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Spain

June 2016

E.Vidal et al. – PRHLT/UPV

UCL lecture 2016 ML techniques for HTR

Index

1 Preliminaries . 1

2 Handwritten Text Recognition (HTR) . 5

3 HTR Corpora, Empirical Results and Discussion . 12

4 Interactive HTR (“CATTI”) . 25

5 HTR & CATTI Live Demonstrations . 28

6 Keyword Indexing and Search (KWS) . 29

7 KWS Live Demonstrations . 39

8 Conclusions & Bibliography . 41

E.Vidal et al. – PRHLT/UPV Page 1



UCL lecture 2016 ML techniques for HTR

Handwritten Text Recognition (HTR)

Point sequence representation Bitmap (image) representation

(digital pen, tablet, etc.) (camera, scanner, video, etc.)

OFF−LINEON−LINE

��
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HTR and Historical Manuscripts

• Some decades ago, off-line HTR was thought to quickly become a
research topic of little practical interest, since the use of text writtten
on paper would soon became obsolete

However . . .

• There are massive historical handwritten text collections stored in
hundreds of kilometers of shelfs in archives and libraries

• According to some speculations, the amount of existing handwritten text
is (much) larger than the total amount of (original) machine printed text,
including digitally born documents!

• Important (textual) information is hidden behind digital images and these
historical documents and thereby remain practically inaccessible

HTR may help alleviating this situation
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Resources: Some Interesting Web Sites

• http://read.transkribus.eu
The HTR READ Horizon 2000 European project

• http://transkribus.eu
TRANSKRIBUS is a general purpose, collaborative document
management and transcription tool, including automatic and
assisted HTR, initially developped in TRANSCRIPTORIUM

• http://transcriptorium.eu
The HTR TRANSCRIPTORIUM 7fp European project

• http://htk.eng.cam.ac.uk
HTK is a time honored, well known toolkit for the deveopment
of HTR systems based on N -gram language models and hidden
Markov optical character models

• http://kaldi.sourceforge.net/about.html
The (more modern, but also well known) KALDI speech
recognition (and HTR) toolkit

• http://www.speech.sri.com/projects/srilm
The SRI Language Modeling Toolkit (SRILM).
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Resources: Main References Used in this Lecture

Two recent books on Interactive Pattern Recognition,
Handwritten Text Recognition (HTR) and Interactive HTR:

• A.H.Toselli, E.Vidal, F.Casacuberta: “Multimodal Interactive Pattern
Recognition and Applications”. Springer Verlag, 2011.

• V.Romero, A.H.Toselli and E.Vidal: “Multimodal Interactive Handwritten
Text Transcription”, World Scientific, 2012.

See more specific bibliography at the end of this lecture .42
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HTR: Classical Pattern Recognition Architecture

Preprocesing Feature extraction Recognition

Models training

• Preprocessing: noise removal, line detection and geometric normalizations

• Feature Extraction: sequences of attribute vectors representing local shape

• Modeling: optical (hidden Markov) models + (N-gram) language model

• Recognition: Viterbi search
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Holistic, Segmentation-Free HTR System Overview

T R A I N I N G O P E R A T I O N
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Preprocessing and Feature Extraction for Off-Line HTR

• Page or text-block preprocessing: background removal, noise
reduction, skew correction and text line detection.

• Line preprocessing: Slope/slant corrections and (non-linear) size
normalization.

• Feature Extraction: Process line-shaped images through a sliding
window to obtain a sequence of feature vectors. Many approaches
proposed; some examples:

– Grey-level and its Gradient [Toselli et al.]

– Grey level and local morphology heuristic features [Bunke et al.]

– Moment-based normalization + PCA of column greylevels [Ney et al.]
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Statistical Framework for HTR

Handwritten Text Recognition: Given a stream of feature vectors
representing a text (line) image, x, and a set of models,M (optical character
models, lexicon and language model), obtain a most probable transcript of
x; i.e., a sequence of words ŵ:

ŵ = argmax
w

PM(w | x)

Using the Bayes rule (and droppingM to simplify notation):

ŵ = argmax
w

P (w, x)

P (x)
= argmax

w
P (w)P (x | w)

Popular models:

• P (w): N-Gram Language Model

• P (x | w): Optical character HMMs [recently also (recurrent) NNs]

Balancing models impact in practice: Grammar Scale Factor
ŵ = argmax

w
P (x | w)(1−γ) · P (w)γ ≡ argmax

w
P (x | w) · P (w)α
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HTR Integrated Architecture
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Search engine:

THE VITERBI ALGORITHM (+ beam search + ...)
(also called “token passing” algorithm)
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Lexicon, Language Model and HMM Integration (illustration)
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P (w, x) = P (w)P (x | w)
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Training HTR Models

• Language Model, P (w): N -gram training from the tokenized transcripts
of the text images (and possibly other relevant “external” texts)

• Lexicon: set of words in the tokenized training text (possibly extended
with relevant “external” vocabularies), spelled in terms of characters,
including one (or more) white-space “character(s)”

• Optical character HMMs: “embedded Baum-Welch training” from pairs
of text line images and their corresponding transcripts. No segmentation
of the training images into words or characters is needed
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HTR Experiments with Real Historical Manuscript Collections

• PLANTAS: XVII century botanical specimen manuscript collection
of seven volumes written by a single hand in Old Spanish – kindly
provided by the BNE

• ESPOSALLES: XVII century Marriage License records written by
several hands in old Catalan and other languages

• HATTEM: XV century Medieval Manuscript composed of 573
sheets written by a single hand in Dutch

• REICHSGERICHT: XVIII century court decisions from the High
Court of Germany, written by several hands in German

• BENTHAM: XVIII/XIX centuries collection of over 4, 000 volumes
of drafts and notes, written by several hands in English

• AUSTEN: XVIII century Juvenilia manuscripts by Jane Austen
(single hand in English) – kindly provided by the BL
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“PLANTAS” Dataset
XVII century Botanical Specimen Manuscript Collection of seven volumes written

by a single writer in Old Spanish

Experiments on the first volume

Number of: Total
Pages 871
Lines 19 544
Running words 197 617
Lexicon size 21 148
Character set size 77
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“ESPOSALLES” Dataset
XVII century Marriage License collection of several volumes

Experiments on the volume 69 written by a single writer in old Catalan

Number of: Total
Pages 173
Lines 5 447
Running words 60 777
Lexicon size 3 465
Running characters 328 229
Character set size 85
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“HATTEM” Dataset
XV century Manuscript composed of 573 sheets written by a single writer in Dutch

Experiments on 40 randomly selected pages

Number of: Total
Pages 40
Lines 1 552
Running words 10 330
Lexicon size 2 602
Running characters 42 712
Character set size 60
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“REICHSGERICHT” Dataset
XVIII century court decisions from the High Court of Germany,

written by several hands

Number of: Total
Pages 114
Lines 4 106
Running words 31 545
Dataset lexicon 8 108
Running characters 239 762
Character set size 92
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“BENTHAM” Dataset
XVIII century collection of over 4, 000 volumes of drafts and notes, written by

several writers in English

Experiments on a first batch of 433 pre-selected page images

Number of: Total
Pages 433
Lines 11 473
Running words 106 905
Lexicon size 9 717
Running characters 550 674
Character set size 86
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“AUSTEN” Dataset
Jane Austen’s Juvenilia: XVIII century single hand manuscript

Experiments on Volume The Third

Number of: Total
Pages 128
Lines 2 693
Running words 25 291
Dataset lexicon 3 567
Running characters 118 881
Character set size 81
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HTR Empirical Results (as of 2014)

• PLANTAS: Training: OMs with 224 pages, LM Lex. 21K words. Test: 647 pages.
WER = 33.4 % CER = 16.0 % Running OOV rate: 12%

• ESPOSALLES: Cross validation on 173 pages, LM Lexicon ≈ 3.3K words.
WER = 16.1% CER = 9.9% ROOV: 5%

• HATTEM: Cross-validation on 40 pages, LM Lexicon ≈ 2.5K words.
WER = 33.8 % CER = 15.2% ROOV: 20%

• REICHSGERICHT: Training: OMs with 88 pgs, LM Lexicon 5K words. Test: 26 pgs.
WER = 33.3 % CER = 12.9 % ROOV: 10%

• BENTHAM: Training: OMs with 400 pages, LM Lex. 10K words. Test: 33 pages.
WER = 24.6 % CER = 13.8 % ROOV: 5.3%

• AUSTEN: Training: OMs with 50 pages, LM Lexicon 20K words. Test: 78 pages.
WER = 35.3 % CER = 17.1 % ROOV: 3.6%
– AUSTEN: No training; just using BENTHAM models WER = 45.0 % CER = 25.5 %
– AUSTEN: Training with both AUSTEN and BENTHAM WER = 24.2 % CER = 11.7 %

LMs: Open-vocabulary bi-grams. WER/CER: percentage of mis-recognized words/characters
E.Vidal et al. – PRHLT/UPV Page 20
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Is Current HTR Accuracy Useful? (example 1 from Bentham)
HTR models trained with 350 pages. Lexicon: 8 660 words. WER≈7%, CER≈1%

That time the prices of divers articles necessary as materials
for she said intended Building as well as of divers articles
necessary for the maintenance of the said establishment • the
expence Of which maintenance for the first year was included in
the said estimate of £27,000 • may by the circumstances of the

Tokens with two or less character wrong in blue/red; with more than two, all in red
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Is Current HTR Accuracy Useful? (example 2 from Bentham)
HTR models trained with 350 pages. Lexicon: 8 660 words. WER≈24%, CER≈8%

As if there were a law • that he who room or
the Highway shall be pass one third of what he
taken The Traveller would suffer just as much
wish this Law as without it • the Robber • of convicts• •
would have nothing to do but so pay his third and

Tokens with two or less character wrong in blue/red; with more than two, all in red
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Is Current HTR Accuracy Useful? (example 3 from Bentham)
HTR models trained with 350 pages. Lexicon: 8 660 words. WER≈52%, CER≈30%

-tations for a Clause Jury because • as in effect
Appeal from a Judge Su ideal without a
Cause Jury • to himself on another Towns Of •••
To see threatens with a Thing especially • •• to the
difference between This sort of with a Appeal •

Tokens with two or less character wrong in blue/red; with more than two, all in red
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Is Current HTR Accuracy Useful?

• Accuracy of fully automatic HTR could be enough for some (or many?)
applications involving not too difficult documents

• Even if transcriptions are not perfect, they could be used to derive
adequate metadata that would roughly describe document contents

• Very accurate word spotting can be easily implemented using similar
segmentation–free, N -gram/HMM technology as in HTR.

However. . .

? Current automatic HTR accuracy is not enough for high quality trans-
cription of most (historical) handwritten text images of interest

– Human post-editing can be very expensive and hardly acceptable by
profesional transcribers (paleographers)

+ Computer Assisted, Interactive-Predictive processing offers promise for
significant improvements in practical performance and user acceptance.
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Computer–Assisted Transalation of Text Images (CATTI): example

x

ŝ ≡ ŵ antiguas     cuidadelas     que   en  el Castillo sus    llamadas       
p′ antiguas    cuidadelas     que   en  el Castillo sus    llamadas      

STEP-1 κ antiguos    cuidadelas     que   en  el Castillo sus    llamadas      
p antiguos    ciudadanos    que   en  el Castillo sus    llamadas       
ŝ antiguos    ciudadanos    que   en  el Castillo sus    llamadas       
p′ antiguos    ciudadanos    que   en  el Castillo sus    llamadas       

STEP-2 κ antiguos    ciudadanos    que   en  Castilla    sus    llamadas    
p antiguos    ciudadanos    que   en    Castilla     se     llamaban    
ŝ antiguos    ciudadanos    que   en    Castilla    se     llamaban       
p′ antiguos    ciudadanos    que   en    Castilla    se     llamaban       

FINAL κ antiguos    ciudadanos    que   en    Castilla    se     llamaban   #
p ≡ T antiguos    ciudadanos                                                       que    en     Castilla    se     llamaban       

Post–editing Word Error Rate WER: 6/7 (86%)
CATTI Word Stroke Ratio (WSR): 2/7 (29%), assuming whole-word corrections
Estimated Effort Reduction (EFR): 1− 29/86 (66%).
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Statistical Framework for CATTI

CATTI is an instance of Interactive Pattern Recognition (IPR):

• the input, x, is a feature vector stream representing a line image,

• the human feedback is a transcription prefix, here called p,

• a system hypothesis is a suitable continuation of p, here called
transcription sufix, s.

ŝ = argmax
s

P (s | x, p) = argmax
s

P (x | p, s) · P (s | p)

Modeling:

• P (x | p, s): optical HMMs
• P (s | p): prefix-conditioned N-Gram Language Model

Search:

• Direct, by repeated Viterbi decoding
⇒ Accurate, but prohibitively slow

• Using Word-Graphs obtained from one Viterbi decoding
⇒ Fast, at the expense of some accuracy loss
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CATTI Empirical Results (as of 2014)
• HATTEM: Cross-validation on 40 pages

WER = 33.8 % CER = 15.2 % WSR = 26.8 % EFR: 20.7 %

• REICHSGERICHT: Training: OMs with 88 pgs, LM Lexicon 5K words. Test: 26 pgs
WER = 33.3 % CER = 12.9 % WSR = 25.1 % EFR: 24.6 %

• BENTHAM: Training: OMs with 400 pages, LM Lex. 10K words. Test: 33 pages.
WER = 24.6 % CER = 13.8 % WSR = 17.2 % EFR: 28.0 %

• AUSTEN: Training: OMs with 50 pages, LM Lexicon 20K words. Test: 78 pages
WER = 35.4 % CER = 17.1 % WSR = 22.0 % EFR: 37.7 %

WER/CER: percentage of mis-recognized words/characters.
WSR: Percentage of word-level corrections to achieve ground truth transcripts.
EFR: “Estimated Effort Reduction”.
Experiments with open-vocabulary lexica and bi-gram LMs.

• Estimated effort is reduced by 70–80% (100-WSR) wrt pure manual transcription

• In contrast with post-edditing, CATTI is much more user friendly, since it allows the user to be
always in command of the transcription process

• CATTI significantly reduces the estimated effort wrt post–editing (approx 20-40% EFR)
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HTR and CATTI Demonstrations

• It is just a “demo” ! not intended for real operation (other systems do that)

• Everithing is real. No tricks to make demo look better than real

• Web client-server architecture:
Web browser front-end, CATTI back-end server

• Off-line CATTI decoder based on wordgraphs

• Several tasks of increassing complexity
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Keyword Indexing and Search in Untranscribed Text Images

• Many massive handwritten text document collections are available
in archives and libraries, but their textual contents remain
practically inaccessible, “buried” behind thousands of terabytes of
high-resolution images

• If perfect or sufficiently accurate text image transcripts were
available, image textual content could be strightforwardly indexed
for plaintext textual access

• But fully automatic transcription results lack the level of accuracy
needed for reliable text indexing and search purposes

• And manual or even computer-assited transcription is entierely
prohibitive to deal with massive image collections

Good news: indexing and search can be directly implemented on the
images themselves, without explicitly resorting to image transcripts.
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Indexing and Search: A Hierarchical Model

• Indexing large document collections call
for a hierarchical organization of indices

• The lowest herarchy level should consist
of sufficiently small and practically
meaningful image regions, such as lines

• The precission-recall trade-off search
model requires word confidence mea-
sures to be properly defined at each level
of the hierarchy

• Confidence measures must be properly
normalized and homogeneous across
hierarchy levels

• A statistical KWS framework is intro-
duced to support the computation of the
required confidence measures

Ln01

Ln02

Ln03

Pg23 Pg25

Bk05Bk04

Books Collection
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Text Image KWS Statistical Framework: 2-D Posteriorgram

Main concept: Posterior word probability at pixel level, or “2-D Posteriorgram” :

P (v | X, i, j), 1 ≤ i ≤ I, 1 ≤ j ≤ J, v ∈ V

where X is a I × J sized text image, V is a vocabulary and (i, j) a pixel of X.

P (v | X, i, j) denotes the probability that a word v is written in a subimage of X
which includes the pixel (i, j). It can be directly computed by margizalization:

P (v | X, i, j) =
∑

B

P (v,B | X, i, j) ≈ 1

K(i, j)

∑

B∈B(i,j)
P (v | X,B)

where B(i, j) is the set of all the K(i, j) reasonably shaped and sized (and
assumedly equiprobable) boxes or subimages of X which include the pixel (i, j).

j

i

A few possible boxesB ∈ B(i, j). For v = ”matter”,
the thick-line box will provide the highest value of
P (v | X,B), while most of the other boxes will
contribute only (very) low values to the sum.

What is exactly P (v | X,B)?
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Computing the 2-D Posteriorgram by word classification

The 2-D Posteriorigram:

P (v | X, i, j) ≈ 1

K(i, j)

∑

B∈B(i,j)
P (v | X,B)

P (v | X,B) is the posterior probability (implicitly or explicitly) used by
any isolated word image classifier ; i.e, any system capable of solving
the following classification problem for a presegmented word subimage
of X bounded by B:

v̂ = argmax
v∈V

P (v | X,B)

Clearly, the better the classifier the better the estimated posterirorgram.

Notice: Directly obtaining a full 2-D posteriorgram in this way entails a formidable
amount of computation, but P (v | X, i, j) can be very efficient computed by
clever combinations of subsampling of (i, j) and choices of B(i, j) [see later].
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Pixel-level Posteriorgram (illustration)

P (v | X, i, j)

X

2-D Posteriorgram, P (v | X, i, j), for a text image X and word v =”matter”.

An accurate, contextual (n-gram based) word classifier was used to compute
P (v | X,B) ∀B ∈ B(i, j). This resulted in very low posteriors in a region of X
around (i=100, j=200), where a very similar word, “matters”, is written.
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Image Region KWS

• Posteriorgrams can be directly used for KWS: Given a threshold τ ∈ [0, 1],
a word v ∈ V is spotted in all image positions where P (v | X, i, j) > τ .
Varying τ , adequate precision–recall tradeoffs can be achieved

• But, for indexing purposes, we need the probability that a word v is written
within a pre-specified image region, such as a page, a column, or a line

A popular (but wrong!) idea: For a text image region X, use the word
posterior probability P (v | X)

This is ill-defined, because
∑

v∈V
P (v | X) = 1

. . . but, for each of the (many) different words v actually written in X, we
ideally want P (v | X) to be close to 1 : the sum should ideally be >>> 1 !

What is an adequate posterior probability for image region KWS ?
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Image Region KWS: Proper Probabilistic Formulation

Let X be a given image region and R ∈ {yes, not} a binary random variable.

We define the “R–posterior”, P (R |X, v), which denotes the probability that
X is relevant for v; i.e., v is written somewhere in X.

It is computed as [this is the short history – see formal details here .34]:

P (R | X, v) ≈ max
i,j

P (v | X, i, j)

. . . a formal result which is also intuitively meaningful (see page .33 )!

Now:
∑

v∈V
P (R | X, v) = m

where m (generally much greater than 1) is the expected number of words
from V written in the image region X.
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Choosing Adequate Minimal Image Regions: Line-level KWS

Lines are useful image regions for indexing and search in practice; and they allow
for efficient computation by clever vertical subsampling and choosing B(i, j):

• Vertical subsampling: In general, it amounts to just guessing a proper line height
and then runing a vertical-sliding window of this height with some overlap

• Choosing B(i, j): For a line-level region, blocks needed to compute the
posteriorfram by marginalization can be just defined by horizontal segmentation

Line-level posteriorgrams are very efficiently computed using Word Graphs,
obtained as a byproduct of Viterbi or “token-passing” decoding of line images.

This has two important benefits in order to compute posteriorgrams by marginalization:

• Optical (HMM) Character Models and (N-gram) Language Models are used to provide very
accurate, contextual word classification probabilities, P (v | X,B)

• WGs provide lots of alternative horizontal word-level segmentations, which directly defineB(i, j)

Line region R–posteriors are directly computed from the corresponding posterior-
grams. They can in turn be easy and consistently combined to obtain page-level
R–posteriors (. . . and so on for chapters, books, etc., for hierarchical indexing)
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Line-level Posteriorgram (illustration)
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For a given line-level image region, x (on top), the posterior probabilities P (v | x, i) of a few
words (v) are shown as a function of the horizontal image position (i).

These posteriors are computed by marginalization over large amounts of horizontal word
segmentation hypotheses provided by a Word Graph obtained from x.
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HTIS Laboratory Results on Several Collections

– Recall-Precision curves
– Average Precision (AP)
– Mean Average Precision (mAP)
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Datasets training and test details

• BENTHAM: Multi-hand. Training: 400 pages
from Bentham, 87 char. HMMs, 2-gram LM
trained on Bentham texts; Lexicon 9 341 tokens.
Test : 33 pages; query set: 6 962 keywords

• PLANTAS (VOL-I): Single hand. Training: 224
pages from Plantas, 77 char. HMMs, 2-gram
LM trained with the training set + book glossary
transcripts. Lexicon 11 561 tokens.
Test : 647 pages; query set: 9 945 keywords

• AUSTEN: Single hand. Training: 50 Austen
pages, 81 char. HMMs, 2-gram LM trained on
Austen texts; Lexicon 20K tokens.
Test : 78 pages; query set: 2 281 keywords

• AUSTEN-B: Single hand. No training; using
Bentham character HMMs, lexicon and LM.
Test & query set: Same as for AUSTEN
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Handwritten Text Images Indexing and Search: Demonstration

• It is just a “demo” ! not (yet) intended for real operation. But
everything is real – no tricks to make demo look better than real

• Line-level indexing according to the precision-recall trade-off model :
Rather than exact searching, search is carried out with a
confidence threshold, specified by the user as part of the query
in order to meet the required precision-recall trade-off

• Word confidence scores are based on pixel-level probabilities and
computed for line-shaped regions. Spotted word positions are
marked only approximately

• Several collections: AUSTEN, PLANTAS, WIENSANKTULRICH, . . . etc.
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Conclusions

HTR Holistic optical and language modeling statistical technology:

• Accuracy of fully automated HTR can be enough for some applications and,
in general, as a tool for building metadata for rough contents description

Interactive-Predictive HTR technology:

• Current fully automatic HTR accuracy is not enough for high quality
transcription of most handwritten historical text images of interest

• Human post-editing can be very expensive and hardly acceptable by
profesional transcribers (paleographers)

• Computer Assisted, Interactive-Predictive HTR offers promise for significant
improvements in practical performance and user acceptance

Keyword Search technology:

• Accurate keyword indexing and search in untranscribed images based on
confidence scores obtained using holistic HTR models and techniques
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