x,y, C)

we have the CRF model (�nally).

p(y|x,w) =
1

Z(x,w)
expw · f(x,y)

where

Z(x,w) =
∑
y

expw · f(x,y)

Partition function

Computation of the partition function is usually expensive

Z(x,w) =
∑
y

expw · f(x,y)

Reason: it involves summation over all possible y
— if each node has k possible assignments, the number of
possible choices for y is k|x|.

However, for simple graphical models such as the chain CRFs,
an e�cient computation method exists.

CRF graphical model

y1 y2 y3 yN

x

Trellis representation

Expand all possible variable assignments (states) for each
node. Add dummy nodes ‘start’ and ‘end’ as well.

start end

1

2

3

y1

1

2

3

y2

1

2

3

y3

1

2

3

yN

y corresponds to a path in the trellis

Y = {NN,VB, IN,DT}

x Ô

y Ô y1

Time
y2

�ies
y3

like
y4

an
y5

arrow

start end

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

y corresponds to a path in the trellis

Y = {NN,VB, IN,DT}

x Ô

y Ô y1

Time
y2

�ies
y3

like
y4

an
y5

arrow

start end

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

y corresponds to a path in the trellis

Y = {NN,VB, IN,DT}

x Ô

y Ô NN

Time

VB

�ies
IN

like

DT

an

NN

arrow

start end

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

Transitionmatrix

Let us de�ne transition matrixMi for each “stage”
i = 1, . . . , N + 1.

1

2

3

yi−1

1

2

3

yi

1

2

3

yi+1

Mi Mi+1

Transitionmatrix

Let Ci denote the clique {x, yi−1, yi} for each i.

Recall that in chain CRFs, these are the maximal
cliques— so it su�ces to consider {Ci} only.

De�ne transition matrixMi for position i (from yi−1 to yi) by

Mi[y, y′] = exp w · f(x, y, y′, Ci) ∀y, y′ ∈ Y

which is the score of arc y → y′ at position i in the trellis
(under weight w).

Path probability computation by dynamic
programming

Once score matrices (under a weight vector w) are computed,
the unnormalized (i.e., modulo Z(x,w)) p(y|x,w) is given by
the product of transition scores along the path for a given
y = (start, y1, . . . , yN , end), because

p(y|x,w) =
1

Z(x,w)

N+1∏
i=1

M [yi−1, yi]

=
1

Z(x,w)

N+1∏
i=1

expw · f(x, yi−1, yi, Ci).

Maximum probability path computation by
Viterbi search

Likewise, the maximum probability path given x and w

y? = max
y

p(y | x,w)

can be found by a Viterbi search in the trellis, with the
transition matrices {Mi}

— Z(x,w) can be ignored as it is a constant for given x and w

Partition function

Partition function can be computed from {Mi} as

Z(x,w) = αT
0

(
N+1∏
i=1

Mi

)
βN+1

where

α0 = (1,

×|Y|︷ ︸︸ ︷
0, . . . , 0, 0)T

βN+1 = (0,

×|Y|︷ ︸︸ ︷
0, . . . , 0, 1)T.

Parameter estimation

Given training example sequencesX = {x(n)} and their
corresponding label sequences Y = {y(n)}, how do we
estimate the optimal parameter vector w??

Maximum likelihood parameter estimation

Instead of maximizing the joint likelihood, we maximize

Conditional log likelihood function

L(Y |X,w) def= log p(Y |X,w)

= log
∏
n

p(y(n)|x(n),w)

=
∑

n

log p(y(n)|x(n),w)

Maximum likelihood estimation

w? = arg max
w

L(Y |X,w)

Conditional log likelihood function

L(Y |X,w) =
∑

n

log p(y(n)|x(n),w)

=
∑

n

log
exp

(
w · f(x(n),y(n))

)
Z(x(n),w)

=
∑

n

(
w · f(x(n),y(n))− logZ(x(n),w)

)
= w ·

∑
n

f(x(n),y(n))−
∑

n

logZ(x(n),w)

This is a concave function of w

Ô gradient-based techniques can �nd a global maximum!

Gradient of conditional log likelihood

L(Y |X,w) =
∑

n

log p(y(n)|x(n),w)

= w ·
∑

n

f(x(n),y(n))︸ ︷︷ ︸
F

−
∑

n

logZ(x(n),w)︸ ︷︷ ︸
G

Let us compute the gradient

∇wL = ∇wF +∇wG

Gradient of conditional log likelihood

F = w ·
∑

n

f(x(n),y(n))

This one is easy

∇wF =
∑

n

f(x(n),y(n))

Gradient of conditional log likelihood

G =
∑

n

logZ(x(n),w)

This one is more interesting.

∇wG =
∑

n

∇wZ(x,w)
Z(x,w)

=
∑

n

∑
y

exp
[
w · f(x(n),y)

]
Z(x(n),w)

f(x(n),y)

=
∑

n

∑
y

p(y|x(n),w)f(x(n),y)

=
∑

n

Ep(y|x(n),w)

[
f(x(n),y)

]

Gradient of conditional log likelihood

∇wF =
∑

n

f(x(n),y(n))

∇wG =
∑

n

Ep(y|x(n),w)

[
f(x(n),y)

]
Putting these back to the original gradient formula

∇wL = ∇wF −∇wG

=
∑

n

f(x(n),y(n))−
∑

n

Ep(y|x(n),w)

[
f(x(n),y)

]

Gradient of conditional log likelihood

At the maximum of L,∇wL = 0.

So we have∑
n

f(x(n),y(n)) =
∑

n

Ep(y|x(n),w)

[
f(x(n),y)

]
=
∑

n

∑
y

p(y|x(n),w)f(x(n),y)

Gradient of conditional log likelihood
Componentwise,∑

n

fm(x(n),y(n)) =
∑

n

Ep(y|x(n),w)

[
fm(x(n),y)

]
=
∑

n

∑
y

p(y|x(n),w)fm(x(n),y)

for every featurem, where

fm(x,y) def=
∑
C

fm(xC ,yC , C).

Read:

“For every feature, the number of occurrences in the
training set must equal its expectation.”

How to compute expectations e�ciently

The gradient contains expectation

Ep(y|x,w) [fm(x,y)] =
∑
y

p(y|x,w)fm(x,y)

with

fm(x,y) =
∑
C

fm(xC ,yC , C).

Again, this involves summation over all possible y

Forward-backward recursion

Similar to HMMs!

αT
i = αT

i−1Mi

βi = Mi+1 βi+1

with

α0 = (
start︷︸︸︷
1 ,

×|Y|︷ ︸︸ ︷
0, . . . , 0,

end︷︸︸︷
0)T

βN+1 = (
start︷︸︸︷
0 ,

×|Y|︷ ︸︸ ︷
0, . . . , 0,

end︷︸︸︷
1)T

How to compute expectations e�ciently

De�ne feature occurrence matrix at stage i as

Fi[y, y′]
def= fm(x, y, y′, Ci)

Then,

Ep(y|x(n),w)

[
f(x(n),y)

]
=
∑
y

p(y|x,w)fm(x,y)

=
αi−1(Fm ◦Mi)βT

i

Z(x,w)

where ◦ is component-wise (Hadamard) matrix product.

Optimizationmethods

I Gradient-based techniques
I Quasi-Newton method like Limited memory BFGS

I Approximation with perceptrons
I …

Regularization

Maximum a posteriori estimation

I Introduces prior term over parameter vector w

p(y,w|x) = p(y|x,w) p(w|x)

I Conditional log-likelihood becomes∑
n

log p(y(n)|x(n),w) + log p(w|x(n))

Frequently used priors

Assume w to be independent on x, so p(w|x) = p(w)

L2/Gaussian prior

p(w) =
1√
2πσ

exp
(
−‖w‖2

2

2σ2

)
L1/Laplacian prior

Tends to result in sparser solutions

p(w) =
1
2b

exp
(
−‖w‖1

b

)

Performance comparison with HMMs

English part-of-speech tagging [La�erty et al., 2001]

Feature set HMM CRF1 CRF2
Error (%) 5.69 5.55 4.27
Error for out-of-vocabulary words (%) 45.99 48.05 23.76

CRF1 = HMM-like features
CRF2 = CRF1 + spelling features

Publicly available CRF implementations

Java CRF Sunita Sarawagi

http://crf.sourceforge.net/

MALLET Andrew McCallum

http://mallet.cs.umass.edu/

C++ CRF++ Taku Kudo

http://crfpp.sourceforge.net/

FlexCRF X.-H. Phan, L.-M. Nguyen, & C.-T. Nguyen

http://flexcrfs.sourceforge.net/

MATLAB CRF Toolbox Kevin Murphy & Mark Schmidt

http://www.cs.ubc.ca/^murphyk/Software/CRF/crf.html

http://crf.sourceforge.net/
http://mallet.cs.umass.edu/
http://crfpp.sourceforge.net/
http://flexcrfs.sourceforge.net/
http://www.cs.ubc.ca/~murphyk/Software/CRF/crf.html

Some good tutorial papers on CRFs

I [Wallach, 2004]
I [Sutton and McCallum, 2007]

La�erty, J., McCallum, A., and Pereira, F. (2001).
Conditional random �elds: probabilistic models for segmenting and labeling sequence data.
In Proceedings of the 18th International Conference onMachine Learning (ICML-2001), pages 282–289.
Morgan Kaufmann.

Sutton, C. and McCallum, A. (2007).
An introduction to conditional random �elds for relational learning.
In Getoor, L. and Taskar, B., editors, Introduction to Statistical Relational Learning, chapter 4. MIT Press.

Wallach, H. M. (2004).
Conditional random �elds: an introduction.
CIS Technical Report MS-CIS-04-021, Univerisity of Pennsylvania.

Part III

Sequence-labeling perceptrons

Perceptron training algorithm

input Set of training examples D = {(x(n), y(n))}
output Weight vector w

1: w ← 0
2: repeat
3: for each (x(n), y(n)) ∈ D do
4: ybest ← sgn(w · x(n))
5: if ybest 6= y(n) then
6: w ← w + y(n)x(n)

7: end if
8: end for
9: until w does not change during the inner for loop

10: return w

Perceptron

Perceptron

w

Current w

Perceptron

w

positive (w · x > 0)

negative (w · x < 0)

Halfspaces
separated by
hyperplane
perpendicular to
w

Perceptron

w

positive (w · x > 0)

negative (w · x < 0)

x
y = +1

New example x
(Positive example)

Perceptron

w

positive (w · x > 0)

negative (w · x < 0)

yx

New example x
(Positive example)

yx is on the
negative side
(misclassi�ed by
w)

Perceptron

w

positive (w · x > 0)

negative (w · x < 0)

yx

New example x
(Positive example)

yx is on the
negative side
(misclassi�ed by
w)

Perceptron

w

positive (w · x > 0)

negative (w · x < 0)

yx

w

w ← w + yx

Perceptron

positive (w · x > 0)

negative (w · x < 0)

yx

w

New w

Perceptron

positive (w · x > 0)

negative (w · x < 0)

w

End of an iteration

Perceptron

positive (w · x > 0)

negative (w · x < 0)

w

x
y = −1

New example x
(Negative
example)

Perceptron

positive (w · x > 0)

negative (w · x < 0)

w

x
yx

New example x
(Negative
example)

yx is on the
negative side
(misclassi�ed by
w)

Perceptron

positive (w · x > 0)

negative (w · x < 0)

w

x
yx

New example x
(Negative
example)

yx is on the
negative side
(misclassi�ed by
w)

Perceptron

positive (w · x > 0)

negative (w · x < 0)

x
yx

w

w ← w + yx

Perceptron

positive (w · x > 0)

negative (w · x < 0)

x
yx

w

New w

Perceptron

positive (w · x > 0)

negative (w · x < 0)

w

End of an iteration

Perceptron

positive (w · x > 0)

negative (w · x < 0)

w

Repeat until all
examples are
correctly
classi�ed.

Perceptron training algorithm (batch version)

input Set of training examples S = {(x(n), y(n))}
output Weight vector w

1: w ← 0
2: repeat
3: ∆w ← 0
4: for each (x(n), y(n)) ∈ D do
5: ybest ← sgn(w · x(n))
6: if y(n) 6= ybest then
7: ∆w ← ∆w + y(n)x(n)

8: end if
9: end for

10: w ← w + ∆w
11: until ∆w = 0
12: return w

Sequence-labeling perceptron algorithms
[Collins, 2002]

Proposed by M. Collins

Can be regarded as an approximation of CRFs

Dual formulation allows use of kernels

Components of sequence labeling perceptron

Encoder
encodes a sequence pair (x,y) into a joint feature
vector f(x,y).

Decoder
returns the best label sequence y with respect to
current weight vector w.

Perceptron algorithm
runs over the joint space of X × Y , and calls
Encoder and Decoder as subroutines.

Notation

x observation sequence
Y(x) set of all possible label sequences for x
y ∈ Y(x) (not necessarily correct) label sequence for x

Joint feature function

De�ne f(x,y) as a mapping of a pair (x,y) to a feature space.

This function (or, encoder) is an analogue of the global
feature vector in CRFs

We can use the same set of features as used in CRFs
— in which case computation of f(x,y) reduces to
enumeration of features along path y in the trellis for x (just
like CRFs).

Joint feature function

De�ne f(x,y) as a mapping of a pair (x,y) to a feature space.

This function (or, encoder) is an analogue of the global
feature vector in CRFs

We can use the same set of features as used in CRFs
— in which case computation of f(x,y) reduces to
enumeration of features along path y in the trellis for x (just
like CRFs).

Objective of perceptron training

The goal of the sequence-labeling perceptron training is to
�nd w such that

w · f(x,y) > w · f(x,y′) ∀y′ ∈ Y(x), y′ 6= y

or, equivalently,

w · f(x,y) > arg max
y′∈Y(x)

y′ 6=y

w · f(x(n),y′)

m

Correct labeling y has higher score than any other labeling y′.

Sequence-labeling perceptron algorithm

input Set of training examples D = {(x(n),y(n))}
output Weight vector w

1: w ← 0
2: repeat
3: for each (x(n),y(n)) ∈ D do
4: ybest ← arg maxy w · f(x(n),y)
5: if ybest 6= y(n) then
6: w ← w + f(x(n),y(n))
7: w ← w − f(x(n),ybest)
8: end if
9: end for

10: until w does not change during the inner for loop
11: return w

Sequence-labeling perceptron algorithm
Batch version

input Set of training examples D = {(x(n),y(n))}
output Weight vector w

1: w ← 0
2: repeat
3: ∆w ← 0
4: for each (x(n),y(n)) ∈ D do
5: ybest ← arg maxy w · f(x(n),y)
6: if ybest 6= y(n) then
7: ∆w ← ∆w + f(x(n),y(n))− f(x(n),ybest)
8: end if
9: end for

10: w ← w + ∆w
11: until ∆w = 0
12: return w

Prediction

To predict the label sequence y of an unlabelled sequence x
using a learned weight vector w, compute

y = arg max
y′∈Y(x)

w · f(x(n),y′).

The arg max operation chooses the best scoring label
sequence y from x and w..

This process of decoding is identical to CRFs; i.e., Viterbi
search in the trellis.

N.B., the decoder is also used in the training algorithm.

Components of sequence labeling perceptron

Encoder
encodes a sequence pair (x,y) into a joint feature
vector f(x,y).
(Enumeration of features along path y in the trellis)

Decoder
returns the best label sequence y with respect to
current weight vector w.
(Viterbi search in the trellis)

Perceptron algorithm
runs over the joint space of X × Y , and calls
Encoder and Decoder as subroutines.
(Decoder is used in place of CRF’s expectation
computation)

Averaging
[Freund and Schapire, 1999]

Averaging w over all iterations reduces the variance and
often improves the performance.

w̄�nal =
1
N

N∑
t=1

wt

Note: it is not necessary to keep record of individual wt in
each iteration t. Online update of the averaged vector is
possible with

w̄t ←
1
t

((t− 1)w̄t−1 + ∆wt)

Howwell do sequence labeling perceptrons
perform?

F1 score in a named entity recognition task [Altun et al., 2003]

Feature set CRF P ∆
S1 (bigram features) 59.92 59.77 −0.15
S2 (S1 + spelling features) 69.75 69.29 −0.46
S3 (S2 + surrounding±1, 2 words) 73.62 72.97 −0.65

Collins’ method as an approximation of CRF
Batch perceptron update can be regarded as an
approximated gradient ascent for CRFs.

Perceptron update:

w ← w +
∑

n

(
f(x(n),y(n))− f(x(n),y

(n)
best)

)

Gradient ascent for CRF:

w ← w +∇wL

So we need to show

∇wL '
∑

n

(
f(x(n),y(n))− f(x(n),y

(n)
best)

)

Collins’ method as an approximation of CRF

Recall that the goal of CRF training is to maximize the
conditional log likelihood

L(Y |X, w) =
∑

n

log p(y(n)|x(n),w)

with respect to w, and its gradient is

∇wL =
∑

n

{
f(x(n),y(n))− Ep(y|x(n),w)

[
f(x(n),y)

]}

Collins’ method as an approximation of CRF

p(y|x,w) =
exp [w · f(x,y)]

Z(x,w)

Assume that p(y|x(n),w) is peaked, so that expectations over
this distribution can be approximated well by a single best
sequence y

(n)
best

y
(n)
best = arg max

y∈Y(x(n))

w · f(x(n),y) = arg max
y∈Y(x(n))

p(y|x(n),w)

Ô Viterbi assumption

Collins’ method as an approximation of CRF

Under the Viterbi assumption, we have

∇wL =
∑

n

{
f(x(n),y(n))− Ep(y|x(n),w)

[
f(x(n),y)

] }
'

∑
n

{
f(x(n),y(n))− f(x(n),y

(n)
best)

}
which is exactly the amount of update carried out in a single
iteration of the batch perceptron algorithm!

w ← w +
∑

n

(
f(x(n),y(n))− f(x(n),y

(n)
best)

)

Dual formulation

At each round, weight vector w is updated just by adding and
subtracting feature vectors f .

w ← w +
∑

n

(
f(x(n),y(n))− f(x(n),y

(n)
best)

)

Hence at any time during the algorithm, weight vector w can
be written as a linear combination of feature vectors f .

Dual formulation

Let W be the set of all (x,y) pairs used in updates, and α(x,y)
be the number of times (x,y) was used. Then,

w =
∑

(x,y)∈W

α(x,y)f(x,y)

Note: all sequence (x,ybest) used in updates must be
included in W , not just the training data.

So inner product w · f(x,y) can be kernelized as

w · f(x,y) =
∑

(x′,y′)∈W

α(x′,y′) f(x′,y′) · f(x,y)

=
∑

(x′,y′)∈W

α(x′,y′) K((x′,y′), (x,y))

Kernelized sequence-labeling perceptron

input Set of training examples D = {(x(n),y(n))}
output (W,α): support vectors and their coe�cients

1: α← 0; W ← ∅
2: repeat
3: for each (x(n),y(n)) ∈ D do
4: ybest ← arg maxy

∑
(x,y)∈W αx,y K((x,y), (x(n),y))

5: if ybest 6= y(n) then
6: W ←W ∪ {(x,y), (x,ybest)}
7: α(x,y)← α(x,y) + 1; α(x,ybest)← α(x,ybest)− 1
8: end if
9: end for

10: until α does not change during the inner for loop
11: return (W,α)

More recent methods— large-margin
approaches

I MIRA [Crammer and Singer, 2003]
I Max-margin Markov networks [Taskar et al., 2004]
I SVMstruct [Tsochantaridis et al., 2005]
I …

Altun, Y., Johnson, M., and Hofmann, T. (2003).
Investigating loss functions and optimization methods for discriminative learning of label sequences.
In Empirical Methods in Natural Language Processing.

Collins, M. (2002).
Discriminative training methods for hidden Markov models: theory and experiments with perceptron
algorithms.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2002).

Crammer, K. and Singer, Y. (2003).
Ultraconservative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951–991.

Freund, Y. and Schapire, R. E. (1999).
Large margin classi�cation using the perceptron algorithm.
Machine Learning, 37(3):277–296.

Taskar, B., Guestrin, C., and Koller, D. (2004).
Max-margin Markov networks.
In Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference, Vancouver,
Canada.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005).
Large margin methods for structural and interdependent output variables.
Journal of Machine Learning Research, 6:1453–1484.

Part IV

Applications

Outline

Bracketing/segmentation problems

BIO encoding for bracketing problems

Japanese morphological analysis

Semi-Markov CRFs

Inverse sequence alignment

Alignment learning with CRFs

Coordinations in natural languages

Base noun phrase chunking

Determine the range of noun phrases in a given sentence.

To convert it into a sequence labeling task, so-called “BIO
model” is often used.

I X = words
I Y = {B(eginning), I(nside),O(utside)}

Other label sets possible

I Beginning/Inside/Single/Outside
I Beginning/Center/End/Single/Outside
I …

Base noun phrase chunking

Con�dence in the pound is widely expected to take
another sharp dive …

x Con�dence/NN in/IN the/DT pound/NN
y B O B I

x (cont’d) is/VBZ widely/RB expected/VBN to/TO
y (cont’d) O O O O

x (cont’d) take/VB another/DT sharp/JJ dive/NN
y (cont’d) O B I I

Outline

Bracketing/segmentation problems

BIO encoding for bracketing problems

Japanese morphological analysis

Semi-Markov CRFs

Inverse sequence alignment

Alignment learning with CRFs

Coordinations in natural languages

Japanesemorphological analysis
word segmentation & part-of-speech tagging

In Japanese, words (or morphemes) are not explicitly
segmented.

東京都に住む (live in Tokyo district)

Two (actually more) di�erent segmentations are possible for
the above sentence [Kudo et al., 2004]:

東京 都 に 住む
Tokyo district in live
noun noun particle verb
東 京都 に 住む
East Kyoto in live
noun noun particle verb

Japanesemorphological analysis
word segmentation + part-of-speech tagging

|y|may di�er from |x|

start
東
east
noun

東京
Tokyo
noun

京都
Kyoto
noun

京
capital
noun

都
district
noun

に
in
particle

住む
live
verb

end

東 京 都 に 住 むx Ô

Part-of-speech tagging in English
|y| = |x|

x Ô

y Ô y1

Time
y1

Time
y1

Time
y1

Time
y2

�ies
y2

�ies
y2

�ies
y2

�ies
y3

like
y3

like
y3

like
y3

like
y4

an
y4

an
y4

an
y4

an
y5

arrow
y5

arrow
y5

arrow
y5

arrow

start end

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

NN

VB

IN

DT

Japanesemorphological analysis
Word segmentation + part-of-speech tagging

Word boundaries as well as part-of-speech tags of words
must be deduced simultaneously.

Given a string of characters x = (x1, . . . , xN), the task is to �nd
y = (y1, . . . , yM), where M ≤ N but not necessarily M = N . In
addition, each yi is associated with a character index bi, with
(b1, . . . , bM) forming a strictly increasing series s.t.
0 = b0 < b1 < . . . < bi < . . . < bM = N .

The intended meaning is that the substring xbi−1+1 . . . xbi

constitutes the ith word and yi is its part-of-speech label.

Label bias in Japanese sentence segmentation

Kudo et al. report that MEMMs prefer label sequences with
fewer segmentation points |y|.

This is an outcome of label bias [La�erty et al., 2001], because
paths through fewer |y| tend to have fewer branches.

Length of system output segmentations compared with
correct segmentation:

Method system longer system shorter
CRF 79 / 40% 120 / 60%
MEMM 416 / 70% 183 / 30%
HMM 306 / 44% 387 / 56%

[Kudo et al., 2004]

Outline

Bracketing/segmentation problems

BIO encoding for bracketing problems

Japanese morphological analysis

Semi-Markov CRFs

Inverse sequence alignment

Alignment learning with CRFs

Coordinations in natural languages

Semi-Markov conditional random �elds
[Sarawagi and Cohen, 2005]

An extension of CRFs to cope better with segmentation
problems

In a similar manner to the Japanese morphological analysis,
nodes that span over multiple xi’s are created in the trellis.

(A node is created for every segment of length≤ k)

Outline

Bracketing/segmentation problems

BIO encoding for bracketing problems

Japanese morphological analysis

Semi-Markov CRFs

Inverse sequence alignment

Alignment learning with CRFs

Coordinations in natural languages

Sequence alignment

Given a set of edit operations and their associated costs,

I Popular operation set { S(ubstitution), D(eletion),
I(nsertion) }

Find a series of edit operations that transforms one sequence
(string) to the other with minimum total edit cost.

Edit graph

Solved by �nding the minimum cost path in a grid-like state
space called edit graph.

Edit graph - sequence alignment as shortest path
problem

Operation D S S I S S D S D S I
From C A G - C C T A C A -

To - A G T C C - A - A G

A G T C C A A G

C
A
G
C
C
T
A
C
A

Inverse sequence alignment

The cost of edit operations (= edge costs in the edit graph)
are determined a priori.

In biological sequence alignment, these costs are modelled
according to mutation models.

PAM, BLOSUM

What about in non-biological domains?

How do we adjust the edit costs to suit individual tasks?

Edit costs can be learned e�ciently with CRFs

A G T C C

C

A

G

C

C

T

Edit costs can be learned e�ciently with CRFs

A

G

T

C

C

C

A

G

C

C

T

Alignment learning with CRFs

I [McCallum et al., 2005]
I [Do et al., 2006]

Outline

Bracketing/segmentation problems

BIO encoding for bracketing problems

Japanese morphological analysis

Semi-Markov CRFs

Inverse sequence alignment

Alignment learning with CRFs

Coordinations in natural languages

Coordinations in natural languages
An application of sequence alignment

One of the major sources of syntactic ambiguity in natural
languages (besides prepositional phrase attachment)

Coordinating conjuncts often have similar structure

Coordinations

Median dose intensity was 99% for the standard arm and
182% for the dose dense arm .

S S S I S S
… 99% for the standard arm …
… 182% for the dose dense arm .

These coordinations are quite common in medical papers,
and in particular, clinical trial papers.

Edit graph for coordinations
m
ed

ia
n

median

do
se

dose

in
te
ns
ity

intensity

w
as

was

99
%

99%

fo
r

for

th
e

the

st
an

da
rd

standard

ar
m

arm

an
d

and

18
2%

182%

fo
r

for

th
e

the

do
se

dose

de
ns
e

dense

ar
m

arm

Cost model for coordinations
[Shimbo and Hara, 2007]

S S S I S S
… 99% for the standard arm …
… 182% for the dose dense arm .

What is the cost of the following substitutions?

99% Ô 182% both are numbers followed by “%”
standard Ô dense both are adjectives

Di�erent similarity levels

— also dependent on languages, domains, …

There aremanymore!

I Dependency parsing
[McDonald et al., 2005, Koo et al., 2007]

I Parsing [Taskar et al., 2004]
I Machine translation

[Cowan et al., 2006, Watanabe et al., 2007]
I Speech recognition
I Relational learning
I Image processing
I …

Cowan, B., Kuc̆erová, I., and Collins, M. (2006).
A discriminative model for tree-to-tree translation.
In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006),
pages 232–241, Sydney.

Do, C. B., Gross, S. S., and Batzoglou, S. (2006).
CONTRAlign: discriminative training for protein sequence alignment.
In Proceedings of the Tenth Annual International Conference on Computational Molecular Biology (RECOMB
2006).

Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007).
Structured prediction models via the matrix-tree theorem.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 141–150.

Kudo, T., Yamamoto, K., and Matsumoto, Y. (2004).
Applying conditional random �elds to Japanese morphological analysis.
In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing.

La�erty, J., McCallum, A., and Pereira, F. (2001).
Conditional random �elds: probabilistic models for segmenting and labeling sequence data.
In Proceedings of the 18th International Conference onMachine Learning (ICML-2001), pages 282–289.
Morgan Kaufmann.

McCallum, A., Bellare, K., and Pereira, F. (2005).
A conditional random �eld for discriminatively-trained �nite-state string edit distance.
In Proceedings of the 21st Conference on Uncertainty in Arti�cial Intelligence (UAI-2005).

McDonald, R., Crammer, K., and Pereira, F. (2005).
Online large-margin training of dependency parsers.
In Proceedings of the 43rd Annual Meeting of the ACL, pages 91–98, Ann Arbor.

Sarawagi, S. and Cohen, W. W. (2005).
Semi-markov conditional random �elds for information extraction.
In Advances in Neural Information Processing Systems 17: Proceedings of the 2004 Conference.

Shimbo, M. and Hara, K. (2007).
A discriminative learning model for coordinating conjunctions.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
(EMNLP-CoNLL 2007), pages 610–619, Prague.

Taskar, B., Klein, D., Collins, M., Koller, D., and Manning, C. (2004).
Max-margin parsing.
In Empirical Methods in Natural Language Processing (EMNLP 2004).

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. (2007).
Online large-margin training for statistical machine translation.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
(EMNLP-CoNLL 2007), pages 764–773.

	1introduction
	Introduction

	2crf
	Conditional random fields

	3perceptron
	Sequence-labeling perceptrons

	4application
	Applications
	Bracketing/segmentation problems
	BIO encoding for bracketing problems
	Japanese morphological analysis
	Semi-Markov CRFs

	Inverse sequence alignment
	Alignment learning with CRFs
	Coordinations in natural languages

