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Cutting a graph in small pieces
and exploring it
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Cutting a graph in small pieces
and exploring it

 A nice reference
– Sedgewick

– Algorithms in Java

– Addison-Wesley
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Cutting a graph in small pieces
and exploring it

 Many software solutions are readily
available for cuting a graph
– See www.insna.org/INSNA/soft_inf.html

– It provides a number of pointers to
softwares
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Cutting a graph in small pieces
and exploring it

 JUNG
– the Java Universal Network/Graph

Framework

– Open source and written in Java

– Mainly a toolbox of methods

– http://jung.sourceforge.net
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Cutting a graph in small pieces
and exploring it

 Pajek
– A software for large network analysis

– There is a companion book

– Quite powerfull

– Free software
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Cutting a graph in small pieces
and exploring it

 UCINET
– Social Network Analysis Software

– Written by active researchers in the social
network community

– Quite complete comercial software

– http://www.analytictech.com
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Cutting a graph in small pieces
and exploring it

 The first step in analysing a graph is
often to look at its connected
components
– In an undirected graph, a connected

component is a maximal connected
subgraph

– A strongly connected component is the
similar concept defined for directed graphs
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Cutting a graph in small pieces
and exploring it

 Here is a graph with two connected
components
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Cutting a graph in small pieces
and exploring it

 There exists linear-time algorithms for
solving this problem
– Using, for instance, depth-first or breadth-

first search
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Cutting a graph in small pieces
and exploring it
 An articulation point or vertex-cut is a

node (vertex) of a graph such that
– removal of the node causes an increase in

the number of connected components
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Cutting a graph in small pieces
and exploring it

 Standard linear-time algorithms are
available for this problem, using, for
instance
– depth-first or breadth-first search
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Cutting a graph in small pieces
and exploring it

 A bridge or an edge-cut is an arc (edge)
of a graph such that
– removal of the arc causes an increase in

the number of connected components
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Cutting a graph in small pieces
and exploring it

 Standard linear-time algorithms are
available for this problem, using, for
instance
– depth-first or breadth-first search
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Identifying central or prestigious
nodes by link analysis
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Some link analysis books

 P. Baldi, P. Frasconi & P. Smyth (2003)
– Modeling the Internet

   and the Web  

– John Wiley & Sons
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Some link analysis books

 S. Chakrabarti (2003)
– Mining the Web

– Morgan Kaufmann
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Some link analysis books

 A. Langville & C. Meyer (2006)
– Google’s PageRank and beyond

– Princeton university press
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Some link analysis books

 B. Liu (2006)
– Web data mining

– Springer
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Identifying central or prestigious
nodes by link analysis

 The PageRank algorithm

 The HITS algorithm

 The SALSA algorithm
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The PageRank algorithm
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The basic PageRank algorithm

 Introduced by Page, Brin, Motwani &
Winograd in 1998

 Partly implemented in Google

 Corresponds to a measure of
« prestige » in a directed graph
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Web link analysis
 A set of techniques

– Applied to: Hyperlink document repositories
– Typically web pages

 Objective:
– To exploit the link structure of the documents
– In order to extract interesting information
– Viewing the document repository as a graph

where
• Nodes are documents
• Edges are directed links between

documents

– It does not exploit the content of the
pages !!
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Web link analysis

 Suppose we performed a search with a
search engine

 Objective: to improve the (content-
based) ranking of the search engine
– Based on the graph structure of the web

hyperlinks

– PageRank is computed off-line
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The basic PageRank algorithm

 To each web page we associate a score, xi
– The score of page i, xi, is proportional to the

weighted averaged score of the pages pointing to
page i

Page i
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The basic PageRank algorithm

 Let wij be the weight of the link
connecting page i to page j
– Usually, it is simply 0 or 1
– Thus, wij = 1 if page i has a link to page j;

wij = 0 otherwise

 Let W be the matrix made of the
elements wij
– Notice that this matrix is not symmetric

– We suppose that the graph is strongly
connected
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The basic PageRank algorithm

 In other words

– Where wj. is the outdegree of page j

Page i
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The basic PageRank algorithm

 In other words,
 A page with a high score is a page that

is pointed by
– Many pages
– Having each a high score

 Thus a page is an important 
   page if

– It is pointed by many,
   important, pages

Page i
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The basic PageRank algorithm

 These equations can be updated
iteratively until convergence

 In order to obtain the scores, xi
– We normalize the vector x at each iteration

 The pages are then ranked according to
their score
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The basic PageRank algorithm

 This definition has a nice interpretation
in terms of random surfing

 If we define the probability of following
the link from page j to page i as
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The basic PageRank algorithm

 We can write the updating equation as

 And thus we can define a random surfer
following the links according to the
transition probabilities
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The basic PageRank algorithm

 This is the equation of a Markov model
of random surf through the web

 This is exactly the same equation as
before:
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The basic PageRank algorithm

 If we denote element i, j of the transition
probability matrix P as pij

 We thus have

 And the equation can be rewritten as
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The basic PageRank algorithm

 In matrix form, if the vector x has
elements xi

 The stationary distribution is given by
x(k+1) = x(k), and thus
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The basic PageRank algorithm

 xi can then be viewed as the probability
of being at page i
– The solution to these equations is the

stationary distribution of the random surf

– Which is the probability of finding the surfer
on page i on the long-term behaviour

 The « most probable page » is the best
ranked
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The basic PageRank algorithm

 The PageRank scores can be obtained
– By computing the left eigenvector of the

matrix P corresponding to eigenvalue 1

– Which is the right eigenvector of PT

– Where P is the transition probabilities
matrix of the Markov process

– Containing the transition probabilities

 If the graph is undirected, the scores
are simply the indegrees of the nodes
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Adjustments to the basic model

 However, there is a problem with
– Dangling nodes

– That is, nodes without any outgoing link

 In this case, the P matrix is no more
stochastic
– Rows do not sum to one

 Moreover, the graph could have
separate components
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Adjustments to the basic model

 One potential solution is to allow to
jump to any node of the graph
– With some non-zero probability

(teleportation)

 Thus,

where G is called the Google matrix, e is a
column vector full of 1’s and 0 < α < 1
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Adjustments to the basic model

 In this case,
– The matrix is stochastic

– The matrix is irreducible (no separate
component)

– The matrix is aperiodic

 Then, there is a unique eigenvector
associated to eigenvalue 1

 However, G is no more sparse !
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Computing PageRank

 The problem is thus to find the left
eigenvector of G
– corresponding to the eigenvalue 1
– instead of P

– with the normalization

 One can use the standard power
method
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Computing PageRank

 Fortunately, the power method results
in sparse matrix multiplication only:

– where x is normalized after each iteration
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Personalization in PageRank

 How can we favour some pages in a
natural way (advertising, etc) ?

 Rather than using eeT/n,

 use evT where
– v > 0 is a probability vector (vTe = 1)

– Which is called the personalization vector

 It contains the a priori probability of
jumping to any page
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Personalization in PageRank

 The Google matrix thus becomes

– Where v is provided a priori
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The PageRank problem as a
sparse linear system

 Here is an alternative formulation of the
PageRank problem
– As a sparse linear system
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The PageRank problem as a
sparse linear system

 In other words, the problem is

 Which has been shown (Del Corso,
Gulli & Romani, 2005; Langville &
Meyer, 2006) to be equivalent to
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The HITS algorithm
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The HITS algorithm

 Introduced by Kleinberg in 1998/1999
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Web link analysis

 Suppose we performed a search with a
search engine
– Compute the neighborhood graph from the

retrieved documents

– Associated to the particular query

 Objective: to improve the ranking
provided by the search engine
– Based on the graph structure of the web

hyperlinks
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The HITS algorithm

 The model proposed by Kleinberg is
based on two concepts
– Hub pages
– Authorities pages

 These are two categories of web
pages

 These two concepts are strongly
connected
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The HITS algorithm
 Example:

– Suppose we introduced the query

   “Car constructors”

Hubs

Authorities

Prost Schumacher

Ferrari Renault Ford

Car constructorsPeople interested
in car constructors
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The HITS algorithm
 Hubs

– Link heavily to authorities

– A good hub points to many good authorities

– Hubs have very few incoming links

Hubs

Authorities

Prost Schumacher

Ferrari Renault Ford
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The HITS algorithm
 Authorities

– Do not link to other authorities

– A good authority is pointed by many good hubs

– The main authorities on a topic are often in
competition with one another

Hubs

Authorities

Prost Schumacher

Ferrari Renault Ford
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The HITS algorithm

 The objective is to detect good hubs
and good authorities
– from the results of the search engine

 We therefore assign two numbers to
each returned page i:
– A hub score, xh

i

– An authority score, xa
i
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The HITS algorithm

 Let wij be the weight of the link
connecting page i to page j
– Usually, it is simply 0 or 1
– Thus, wij = 1 if page i has a link to page j;

wij = 0 otherwise

 Let W be the matrix made of elements
wij

– Notice that this matrix is not symmetric

– We suppose that the graph is strongly
connected
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The HITS algorithm
 A possible procedure for computing

hub/authorities scores (Kleinberg)

– A page's authority score is proportional to the
sum of the hub scores that link to it

– A page's hub score is itself proportional to the
sum of the authority scores that it links to
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The HITS algorithm

 In matrix form,

 And thus,
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The HITS algorithm

 Kleinberg used this iterative procedure
in order to estimate the scores
– with a normalization at each step
– This is equivalent to computing the

eigenvectors of the following matrices

– To obtain respectively the vector of hubs
scores and the vector of authorities scores
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Links with principal components
analysis

 This is exactly uncentered principal
components analysis (PCA; Saerens et
all, 2005)
– The proof is based on the dual view of PCA

 As for multidimensional scaling
– View the set of rows of W (authorities) as a

cloud of points in the columns space

– View the set of columns of W (hubs) as a
cloud of points in the rows space
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Links with principal components
analysis
 Let us consider a data matrix X
 The first PCA axis on which the data will

be projected is given by the eigensystem

 Thus, the first projection axis correspond
to the dominant eigenvector of
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Links with principal components
analysis

 Then, the first coordinate of the
projected data is given by Xu1
– Which corresponds to the data vectors

projected on the first principal axis, u1

 These are the PCA scores for the first
principal axis
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Links with principal components
analysis
 Here is a sketch of the proof that HITS

is equivalent to uncentered PCA

 Let us consider the adjacency matrix W
as a data matrix

 We simply substitute X by W for
computing the first principal axis (PCA),
u1
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Links with principal components
analysis
 We pre-multiply this equation by W

 Wu1 is an eigenvector of WWT and thus contains the
hubs scores

 Since Wu1 is the projection of the data on the first
principal axis (= PCA scores)

 The hubs scores are equal to the uncentered PCA
scores, up to a proportionality factor, computed from
the data matrix W
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Links with principal components
analysis
 The same result holds for the authorities

scores
 We now consider the transposed adjacency

matrix WT as a data matrix

 And proceed as before
 The authorities scores are equal to the

uncentered PCA scores, up to a
proportionality factor, computed from the data
matrix WT
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Links with principal components
analysis
 Thus, the situation is exactly the same as for

multidimensional scaling
– The first eigenvector of WWT represents the

projection of the row vectors on the first principal
component (hubs scores)

– The first eigenvector of WTW represents the
projection of the column vectors on the first
principal component (authority scores)

 This procedure is also related to both
– Correspondence analysis

– A random walk (Markov) model through the graph
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HITS’ relationships to
bibliometrics
 The HITS algorithm has also strong

connections to bibliometrics research:
– Cocitation
– Coreference

 Cocitation occurs when two documents
are both cited by the same third
document

 Coreference occurs when two
documents both refer to the same third
document
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HITS’ relationships to
bibliometrics
 C. Ding (2002) showed that

– where Din is a diagonal matrix containing
the indegree of each node Din = Diag(w•j)

– Dout is a diagonal matrix containing the
outdegree of each node Dout = Diag(wi•)

– Ccit and Cref are the cocitation and
coreference matrices
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HITS’ relationships to
bibliometrics

 Thus,
– The hub matrix is closely related to the

coreference matrix

– The authority matrix is closely related to
the cocitation matrix
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The SALSA algorithm
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The SALSA algorithm

 Introduced by Lempel & Moran in 2000
– « A Stochastic Approach to Link Structure

Analysis »

– Combines ideas from PageRank and HITS
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The SALSA algorithm

 From the neighborhood graph, compute
two sets of nodes
– The hub nodes

– The authority nodes

– View this as a bipartite graph

Hubs

Authorities

h1 h2

a1 a2 a3
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The SALSA algorithm
 From this bipartite graph, compute a

Markov chain with
– Ph = (Din)-1WT : the probability of jumping

from an authority node to a hub node
– Pa = (Dout)-1W : the probability of jumping

from a hub node to an authority node

 Thus:
xh(k+1) = (Ph)T xa(k)
xa(k+1) = (Pa)T xh(k)
where xh, xa are the probability distributions
for hub and authority nodes
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The SALSA algorithm

 The transition probabilities matrix of the
Markov chain

– Restricted to the authority nodes is
PhPa

– Restricted to the hub nodes is
PaPh
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The SALSA algorithm

 The steady-state probability distribution
of the two restricted Markov chains are
the hub scores and authority scores

– When removing dangling nodes

– When computing the steady-state for each
connected component
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Computing similarities between
nodes of a graph
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Main goal

 To exploit and analyse
– New similarity measures between the nodes of a

graph
– Which are kernels on a graph

 To use these similarities for
– Collaborative filtering
– Clustering
– Finding dense regions
– Graph visualization
– Etc…
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Three main parts
 A brief overview of kernels

– in the « machine learning » field

 Some kernels on a graph
– The exponential diffusion kernel
– The Laplacian exponential diffusion kernel
– The von Neumann diffusion kernel
– The regularized Laplacian kernel
– The commute-time kernel
– The random walk with restart similarity

 Computing similarities between nodes
of two graphs
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A brief overview of kernels
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A brief overview of kernels

 In a few words, a kernel is simply
– An inner product matrix

 That is, a matrix containing inner
products as entries,

defined in some abstract inner product
space, called

 The feature space
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A brief overview of kernels

 The symmetric matrix K is called the
kernel matrix
– It contains inner products between

elements, or feature vectors, xi and xj,
– in some feature space

 The kernel matrix is thus
– a Gram matrix
– Positive semi-definite

 Its entries, kij, are interpreted as
similarities between elements
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A brief overview of kernels

 If kij is large (positive), i and j are highly
similar

 If kij is low (negative), i and j are highly
dissimilar

 Most of the pattern recognition /
multivariate statistics techniques can be
reformulated
– in terms of inner products, K
– instead of feature vectors, xi
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A brief overview of kernels

 This is called the « kernel trick »

 For instance,
– Principal components analysis

=> « kernel PCA »

– Clustering

=> « kernel clustering »

– Logistic regression

=> « kernel logistic regression »

– Etc…
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A brief overview of kernels

 In other words,
– We do not need the feature vectors, xi

– We only need a similarity measure
between the elements, kij

 Each kernel induces a Euclidean
distance between the elements
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A brief overview of kernels

 Kernels on « structured objects » are
studied in the fields of
– pattern recognition,

– machine learning

– data mining…

 The idea here is to define kernel
matrices (similarity matrices) on a graph
– Defining similarities between the nodes of

the graph
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A brief overview of kernels

 Kernels have been defined on
structures objects, such as
– Graphs

– Sequences of symbols

– Probability distributions

– Trees

– Etc…

 See for instance Shawe-Taylor &
Christianini (2005)
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A brief overview of kernels

 See for instance Shawe-Taylor &
Christianini (2004) – Cambridge University
Press
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Some kernel on a graph
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Main point

 We will introduce several recently
defined kernels on a graph

 Defining similarities between nodes of a
graph
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Main point
 These similarity measures between two

nodes not only depend on
– The weights of the edges
– like the « shortest path » distance

  But also on
– The number of paths connecting the two

nodes

 They take high connectivity into account
≠ shortest-path or geodesic (Dijkstra) distance
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Some notations:
the adjacency matrix
 The elements aij of the adjacency matrix A of

a weighted, undirected, graph are defined as

where A is symmetric

 The wij ≥ 0 represent the strength of
relationship between node i and node j

A =

U1

U2

U3
M2

M1

C2

C1
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Some notations:
the Laplacian matrix

 The Laplacian matrix L of the graph is defined
by

L = D – A
where                       with
(the outdegree of each node)

 L is doubly centered
 If the graph is connected, the rank of L is n – 1,

where n is the number of nodes
 L is symmetric positive semidefinite
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The exponential diffusion kernel
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The exponential diffusion kernel
 The exponential diffusion kernel

(Kondor & Lafferty, 2002; Smola &
Kondor, 2003)

– If binary, Ak enumerates the « number of
different paths » of k steps between two
nodes,

– Discounted with respect to the number of
steps (k)

– It is a kernel matrix
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The Laplacian exponential
diffusion kernel
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The Laplacian exponential
diffusion kernel
 The laplacian exponential diffusion

kernel

– substitute A by –L

– It is a kernel matrix

 It has a nice interpretation in terms of a
diffusion process
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The Laplacian exponential
diffusion kernel

 Suppose we have a quantity xi at each
node i

 This quantity diffuses to neighbouring
node j with a rate aijxi δt

 This diffusion model leads to the
equation

– It corresponds to some diffusion process
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The Laplacian exponential
diffusion kernel
 Thus, if we have one source node i

– The ith column of KLED = exp(-Lt) will
contain the diffused quantity at each node
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The von Neumann diffusion kernel
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The von Neumann diffusion kernel
 The von Neumann diffusion kernel

(Kandola, Shawe-Taylor & Christianini,
2002)

– If A is binary, enumerates and sums the
number of different paths between two
nodes

– discounted according to some discounting
factor 0 < α < 1

– It is a kernel matrix
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The regularized Laplacian kernel
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The regularized Laplacian kernel

 The regularized Laplacian kernel
(Chebotarev & Shamis, 1998; Ito et al.,
2004)

– substitute A by –L

– It is a kernel matrix
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The regularized Laplacian kernel

 It has a nice interpretation in terms of
the matrix forest theorem

 Element kij corresponds to the ratio of
– the total weight of spanning forests rooted

at node i for which node i and j belong to
the same tree

– On the total weight of spanning forests
rooted at node i



103

The commute-time kernel
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The commute-time kernel

 Introduced by Saerens et al (2004); see
also Qiu & Hancock (2005) and Brand
(2005)

 Every node is associated to a state of a
Markov chain

 The Markov chain is defined by the
single-step transition probabilities
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The commute-time kernel

 From this Markov chain, we then
compute :
– The average commute time, n(i,j)
– Average number of steps a random walker,

starting in state i ≠ j, will take before
entering a given state j for the first time,
and go back to i

k

i

ijp

ikp

j
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The commute-time kernel

 If we further define ei as the ith column of I

 we obtain the remarkable form

 
where each node i is represented by a unit
basis vector, ei, in the node space

 L+
 is the Moore-Penrose pseudoinverse of

the Laplacian matrix of the graph
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The commute-time kernel

 Thus, n(i,j) is a Mahalanobis distance
= Commute Time Distance

 Indeed, one can show that L+ is
– (1) Symmetric
– (2) Positive semidefinite
– (3) Doubly centered



108

The commute-time kernel

 Thus L+ is a kernel matrix
– A Gram matrix

– Indeed, it is positive semidefinite
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The Markov diffusion kernel
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The Markov diffusion kernel

 The Markov diffusion kernel, inspired by
Nadler et al. (2006) and Lafon & Lee
(2006), is introduced in Fouss et al.
(2006)

– where P is the transition probabilities matrix

– of the associated Markov chain



111

The Markov diffusion kernel

 A meaningful distance between node i
and j, proposed by Nadler et al. (2005)
as well as Latapy et al. (2005) is

 It aims to compute the distance
between the distribution of presence
rate when starting from two different
nodes i and j
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The Markov diffusion kernel

i

j

 From two source nodes i and j

 We compute the difference of densities



113

The Markov diffusion kernel

 We easily obtain

– where P is the transition probability matrix

– This is a Mahalanobis distance
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The Markov diffusion kernel

 The associated kernel matrix is

– which is the Markov diffusion kernel

 Its natural embedding space is called
the diffusion map
– Exactly as originally proposed by Nadler et

al. (2005)
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The Markov diffusion kernel

 In the diffusion map, the nodes have, as
first coordinate,
– The largest non-trivial eigenvector of the

transition probabilities matrix, P
– Multiplied by its corresponding eigenvalue

 The second coordinate of the nodes is
provided by
– The second non-trivial eigenvector, etc
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The Markov diffusion kernel

 This will be shown equivalent to
– The Laplacian eigenmap (Belkin & Nirogi,

2001, 2003)

– A weighted one-dimensional mapping of
the graph (Zien et al., 1999)

– A relaxation of the normalized cut of the
graph (Shi & Malik)

– A relaxation of the MinMaxCut of the graph
(Ding et al., 2001)
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The integrated Markov diffusion
kernel

 If we sum up the distance

– For t = 1 to infinity, with a damping factor α
and a weighting diagonal matrix W
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The integrated Markov diffusion
kernel

 We obtain the integrated Markov
diffusion kernel (Yen et al., 2007)

 with
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The random walk with restart
similarity
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The random walk with restart
similarity

 Introduced by Tong et al. (2007)

 Inspired by PageRank
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The random walk with restart
similarity

 It introduces a random walk
– With a restart at node i

– Which produces a similarity to node i
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The random walk with restart
similarity

 The long-term solution (steady-state) is
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The random walk with restart
similarity

 Thus,

– Is a similarity matrix,

– but not a kernel



124

Applications of kernels on a
graph
 Now that we have a similarity measure

between the nodes,we can use it for
– Clustering the nodes
– Finding dense regions in the graph
– Finding outlier nodes
– Representing the graph in a low-dimensional

space (principal components analysis)
– Representing the graph in function of the similarity

with some reference nodes (discriminant analysis)
– Finding central nodes in the graph
– Find the most similar node (nearest neighbours)
– Etc…
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Applications of kernels on a
graph

 Which kernel to choose
– Depends on the problem at hand
– And should be stated on empical grounds

 However, we found that
– Laplacian-based kernels perform better

than adjacency-matrix based kernels
– The diffusion map, commute-time and

regularized Laplacian kernels perform best
– for collaborative recommendation

 At least one our the datasets we tested
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A similarity measure between
nodes of two graphs
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A similarity measure between nodes
of two graphs

 Let us mention an interesting extension
of Kleinberg’s HITS algorithms
– It defines a similarity measure between

nodes of two graphs

– It therefore performs some graph matching

– Developed by Blondel et al. (2004)
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A similarity measure between nodes
of two graphs

 Suppose we are given two graphs GA
and GB
– Where A (nA x nA) and B (nB x nB) are the

adjacency matrices of GA and GB

– Define a (nB x nA) similarity matrix K
between the nodes of the two graphs

– Which needs not to be symmetric (not a
kernel)



129

A similarity measure between nodes
of two graphs

 The similarity matrix K can be
computed through a power method
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A similarity measure between nodes
of two graphs

 Intuitively, two nodes, i of GB and j of GA
are similar,
– that is, kij is large,

– if node i of GB is linked to similar nodes of
GB

– and node j of GA is linked to similar nodes
of GA
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A similarity measure between nodes
of two graphs

 It reduces to Kleinberg’s HITS
procedure for some particular form of
graph GB

– See the paper of Blondel et al. (2004)

hub authority
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Application to clustering
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Clustering in the embedded space
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Clustering in the embedded space

 The kernels induce some embedding
space
– The nodes of the graph are embedded into

this space

– A clustering algorithm is used to group the
nodes

– See for instance Donetti & Munoz (2004)

– This is linked to spectral clustering
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Kernel clustering



136

Kernel clustering

 Since we have a kernel, a kernel
clustering technique is quite natural

 We introduce a version of a kernel
clustering method:
– Kernel k-means

 Applied to graph nodes clustering
– Based on the commute-time kernel
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Kernel k-means

 Kernel k-means has first been
introduced by Zhang & Chen (2002,
2004) and Girolami (2002)

 We introduce an intuitive version of
kernel k-means (Yen et al., 2007)
– Which easily generalizes to other clustering

algorithms

– And which is prototype-based

– In the sample space
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Kernel k-means
 We want to minimize the total within-

class inertia

 We introduce the « kernel trick », where
X is the data matrix

– Which aims to express the prototypes γk as

– A linear combination of the observations in
the feature space
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Kernel k-means

 We easily obtain
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Kernel k-means

 The k-means iteratively minimizes J by
iteratively
– Assigning cluster labels, li , to nodes
– Recomputing the cluster prototypes γk

 The cluster assignment that minimizes J
is
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Kernel k-means

 The cluster prototypes γk that minimize J
are solutions of

– where ki is the ith column of K and nk is the
number of nodes assigned to cluster k

– But ki = Kei
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Kernel k-means

 Since, in both sides of the equation, we
have a linear combination of the
columns of K, one solution is
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Kernel k-means

 Thus, γk is a membership vector
containing the membership value
– of each node to the cluster k

 It is therefore a kind of « prototype » for
the cluster k
– In the sample space
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Kernel k-means

 Thus, we simply iterate
– For all observations i:

– For all clusters k:
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Other kernel clustering methods

 Other standard clustering algorithms
have been « kernelized » in the same
way:
– Iterative k-means

– The fuzzy k-means

– The entropy-based fuzzy k-means

– The gaussian mixture model
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Approximate prototype
embedding

 Notice that if we want to avoid the
comparisons of all pairs of nodes, we could
use

– where

– containing a small set of selected nodes, called
the representatives

 The parameter vector gk is restricted to lie in
the subspace spanned by the representatives
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Approximate prototype
embedding

 In that case, only similarities between
nodes and the representatives need to
be computed
– For the commute-time kernel, only   sparse

linear systems need to be computed

 The kernel k-means algorithm can
easily be adapted to this case
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Application to document
clustering
 We show the results on the newsgroup

database
– Contains about 20000 documents

– From 20 different newsgroups

– About 1000 documents for each
newsgroup
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Application to document
clustering
 A preprocessing step was performed:

– Remove stop words
– Use Porter’s stemming algorithm
– Compute the mutual information between

documents and terms and remove terms
with too few mutual information

– Compute the term-document matrix W
containing the tf.idf factors

– Compute the document-document
adjacency matrix
 A = WTW
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Application to document
clustering

 Thus, we have a large graph where
– Nodes are documents

– Link weights are computed from the tf.idf
factors
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Sigmoid commute-time kernel
1. From this adjacency matrix, compute

the commute-time kernel matrix

2. Then take the sigmoid kernel

where a is fixed to 1.26 based on informal tests

3. Perform a kernel k-means on KCT
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Newsgroups data sets

– Here are the different data sets
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Results obtained
on the newsgroups data sets

 We also report the results obtained by
the spherical k-means algorithm
(Dhillon et al, 2002)
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Example of kernel fuzzy
clustering

 Here are some results for the kernel
fuzzy clustering



155

Preliminary results obtained
on the newsgroups data sets

 Fuzzy clustering
– If we change the membership treshold:
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Finding dense regions
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Greedy clustering based on
modularity
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Greedy clustering based on
modularity

 Newman (2004) introduced the
modularity Q
– Which is a measure of the quality of a

partition of the graph

– Suppose we have a partition into three
clusters A, B, C
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Greedy clustering based on
modularity

 The idea behind the modularity is the
following

    p(C,C)
p(C,.) p(.,C)

    p(C,B)
p(C,.) p(.,B)

    p(C,A)
p(C,.) p(.,A)

    p(B,C)
p(B,.) p(.,C)

    p(B,B)
p(B,.) p(.,B)

    p(B,A)
p(B,.) p(.,A)

    p(A,C)
p(A,.) p(.,C)

    p(A,B)
p(A,.) p(.,B)

    p(A,A)
p(A,.) p(.,A)

A B C

A

B

C

Q = (p(A,A) – p(A,.)p(.,A)) + (p(B,B) – p(B,.)p(.,B)) + (p(C,C) – p(C,.)p(.,C))
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Greedy clustering based on
modularity
 The modularity should be maximized

– Meaning that the sample is very far from
independence

 Newman designed a greedy approach
– Initially, every node is a cluster

– Try merging every couple of clusters and compute
the resulting modularity

– Merge the couple of clusters that results in the
largest increase in modularity

 Modularity is very popular today !
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Kernel hierarchical clustering
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Kernel hierarchical clustering

 We define an agglomerative procedure
– Which is a kernel version of Wald’s

algorithm

– It agglomerates nodes which lead to the
smallest decrease in total within-class
inertia
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Kernel hierarchical clustering

 We begin with one group by node
– Then, we merge groups that lead to the

smallest increase in within-class inertia

– That is, we expand most dense groups



164

Kernel hierarchical clustering

 At the beginning of the process, each
observation is a group
– And the centroid gk is the observation itself:

– By applying the transformation (the kernel
trick),
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Kernel hierarchical clustering

 We easily obtain by pre-multiplying this
equation by X:

 And thus, initially,

 Thus, hk is a prototype vector in the
sample space
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Kernel hierarchical clustering

 Now, when merging two groups, say
group k and group l, into group m,

 The new centroid gk in the feature space
is

 By applying the kernel trick, the update
for the hk is
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Kernel hierarchical clustering

 We measure the density of the groups
by the within-cluster inertia

 Moreover, it is well-known that merging
cluster k and cluster l
– Results in an increase of total within-cluster

inertia of
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Kernel hierarchical clustering

 In the sample space, we obtain

 The idea is thus
– To try any couple of merge
– To merge the two groups k, l that result in

the smallest increase in total within-class
inertia, ΔJ
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Kernel hierarchical clustering

 This mimics Ward’s grouping method in
the sample space

 Here are two examples on social
science networks (Yen et al., 2007)



170

Kernel hierarchical clustering

 Zachary’s karate club
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Kernel hierarchical clustering

 College football network
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Graph partitioning
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Basic models

 Three basic models illustrating

 The many faces of the Laplacian matrix

 Leading to the computation of the
Fiedler vector
– The multiplicity of the eigenvalue 0 in the

Laplacian matrix is equal to the number of
connected components in the graph

– Thus, small eigenvalues are indicative of
two quasi-disconnected components
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A first basic model
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A first basic model

 Suppose we have a graph structure
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A first basic model

 The elements aij of the adjacency matrix A of
a weighted, undirected, graph are defined as

where A is symmetric

 The wij ≥ 0 represents a similarity, an affinity
or a strength of relationship between node i
and node j
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A first basic model

 We define a similarity index between partition
C1 and partition C2 as

 Define h1 as an indicator vector containing 1 if
the node belongs to C1 and 0 if it belongs to
C2

 Define h2 as the equivalent vector for C2
 Define e as a column vector made of 1s
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A first basic model

 We obtain
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A first basic model

 And thus

 Now,

 Thus [D]ij = 0 for i ≠ j and



180

A first basic model

 We finally obtain

 Since L is centered,
– Notice that h1 is defined up to an additive

constant (h1 + c)
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A first basic model

 By relaxing the fact that h1 and  h2
contain binary values,
– This leads to the following optimization

problem
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A first basic model

 This leads to an eigenvector problem
– Compute the smallest non-trivial (L is not

of full rank) eigenvector of

– which is called the Fiedler vector
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Graph partitioning:
one example

 Visualization of a network of criminals
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A second basic model
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A second basic model

 Remember that

 Here, we want to find the split that
results in the
– highest decrease in within-class inertia
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A second basic model

 Now, define a new vector

– Assuming that the kernel K is centered

– Relaxing the fact that h has a special
structure

 We obtain the following problem
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A second basic model

 We obtain the eigensystem problem:
– The partitioning vector h is the first

eigenvector of K

 If the kernel K is the commute-time
kernel, L+, we obtain the Fiedler vector !
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A second basic model

 Remember that

 Here, we want to find the split that
results in the
– highest decrease in within-class inertia
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A third basic model
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A third basic model

 Let us consider we want to represent
the nodes of the undirected graph

– On a one-dimensional line (one-
dimensional mapping)

– Such that most similar nodes are near
together

– Each node i having coordinate zi
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A third basic model

 One criterion that can be used (Hall, 1970) is

– which has to be minimized
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A third basic model

 If we impose the constraint  zTz = 1,

 The solution is the smallest non-trivial
eigenvector of the Laplacian matrix L

 That is, the Fiedler vector !
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A third basic model

 If, instead, we use zTDz = 1,
– Therefore penalizing the nodes with a large

outdegree (see Zien et al., 1999)

 The solution is the smallest eigenvector
of

– Where P = D-1A is the associated transition
probabilities matrix

 It corresponds to the largest, non-trivial,
right eigenvector of P
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A third basic model

 This model corresponds exactly to the
diffusion map of Nadler et al. (2005)

 As well as to the Laplacian eigenmap of
Belkin & Nirogi (2001, 2003)
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A fourth basic model



196

A fourth basic model

 Compute, as squared distance
measure,
– the commute-times (CT) between the

nodes

 Performing a multidimensional scaling
based on this distance matrix
– That is, find the one-dimensional projection

of the nodes

– For which the CT distances between nodes
are best preserved
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A fourth basic model

 This aims to compute
– The largest eigenvector of the

pseudoinverse of the Laplacian matrix L+

– Which corresponds to the smallest non-
trivial eigenvector of L

– And thus to the Fiedler vector
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2-way partitioning
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2-way partitioning

 Various partitioning criterion have been
defined

 The Ratio cut to be minimized
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2-way partitioning

 Spectral relaxation introduced by Hagen
et al. (1992)
– Naive relaxation of the problem

– Aims to compute the smallest non-trivial
eigenvector of the Laplacian matrix L

– Thus, computes the Fiedler vector
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2-way partitioning

 Let us redefine the class membership
vector
– Into one single vector x

– With H being the centering operator

– So that
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2-way partitioning

 We therefore find

 With

 Thus, by construction,
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2-way partitioning

 We easily show that:

– If i ∈ C1 and j ∈ C2 :

– If i ∈ C1 and j ∈ C1 :
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2-way partitioning

 Let us compute the square norm of x
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2-way partitioning

 The similarity between C1 and C2 can be
rewritten as
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2-way partitioning

 Thus, the Ratio cut criterion can be
rewritten as

– It thus aims to find the smallest non-trivial
normalized eigenvector of the Laplacian
matrix

– That is, the Fiedler vector
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2-way partitioning

 The normalized cut criterion
– To be minimized
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2-way partitioning

 By constraint relaxation,
– it has been shown equivalent to the

following eigenvector problem

 Which is equivalent to
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2-way partitioning

 This model corresponds exactly to the
diffusion map of Nadler et al. (2005)

 As well as to the Laplacian eigenmap of
Belkin & Nirogi (2001, 2003)
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2-way partitioning

 The Min-max cut

 By constraint relaxation,
– once more, it has been shown equivalent

to the following eigenvector problem
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Link removal method
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Link removal method

 Yet another method is based on greedy
link removal (Girvan & Newman, 2002)
– Based on shortest-path centrality

– It is measured as the number of shortest
paths between pairs of nodes

– That pass through a certain link

– Links with a large shortest-path centrality
are progressively removed
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Link removal method

 Thus, the method proceeds as follows
1) Compute shortest-path centralities for all

links

2) Remove the link with the largest centrality

3) Recalculate all link centralities

4) Repeat from step 3 until the graph is split
into two connected components
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Thank you !!!


