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Cutting a graph 1n small pieces
and exploring it
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Cutting a graph 1n small pieces
~ and exploring it
= A nice reference

— Sedgewick

— Algorithms in Java
— Addison-Wesley

Algorithms




Cutting a graph 1n small pieces
and exploring 1t

| = Many software solutions are readily
available for cuting a graph
— See www.insna.org/INSNA/soft_inf.html

— It provides a number of pointers to
softwares




Cutting a graph 1n small pieces
and exploring 1t

j = JUNG

— the Java Universal Network/Graph
Framework

'

]

— Open source and written in Java

— Mainly a toolbox of methods
— http://jung.sourceforge.net




Cutting a graph 1n small pieces
and exploring 1t

m Pajek
— A software for large network analysis
— There is a companion book
— Quite powerfull SEARCH INSIDE!™

— Free software




Cuttmg a graph 1n small pleces

and exploring 1t

s UCINET

— Social Network Analysis Software

— Written by active researchers in the social
network community

— Quite complete comercial software
— http://www.analytictech.com



Cutting a graph 1n small pieces
and exploring 1t

= The first step in analysing a graph is
often to look at its connected
components

— In an undirected graph, a connected
component is a maximal connected

!
subgraph

— A strongly connected component is the
] similar concept defined for directed graphs




Cuttmg a graph 1n small pieces
and exploring 1t

- Here is a graph with two connected
components

10



- Cutting a graph in small pieces
and exploring 1t

= There exists linear-time algorithms for
solving this problem

— Using, for instance, depth-first or breadth-
first search
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Cuttmg a graph 1n small pieces

and exploring 1t

= An articulation point or vertex-cutis a
node (vertex) of a graph such that

— removal of the node causes an increase in
the number of connected components
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Cutting a graph 1n small pieces
'~ and exploring it

= Standard linear-time algorithms are
available for this problem, using, for
instance

— depth-first or breadth-first search
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Cutting a graph 1n small pieces
and exploring 1t

- A bridge or an edge-cut is an arc (edge)
of a graph such that

— removal of the arc causes an increase in
' the number of connected components
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Cutting a graph 1n small pieces
'~ and exploring it

= Standard linear-time algorithms are
available for this problem, using, for
instance

— depth-first or breadth-first search

15




I[dentifying central or prestigious
nodes by link analysis




- Some link analysis books

= P. Baldi, P. Frasconi & P. Smyth (2003)
m

— Modeling the Internet

and the Web
— John Wiley & Sons

Modeling
the Internet
and the Web

Prohabilistic Methods and Algorithms
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- Some link analysis books

= S. Chakrabarti (2003) -
— Mining the Web
— Morgan Kaufmann
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- Some link analysis books

= A. Langville & C. Meyer (2006)

| — Google’s PageRank and beyond
— Princeton university <EARCH INSIDE!™

Google's

PageRank and Beyond

SEARCH EFIRE Gk INGE




- Some link analysis books

= B. Liu (2006)

— Web data mining
— Springer

- = o '_ AL 4 . qﬂvﬂr
‘ s

i Web Data Mining




Identifying central or prestigious
nodes by link analysis

= The PageRank algorithm
= The HITS algorithm
= The SALSA algorithm

21



The PageRank algorithm




- The basic PageRank algorithm

= Introduced by Page, Brin, Motwani &
Winograd in 1998

= Partly implemented in Google

= Corresponds to a measure of
« prestige » in a directed graph
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Web link analysis

= A set of techniques
— Applied to: Hyperlink document repositories
— Typically web pages

= Objective:
— To exploit the link structure of the documents
— In order to extract interesting information

— Viewing the document repository as a graph
where

 Nodes are documents
» Edges are directed links between
documents

— It does not exploit the content of the
pages !

24



X

Web link analysis

= Suppose we performed a search with a
search engine

= Objective: to improve the (content-
based) ranking of the search engine

— Based on the graph structure of the web
hyperlinks

— PageRank is computed off-line

25



. The basic PageRank algorithm

= [0 each web page we associate a score, x

— The score of page i, x;, is proportional to the
weighted averaged score of the pages pointing to

page i

- 7

26




The basic PageRank algorithm

= Let w;; be the weight of the link
connecting page i to page j
— Usually, it is simply O or 1
— Thus, w; =1 if page i has a link to page j;

w;;= 0 otherwise

= Let W be the matrix made of the
elements w,
— Notice that this matrix is not symmetric

— We suppose that the graph is strongly
connected

27



|
. The basic PageRank algorithm

- = Inother words

“—"ﬁ Ly
-
wj, = Z W

- 1=1

— Where w, is the outdegree of page j 28




The basic PageRank algorithm

= [n other words,

= A page with a high score Is a page that
IS pointed by

— Many pages

— Having each a high sc/ore\A
= Thus a page is an important

page if

— It Is pointed by many,
important, pages

29



The basic PageRank algorithm

= These equations can be updated
iteratively until convergence

= In order to obtain the scores, x;
— We normalize the vector x at each iteration

= The pages are then ranked according to
their score

30



The basic PageRank algorithm

= This definition has a nice interpretation
In terms of random surfing

= [f we define the probability of following
the link from page j to page i as

ij ,i

P(page(k + 1) = i|page(k) = j) = —~
7.

31




. The basic PageRank algorithm

= We can write the updating equation as
zi(k +1) = P(page(k' +1) =)

Z (page(k + 1) = i|page(k) = j) z; (k)

= And thus we can define a random surfer
following the links according to the
transition probabilities

P(page(k 4+ 1) = i|page(k) = j) =

J 32




. The basic PageRank algorithm

= This is the equation of a Markov model
of random surf through the web

= This is exactly the same equation as
before:

33



The basic PageRank algorithm

= [f we denote element i, j of the transition
probability matrix P as p,,

= We thus have

Plij = pij = P(page(k + 1) = jlpage(k) = 1)

= And the equation can be rewritten as

=Y pjixz;(k)
j=1

34



. The basic PageRank algorithm

= In matrix form, if the vector x has
elements x,

x(k+1) = P'x(k)

= The stationary distribution is given by
x(k+1) = x(k), and thus

x = Plx

35



. The basic PageRank algorithm

= x; can then be viewed as the probability
of being at page i
— The solution to these equations is the
stationary distribution of the random surf
— Which is the probability of finding the surfer
on page i on the long-term behaviour
= The « most probable page » is the best
ranked

36




. The basic PageRank algorithm

= The PageRank scores can be obtained

— By computing the left eigenvector of the
matrix P corresponding to eigenvalue 1

— Which is the right eigenvector of P!

— Where P is the transition probabilities
matrix of the Markov process

— Containing the transition probabilities

= If the graph is undirected, the scores
are simply the indegrees of the nodes



. Adjustments to the basic model

| = However, there is a problem with

— Dangling nodes

— That is, nodes without any outgoing link
= In this case, the P matrix is no more

stochastic

— Rows do not sum to one

= Moreover, the graph could have
separate components

38




. Adjustments to the basic model

= One potential solution is to allow to
H\H

jump to any node of the graph

— With some non-zero probability
(teleportation)

lThUS, -
ee
G=aP+(1—a)—
n

B
|
'
i where G is called the Google matrix, eis a
column vector full of ’'sand 0 < a < 1

39




Adjustments to the basic model

= In this case,
— The matrix is stochastic

— The matrix is irreducible (no separate
component)

— The matrix is aperiodic

= Then, there is a unique eigenvector
associated to eigenvalue 1

= However, G is no more sparse !

40




. Computing PageRank

| = The problem is thus to find the left

elgenvector of G

— corresponding to the eigenvalue 1
—instead of P

xI'G=x"
— with the normalization ||x|[; =1 or x

= One can use the standard power
method

Te=1

41




. Computing PageRank

| - Fortunately, the power method results
in sparse matrix multiplication only:

= axT(B)P + L YxT (et

T

'
ax' (k)P A (1_a)eT

= B o

— where x is normalized after each iteration .

x'(k+1) = x' (k)G




. Personalization in PageRank

= How can we favour some pages in a

| natural way (advertising, etc) ?

= Rather than using ee'/n,
= use ev!' where
—v>0is a probability vector (vle= 1)
— Which is called the personalization vector

= It contains the a priori probability of
jumping to any page 43




. Personalization in PageRank

- The Google matrix thus becomes

—aP + (1 —a)ev'

— Where v Is provided a priori

44



The PageRank problem as a
sparse linear system

= Here is an alternative formulation of the
PageRank problem

— As a sparse linear system
xT'G =x!
=>x'(aP+ (1—-a)ev!)=x!
> ax'P+(1—-a)vi=x"
>x'I-aP)=(1-a)v’
= (I-aP)'x=(1-a)v 4




The PageRank problem as a
sparse linear system

= In other words, the problem is
Solve (I — aP)'x = (1 —a)v with x'e =1

= Which has been shown (Del Corso,
Gulli & Romani, 2005; Langville &
Meyer, 2006) to be equivalent to

Solve (I — aP)'x’ = v and compute x = x'/ ||x'[|,

46




The HITS algorithm




. The HITS algorithm

48



. Web link analysis

= Suppose we performed a search with a
search engine

— Compute the neighborhood graph from the
retrieved documents

— Associated to the particular query

= Objective: to improve the ranking
provided by the search engine

— Based on the graph structure of the web

JML hyperlinks 40




The HITS algorithm

= The model proposed by Kleinberg is
based on two concepts

— Hub pages
— Authorities pages

= These are two categories of web
pages

= These two concepts are strongly
connected

50



- The HITS algorithm

= Example:
— Suppose we introduced the query
“Car constructors”

People interested

1n car constructors

N T~

Ferrari Renault Ford

()

Authorities

Car constructors

Hubs

Prost Schumacher

51



- Hubs

Prost Schumacher

The HITS algorithm
= Hubs
H\ — Link heavily to authorities

— A good hub points to many good authorities
— Hubs have very few incoming links

Ferrari Renault Ford
Authorities

52



. The HITS algorithm

= Authorities
— Do not link to other authorities
— A good authority is pointed by many good hubs

— The main authorities on a topic are often in
competition with one another

Ferrari Renault Ford

A Authorities

Hubs

Prost Schumacher

53



The HITS algorithm

= The objective is to detect good hubs
and good authorities

— from the results of the search engine

= We therefore assign two numbers to
each returned page i:
— A hub score, x".
— An authority score, x4,

54



. The HITS algorithm

= Let w;; be the weight of the link
connecting page i to page j
— Usually, it is simply O or 1
— Thus, w; =1 if page i has a link to page j;
w;;= 0 otherwise
= Let W be the matrix made of elements

W,

— Notice that this matrix is not symmetric

— We suppose that the graph is strongly
connected >




. The HITS algorithm

= A possible procedure for computing
hub/authorities scores (Kleinberg)

— A page's authority score is proportional to the
sum of the hub scores that link to it

T
. a — s . 8 f h
Ty =1 E W;; T,
1=1

— A page's hub score is itself proportional to the
sum of the authority scores that it links to

T
h § , .a
=1

56



- The HITS algorithm

- In matrix form,

Xt = ﬂ‘v"fzj"‘
x" = pWx
= And thus,

- X“ = nuW " Wx*

xh = n,u,WWTxh




X

The HITS algorithm

= Kleinberg used this iterative procedure
In order to estimate the scores

— with a normalization at each step

— This is equivalent to computing the
eigenvectors of the following matrices

wWwT wWTw

— To obtain respectively the vector of hubs
scores and the vector of authorities scores

58



Links with principal components
analysis

= This is exactly uncentered principal
components analysis (PCA; Saerens et
all, 2005)

— The proof is based on the dual view of PCA

= As for multidimensional scaling

— View the set of rows of W (authorities) as a
cloud of points in the columns space

— View the set of columns of W (hubs) as a
cloud of points in the rows space 5




Links with principal components
analysis

H = Let us consider a data matrix X

= The first PCA axis on which the data will
_ be projected is given by the eigensystem

' XTXlll = /\1111

= Thus, the first projection axis correspond
B  to the dominant eigenvector of




Links with principal components
analysis

= Then, the first coordinate of the
projected data is given by Xu,

— Which corresponds to the data vectors
projected on the first principal axis, u,

= These are the PCA scores for the first
principal axis

61



Links with principal components

" analysis

= Here is a sketch of the proof that HITS
IS equivalent to uncentered PCA

= Let us consider the adjacency matrix W

as a data matrix
X =W
= We simply substitute X by W for

computing the first principal axis (PCA),
___ -

1
M WTWlll — )\1111 5




M

Links with principal components

analysis
= We pre-multiply this equation by W
WW (Wu;) = A\ (Wu,)

= Wuy, is an eigenvector of WWT'and thus contains the
hubs scores

= Since Wu, is the projection of the data on the first
principal axis (= PCA scores)

= The hubs scores are equal to the uncentered PCA
scores, up to a proportionality factor, computed from
the data matrix W

63



Links with principal components

”“” analysis
= The same result holds for the authorities
. uncentered PCA scores, up to a
proportionality factor, computed from the data

scores
JNH“L matrix WT
64

= We now consider the transposed adjacency
matrix W' as a data matrix

X =Wt

= And proceed as before
= The authorities scores are equal to the




Links with principal components

analysis
= Thus, the situation is exactly the same as for

multidimensional scaling

— The first eigenvector of WW! represents the
projection of the row vectors on the first principal
component (hubs scores)

— The first eigenvector of W'W represents the
projection of the column vectors on the first
principal component (authority scores)

= This procedure is also related to both
. — Correspondence analysis
— A random walk (Markov) model through the grapfz35




HITS’ relationships to

bibliometrics

= The HITS algorithm has also strong
connections to bibliometrics research:

— Cocitation
— Coreference
m Cocitation occurs when two documents

are both cited by the same third
document

B = Coreference occurs when two

documents both refer to the same third
document 66




HITS’ relationships to
- bibliometrics

= C. Ding (2002) showed that
WTW Dtn + Cmt
WW! = Dout + Cref

—where D, is a diagonal matrix containing
the indegree of each node D,, = Diag(w.)

- D, I1s a diagonal matrix containing the
outdegree of each node D_,, = Diag(w,,)

I - C,,and C, . are the cocitation and
coreference matrices

67




HITS’ relationships to
~ bibliometrics

O ThUS,

— The hub matrix is closely related to the
coreference matrix

— The authority matrix is closely related to
the cocitation matrix

68



The SALSA algorithm




. The SALSA algorithm

|
| = Introduced by Lempel & Moran in 2000

— « A Stochastic Approach to Link Structure
Analysis »

— Combines ideas from PageRank and HITS

70



The SALSA algorithm

= From the neighborhood graph, compute
two sets of nodes
— The hub nodes
— The authority nodes
— View this as a bipartite graph

al a2 a3
Authorities

Hubs 71
hil h2



The SALSA algorithm

= From this bipartite graph, compute a
Markov chain with
- P'=(D, ) 'WT : the probability of jumping
from an authority node to a hub node
- P¢=(D, )'W : the probability of jumping
from a hub node to an authority node
= Thus:
x"(k+1) = (PHT x4(k)
x4(k+1) = (PHT x"(k)
where x”, x¢ are the probability distributions
for hub and authority nodes

72



. The SALSA algorithm

= The transition probabilities matrix of the
Markov chain

— Restricted to the authority nodes is
P/Pa

— Restricted to the hub nodes Is
PP

73



The SALSA algorithm

m [he steady-state probability distribution
of the two restricted Markov chains are
the hub scores and authority scores

— When removing dangling nodes

— When computing the steady-state for each
connected component

74



.
Computing similarit: VY

| arities bet
nodes of a graph .

X




. Main goal

= To exploit and analyse
— New similarity measures between the nodes of a
graph
— Which are kernels on a graph

= To use these similarities for
— Collaborative filtering

— Clustering

— Finding dense regions

— Graph visualization

— Etc...




= A brief overview of kernels
—in the « machine learning » field

= Some kernels on a graph
— The exponential diffusion kernel
— The Laplacian exponential diffusion kernel
— The von Neumann diffusion kernel
— The reqgularized Laplacian kernel
— The commute-time kernel
— The random walk with restart similarity

= Computing similarities between nodes
of two graphs

7




A brief overview of kernels




. A brieft overview of kernels

5 In a few words, a kernel is simply
— An inner product matrix

= That is, a matrix containing inner
products as entries,

Klij = kij = x; X,

defined in some abstract inner product
space, called

m [he feature space 7




A brief overview of kernels

= The symmetric matrix K is called the
kernel matrix
— It contains inner products between
elements, or feature vectors, x; and x,,

—in some feature space

= [he kernel matrix is thus
—a Gram matrix
— Positive semi-definite

= lts entries, k;;, are interpreted as
similarities between elements "




A brief overview of kernels

= If k;; is large (positive), i and j are highly
similar
= If k;; is low (negative), i and j are highly
dissimilar
= Most of the pattern recognition /
multivariate statistics techniques can be

' reformulated

] —in terms of inner products, K
— instead of feature vectors, x,

81




A brief overview of kernels

= [his is called the « kernel trick »

= For instance,

— Principal components analysis
=> « kernel PCA »

— Clustering
=> « kernel clustering »

— Logistic regression
=> « kernel logistic regression »

— Etc...

82




. A brieft overview of kernels

= [n other words,
— We do not need the feature vectors, x

— We only need a similarity measure

between the elements, &,

= Each kernel induces a Euclidean
distance between the elements

d2(i,j) = k;; + kjj — Qkij

l

83



. A brieft overview of kernels

= Kernels on « structured objects » are

studied in the fields of
— pattern recognition,

— machine learning

— data mining...

= The idea here is to define kernel

matrices (similarity matrices) on a graph

— Defining similarities between the nodes of
the graph 84



. A brief overview of kernels

= Kernels have been defined on
- structures objects, such as
— Graphs
— Sequences of symbols
— Probability distributions
— Trees
— Etc...

W8 . See for instance Shawe-Taylor &

M Christianini (2005)

85



A brief overview of kernels

m See for instance Shawe-Taylor &
Christianini (2004) — Cambridge University
Press

|ohn shawe-Taylor
and helko Cristianini

Kernel Methods
Pattern Analysis




Some kernel on a graph




- Main point

= We will introduce several recently
defined kernels on a graph

= Defining similarities between nodes of a
e

88




Main point

= These similarity measures between two
nodes not only depend on

— The weights of the edges
— like the « shortest path » distance

= But also on

— The number of paths connecting the two
nodes

= They take high connectivity into account
# shortest-path or geodesic (Dijkstra) distanee



Some notations:
~ the adjacency matrix

= The elements q; of the adjacency matrix A of
a weighted, undirected, graph are defined as

w;; 1 node ¢ 1s connected to node j
a;; = .
" 0 otherwise

where A Is symmetric

= The w; 2 0 represent the strength of
relationship between node i and node j

ol M1 (o 000 1.0 0 0)
i 000 0 0 1 00
] 000 0 1 1 00
w A=|1 010 0 1 0
0 1 1 0 0 1 1
v @ 000 0 1 1 0 0 | g
v Ko 000 1 0 0)




Some notations:

the Laplacian matrix

= The Laplacian matrix L of the graph is defined
by

L=D-A
(the outdegree of each node)

= L is doubly centered

= If the graph is connected, the rank of L is n -1,
B where n is the number of nodes

JM = L is symmetric positive semidefinite
91
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¢ exponential diffusion kernel




um he exponential diffusion kernel

m [he exponential diffusion kernel
(Kondor & Lafferty, 2002; Smola &
Kondor, 2003)

>

KEep = Z akk?k = exp(aA)
k=0

:
— If binary, A* enumerates the « number of
different paths » of k steps between two
nodes,

'
— Discounted with respect to the number of

]
steps (1 )
— ltis a kernel matrix



The Laplacian exponential
diffusion kernel

94



The Laplacian exponential
diffusion kernel

m [he laplacian exponential diffusion
kernel

= exp(—al)

— substitute A by —LL
— |tis a kernel matrix

= It has a nice interpretation in terms of a
diffusion process

95



The Laplacian exponential

diffusion kernel

= Suppose we have a quantity x, at each
node i

= This quantity diffuses to neighbouring
node j with a rate a;x; of

= | his diffusion model leads to the
equation

x(t) = exp(—Lt) xq

— It corresponds to some diffusion process




The Laplacian exponential
diffusion kernel

= Thus, if we have one source node i

— The ith column of K, ; = exp(-L¢) will
contain the diffused quantity at each node

97




The von Neumann diffusion kernel

98



The von Neumann diffusion kernel

m [he von Neumann diffusion kernel
(Kandola, Shawe-Taylor & Christianini,
2002)

\
Kyvnp = ZakAk (I—aA)?
k=0
— If A is binary, enumerates and sums the
number of different paths between two

'
nodes

— — discounted according to some discounting
factorO< a<1

99

— |t iIs a kernel matrix



The regularized Laplacian kernel

100



The regularized Laplacian kernel

m The reqgularized Laplacian kernel
(Chebotarev & Shamis, 1998; Ito et al.,

2004)
Kgri, = (I + @L)_l

— substitute A by —LL
—ltis a kernel matrix

101




~ The regularized Laplacian kernel

= It has a nice interpretation in terms of
the matrix forest theorem

= Element k; corresponds to the ratio of

— the total weight of spanning forests rooted
at node i for which node i and j belong to
the same tree

— On the total weight of spanning forests
rooted at node i

102



The commute-time kernel

103



. The commute-time kernel

= Introduced by Saerens et al (2004); see
also Qiu & Hancock (2005) and Brand
(2005)

= Every node is associated to a state of a
Markov chain

= The Markov chain is defined by the
single-step transition probabilities

: . aj;
P(s(t+1) = jls(t) =) = pyy =
" 104




HHW The commute-time kernel

= From this Markov chain, we then
compute :

— The average commute time, n(i,)

— Average number of steps a random walker,
starting in state i # j, will take before
entering a given state j for the first time,
and go back to i

105




. The commute-time kernel

= If we further define e; as the ith column of 1

= we obtain the remarkable form
n(i,7) = 2N.(e; — e; )TLJF(ei —e;)

where each node i is represented by a unit
basis vector, e;, in the node space

= L' is the Moore-Penrose pseudoinverse of
the Laplacian matrix of the graph 106




- The commute-time kernel

= Thus, n(i,j) is a Mahalanobis distance

= Commute Time Distance

= Indeed, one can show that L" is
— (1) Symmetric
— (2) Positive semidefinite

] — (3) Doubly centered

107




The commute-time kernel
= Thus L' is a kernel matrix

— A Gram matrix

— Indeed, it is positive semidefinite

108




The Markov diffusion kernel




. The Markov diffusion kernel

= The Markov diffusion kernel, inspired by
N

Nadler et al. (2006) and Lafon & Lee
(2006), is introduced in Fouss et al.
(20006)

Kup (t) — P? (PT)t

— where P is the transition probabilities matrix
— of the associated Markov chain

110




. The Markov diffusion kernel

= A meaningful distance between node
and j, proposed by Nadler et al. (2005)
as well as Latapy et al. (2005) is

2(i,5) Z[P 5(0) = ) — P(s(t) = kls(0) = )’

= It aims to compute the distance
between the distribution of presence
rate when starting from two different
nodes i and j o




. The Markov diffusion kernel

= From two source nodes i and

= We compute the difference of densities




. The Markov diffusion kernel

= We easily obtain

PG,5) = 3 [P(st = klso = i) — P(s; = k|so = 7))
k=1

Z T(PYle; — e (PT)teJ]2

k=1
= [|(PT)'e; — (PT)'e "

= (e;—e;) P(P7)"(e; —ey)

— where P is the transition probability matrix
— This is a Mahalanobis distance "



. The Markov diffusion kernel

= [he associated kernel matrix is
Kvp (t) — Pt(PT)t

— which is the Markov diffusion kernel

= Its natural embedding space is called
the diffusion map

— Exactly as originally proposed by Nadler et
al. (2005)

114




. The Markov diffusion kernel

| = In the diffusion map, the nodes have, as
first coordinate,
ol

— The largest non-trivial eigenvector of the
transition probabilities matrix, P

— Multiplied by its corresponding eigenvalue
= The second coordinate of the nodes is
provided by

— The second non-trivial eigenvector, etc




. The Markov diffusion kernel

= This will be shown equivalent to

— The Laplacian eigenmap (Belkin & Nirogi,
2001, 2003)

— A weighted one-dimensional mapping of
the graph (Zien et al., 1999)

— A relaxation of the normalized cut of the
graph (Shi & Malik)

— A relaxation of the MinMaxCut of the graph
(Ding et al., 2001)

116




The integrated Markov diffusion
HHH kernel

'
— For t =1 to infinity, with a damping factor o
] and a weighting diagonal matrix W

= If we sum up the distance

B0 = [PV e~ (PT)'e;] W[(PT) &= (PT)'e,]
= le; — ej]T P'W (PT)t le; — €]

= (e; —e;) ' Kpu(e; — e€))

117




The 1ntegrated Markov diffusion

- We obtain the integrated Markov
diffusion kernel (Yen et al. 2007)

di; = le;— ej]” Zatth (PT) lei — €]

Li=1

= [e;—e;] Kile; —e]
= With

vec(K)) = a[I — (P @ P)]” ' vec(PWPT)
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The random walk with restart
similarity
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The random walk with restart
| similarity

= Introduced by Tong et al. (2007)
= Inspired by PageRank
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The random walk with restart
similarity

= It Introduces a random walk
— With a restart at node i

t+1)=aP'x;(t) + (1 —a)e;

— Which produces a similarity to node i
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The random walk with restart
similarity

- The long-term solution (steady-state) is

= (1-a)I—aP') e,
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The random walk with restart
similarity
B ThUS,

K=(I-aPT)"!

— Is a similarity matrix,
— but not a kernel
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Applications of kernels on a
'~ oraph

= Now that we have a similarity measure
between the nodes,we can use it for
— Clustering the nodes
— Finding dense regions in the graph
— Finding outlier nodes

— Representing the graph in a low-dimensional
space (principal components analysis)

:
— Representing the graph in function of the similarity

'
with some reference nodes (discriminant analysis)
] — Finding central nodes in the graph
— Find the most similar node (nearest neighbours)
— Etc... 124




Applications of kernels on a
graph

= Which kernel to choose
— Depends on the problem at hand
— And should be stated on empical grounds

= However, we found that

— Laplacian-based kernels perform better
than adjacency-matrix based kernels

— The diffusion map, commute-time and
regularized Laplacian kernels perform best

— for collaborative recommendation
= At least one our the datasets we tested=



A similarity measure between
nodes of two graphs

126



A similarity measure between nodes
of two graphs

= Let us mention an interesting extension
of Kleinberg’'s HITS algorithms

— It defines a similarity measure between
nodes of two graphs

— It therefore performs some graph matching
— Developed by Blondel et al. (2004)

127




A similarity measure between nodes

'~ of two graphs

= Suppose we are given two graphs G
and Gy,

— Where A (n, x n,) and B (n; x ng) are the
adjacency matrices of G, and G,

— Define a (ngz x n,) similarity matrix K
between the nodes of the two graphs

'
— Which needs not to be symmetric (not a
I kernel)
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A similarity measure between nodes
of two graphs

= The similarity matrix K can be
computed through a power method

K(t+1) = BK(t)A" + BTK(t)A
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A similarity measure between nodes
of two graphs

= Intuitively, two nodes, i of G; and j of G,

. are similar,

—that is, &, Is large,

— if node i of Gy is linked to similar nodes of
GB

—and node j of G, is linked to similar nodes

of G
A ?,j t"l']-) — Zzbzkkklaﬂ

b Zzbmszg‘ a0
koo




A similarity measure between nodes
of two graphs

| = It reduces to Kleinberg’s HITS
procedure for some particular form of
graph G,

hub » authority

— See the paper of Blondel et al. (2004)
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Application to clustering
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Clustering 1n the embedded space
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Clustering in the embedded space

= The kernels induce some embedding
space

— The nodes of the graph are embedded into
this space

— A clustering algorithm is used to group the
nodes

— See for instance Donetti & Munoz (2004)
— This is linked to spectral clustering
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Kernel clustering




@

~ Kernel clustering

= Since we have a kernel, a kernel
clustering technigue is quite natural

= We introduce a version of a kernel
clustering method:

— Kernel k-means

= Applied to graph nodes clustering

— Based on the commute-time kernel 56



mm Kernel k-means

= Kernel k-means has first been
introduced by Zhang & Chen (2002,
2004) and Girolami (2002)

= We introduce an intuitive version of
kernel k-means (Yen et al., 2007)

— Which easily generalizes to other clustering
algorithms

— And which is prototype-based
— In the sample space 137




| Kernel k-means

= We want to minimize the total within-
class inertia

J(815-- -+ 8m) ZZIIXz gkl

k=1icCly

= We introduce the « kernel trick », where
X Is the data matrix

gr — X k
— Which aims to express the prototypes y, as

— A linear combination of the observations in
the feature space e




. Kernel k-means

- - Z Z (ki — 2k; Vi + 7 Kv4)

k=11€Cg

= We easily obtain

-+ Ym) Z > (xi—gr) " (xi — gr)

trre]

T
=) ) (xixi—2x; gk + 8 k)

k=1:€C
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- Kernel k-means

= The k-means iteratively minimizes J by
iteratively
— Assigning cluster labels, [, , to nodes
— Recomputing the cluster prototypes ¥,

= The cluster assignment that minimizes J
IS

l; = argming {vL K7y, — 2k v, }
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. Kernel k-means

'
— where k; is the ith column of K and »n, is the
] number of nodes assigned to cluster k

— But k; = Ke,

= The cluster prototypes y, that minimize J
are solutions of

Ky, = ﬁzkz

1€Cy,

141




Kernel k-means

= Since, In both sides of the equation, we
have a linear combination of the
columns of K, one solution is

_IE:'
k™ ng €;

1€ Cly,

r‘

1/ng if node ¢ € Ck

ki = ki = i 0 otherwise
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. Kernel k-means

= Thus, y, Is a membership vector
containing the membership value
— of each node to the cluster k

= It is therefore a kind of « prototype » for
the cluster &

— In the sample space
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- Kernel k-means

= Thus, we simply iterate
| — For all observations i:

[; = arg miny {’yEK’yk — ZkiT*yk}

— For all clusters k:

i _ 1 |
’Tk—n—kiez

1€C
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Other kernel clustering methods

= Other standard clustering algorithms
have been « kernelized » in the same
way.
— lterative k-means
— The fuzzy k-means
— The entropy-based fuzzy k-means
— The gaussian mixture model
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Approximate prototype
embedding

= Notice that if we want to avoid the
comparisons of all pairs of nodes, we could
use

g, — X7,

— where X is now a n X p reduced data matrix

— containing a small set of selected nodes, called
- the representatives

= The parameter vector g, is restricted to lie in
the subspace spanned by the representatives




Approximate prototype
embedding

= In that case, only similarities between
nodes and the representatives need to
be computed

— For the commute-time kernel, only sjn rse
linear systems need to be computed

= The kernel k-means algorithm can
easily be adapted to this case
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Application to document

- clustering

= We show the results on the newsgroup
database
— Contains about 20000 documents
— From 20 different newsgroups

— About 1000 documents for each
newsgroup
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Application to document

clustering

= A preprocessing step was performed:

— Remove stop words
— Use Porter’'s stemming algorithm

— Compute the mutual information between
documents and terms and remove terms
with too few mutual information

— Compute the term-document matrix W
containing the tf.idf factors

— Compute the document-document
adjacency matrix

A =WIW 149




Application to document

.
clustering
- Thus, we have a large graph where
— Nodes are documents

— Link weights are computed from the tf.idf
factors

150




S1 gmmd commute-time kernel

From this adjacency matrix, compute
the commute-time kernel matrix

| (D—A)+=L+

- Then take the sigmoid kernel
Kcrlij = 1/(1+ expla I} /o])

where a is fixed to 1.26 based on informal tests

3. Perform a kernel k-means on Kop 15




- Newsgroups data sets

— Here are the different data sets

G-2cl-A
G-2cl-B
G-2cl-C
G-3cl-A
G-3cl-B
G-3cl-C
G-5cl-A
G-5cl-B

G-5cl-C

politics/general, sport/baseball
computer/graphics, motor/motorcycles
space/general, politics/mideast

sport /baseball, space/general, politics/mideast
computer/windows, motor/autos, religion/general
sport /hockey, religion /atheism, medicine/general

computer/graphics, motor/motorcycles, politics/mideast,
space/general, sport/baseball

computer/graphics, computer/pchardware, motor/autos,
religion /atheism, politics/mideast
computer/machardware, sport/hockey, medicine/general,
religion /general, forsale/general
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Results obtained
- on the newsgroups data sets

the spherical k-means algorithm
(Dhillon et al, 2002)

= We also report the results obtained by

KcT k-means

Ko fuzzy k-means

Sph. k-means

class. rate | adj. Rand class. rate | adj. Rand class. rate | adj. Rand
G-2cl-A 97.25 % 0.95 97.25 % 0.95 91.76 % 0.85
G-2cl-B 91.23 % 0.84 91.46 % 0.84 81.46 % 0.70
G-2cl-C 95.71 % 0.92 95.99 % 0.92 94.82 % 0.90
G-3cl-A 94.42 % 0.92 94.83 % 0.93 89.23 % 0.85
G-3cl-B 93.37 % 0.91 93.14 % 0.90 86.71 % 0.82
G-3cl-C 93.65 % 0.91 92.44 % 0.89 87.35 % 0.83
G-5cl-A 82.64 % 0.80 86.49 % 0.84 75.29 % 0.74
G-5cl-B 70.75 % 0.75 77.08 % 0.78 64.43 % 0.69
G-5cl-C 77.12 % 0.76 79.54 % 0.78 65.23 % 0.69
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Example of kernel fuzzy
clustering

= Here are some results for the kernel
fuzzy clustering

1 sI 1 I I
0.5 iiiiii |]i|Wiiﬁ | ‘ | | | | ‘ .
0

400 600 800 1000

0 200 400 600 800 1000

Qpace general 20 400 600 800 1000

sport/baseball : : i :
05}
0 MMMMW 154




Preliminary results obtained
on the newsgroups data sets

= Fuzzy clustering
— If we change the membership treshold:

vvvvvvvv

\\\\\\\\\\\\\\\\
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Finding dense regions
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Greedy clustering based on
modularity
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Greedy clustering based on
~ modularity

= Newman (2004) introduced the
modularity O

— Which is a measure of the quality of a
partition of the graph

— Suppose we have a partition into three
clusters A, B, C
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Greedy clustering based on

| .
modularity
= The idea behind the modularity is the
following
A B C
4 P(A,A) p(A,B) p(A,0)
P(A,) p(.,A) | p(A,.) p(.B) | p(A,.) p(.,C)
B p(B,A) p(B.B) p(B,C)
p(B,) p(.,A) | p(B,.)p(.B) | p(B,.)p(.C)
C p(C,A) p(C.B) p(C.C)
p(C,) p(,A) | p(C,.) p(..B) | p(C,.) p(.,C)
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Greedy clustering based on
modularity

= The modularity should be maximized
— Meaning that the sample is very far from
Independence
= Newman designed a greedy approach
— Initially, every node is a cluster

— Try merging every couple of clusters and compute
the resulting modularity

— Merge the couple of clusters that results in the
largest increase in modularity

= Modularity is very popular today !
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Kernel hierarchical clustering

161



H
~ Kernel hierarchical clustering
= We define an agglomerative procedure

— Which is a kernel version of \Wald’s
algorithm

— It agglomerates nodes which lead to the
smallest decrease in total within-class
Inertia
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. Kernel hierarchical clustering

O SRS et e e .
r =
- | e
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= We begin with one group by node

hen, we merge groups that lead to the
smallest Increase in within-class inertia

— That is, we expand most dense groups

-------
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. Kernel hierarchical clustering

= At the beginning of the process, each
observation is a group

— And the centroid g, is the observation itself:

gr = Xi, for k € {1,2,...,n}
— By applying the transformation (the kernel

trick),
gr — X' hy,
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. Kernel hierarchical clustering

H
§ " We easily obtain by pre-multiplying this
equation by X:

th — kk — Kek

« And thus, initially,
h;, = e, for each k € {1,2,...,n}

= Thus, h, is a prototype vector in the
sample space
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. Kernel hierarchical clustering

= Now, when merging two groups, say
group k£ and group /, into group m,

= The new centroid g, in the feature space

IS _ Nggrtnig

&m = Ng+n;

= By applying the kernel trick, the update
for the h, is




Kernel hierarchical clustering

= We measure the density of the groups
by the within-cluster inertia

= Moreover, it is well-known that merging
cluster k and cluster /

— Results in an increase of total within-cluster
nertia of

'
]
= 20| |gk — gl |

AJ = J(after merge) — J(before merge)
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. Kernel hierarchical clustering

| = In the sample space, we obtain

NEny

ng + Ny

AJ = (hy, — h))TK(h; — hy)

= [he idea Is thus

— To try any couple of merge

— To merge the two groups k, [ that result in
the smallest increase in total within-class
Inertia, AJ

168



Kernel hierarchical clustering

= This mimics Ward’s grouping method in
the sample space

= Here are two examples on social
science networks (Yen et al., 2007)
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. Kernel hierarchical clustering

= Zachary’s karate club

170




Kernel hierarchical clustering

= College football network

171




[ | Graph partitioning
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- Basic models

= Three basic models illustrating
= The many faces of the Laplacian matrix

= Leading to the computation of the
Fiedler vector

— The multiplicity of the eigenvalue 0 in the

Laplacian matrix is equal to the number of
connected components in the graph

I — Thus, small eigenvalues are indicative of
two quasi-disconnected components

173




A first basic model



HHH A first basic model

|||||||
222222222222
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A first basic model

= The elements q; of the adjacency matrix A of
a weighted, undirected, graph are defined as

w;; 1f node ¢ 1s connected to node j
a;; = .
" 0 otherwise

where A is symmetric

= The w; =0 represents a similarity, an affinity
or a strength of relationship between node i

and node j
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- A first basic model

s We define a similarity index between partition
C, and partition C, as

sim(C1,Cy) = Z Wi,

ZECl
JEC2

= Define h, as an indicator vector containing 1 if
the node belongs to C, and 0 if it belongs to
C2

= Define h, as the equivalent vector for C,

= Define e as a column vector made of 1s -



A first basic model

= We obtain

Sim(Cl,Cg) = Z Wi; = Z 7%
ici  ic0y
j€C2 j€C2
= Y 6(i € Cr)agd(j € C)
i,J
= ) [hyiag;[hol;
i,J
= h;{Ah,
h1 + h2 =€
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A first basic model

= And thus
sS1m 01,02) — h?A(e — hl)
= h;{Ae—h;Ah

O NOW,

hTAe = hTDe =h;Dh,
D = diag(Ae)

n

= Thus [D];=0fori=jand [Dli=)_a;
j=1
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A first basic model

= We finally obtain
sim(C1,C3) = hiAe—h{Ah,
h;Dh; —h{ Ah;
~ hf(D- A,
— h;Lh
= Since L Is centered,

— Notice that h, is defined up to an additive
constant (h, + ¢)
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. A first basic model

| = By relaxing the fact that h, and h,

contain binary values,

— This leads to the following optimization
problem
]

miny,, (hi Lh;) subject to ||h;|| =1
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. A first basic model

= This leads to an eigenvector problem

— Compute the smallest non-trivial (L is not
of full rank) eigenvector of

th — /\hl
— which is called the Fiedler vector

- ..OWI} . . . 0.6 T T T T %
ol o K &
R o) ] 04- éa 1
[
&#e Pa &
e Fe 02- 1

: 1 182
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Graph partitioning:
one example

| - Visualization of a network of criminals

=)

-_ .l.""'.......:-......" ‘:'. ....."... |
-..\.-..-..-. B L
S ‘ “
| L
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A second basic model




A second basic model

= Remember that

AJ = J(after merge) — J(before merge)

NEny

ng + Ny

AJ = (hy, — h))TK(h; — hy)

= Here, we want to find the split that
results in the

— highest decrease in within-class inertia
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. A second basic model

= Now, define a new vector

h = \/ﬂ,kﬂ,g/(ﬂk + ﬂ,g)(hk — hg)

— Assuming that the kernel K is centered

— Relaxing the fact that h has a special
structure

= We obtain the following problem

h* = maxy, (h'Kh), subject to h'e = 0 and ||h||? = 15



A second basic model
= We obtain the eigensystem problem:

|
— The partitioning vector h is the first
eigenvector of K

= If the kernel K is the commute-time
kernel, L*, we obtain the Fiedler vector !
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A second basic model

= Remember that

AJ = J(after merge) — J(before merge)

NEny

ng + Ny

AJ = (hy, — h))TK(h; — hy)

= Here, we want to find the split that
results in the

— highest decrease in within-class inertia

188






. A third basic model

= Let us consider we want to represent
the nodes of the undirected graph

— On a one-dimensional line (one-
dimensional mapping)

— Such that most similar nodes are near
together

= — Each node i having coordinate z,
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A third basic model

- = One criterion that can be used (Hall, 1970) is

— _> > aij(2 — 25)°
'

1=1 7=1
B Zazz _> > Aij2iZj
]

1=1 7=1
— z(D-A)z=2z"Lz

— which has to be minimized
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A third basic model

~ = If we impose the constraint z'z = 1,

= The solution is the smallest non-trivial
eigenvector of the Laplacian matrix L

= Thatis, the Fiedler vector |
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A third basic model

s If, instead, we use z'Dz =1,

— Therefore penalizing the nodes with a large
outdegree (see Zien et al., 1999)

= The solution is the smallest eigenvector
of
(I—-P)z =)z

— Where P =D-!A is the associated transition
probabilities matrix

= It corresponds to the largest, non-trivial,
right eigenvector of P
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A third basic model

= This model corresponds exactly to the
diffusion map of Nadler et al. (2005)

= As well as to the Laplacian eigenmap of

Belkin & Nirogi (2001, 2003)
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A fourth basic model




A fourth basic model

s Compute, as squared distance
measure,

—the commute-times (CT) between the
nodes

= Performing a multidimensional scaling
based on this distance matrix

— That is, find the one-dimensional projection

] of the nodes

— For which the CT distances between nodes
are best preserved 196




A fourth basic model

= This aims to compute

— The largest eigenvector of the
pseudoinverse of the Laplacian matrix L+

— Which corresponds to the smallest non-
trivial eigenvector of L

— And thus to the Fiedler vector
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2-way partitioning

198



~ 2-way partitioning

= Various partitioning criterion have been
defined

= [he Ratio cut to be minimized

O Sim(cl, Cz) | Sim(ch 02)
Reut ‘Cl‘ ! ‘02‘
nSim(Ch Oz)

ninz
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. 2-way partitioning

= Spectral relaxation introduced by Hagen
et al. (1992)
— Naive relaxation of the problem

— Aims to compute the smallest non-trivial
eigenvector of the Laplacian matrix L

— Thus, computes the Fiedler vector
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2-way partitioning

E
I
—(I ee )

] n
—~Sothat x1e = ()

= Let us redefine the class membership
vector

— Into one single vector x

X = Hh1 — —Hh2

— With H being the centering operator
T

201




. 2-way partitioning

= We therefore find

X = qh; — phy
n n

With p ™ g™
n n

= Thus, by construction,
=

X'e=mn1q—nop=0

202



~ 2-way partitioning

o —IfiEClandjecl:
(z; —x;) =0

= We easily show that:

—-IfieC,andjeEC,:

T2

(i = ;) = n n
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. 2-way partitioning

= Let us compute the square norm of x

9 2 n1 2
ny\ — + No | —

n n
1719

n2 (ﬂ'l + ﬂ.g)

172

2
x|

(g
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2-way partitioning
= The similarity between C, and C, can be

| rewritten as

sim(C1, C2) >: >: a

- > > ) ais

1€C1 €032

] = 3 ZZQW — ;)

1=1 7=1

LT
= 35X Lx o




. 2-way partitioning

| = Thus, the Ratio cut criterion can be

rewritten as
' — It thus aims to find the smallest non-trivial

m normalized eigenvector of the Laplacian
matrix

— That is, the Fiedler vector 206

x T Lx
ORcut — % 9
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~ 2-way partitioning

m The normalized cut criterion
— To be minimized

Sim(cl, Cz) Sim(cl, 02)
= +
dq do

sim(C1, Cs) sim(C1,Cy)

sim(C’l, 01) + Sim(C’l, Cg) T Sim(cz, Oz) + Sim(Cl, 02)
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~ 2-way partitioning

= By constraint relaxation,

— It has been shown equivalent to the
following eigenvector problem

(D — A)x = ADx

= Which is equivalent to

(I—-P)z =)z
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. 2-way partitioning

- This model corresponds exactly to the
diffusion map of Nadler et al. (2005)

= As well as to the Laplacian eigenmap of

Belkin & Nirogi (2001, 2003)
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= By constraint relaxation,

'
— once more, it has been shown equivalent
] to the following eigenvector problem

(D — A)X = ADx 210

2—Way partitioning

= The Min-max cut

9, B Sim(Cl, Cg) Sim(Cl, Cg)
Meut = Sim(Cl, Cl) SiII](CQ, Cg)




Link removal method




. Link removal method

= Yet another method is based on greedy
link removal (Girvan & Newman, 2002)
— Based on shortest-path centrality

— It Is measured as the number of shortest
paths between pairs of nodes

— That pass through a certain link

— Links with a large shortest-path centrality
are progressively removed
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. Link removal method

= [Thus, the method proceeds as follows
1) Compute shortest-path centralities for all

Inks

2) Remove the link with the largest centrality

3) Recalculate all link centralities

4) Repeat from step 3 until the graph is split
Into two connected components
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Thank you !!!




