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Cutting a graph in small pieces
and exploring it
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Cutting a graph in small pieces
and exploring it

 A nice reference
– Sedgewick

– Algorithms in Java

– Addison-Wesley



5

Cutting a graph in small pieces
and exploring it

 Many software solutions are readily
available for cuting a graph
– See www.insna.org/INSNA/soft_inf.html

– It provides a number of pointers to
softwares
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Cutting a graph in small pieces
and exploring it

 JUNG
– the Java Universal Network/Graph

Framework

– Open source and written in Java

– Mainly a toolbox of methods

– http://jung.sourceforge.net
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Cutting a graph in small pieces
and exploring it

 Pajek
– A software for large network analysis

– There is a companion book

– Quite powerfull

– Free software
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Cutting a graph in small pieces
and exploring it

 UCINET
– Social Network Analysis Software

– Written by active researchers in the social
network community

– Quite complete comercial software

– http://www.analytictech.com
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Cutting a graph in small pieces
and exploring it

 The first step in analysing a graph is
often to look at its connected
components
– In an undirected graph, a connected

component is a maximal connected
subgraph

– A strongly connected component is the
similar concept defined for directed graphs
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Cutting a graph in small pieces
and exploring it

 Here is a graph with two connected
components



11

Cutting a graph in small pieces
and exploring it

 There exists linear-time algorithms for
solving this problem
– Using, for instance, depth-first or breadth-

first search



12

Cutting a graph in small pieces
and exploring it
 An articulation point or vertex-cut is a

node (vertex) of a graph such that
– removal of the node causes an increase in

the number of connected components



13

Cutting a graph in small pieces
and exploring it

 Standard linear-time algorithms are
available for this problem, using, for
instance
– depth-first or breadth-first search



14

Cutting a graph in small pieces
and exploring it

 A bridge or an edge-cut is an arc (edge)
of a graph such that
– removal of the arc causes an increase in

the number of connected components
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Cutting a graph in small pieces
and exploring it

 Standard linear-time algorithms are
available for this problem, using, for
instance
– depth-first or breadth-first search
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Identifying central or prestigious
nodes by link analysis
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Some link analysis books

 P. Baldi, P. Frasconi & P. Smyth (2003)
– Modeling the Internet

   and the Web  

– John Wiley & Sons
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Some link analysis books

 S. Chakrabarti (2003)
– Mining the Web

– Morgan Kaufmann



19

Some link analysis books

 A. Langville & C. Meyer (2006)
– Google’s PageRank and beyond

– Princeton university press
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Some link analysis books

 B. Liu (2006)
– Web data mining

– Springer
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Identifying central or prestigious
nodes by link analysis

 The PageRank algorithm

 The HITS algorithm

 The SALSA algorithm
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The PageRank algorithm
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The basic PageRank algorithm

 Introduced by Page, Brin, Motwani &
Winograd in 1998

 Partly implemented in Google

 Corresponds to a measure of
« prestige » in a directed graph
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Web link analysis
 A set of techniques

– Applied to: Hyperlink document repositories
– Typically web pages

 Objective:
– To exploit the link structure of the documents
– In order to extract interesting information
– Viewing the document repository as a graph

where
• Nodes are documents
• Edges are directed links between

documents

– It does not exploit the content of the
pages !!
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Web link analysis

 Suppose we performed a search with a
search engine

 Objective: to improve the (content-
based) ranking of the search engine
– Based on the graph structure of the web

hyperlinks

– PageRank is computed off-line
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The basic PageRank algorithm

 To each web page we associate a score, xi
– The score of page i, xi, is proportional to the

weighted averaged score of the pages pointing to
page i

Page i
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The basic PageRank algorithm

 Let wij be the weight of the link
connecting page i to page j
– Usually, it is simply 0 or 1
– Thus, wij = 1 if page i has a link to page j;

wij = 0 otherwise

 Let W be the matrix made of the
elements wij
– Notice that this matrix is not symmetric

– We suppose that the graph is strongly
connected
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The basic PageRank algorithm

 In other words

– Where wj. is the outdegree of page j

Page i
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The basic PageRank algorithm

 In other words,
 A page with a high score is a page that

is pointed by
– Many pages
– Having each a high score

 Thus a page is an important 
   page if

– It is pointed by many,
   important, pages

Page i
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The basic PageRank algorithm

 These equations can be updated
iteratively until convergence

 In order to obtain the scores, xi
– We normalize the vector x at each iteration

 The pages are then ranked according to
their score
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The basic PageRank algorithm

 This definition has a nice interpretation
in terms of random surfing

 If we define the probability of following
the link from page j to page i as
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The basic PageRank algorithm

 We can write the updating equation as

 And thus we can define a random surfer
following the links according to the
transition probabilities
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The basic PageRank algorithm

 This is the equation of a Markov model
of random surf through the web

 This is exactly the same equation as
before:
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The basic PageRank algorithm

 If we denote element i, j of the transition
probability matrix P as pij

 We thus have

 And the equation can be rewritten as
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The basic PageRank algorithm

 In matrix form, if the vector x has
elements xi

 The stationary distribution is given by
x(k+1) = x(k), and thus
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The basic PageRank algorithm

 xi can then be viewed as the probability
of being at page i
– The solution to these equations is the

stationary distribution of the random surf

– Which is the probability of finding the surfer
on page i on the long-term behaviour

 The « most probable page » is the best
ranked
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The basic PageRank algorithm

 The PageRank scores can be obtained
– By computing the left eigenvector of the

matrix P corresponding to eigenvalue 1

– Which is the right eigenvector of PT

– Where P is the transition probabilities
matrix of the Markov process

– Containing the transition probabilities

 If the graph is undirected, the scores
are simply the indegrees of the nodes
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Adjustments to the basic model

 However, there is a problem with
– Dangling nodes

– That is, nodes without any outgoing link

 In this case, the P matrix is no more
stochastic
– Rows do not sum to one

 Moreover, the graph could have
separate components
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Adjustments to the basic model

 One potential solution is to allow to
jump to any node of the graph
– With some non-zero probability

(teleportation)

 Thus,

where G is called the Google matrix, e is a
column vector full of 1’s and 0 < α < 1
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Adjustments to the basic model

 In this case,
– The matrix is stochastic

– The matrix is irreducible (no separate
component)

– The matrix is aperiodic

 Then, there is a unique eigenvector
associated to eigenvalue 1

 However, G is no more sparse !
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Computing PageRank

 The problem is thus to find the left
eigenvector of G
– corresponding to the eigenvalue 1
– instead of P

– with the normalization

 One can use the standard power
method
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Computing PageRank

 Fortunately, the power method results
in sparse matrix multiplication only:

– where x is normalized after each iteration



43

Personalization in PageRank

 How can we favour some pages in a
natural way (advertising, etc) ?

 Rather than using eeT/n,

 use evT where
– v > 0 is a probability vector (vTe = 1)

– Which is called the personalization vector

 It contains the a priori probability of
jumping to any page
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Personalization in PageRank

 The Google matrix thus becomes

– Where v is provided a priori
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The PageRank problem as a
sparse linear system

 Here is an alternative formulation of the
PageRank problem
– As a sparse linear system
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The PageRank problem as a
sparse linear system

 In other words, the problem is

 Which has been shown (Del Corso,
Gulli & Romani, 2005; Langville &
Meyer, 2006) to be equivalent to
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The HITS algorithm
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The HITS algorithm

 Introduced by Kleinberg in 1998/1999
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Web link analysis

 Suppose we performed a search with a
search engine
– Compute the neighborhood graph from the

retrieved documents

– Associated to the particular query

 Objective: to improve the ranking
provided by the search engine
– Based on the graph structure of the web

hyperlinks
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The HITS algorithm

 The model proposed by Kleinberg is
based on two concepts
– Hub pages
– Authorities pages

 These are two categories of web
pages

 These two concepts are strongly
connected
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The HITS algorithm
 Example:

– Suppose we introduced the query

   “Car constructors”

Hubs

Authorities

Prost Schumacher

Ferrari Renault Ford

Car constructorsPeople interested
in car constructors
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The HITS algorithm
 Hubs

– Link heavily to authorities

– A good hub points to many good authorities

– Hubs have very few incoming links

Hubs

Authorities

Prost Schumacher

Ferrari Renault Ford
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The HITS algorithm
 Authorities

– Do not link to other authorities

– A good authority is pointed by many good hubs

– The main authorities on a topic are often in
competition with one another

Hubs

Authorities

Prost Schumacher

Ferrari Renault Ford
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The HITS algorithm

 The objective is to detect good hubs
and good authorities
– from the results of the search engine

 We therefore assign two numbers to
each returned page i:
– A hub score, xh

i

– An authority score, xa
i
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The HITS algorithm

 Let wij be the weight of the link
connecting page i to page j
– Usually, it is simply 0 or 1
– Thus, wij = 1 if page i has a link to page j;

wij = 0 otherwise

 Let W be the matrix made of elements
wij

– Notice that this matrix is not symmetric

– We suppose that the graph is strongly
connected
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The HITS algorithm
 A possible procedure for computing

hub/authorities scores (Kleinberg)

– A page's authority score is proportional to the
sum of the hub scores that link to it

– A page's hub score is itself proportional to the
sum of the authority scores that it links to
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The HITS algorithm

 In matrix form,

 And thus,
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The HITS algorithm

 Kleinberg used this iterative procedure
in order to estimate the scores
– with a normalization at each step
– This is equivalent to computing the

eigenvectors of the following matrices

– To obtain respectively the vector of hubs
scores and the vector of authorities scores
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Links with principal components
analysis

 This is exactly uncentered principal
components analysis (PCA; Saerens et
all, 2005)
– The proof is based on the dual view of PCA

 As for multidimensional scaling
– View the set of rows of W (authorities) as a

cloud of points in the columns space

– View the set of columns of W (hubs) as a
cloud of points in the rows space
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Links with principal components
analysis
 Let us consider a data matrix X
 The first PCA axis on which the data will

be projected is given by the eigensystem

 Thus, the first projection axis correspond
to the dominant eigenvector of
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Links with principal components
analysis

 Then, the first coordinate of the
projected data is given by Xu1
– Which corresponds to the data vectors

projected on the first principal axis, u1

 These are the PCA scores for the first
principal axis
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Links with principal components
analysis
 Here is a sketch of the proof that HITS

is equivalent to uncentered PCA

 Let us consider the adjacency matrix W
as a data matrix

 We simply substitute X by W for
computing the first principal axis (PCA),
u1
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Links with principal components
analysis
 We pre-multiply this equation by W

 Wu1 is an eigenvector of WWT and thus contains the
hubs scores

 Since Wu1 is the projection of the data on the first
principal axis (= PCA scores)

 The hubs scores are equal to the uncentered PCA
scores, up to a proportionality factor, computed from
the data matrix W
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Links with principal components
analysis
 The same result holds for the authorities

scores
 We now consider the transposed adjacency

matrix WT as a data matrix

 And proceed as before
 The authorities scores are equal to the

uncentered PCA scores, up to a
proportionality factor, computed from the data
matrix WT
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Links with principal components
analysis
 Thus, the situation is exactly the same as for

multidimensional scaling
– The first eigenvector of WWT represents the

projection of the row vectors on the first principal
component (hubs scores)

– The first eigenvector of WTW represents the
projection of the column vectors on the first
principal component (authority scores)

 This procedure is also related to both
– Correspondence analysis

– A random walk (Markov) model through the graph
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HITS’ relationships to
bibliometrics
 The HITS algorithm has also strong

connections to bibliometrics research:
– Cocitation
– Coreference

 Cocitation occurs when two documents
are both cited by the same third
document

 Coreference occurs when two
documents both refer to the same third
document
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HITS’ relationships to
bibliometrics
 C. Ding (2002) showed that

– where Din is a diagonal matrix containing
the indegree of each node Din = Diag(w•j)

– Dout is a diagonal matrix containing the
outdegree of each node Dout = Diag(wi•)

– Ccit and Cref are the cocitation and
coreference matrices
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HITS’ relationships to
bibliometrics

 Thus,
– The hub matrix is closely related to the

coreference matrix

– The authority matrix is closely related to
the cocitation matrix
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The SALSA algorithm
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The SALSA algorithm

 Introduced by Lempel & Moran in 2000
– « A Stochastic Approach to Link Structure

Analysis »

– Combines ideas from PageRank and HITS
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The SALSA algorithm

 From the neighborhood graph, compute
two sets of nodes
– The hub nodes

– The authority nodes

– View this as a bipartite graph

Hubs

Authorities

h1 h2

a1 a2 a3
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The SALSA algorithm
 From this bipartite graph, compute a

Markov chain with
– Ph = (Din)-1WT : the probability of jumping

from an authority node to a hub node
– Pa = (Dout)-1W : the probability of jumping

from a hub node to an authority node

 Thus:
xh(k+1) = (Ph)T xa(k)
xa(k+1) = (Pa)T xh(k)
where xh, xa are the probability distributions
for hub and authority nodes
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The SALSA algorithm

 The transition probabilities matrix of the
Markov chain

– Restricted to the authority nodes is
PhPa

– Restricted to the hub nodes is
PaPh
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The SALSA algorithm

 The steady-state probability distribution
of the two restricted Markov chains are
the hub scores and authority scores

– When removing dangling nodes

– When computing the steady-state for each
connected component
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Computing similarities between
nodes of a graph
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Main goal

 To exploit and analyse
– New similarity measures between the nodes of a

graph
– Which are kernels on a graph

 To use these similarities for
– Collaborative filtering
– Clustering
– Finding dense regions
– Graph visualization
– Etc…
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Three main parts
 A brief overview of kernels

– in the « machine learning » field

 Some kernels on a graph
– The exponential diffusion kernel
– The Laplacian exponential diffusion kernel
– The von Neumann diffusion kernel
– The regularized Laplacian kernel
– The commute-time kernel
– The random walk with restart similarity

 Computing similarities between nodes
of two graphs
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A brief overview of kernels
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A brief overview of kernels

 In a few words, a kernel is simply
– An inner product matrix

 That is, a matrix containing inner
products as entries,

defined in some abstract inner product
space, called

 The feature space
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A brief overview of kernels

 The symmetric matrix K is called the
kernel matrix
– It contains inner products between

elements, or feature vectors, xi and xj,
– in some feature space

 The kernel matrix is thus
– a Gram matrix
– Positive semi-definite

 Its entries, kij, are interpreted as
similarities between elements
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A brief overview of kernels

 If kij is large (positive), i and j are highly
similar

 If kij is low (negative), i and j are highly
dissimilar

 Most of the pattern recognition /
multivariate statistics techniques can be
reformulated
– in terms of inner products, K
– instead of feature vectors, xi
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A brief overview of kernels

 This is called the « kernel trick »

 For instance,
– Principal components analysis

=> « kernel PCA »

– Clustering

=> « kernel clustering »

– Logistic regression

=> « kernel logistic regression »

– Etc…
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A brief overview of kernels

 In other words,
– We do not need the feature vectors, xi

– We only need a similarity measure
between the elements, kij

 Each kernel induces a Euclidean
distance between the elements
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A brief overview of kernels

 Kernels on « structured objects » are
studied in the fields of
– pattern recognition,

– machine learning

– data mining…

 The idea here is to define kernel
matrices (similarity matrices) on a graph
– Defining similarities between the nodes of

the graph
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A brief overview of kernels

 Kernels have been defined on
structures objects, such as
– Graphs

– Sequences of symbols

– Probability distributions

– Trees

– Etc…

 See for instance Shawe-Taylor &
Christianini (2005)
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A brief overview of kernels

 See for instance Shawe-Taylor &
Christianini (2004) – Cambridge University
Press
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Some kernel on a graph
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Main point

 We will introduce several recently
defined kernels on a graph

 Defining similarities between nodes of a
graph
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Main point
 These similarity measures between two

nodes not only depend on
– The weights of the edges
– like the « shortest path » distance

  But also on
– The number of paths connecting the two

nodes

 They take high connectivity into account
≠ shortest-path or geodesic (Dijkstra) distance
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Some notations:
the adjacency matrix
 The elements aij of the adjacency matrix A of

a weighted, undirected, graph are defined as

where A is symmetric

 The wij ≥ 0 represent the strength of
relationship between node i and node j

A =

U1

U2

U3
M2

M1

C2

C1
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Some notations:
the Laplacian matrix

 The Laplacian matrix L of the graph is defined
by

L = D – A
where                       with
(the outdegree of each node)

 L is doubly centered
 If the graph is connected, the rank of L is n – 1,

where n is the number of nodes
 L is symmetric positive semidefinite
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The exponential diffusion kernel



93

The exponential diffusion kernel
 The exponential diffusion kernel

(Kondor & Lafferty, 2002; Smola &
Kondor, 2003)

– If binary, Ak enumerates the « number of
different paths » of k steps between two
nodes,

– Discounted with respect to the number of
steps (k)

– It is a kernel matrix
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The Laplacian exponential
diffusion kernel
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The Laplacian exponential
diffusion kernel
 The laplacian exponential diffusion

kernel

– substitute A by –L

– It is a kernel matrix

 It has a nice interpretation in terms of a
diffusion process
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The Laplacian exponential
diffusion kernel

 Suppose we have a quantity xi at each
node i

 This quantity diffuses to neighbouring
node j with a rate aijxi δt

 This diffusion model leads to the
equation

– It corresponds to some diffusion process
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The Laplacian exponential
diffusion kernel
 Thus, if we have one source node i

– The ith column of KLED = exp(-Lt) will
contain the diffused quantity at each node
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The von Neumann diffusion kernel
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The von Neumann diffusion kernel
 The von Neumann diffusion kernel

(Kandola, Shawe-Taylor & Christianini,
2002)

– If A is binary, enumerates and sums the
number of different paths between two
nodes

– discounted according to some discounting
factor 0 < α < 1

– It is a kernel matrix



100

The regularized Laplacian kernel
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The regularized Laplacian kernel

 The regularized Laplacian kernel
(Chebotarev & Shamis, 1998; Ito et al.,
2004)

– substitute A by –L

– It is a kernel matrix
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The regularized Laplacian kernel

 It has a nice interpretation in terms of
the matrix forest theorem

 Element kij corresponds to the ratio of
– the total weight of spanning forests rooted

at node i for which node i and j belong to
the same tree

– On the total weight of spanning forests
rooted at node i
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The commute-time kernel
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The commute-time kernel

 Introduced by Saerens et al (2004); see
also Qiu & Hancock (2005) and Brand
(2005)

 Every node is associated to a state of a
Markov chain

 The Markov chain is defined by the
single-step transition probabilities
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The commute-time kernel

 From this Markov chain, we then
compute :
– The average commute time, n(i,j)
– Average number of steps a random walker,

starting in state i ≠ j, will take before
entering a given state j for the first time,
and go back to i

k

i

ijp

ikp

j
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The commute-time kernel

 If we further define ei as the ith column of I

 we obtain the remarkable form

 
where each node i is represented by a unit
basis vector, ei, in the node space

 L+
 is the Moore-Penrose pseudoinverse of

the Laplacian matrix of the graph
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The commute-time kernel

 Thus, n(i,j) is a Mahalanobis distance
= Commute Time Distance

 Indeed, one can show that L+ is
– (1) Symmetric
– (2) Positive semidefinite
– (3) Doubly centered
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The commute-time kernel

 Thus L+ is a kernel matrix
– A Gram matrix

– Indeed, it is positive semidefinite
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The Markov diffusion kernel
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The Markov diffusion kernel

 The Markov diffusion kernel, inspired by
Nadler et al. (2006) and Lafon & Lee
(2006), is introduced in Fouss et al.
(2006)

– where P is the transition probabilities matrix

– of the associated Markov chain
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The Markov diffusion kernel

 A meaningful distance between node i
and j, proposed by Nadler et al. (2005)
as well as Latapy et al. (2005) is

 It aims to compute the distance
between the distribution of presence
rate when starting from two different
nodes i and j



112

The Markov diffusion kernel

i

j

 From two source nodes i and j

 We compute the difference of densities
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The Markov diffusion kernel

 We easily obtain

– where P is the transition probability matrix

– This is a Mahalanobis distance
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The Markov diffusion kernel

 The associated kernel matrix is

– which is the Markov diffusion kernel

 Its natural embedding space is called
the diffusion map
– Exactly as originally proposed by Nadler et

al. (2005)
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The Markov diffusion kernel

 In the diffusion map, the nodes have, as
first coordinate,
– The largest non-trivial eigenvector of the

transition probabilities matrix, P
– Multiplied by its corresponding eigenvalue

 The second coordinate of the nodes is
provided by
– The second non-trivial eigenvector, etc
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The Markov diffusion kernel

 This will be shown equivalent to
– The Laplacian eigenmap (Belkin & Nirogi,

2001, 2003)

– A weighted one-dimensional mapping of
the graph (Zien et al., 1999)

– A relaxation of the normalized cut of the
graph (Shi & Malik)

– A relaxation of the MinMaxCut of the graph
(Ding et al., 2001)



117

The integrated Markov diffusion
kernel

 If we sum up the distance

– For t = 1 to infinity, with a damping factor α
and a weighting diagonal matrix W
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The integrated Markov diffusion
kernel

 We obtain the integrated Markov
diffusion kernel (Yen et al., 2007)

 with



119

The random walk with restart
similarity
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The random walk with restart
similarity

 Introduced by Tong et al. (2007)

 Inspired by PageRank
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The random walk with restart
similarity

 It introduces a random walk
– With a restart at node i

– Which produces a similarity to node i
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The random walk with restart
similarity

 The long-term solution (steady-state) is
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The random walk with restart
similarity

 Thus,

– Is a similarity matrix,

– but not a kernel
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Applications of kernels on a
graph
 Now that we have a similarity measure

between the nodes,we can use it for
– Clustering the nodes
– Finding dense regions in the graph
– Finding outlier nodes
– Representing the graph in a low-dimensional

space (principal components analysis)
– Representing the graph in function of the similarity

with some reference nodes (discriminant analysis)
– Finding central nodes in the graph
– Find the most similar node (nearest neighbours)
– Etc…
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Applications of kernels on a
graph

 Which kernel to choose
– Depends on the problem at hand
– And should be stated on empical grounds

 However, we found that
– Laplacian-based kernels perform better

than adjacency-matrix based kernels
– The diffusion map, commute-time and

regularized Laplacian kernels perform best
– for collaborative recommendation

 At least one our the datasets we tested
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A similarity measure between
nodes of two graphs
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A similarity measure between nodes
of two graphs

 Let us mention an interesting extension
of Kleinberg’s HITS algorithms
– It defines a similarity measure between

nodes of two graphs

– It therefore performs some graph matching

– Developed by Blondel et al. (2004)
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A similarity measure between nodes
of two graphs

 Suppose we are given two graphs GA
and GB
– Where A (nA x nA) and B (nB x nB) are the

adjacency matrices of GA and GB

– Define a (nB x nA) similarity matrix K
between the nodes of the two graphs

– Which needs not to be symmetric (not a
kernel)
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A similarity measure between nodes
of two graphs

 The similarity matrix K can be
computed through a power method
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A similarity measure between nodes
of two graphs

 Intuitively, two nodes, i of GB and j of GA
are similar,
– that is, kij is large,

– if node i of GB is linked to similar nodes of
GB

– and node j of GA is linked to similar nodes
of GA
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A similarity measure between nodes
of two graphs

 It reduces to Kleinberg’s HITS
procedure for some particular form of
graph GB

– See the paper of Blondel et al. (2004)

hub authority
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Application to clustering
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Clustering in the embedded space
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Clustering in the embedded space

 The kernels induce some embedding
space
– The nodes of the graph are embedded into

this space

– A clustering algorithm is used to group the
nodes

– See for instance Donetti & Munoz (2004)

– This is linked to spectral clustering
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Kernel clustering
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Kernel clustering

 Since we have a kernel, a kernel
clustering technique is quite natural

 We introduce a version of a kernel
clustering method:
– Kernel k-means

 Applied to graph nodes clustering
– Based on the commute-time kernel
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Kernel k-means

 Kernel k-means has first been
introduced by Zhang & Chen (2002,
2004) and Girolami (2002)

 We introduce an intuitive version of
kernel k-means (Yen et al., 2007)
– Which easily generalizes to other clustering

algorithms

– And which is prototype-based

– In the sample space
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Kernel k-means
 We want to minimize the total within-

class inertia

 We introduce the « kernel trick », where
X is the data matrix

– Which aims to express the prototypes γk as

– A linear combination of the observations in
the feature space
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Kernel k-means

 We easily obtain
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Kernel k-means

 The k-means iteratively minimizes J by
iteratively
– Assigning cluster labels, li , to nodes
– Recomputing the cluster prototypes γk

 The cluster assignment that minimizes J
is
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Kernel k-means

 The cluster prototypes γk that minimize J
are solutions of

– where ki is the ith column of K and nk is the
number of nodes assigned to cluster k

– But ki = Kei
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Kernel k-means

 Since, in both sides of the equation, we
have a linear combination of the
columns of K, one solution is
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Kernel k-means

 Thus, γk is a membership vector
containing the membership value
– of each node to the cluster k

 It is therefore a kind of « prototype » for
the cluster k
– In the sample space
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Kernel k-means

 Thus, we simply iterate
– For all observations i:

– For all clusters k:



145

Other kernel clustering methods

 Other standard clustering algorithms
have been « kernelized » in the same
way:
– Iterative k-means

– The fuzzy k-means

– The entropy-based fuzzy k-means

– The gaussian mixture model
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Approximate prototype
embedding

 Notice that if we want to avoid the
comparisons of all pairs of nodes, we could
use

– where

– containing a small set of selected nodes, called
the representatives

 The parameter vector gk is restricted to lie in
the subspace spanned by the representatives
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Approximate prototype
embedding

 In that case, only similarities between
nodes and the representatives need to
be computed
– For the commute-time kernel, only   sparse

linear systems need to be computed

 The kernel k-means algorithm can
easily be adapted to this case
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Application to document
clustering
 We show the results on the newsgroup

database
– Contains about 20000 documents

– From 20 different newsgroups

– About 1000 documents for each
newsgroup
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Application to document
clustering
 A preprocessing step was performed:

– Remove stop words
– Use Porter’s stemming algorithm
– Compute the mutual information between

documents and terms and remove terms
with too few mutual information

– Compute the term-document matrix W
containing the tf.idf factors

– Compute the document-document
adjacency matrix
 A = WTW
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Application to document
clustering

 Thus, we have a large graph where
– Nodes are documents

– Link weights are computed from the tf.idf
factors
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Sigmoid commute-time kernel
1. From this adjacency matrix, compute

the commute-time kernel matrix

2. Then take the sigmoid kernel

where a is fixed to 1.26 based on informal tests

3. Perform a kernel k-means on KCT
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Newsgroups data sets

– Here are the different data sets
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Results obtained
on the newsgroups data sets

 We also report the results obtained by
the spherical k-means algorithm
(Dhillon et al, 2002)
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Example of kernel fuzzy
clustering

 Here are some results for the kernel
fuzzy clustering
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Preliminary results obtained
on the newsgroups data sets

 Fuzzy clustering
– If we change the membership treshold:
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Finding dense regions
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Greedy clustering based on
modularity
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Greedy clustering based on
modularity

 Newman (2004) introduced the
modularity Q
– Which is a measure of the quality of a

partition of the graph

– Suppose we have a partition into three
clusters A, B, C
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Greedy clustering based on
modularity

 The idea behind the modularity is the
following

    p(C,C)
p(C,.) p(.,C)

    p(C,B)
p(C,.) p(.,B)

    p(C,A)
p(C,.) p(.,A)

    p(B,C)
p(B,.) p(.,C)

    p(B,B)
p(B,.) p(.,B)

    p(B,A)
p(B,.) p(.,A)

    p(A,C)
p(A,.) p(.,C)

    p(A,B)
p(A,.) p(.,B)

    p(A,A)
p(A,.) p(.,A)

A B C

A

B

C

Q = (p(A,A) – p(A,.)p(.,A)) + (p(B,B) – p(B,.)p(.,B)) + (p(C,C) – p(C,.)p(.,C))
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Greedy clustering based on
modularity
 The modularity should be maximized

– Meaning that the sample is very far from
independence

 Newman designed a greedy approach
– Initially, every node is a cluster

– Try merging every couple of clusters and compute
the resulting modularity

– Merge the couple of clusters that results in the
largest increase in modularity

 Modularity is very popular today !
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Kernel hierarchical clustering
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Kernel hierarchical clustering

 We define an agglomerative procedure
– Which is a kernel version of Wald’s

algorithm

– It agglomerates nodes which lead to the
smallest decrease in total within-class
inertia
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Kernel hierarchical clustering

 We begin with one group by node
– Then, we merge groups that lead to the

smallest increase in within-class inertia

– That is, we expand most dense groups
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Kernel hierarchical clustering

 At the beginning of the process, each
observation is a group
– And the centroid gk is the observation itself:

– By applying the transformation (the kernel
trick),
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Kernel hierarchical clustering

 We easily obtain by pre-multiplying this
equation by X:

 And thus, initially,

 Thus, hk is a prototype vector in the
sample space
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Kernel hierarchical clustering

 Now, when merging two groups, say
group k and group l, into group m,

 The new centroid gk in the feature space
is

 By applying the kernel trick, the update
for the hk is
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Kernel hierarchical clustering

 We measure the density of the groups
by the within-cluster inertia

 Moreover, it is well-known that merging
cluster k and cluster l
– Results in an increase of total within-cluster

inertia of
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Kernel hierarchical clustering

 In the sample space, we obtain

 The idea is thus
– To try any couple of merge
– To merge the two groups k, l that result in

the smallest increase in total within-class
inertia, ΔJ
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Kernel hierarchical clustering

 This mimics Ward’s grouping method in
the sample space

 Here are two examples on social
science networks (Yen et al., 2007)
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Kernel hierarchical clustering

 Zachary’s karate club
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Kernel hierarchical clustering

 College football network
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Graph partitioning
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Basic models

 Three basic models illustrating

 The many faces of the Laplacian matrix

 Leading to the computation of the
Fiedler vector
– The multiplicity of the eigenvalue 0 in the

Laplacian matrix is equal to the number of
connected components in the graph

– Thus, small eigenvalues are indicative of
two quasi-disconnected components
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A first basic model
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A first basic model

 Suppose we have a graph structure
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A first basic model

 The elements aij of the adjacency matrix A of
a weighted, undirected, graph are defined as

where A is symmetric

 The wij ≥ 0 represents a similarity, an affinity
or a strength of relationship between node i
and node j
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A first basic model

 We define a similarity index between partition
C1 and partition C2 as

 Define h1 as an indicator vector containing 1 if
the node belongs to C1 and 0 if it belongs to
C2

 Define h2 as the equivalent vector for C2
 Define e as a column vector made of 1s
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A first basic model

 We obtain
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A first basic model

 And thus

 Now,

 Thus [D]ij = 0 for i ≠ j and
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A first basic model

 We finally obtain

 Since L is centered,
– Notice that h1 is defined up to an additive

constant (h1 + c)
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A first basic model

 By relaxing the fact that h1 and  h2
contain binary values,
– This leads to the following optimization

problem
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A first basic model

 This leads to an eigenvector problem
– Compute the smallest non-trivial (L is not

of full rank) eigenvector of

– which is called the Fiedler vector
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Graph partitioning:
one example

 Visualization of a network of criminals
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A second basic model



185

A second basic model

 Remember that

 Here, we want to find the split that
results in the
– highest decrease in within-class inertia
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A second basic model

 Now, define a new vector

– Assuming that the kernel K is centered

– Relaxing the fact that h has a special
structure

 We obtain the following problem
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A second basic model

 We obtain the eigensystem problem:
– The partitioning vector h is the first

eigenvector of K

 If the kernel K is the commute-time
kernel, L+, we obtain the Fiedler vector !
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A second basic model

 Remember that

 Here, we want to find the split that
results in the
– highest decrease in within-class inertia
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A third basic model
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A third basic model

 Let us consider we want to represent
the nodes of the undirected graph

– On a one-dimensional line (one-
dimensional mapping)

– Such that most similar nodes are near
together

– Each node i having coordinate zi
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A third basic model

 One criterion that can be used (Hall, 1970) is

– which has to be minimized
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A third basic model

 If we impose the constraint  zTz = 1,

 The solution is the smallest non-trivial
eigenvector of the Laplacian matrix L

 That is, the Fiedler vector !
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A third basic model

 If, instead, we use zTDz = 1,
– Therefore penalizing the nodes with a large

outdegree (see Zien et al., 1999)

 The solution is the smallest eigenvector
of

– Where P = D-1A is the associated transition
probabilities matrix

 It corresponds to the largest, non-trivial,
right eigenvector of P
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A third basic model

 This model corresponds exactly to the
diffusion map of Nadler et al. (2005)

 As well as to the Laplacian eigenmap of
Belkin & Nirogi (2001, 2003)
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A fourth basic model
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A fourth basic model

 Compute, as squared distance
measure,
– the commute-times (CT) between the

nodes

 Performing a multidimensional scaling
based on this distance matrix
– That is, find the one-dimensional projection

of the nodes

– For which the CT distances between nodes
are best preserved
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A fourth basic model

 This aims to compute
– The largest eigenvector of the

pseudoinverse of the Laplacian matrix L+

– Which corresponds to the smallest non-
trivial eigenvector of L

– And thus to the Fiedler vector
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2-way partitioning
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2-way partitioning

 Various partitioning criterion have been
defined

 The Ratio cut to be minimized
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2-way partitioning

 Spectral relaxation introduced by Hagen
et al. (1992)
– Naive relaxation of the problem

– Aims to compute the smallest non-trivial
eigenvector of the Laplacian matrix L

– Thus, computes the Fiedler vector
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2-way partitioning

 Let us redefine the class membership
vector
– Into one single vector x

– With H being the centering operator

– So that
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2-way partitioning

 We therefore find

 With

 Thus, by construction,
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2-way partitioning

 We easily show that:

– If i ∈ C1 and j ∈ C2 :

– If i ∈ C1 and j ∈ C1 :
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2-way partitioning

 Let us compute the square norm of x
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2-way partitioning

 The similarity between C1 and C2 can be
rewritten as
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2-way partitioning

 Thus, the Ratio cut criterion can be
rewritten as

– It thus aims to find the smallest non-trivial
normalized eigenvector of the Laplacian
matrix

– That is, the Fiedler vector
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2-way partitioning

 The normalized cut criterion
– To be minimized
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2-way partitioning

 By constraint relaxation,
– it has been shown equivalent to the

following eigenvector problem

 Which is equivalent to
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2-way partitioning

 This model corresponds exactly to the
diffusion map of Nadler et al. (2005)

 As well as to the Laplacian eigenmap of
Belkin & Nirogi (2001, 2003)
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2-way partitioning

 The Min-max cut

 By constraint relaxation,
– once more, it has been shown equivalent

to the following eigenvector problem
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Link removal method
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Link removal method

 Yet another method is based on greedy
link removal (Girvan & Newman, 2002)
– Based on shortest-path centrality

– It is measured as the number of shortest
paths between pairs of nodes

– That pass through a certain link

– Links with a large shortest-path centrality
are progressively removed
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Link removal method

 Thus, the method proceeds as follows
1) Compute shortest-path centralities for all

links

2) Remove the link with the largest centrality

3) Recalculate all link centralities

4) Repeat from step 3 until the graph is split
into two connected components
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Thank you !!!


