Introduction to Bayesian Inference and
Gaussian Processes

Perry Groot

Radboud University Nijmegen
perryl@cs.ru.nl

Computational Intelligence and Learning Doctoral School
Université catholique de Louvain, Louvain-la-Neuve
3 Feb 2014



Linear Regression

Regression

m DataD = {(x;,y))|li=1,...,n};
m Input space X C RY; Output space Y C R
m Goal is to:

m Learn functional relationship between X and

f:x—=Y

m Predict unknown target values given new input values



Linear Regression
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Regression

m How do we learn a functional relationship from a finite
number of observations?

m Given a model, how do we determine the predictive
quality of the model?



Linear Regression
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Regression

m Linear regression model:
f(x; wo, wy) = wy X + wp

m Values for free parameters wy, wy need to be defined
given the observed data
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Regression

Loss function

m Identification of model parameters can be done by a
loss function that defines the miss-match between the
output of the model and observed target values.

m Mean Squared error loss

N

1
NZ Yn — f(Xn; W07W1))2
n=1

m Mean Absolute error loss

1
N Z [Vn — f(Xn; wo, Wi )|
=1



Loss function
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Regression
" Y1 1T X
_ [Wo | I
-Letw—[WJ,Y— L X= 0
YN 1 Xn
m Then f(X; w) = Xw
m Mean Squared Error (MSE) loss

*(y Xw)(y — Xw)

m How do we minimize the MSE?



Loss function
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Regression m W minimizes the MSE when the gradient of all its partial
derivatives is zero

OMSE _ a%jvfi _ %Z%ﬂ(“xm Wo, W1) — ¥n)
ow 88w1 2>y (F(Xn; wo, wr) — ¥in)

= —%XT(y— Xw)=0

=w=X"X)""XTy
m The Hessian g;"gfﬁ = 2 X7 X is positive definite when
X' X is invertible, and therefore W is a minimum




Polynomial Regression
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m We could also assume a polynomial form

Regression

K
O w) = wixX + -+ wax® + wix + wp =) wix’
i—0
1 x5 x3 xN
X=1: :
1 xv x5 - x

m Model linear in parameters

m Non-linear model because of a non-linear
transformation of the inputs



Linear and Polynomial Regression

p e m parametric regression model: f(x; w)
Regression u Linear mOdelI f(X, W) == WTX - Z_/d:O VV])(]
m Polynomial model: f(x; w) = Z;Ko wx/

m Loss function: £(w) = XN, (y; — f(x;; w))?
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Supervised Learning: Regression
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Regression

There are a couple of disadvantages:
m Lack of error bars on predictions
m Problem of overfitting

Overfitting can be avoided by using simpler models, but its
predictive performance may be poor.



Probability Theory
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Probabilistic
Inference

m Probabilities provide a means to represent uncertainty,
e.g., ‘the probability of rolling a 6 with a die is 1/6'.
m Two views: frequentist and Bayesian

m Frequentist: frequency in long run of experiments
m Bayesian: a degree of belief



Probability Theory
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Probabilistic

Inference m probabilities are non-negative: p(x) > 0,
m probabilities normalize: >, p(x) =1,

m sumrule: p(x) = > p(x,y),

m product rule: p(x, y) = p(x|y)p(y) = p(y|x)p(x),
m joint probability distribution: p(x, y),

m conditional probability: p(x|y) = p(x, y)/pP(¥),

m Bayes rule: p(y|x) = p(x|y)p(y)/p(x).




Probability Densities

Propabilictc m A continuous variable X has a probability density
Inference function (pdf) fX when

b
p(x € (a,b)) = / fie(x)alx

m and has cumulative distribution functon Fx when

FX(x):/_X fx(u)du



Probability Densities

Probabilistic
Inference




Gaussian Distribution

m probability density functions

Probabilistic

Inference 1 (X - M)z
N(X,,LL,O') - \/27_‘_7 exp (_ 252 )

N ) = o g @0 (—50x— ™= e )

m cumulative density function

Sxipio?) = o(x /) = [ olzip.of)az



Gaussian Distribution
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Let x and y have a joint normal distribution

i X u] A C
R(R)
Then the marginal distribution of x is
X ~ N(px, A)
and the conditional distribution of x given y is

X|y ~ N(ux+CB™'(y — uy),A— CB'CT)




Expectation and Variance
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Probabilistic
Inference

m In general
E[fl => p(x)f(x) or E[f] =infp(x)f(x)dx
var[f] = E[(f(x) — E[f(x)])?] = E[f(x)?] - [f(x)]?

m Notation: (f)q = Eq[f] = [ f q(f)df



Probabilistic Regression

Perry Groot m Express uncertainty over the target values using a
probability distribution

Probabilistic

Inference y = f(X; W) + €, €~ N(O, 0'2)

m Interested in how likely are the observed outputs given
the inputs and model parameters

m Likelihood of an observation is the conditional
probability p(y|x, w, o)

m Data likelihood (assuming independent measurements)
is given by the likelihood function

N N
p(y|X7 w, U) = H p(yn‘xn, w, U) = HN(yn. f(Xn; W)7U)

n=1 n=1



Probabilistic Regression
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N
i p(y|IX,w.o) = T N (¥n: f(Xn; W), 0)

n=1

m Data can be made more likely under the model by
optimizing the parameters

m Easier to use log-likelihood £ = log p(y|X, w, o)

N 1 O 2
—5 log2r — Nlogo — - > (Y — f(xn; W)

n=1



Maximum Likelihood
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m Log-likelihood is maximized by setting the partial
derivatives to 0
oc 1

B = ?(XTy —X"Xw)=0

Probabilistic
Inference

m Hessian is strictly negative implying a maximum

5L 1

o T
owowT — _ﬁx X

m Maximum-likelihood (ML) solution

Wy, = (XTX)"'XTy



Maximum Likelihood
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Probabilistic
Inference

m The ML estimate 6y, can be obtained analogously

m Since we have a probabilistic model, new predictions
are expressed in terms of a predictive distribution
instead of a point estimate

p(y|X, W, L) = N (v F(x; W), 6511)



Maximum a Posteriori
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orobabiistic m Could go one step further by introducing a distribution
Inference over parametel’S

p(w|a) = N (w;0,a7'1)

where the parameters controlling the distributions of
parameters are called hyperparameters

m Using Bayes’ rule p(w|X,y,a,0) < p(y| X, w,o)p(w|a)
the most probable value wysp can be obtained using
similar strategies



Bayesian regression

Perry Groot Bayes’ rule to obtain a posterior distribution:

X, w,o®)p(w
Probabilistic p(wly, X, 02) — p(y|p(y|x Ug:)o( )

Inference

predictive distribution

Py |Xe,y, X, 0%) = / P(y. X, w,0®)p(wly, X, 0%) dw

m All parameters contribute to a prediction

m Good generalization performance and robust to
overfitting

m Allows for error bars on predictions



Weightspace view

Assuming a probability distribution over w ~ N'(u, X) leads
Probabilistic to a probability distribution over functions f(-; w)

Inference
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Weightspace view

Which leads to a distribution at each test point

Probabilistic
Inference
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Functionspace view
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Instead of taking a distribution over weights, we can also
directly consider distributions over functions. We will
et consider the following model y; = f; + ¢; with € ~ A(0, 0?)

Inference

length-scale 0.5

£(0.5)




Gaussian Processes
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A Gaussian process (GP) is collection of random variables
{fi} with the property that the joint distribution of any finite
subset has a joint Gaussian distribution.

Gaussian
processes

A GP specifies a probability distribution over functions
f(x) ~ GP(m(x), k(x, x’)) and is fully specified by its mean
function m(x) and covariance (or kernel) function k(x, x’).

Typically m(x) = 0, which gives
{f(x1),...,f(x))} ~ N(0, K) with Kj; = k(x;, X))



Gaussian Processes - Covariance function

Squared exponential (or Gaussian) covariance function:

N
1
k(x,Xx') = exp (—%2 > (xn— x;,)z)
n=1

S;’;‘,‘;?S‘:Qs where / is a length-scale parameter denoting how quickly
the functions are to vary.

length-scale 0.5 length-scale 2
15 0.5

1




Gaussian Distribution

Gaussian

processes m Let’s consider a Gaussian with a particular distribution

m Generate a single sample from this 25 dimensional
distribution f = [f1 , f2, Ceey f25]

m plot these samples against their indexes




Gaussian Distribution Sample
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Gaussian
processes

n

Left: 25 dimensional correlated random variable plotted
against index. Right: colormap showing correlations
between dimensions.



Covariance function
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o m Covariance matrix shows correlation between points f;
aussian . . .
processes and ); if / is near toJ.

m Less correlation if i is distant from j.

m Ordering of points means that the function appears
smooth.

m We will focus on the distribution of two points.



Prediction of > from f,

Gaussian
processes

_17

Figure: Covariance for {?] is Kip = { 1 0.966}
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Prediction of > from f,

Gaussian
processes
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Prediction of > from f,

Gaussian
processes
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Prediction of f5 from f;

Gaussian
processes

Figure: Covariance for [g] is Kis = { ! 0574}
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Gaussian
processes

Prediction of f5 from f;
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Gaussian
processes

Prediction of f5 from f;
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Gaussian Processes - Posterior process

e A priori, given data D = {X, y} with y = f(X) and test
points X, we have

oo | kR ki )

and after conditioning
f(X*)‘X*,X,y ~ N(Ua 2)
with

po =KX, X)KX, X) 1y
T = K(X., X.) — K(X., X) K(X, X) " K(X, X.)
—_——

o(r)



Gaussian Processes - 1D demo
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Gaussian Processes - Sampling

Perry Groot

How to sample functions from a GP(m, K)?

This can done using the Cholesky decomposition, which is
a lower triangular matrix L such that LLT = K

L = chol(K)T;
u~ N(0,I);
f=m+LuT;

Then E[f] = m + LE[u’] = m and
var(f) = var(Lu™) = E[Lu"uL"] = LE[uu"|LT = LILT = K



Gaussian Processes - Sampling

Sampling




Model Selection: Hyperparameters

The kernel function and likelihood may depend on additional
parameters (hyperparameters) that need to be set

Model Selection

How to choose the best hyperparameters 67



Model Selection: Marginal Likelihood

For learning kernel parameters we typically optimize the
maximize the marginal likelihood. For regression:

Model Selection

l0g p(y|X,6) = — > log |K| — LyTKy — Zlog 2
2 2 2



Model Selection: Example
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Model Selection: Example
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Model Selection: Example
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Model Selection: Example
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Model Selection

log-likelihood
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Model Selection: Example
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log-likelihood

Model Selection
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Model Selection: Example
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Model Selection: Example
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log-likelihood

Model Selection

1
length scale

1 1 n
log p(y|X,0) = —5 log|K| - 5y Ky — 5 log2r



Model Selection: Example
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log-likelihood

Model Selection
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Model Selection: Example
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log-likelihood

Model Selection

1
o length scale

1 1 n
log p(y|X,0) = —5 log|K| - 5y Ky — 5 log2r



Classification
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m GPs can alo be used for classification, but

computations are intractable (needs approximations).
m The idea is to squash a regression function in the
domain (—oo, o0) to the domain [0, 1]

m Logistic regression: \(x"w) with \(z) = Hex‘m

m Probit regression: ®(z) = [*_ N(x[0,1)dx

Classification




Laplace Approximation
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Approximates the posterior at the maximum a posteriori
(MAP) estimate of the latent functions: f

f = argmaxp(f|D)
p(D[f)p(f)
p(D)
p(DIf)p(f ))
p(D)
= argmax; log p(D|f) + log p(f)
= argmax;V(f)

= argmaxy

Approximations

= argmax; log <



Laplace Approximation

V(f) = log p(D|f) + log p(f)
B BV = n
= log p(D|f) 2f K™'f §Iog\K]—EIog(Zw)

U(f) ~ W) + = (f - HTVVe((f)(f - )

Approximations ~ \I}'(?) _

(F—=HTIK + W(f-7F)

N =N —

p(f|D) o< p(D|f)p(f) = exp(¥(f))
~ exp <w(?) - %(f ~HTK + W|(f - ?))

< N(F,(K-"+ W)™




Expectation Propagation
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m The posterior p(f|D) = % is intractable
m EP approximates the likelihood by a Gaussian
distribution making the posterior tractable
m Local likelihood approximations
p(yilf) = ti(flZ, fii, 57) = ZN (£ fii, 57)

Approximations

m Approximation is iteratively updated

m In the Gaussian case the update step turns out to be
the same as moment matching




Variational Approximation

Perry Groot Given observations y and latent variables f, in variational
inference we have the following fundamental relation

F(q(f)) = log p(y) — KL(q(f)[|p(f]y))

where

F(q(h) = / a(F)log PV 4 <|Og p(f, y)>
q

q(f) q(f)

Clearly F is a lower bound of log p(y) and minimizing the
KL divergence is equivalent to maximizing F. Since
p(f,y) = p(y|f)p(f) we can equivalently write

Approximations

F(q(f)) = (log p(y|f)) 4 + (log p(f)), — (log q(f)),



Gaussian Variational Approximation (GVA)
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If we restrict g ~ N(m, V) and p(f) ~ N(0, K) a zero-mean
Gaussian process we get

F(a(f) = (g plylN)g + 510g VK"

n 1 1. 4 1 1
+§—§mK m—ETr(VK )

Approximations

If the likelihood factorizes p(y|f) = [ p(yi|f;) then
V=(K'1+A)"

with A diagonal (i.e., 2n variational parameters).
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m GPML: Gaussian Processes for Machine Learning
Rasmussen, C.E. and Nickisch, H. Gaussian
Processes for Machine Learning (GPML) Toolbox,
JMLR, 11 (2010) 3011-3015.

m GPstuff: Vanhatalo, J. Riihim&ki, J. Hartikainen, J.
Jylanki, P. Tolvanen, V. and Vehtari, A. GPstuff:
Bayesian Modeling with Gaussian Processes. JMLR,
14 (2013) 1175-1179.



Covariance functions

GPstuff

number of elementary functions 3 10 1

sums of elements, masking of inputs x x x

delta distance x x

products, positive scaling of elements x x

Mean functions

number of elementary functions 1 1 0

sums of elements, masking of inputs x x

products, power, scaling of elements x

marginalized parameters x

Single latent likelihood/observation models

Gaussian x x x

logistic/logit, erf/probit x x MCMC

Poisson x LA/EP/MCMC ~ MCMC

Gaussian scale mixture MCMC MCMC

Student-t x LA/VB/MCMC

Laplacian EP/VB/MCMC

mixture of likelihoods LA/EP/MCMC
h-squared, uniform for cl x

derivative observations

binomial, negative binomial, zero-trunc. negative binomial, log-Gaussian
Cox process; Weibull, log-Gaussian and log-logistic with censoring

quantile regression

for sexp covf only
x

MCMC/EP



Multi likelihood /, ion models
‘multinomial, Cox proportional hazard model, density estimation, density  MCMC /LA
ion, input noise, input overdispersion in

Weibull, zero-inflated negative binomial
multinomial logit (softmax) MCMC/LA MCMC
multinomial probit EP MCMC
Priors for parameters (1))
several priors, hierarchical priors x x
Sparse models
FITC 3 exact/EP LA
CS, FIC, CS+FIC, PIC, VAR, DTC, SOR x
PASS-GP LA/EP
Latent inference
exact (Gaussian only) x x x
scaled Metropolis, HMC X X
LA, EP, elliptical slice sampling x x
variational Bayes (VB) x
scaled HMC (with inverse of prior cov.) x
scaled HMC (whitening with approximate posterior covariance) x
parallel EP, Robust-EP X
marginal corrections (cm2 and fact) x



Hyperparameter inference

Type IT ML x x x
type II MAP, Metropolis, HMC x x
LOO-CV for Gaussian x x

least squares LOO-CV for non-Gaussian some likelihoods

LA/EP LOO-CV for non-Gaussian, k-fold CV x
NUTS, slice sampling (SLS), surrogate SLS, shrinking-rank SLS, x
covariance-matching SLS, grid, CCD, importance sampling

Model

marginal likelihood MAP,ML ML
LOO-CV for fixed hyperparameters x x
LOO-CV for integrated hyperparameters, k-fold CV, WAIC, DIC x

average predictive comparison x



Transformation of Parameters

Perry Groot

A constrained optimization problem, e.g., @2 > 0 can often
be transformed into an unconstrained optimization problem.
If w= f(6) then

pw(w) = |J|py(f (w))

with J the Jacobian of the transformation between
parameters
For example, if w = log(c?) then w € (—o0, o0) and

Pu(w) = P,z (exp(W)) = 0°p,2(0?)




Gaussian Process Applications

Perry Groot

Relational Learning
Reinforcement Learning
Visualization high dim. data
Nonrigid Shape Recovery
Evaluating Integrals
Dynamic systems

m Clusterin

m Ordinal Regression
m Preference Learning
m Ranking .

m Surrogate modeling
m Global Optimization
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% o~
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Multiple Annotators

Multiple annotators



Multiple annotators
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Instead of 1 annotator, we have M annotators.
Items can be annotated by 1 or more annotators.
Each annotator has its own noise level, expertise etc.
How to combine annotations into a prediction?

Recent growing interest in this type of problem (e.g.,
Mechanical Turk)

Multiple annotators



Multiple annotators

real function and observations
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Multiple annotators

Perry Groot Let X - [X1 geeey XM], Y = [Y17 .
write [V, £.] = [Vi,..., Yu £]7 ~

., Yu]. A priori we can

0] [K(Xi,X1)+o5l - K (X1, Xu)

N : 7 : :
0 K(Xu, X1) o K(Xu, Xm) + ooIu
0 KOG X))  K(Xe, Xa)

with I, the Ny, x Np, identity matrix. Let the diagonal matrix
N = diag(diag(o%l4), . .., diag(o%Iu)). The predictive
Mol cquations are thus given by

fo= KX, X)[K(X,X)+N]'Y
cov(f.) = K(X., X,) — K(X., X) [K(X, X) + N7V K(X, X.)



Multiple annotators

Let X = UM, X, Y = [V4,..., Yul. Define

1 1
a2 "o
oy . Om
m
N A2 Yi
.yl = Ui Zo_iu
m~i M

S = diag(62,...,6%)

Multiple annotators

with / the number of elements in X and m ~ i denoting all
annotators m that annotated x;.



Multiple annotators
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The predictive equations are then given by

_ 11 A
F. = K(X., X) [K(x, X) + z} %

B
K(X., X.) — K(X., X) [K(X, X) +z} K(X,X.)

cov(f,) = [
and negative log-likelihood —log(Y)
1 S I av1¢ N
5 log |K +X| + —Y(K+ L) 'Y+~ Iog(27r)
7 y
i o Z 6-7;2

— 5 log|%| —ZZIog—vL ZZZ
j i

i m~i i m~i




Multiple annotators

prediction

Multiple annotators




Multiple annotators

Accuracy comparison between different regression models

B —<— Multi-Annotator

— % — Averaged Training Data
Annotator 1

—+— Annotator 2

B —&— Annotator 3

—— Ann. 1-3 Weighted (inv. var)

=)

O\ i b

RMSE (targets)

Multiple annotators

10 20 30 40 50 60 70 80 90 100
percentage of annotations for each annotator



Multiple annotators

Multiple annotators

RMSE (hyperparameters)
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Censored Observations



Censoring

Goal is to learn a function
f:RP =R
given a set of censored observations
D ={(x1,y1),---+(Xn, ¥n)}
where y is a censored version of y*:
I ify* </

y=x% y* ifl<y*<u
u ity*>u



Censoring

Censoring




Censoring

Censoring




Censoring

Tariyy ot Assume that latent function values are contaminated with
Gaussian noise with zero mean and unknown variance.

Likelihood becomes a mixture of Gaussian and probit
likelihood terms:

L= TTewin - 1 [1 -9 (ﬂ;lﬂ

i=1 y,':/

I (")

I<yi<u

I ()]

yi=u

which is well-known as the Tobit likelihood.



Censoring

Censoring




Multi-step Prediction in Dynamic Systems



Dynamic Systems

Consider a dynamical system

Xep1 = f(ut, Xt) Yi =Xt + €

with sytem state y and control u at time step £, and ¢
typically Gaussian white noise.

Dynamic Systems



Dynamic Systems

Perry Groot

Training data can be obtained from system observations:

u(l) y(1) y(2)
u2) y(@) y(3)

=k (k) N ik 1)
U(N) y(N)] YN+ 1),

Test data is constructed in similar fashion.



Naive multi-step prediction

Dynamic Systems




Forecasting with Noisy Inputs
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Standard Gaussian process predictive equations:
1 = Kn(Kw + 0?7y,
Uf = K — Kin(Knn + 0'2’)71KN* + 02

If the input is given by a distribution p(x.|m, V) ~ N (m, V),
the predictive distribution is given by integrating over the
input distribution:

p(f.jm,V,D) = /p(f*|x*, D)p(x.|m, V) dx,



Forecasting with Uncertainty Propagation

/ p(f.|.. D) p(x.|my, Vi) dx,

nonlinear Gaussian

non— Gaussian

Q

N(myq, Vigq)

p(f*|ml‘+1a Vf+17D) =



Propagating Uncertainty

Input distribution is given by p(x7.n|Y7) ~ N(UT4n, ST10)-

Att=T +1
uryq = [}’T+1—L,- . '7.yT]7
O ... 0
St =
o ... 0
and

PYT+11YT) ~ N(1(urs1), 02 (Urs1) + 0?)



Propagating Uncertainty

Att=T+2

Urio = [YTeo—t, - Y1 p(Ur41)]

Sti2= :
o ... 02(UT+1) + O'g

and

p(yTi2|YT) ~ N(m(ur 2, Sty2), V(UT 2, ST12) + 07)



Propagating Uncertainty

Att=T+k

Utk = [M(UT k-1, ST4k—L),s - -, M(UT k-1, ST4k—1)]
V(UT k-1, ST4k—1) + 02 .. coV(YTikoLs YT+k—1)
Stik = : :
coV(YTih—L, YT4k—1) oo V(UT4k—1, ST4k—1) + 02

A GP with Gaussian kernel and Gaussian input distribution allows
my.1, Vi1 to be computed analytically.

Dynamic Systems



Dynamic Systems

Perry Groot

Dynamic Systems




Dynamic Systems
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High- and Low Fidelity Observations

Multi-fidelity Analysis



Multi-fidelity Analysis

Direct GP learning
201

Multi-fidelity Analysis
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Multi-fidelity Analysis

Multi-fidelity Analysis




Multi-fidelity Analysis

We will use the following model:

Yn(X) = pyi(x) + d(x)

with p a scaling parameter and d(x) a GP modeling the
difference yp(x) — pyi(x). We assume

cov{ Ya(X'), Yi(x)| Yi(x')} = 0,%x # X

and /, d independent GPs.

Multi-fidelity Analysis



Multi-fidelity Analysis

The covariance for the high-fidelity model can than be
computed on Y = [Y(X)), Ya(Xn)] using

cov{ Yi(X1), Yi(Xi)} = cov{l(Xi), [(X))} = Ki(X, Xi)
cov{ Yh(Xh), Yi(X))} = cov{pl(Xp) + d(Xn), [(Xi)}
= peov{l(Xpn), I(X1)} = pKi(Xh, Xi)
cov{ Ya(Xn), Ya(Xn)} = covipl(Xn) + d(Xn), pl(Xn) + d(Xn)}
= pPeov{I(Xn), I(Xn)} + cov{d(Xn), d(Xn)}
= p?Ki(Xh, Xn) + Ka(Xn, Xr)

\\\\\\\\\\\\\\\\\\\\\\\\



Multi-fidelity Analysis

The covariance matrix Kj is thus given by

K, — Ki(Xi, X;) pKi(X), Xn)
pKi(Xn, X)) PP Ki(Xn, Xn) + Ka(Xn, Xp)
and we can make predictions

Ve = Kn(Xe, X)Kn(X, X) 1Y
COV(yh*) = Kh(X*a X*) - Kh(X*a X)Kh(xv X)_1 Kh(Xv X*)

Multi-fidelity Analysis



Multi-fidelity Analysis

Multi-fidelity learning
201

Multi-fidelity Analysis




Gaussian Process Surrogate Models

Surrogate Modeling



Surrogate Modelling with GPs

Perry Groot
Complex (physical) systems can be studied nowadays by
computer simulations, but often need long running times.

Figure: 1. Car collision; 2. Turbulent-mixing dynamics of a
supernova; 3. Gas cloud collapsing inwards to form a star.

Surrogate Modeling



Surrogate Modelling with GPs

Perry Groot

Idea: replace costly simulation model by a fast Gaussian
process surrogate model.

Choose function evaluations in a "smart way" (e.g., reducing
overall variance) to obtain a good model fit.

Sometimes, however, we are not interested in a good global
model, but only in one specific point (e.g., the best
parameter setting).

X = argmax, f(X)

Surrogate Modeling



Function Optimization

Perry Groot

Let fnax = max{f(x1),...,f(xn)} be the best value so far.
The improvement at a new point y = f(x) is defined as

/(X) = max{O, f(X) - fmax}

Using the GP prediction y = f(x) ~ N (m, s?) we obtain the
Expected Improvement (El):

()~ { {1 - 00D+ () 5> 0

with d = (fmax — m)/s and where ®() and ¢() denote the cdf
el and pdf of the standard normal distribution.



El - 1D example

Surrogate Modeling




Gaussian Process Integral Predictions



Bayesian Monte Carlo and Optimization

Perry Groot

Suppose we want to introduce a
new cake mix into the consumer
market which is robust to an
inaccurate setting of oven
temperature and baking time.

3 Control variables: The amount of
flour (F), the amount of sugar (S),
and the amount of egg powder (E).

2 Noise variables: Oven
temparature (T) and baking time (t).




Problem Setting

Assume some underlying, unknown real-valued function,
that can be evaluated

f(Xc, Xe) > R
Our optimization problem can be formulated as

x; = argmax, E[((xc)]

= argmax, fxe f(Xc, Xe)P(Xe) dXe



Bayesian Monte Carlo

Perry Groot

We can think of F as being random as we are uncertain
about f(x) because we have a limited number of samples
[O’Hagan, 1991; Rasmussen & Ghahramani, 2003].

The integral is then a Bayesian inference problem:
m put a prioron f,
m for observations, evaluate f in a number of points

m combine the prior and observations into a posterior
distribution over f (which implies a distribution over F)



Perry Groot

Bayesian Monte Carlo

When the prior f and posterior f|D are GPs, the distribution
of F is Gaussian, F ~ N (F,cov(F)), and is fully
characterized by its mean and variance.

Sometimes the problem can be reduced to products of one
dimensional integrals and/or some analytic expression, e.g.,

p(x)  ~N(b,B)
k(x,x') = wpexp (—%(x - x)TA ' (x - x’))

with A = diag(w?, ..., w3).



Bayesian Monte Carlo - 1D demo

function f(x) = sin(x) + x/3 function g(x) = f(x) * p(x) integral int, g(x)
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Preference Learning



Preference Learning

Perry Groot

Problem: Given a data set of M pairwise preferences (i.e., a
set of pairs (x1, X2) and whether x1 > X2 or Xy < x> holds)

D = {(Xmy: Xy d)|1 < M < M, dy € {=1,1}}
predict for new instances x, y which one is preferred.

Idea: Assume a latent (utility) function f over instances that
preserves user preferences, i.e., basically f(x1) > f(x2)
when X1 > Xo.



Preference Learning

Bayesian framework

p(f|H)p(DIf, 1)

PUIDH) = == D)

with a likelihood function, for b € R, &y, d> ~ N(0, 02),
p(x1 = x2|f(x1), f(x2)) = p(f(x1) + 61 > f(X2) + b+ b2)
=®(2)

with
d(f(xq1) — f(x2) — b)

V20

Z =



Preference Learning

Applied to 14 normal-hearing and 18 hearing-impaired
subjects. Obtained significant improvement for predicting
preferences of hearing-impaired subjects.

Perry Groot

Subject nh1

S ="0s
N s
~"04 low

0.4 02

Subject hi12
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Preference Learning
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