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Introduction to Learning Theory.

Supervised learning problem

Notations
m LetSbe a set omtraining exampleg (x1,Y1), .., (Xm, Ym) }-

= Thex; values are typically vectors of the foraXxig, ..., Xp >, whose
components are usually callégatures Thex; are drawn from a feature
spaceX according to a given distributio®y .

m The y values (& ) are drawn from a discrete set ofasses
(classification) or are continuous values (regression).

m We assume that there existtaaget function f such that
y=f(x),¥(x,y) € X x ).

Definition
A supervised learning algorithinautomatically outputs fror® a classifier
(or a hypothesish € H about the target function
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Introduction to Learning Theory.

Empirical and generalization errors

Definition
The empirical error (or riskd, of a hypothesis € H is the proportion of
errors thath makes over the learning sam3e

1
“h=1g Z D) 2y

Definition
The (unknown) generalization error (or real rigk)of a hypothesi$ is the
error probability ofh over X according taDy .

eh = Pxcx.py [N(Xi) # Vil
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Introduction to Learning Theory|

What is a good theory? (Example 1)
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on to Learning Theory

What is a good theory? (Example 2)

Let us observe the following sequence of integers:

1235..

What comes next?
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Introduction to Learning Theory|

What is a good theory? (Example 2)

1235..7

Several solutions are possible?
m S=7— Why?"“This is the next prime number”

m s=8— Why?"“This is the next Fibonacci number”
st. Un_|_1 = Up + Un—1

m s=7— Why?“This is the next element of the
binary series 1(1), 10(2), 11(3), 101(5),
111(7), 1011(11), 1111(15), etc.”

m s=6— Why?"“lt is the sequence of all integers,
except 4.."
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Introduction to Learning Theory|

What is a good theory? (Example 3)

What are the missing values?

w TN O >
R Olw >Pro @
O ok Ww O
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Introduction to Learning Theory|

What is a good theory? (Example 3)

A natural solution is the following:

w TN O >
R OlwXPom@
NPl Tw O

but...
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... if other learning data are available...

omToamasOwlo O B
AmMo O v Ter Olw>Xv®
aXPvToms Ok @lw

R OANPw®NoTo Oom
NODOwOOrOoXPasmo

WO, TN Plomo s~ O

Moral of these examples

It is always possible to find a (possibly complex) consistent theory that
explains a phenomenon.
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Introduction to Learning Theory.

(once again...) what is a good theory?

No free lunch:
m if there is no restriction on the target conceggneralization is
impossible
m if there is no assumption on how the past is related to the future,
generalization is impossible

Conclusion 1
We need to havknowledgeabout the target concept Choose a class of
hypothese${ (inductive bia3.

| A\

Conclusion 2
We need to makassumptionsabout the phenomenon:
m Stationarity future observations are related to past ones.

m Inductive principle choose the simplest explanation consistent with pe
data Occam'’s razoy.

v
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Introduction to Learning Theory|
Definition

Updated definition

Learning can be viewed as a problem of function estimation, whose goal i
determine the simplest consistent (w.r.t. S) hypothesig-hof the target
concept fe F.
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Introduction to Learning Theory.

Bias/Variance trade-off

The real risk of the induced hypothesisv.r.t f comes from two main sources

The inductive bias nothing guarantees the equality between the targe
concept spacé& and the selected class of hypothesédn other words,
even if the learner is able to provide an optimal hypothlsisom H, h*
andf can be different=- approximation error .

The variance since the learning process depends on the quality ang
quantity of learning data, the learner usually does not provide the op
hypothesi*. The distance betwedri and the induced hypothediss
theestimation error.

=
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Introduction to Learning Theory|

Bias/Variance trade-off

Graphically, we get:
H

variance

h h

bias

€h
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Introduction to Learning Theory|

Bias/Variance trade-off

€h

%
bias 6h

Variance

Capacity ofH
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Introduction to Learning Theory|

Overfitting

Is hp, reasonable?

Statistical learning theory investigates under what conditions empirical ris}
minimization (ERM) is admissible. f
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Introduction to Learning Theory.

Empirical Risk Minimization

Definition
The ERM principle is valid if the real risk of the hypothekis H induced
from Sis close to the real risk of the optimal hypothesisc H.

h = arg minép,
hieH

h* = arg mine,
hieH

Condition of validity of the ERM principle:

>7) <9

VDx,Vy > 0,V < 1,P(|en — €p
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Introduction to Learning Theory|

Empirical Risk Minimization

Selecting h= arg min, ., é,, does not guarantee the discovery of the optim:
hypothesis h= arg min, ., e,
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Introduction to Learning Theory.
PAC model

The PAC model (Probably Approximately Correct) and the works of Valian
(1984) provide a theoretical answer to this problem.

Definition

The ERM principle is valid if

€h ~“m—oo €h*

€h ~*m—oo €h*

Under what conditions do the empirical and real risks of the induced
hypothesis h converge towards the real risk 6% h
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Introduction to Learning Theory.
When|H] is finite

Hoeffding’s inequality (that gives an upper bound on the probabilityfor
random variable to deviate from its expected value) can be applied on the
convergence of the empirical risk ofgaven hypothesis to its real risk.

For a given he H,Vy > 0,VYm > 0,VDy

P(len — én| > ) < 2e~2M

From this theorem, we can bound the difference between the empirical ris
and the real risk o&ny hypothesis of{. Since we have a union of
independent events, we get:

Vh e H,VDy,Vy > 0,¥Ym > 0,

P(len — én| > 7) < 2/H|e 2™

december 2009 20/11
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Introduction to Learning Theory|
When|H] is finite

Therefore, we know that

P(len — énl > ) < 2HE" )

and we want to satisfy that

P(len — en| > ) <0 J
By equating the two upper bounds, we get:
1. 2H|\Y?
> In=2t
7= (2mIn 5 )
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Introduction to Learning Theory.
When|H] is finite

So, with a probability> 1 — 0, Vh € H:

eh— 7 < én < en+7y

Therefore,
eh < ety
< én+ +y (becausdr™ = arg min,4 én)
< (e +7)+7
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Introduction to Learning Theory.

Plugging the expression > (EInT> we get with probability> 1 — §:

eh < en+ + (mln S

12
So, by fixingy = (%In%) 2 we deduce than = 2 el

The ERM principle requiring that

Vv >0,6 <1,P(len—en| >7) <0

is valid if m > 2 |n2lH|

There is nothing so practical as a good theory !! [Kurt Lewin]
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Introduction to Learning Theory.
When|H]| is infinite

We can exploit the VC dimensiah, (for Vapnik-Chervonenkis dimension)
that is a measure of theapacity of the class of hypothesés.

Definition

m The VC dimensiordy of a class of hypotheség is defined as the
cardinality of the largest set of points that a hypothésisH can
shatter.

m A set of points isshatteredif for all assignments of labels to those

points, there exists a hypothesis H that makes no error of
classification when evaluating that set of data points.
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Introduction to Learning Theory.

When|H]| is infinite

From the VC dimension,;, we can define an upper bound on the real error

Theorem
LetH be a class of hypothesed) € H, vV > 0,Vm > 0, the following bounc

holds:

dy(In22 +1)+1—1Ing
6h§€h+\/ (dH m) 4

Remark
Theoretical upper bounds are often pessimistic... For instance, with the cl
'H of 2D-linear separators, and fixing = 0.01andé = 0.05, we get
m > 160Q..

| \
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Introduction to Learning Theory.
Conclusion

m Due to the bias/variance trade-off, the choice sfragle “good”
hypothesis is constrained by a compromise to found between a varia
control and a bias control.

m How can we try to reduce one of the two quantities while controlling
reducing) the other?

m Ensemble methodsare very effective techniques to achieve this task

—~
o~
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Ensemble Methods
Ensemble Methods

Definition

Ensemble methods are learning algorithms that construct a set of classifie
hy, ..., ht whose individual decisions are combined in some way to classif
new examples.

Necessary and sufficient conditions for an ensemble of classifierslbe
efficient:

m the individual classifiers (or hypotheses) are accuratethey have an
error rate of better than random guessing.

m the classifiers are diversieg. they make different errors on new data
points.

Is it possible to construct good ensembles?

1
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Ensemble Methods

Why and how do we get various classifiers?

m Different learning techniqug®.g.k-NNs, linear separator, decision
trees, SVMs, etc.) on the same learning saniple

m Different learning paramete(e.g.number of neighbork) on the same
learning sampl&.

m Different learning sampl&with the same learning technique.
m Different representatioraf the same learning set.
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Ensemble Methods

Limitations of a single classifie

m Statistical problem (variance) Without sufficient data, the learning
algorithm can find many different hypothesegHrthat all give the same

empirical accuracy o

By constructing an ensemble out of all of these accurate classifiers, tl
algorithm can “average” their votes and reduce the risk of choosing tr

wrong classifier.

CUrien

december 2009 29/11

Marc Sebban (BHC) Boosting: theoretical foundations and algorith



Limitations of a single classifier (2/3)

m Representational problem (bias) In most applications of machine
learning, the true functioficannot be represented by any of the
hypotheses if.

By forming weighted sums of hypotheses drawn fragit may be
possible to expand the space of representable functions.
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Ensemble Methods

Limitations of a single classifier (3/3)

m Computational problem: Many learning algorithms work by
performing some form of local search that may get stuck in local optir
An ensemble constructed by running the local search from many
different starting points may provide a better approximation to the
unknown function.
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Ensemble Methods
Ensemble Methods

A clustering of the ensemble methods can be performed according to the
origin of the diversity of the hypothesf@Zeroski & Zenko 2004]

m Heterogeneous ensemble methodseveral classifiersy, . . . hy are
generated by applyingifferent learning algorithmks, ..., Lt toa
single training datasgite. to a constant distributiob of the training
data.

m Homogeneous ensemble methodseveral hypothesds, . . . ht are
generated from aingle learning algorithrh. The diversity of the
hypotheses is obtained lyodifying the statistical distributioD; of the
training examples used to buikg.
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Ensemble Methods Heterogeneous ensemble methods

Heterogeneous ensemble methods

The diversity comes from the learning algorithms

m Stacking [Wolpert, D.H. 1992]
m Cascade GeneralizatiofGamma, J. & Brazdil, P. 2000]
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Ensemble Methods Heterogeneous ensemble methods
Stacking

X =< X1, .oy Xp >

LearnT hypotheses$y, ..., hr
leaned base hypothese with T different learning
algorithmsL, ..., L.

........ new feature vector The deC|S|OnS (Scores) Of

\ \ hi, ..., hy onx are seen as new

X =<1, ST > features
| Lm Learn a meta hypothesis in this
meta-hypothesis newT dimensional space.
y(x)?
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Ensemble Methods Heterogeneous ensemble methods
Cascade Generalization

X =< X1, .0y Xp >

Learn a hypothesils; with a
learning algorithni;. Classify the
learning examples with;.

Learn a hypothesis, with a
learning algorithm_, from the
i original features and the label (or
the score) predicted at the previous
step. Classify the learning

< X1, .0y Xp, S1, S > examples withs,.
Repeat the process.

CUrien

Marc Sebban (BHC) Boosting: theoretical foundations and algorith december 2009 35/11



Ensemble Methods' Homogeneous ensemble methods
Homogeneous ensemble methods

m Thediversity comes from the distribution of the learning examples

= We consider now the problem of combining several classifiers built frc
different subsets of the training data

m All classifiers are generally of the same type.
m Why resampling the training data? It allows us to build more robust
estimates by reducing the variance of the estimator.

m Homogeneous ensemble methods:

m Bagging[Breiman 1996]
m Random Forests[Breiman 2001]
m Boosting[Freund & Schapire 1999]
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Ensemble Methods' Homogeneous ensemble methods

BAGGING

Input: A learning sampleS = { (X1, Y1), .., Xm, Ym) }

Input: A total numberT of bagging rounds

Input: A learning algorithmL returning a binary classifier
Output: A combined classifier

forall tfrom1toT do
S = Resampl€S) // Randomly sampl&with replacement;

hi(x) = L(S) // Build a classifier or§ using learning algorithmi_;

Return Ht such that
Hr(x) = sign (3", h(x))

CUrien
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Ensemble Methods' Homogeneous ensemble methods
Random Forests

Definition

A decision tree is a tree that can be learned by splitBimgo subsets based
on a feature value test. This process is repeated on each derived isuds
recursive manner.

Example: the decision to play or not play based on climate conditions.

Play 9
Don't play 5

outlook?

sunny / overcast\_ rain

Play 2 Play 4 Play 3
Don't play 3 Don'tplayo| | Don't p\ay

Play 2 Play 0 Play 0 P\ay 3
Don't play 0 Don't play 3 Don't play DOM play 0

CUrien
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Ensemble Methods/ Homogeneous ensemble methods
Random Forests
Definition
Decision Treest Random Feature SelectianBagging = Random Forests

m Aim: generate diversity in decision trees.
m The general approach is like bagging:
m build model on successive resampling (with replacemeng) of
m make a majority vote to form the combined classifier.
m Decision trees are built with no pruning.
m While growing the tree, the feature selected from splitting maximizes
impurity (information gain, gini index) among a random selectiof of
features out op possible attributes (typical values d@e= [logyp| or

F = ypl.
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Introduction to boosting
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Boosting [Freund & Schapire 1999]

Let us start from an example [Freund & Schapire 1999]....

= Aim: A horse-racing gambler, hoping to maximize his winnings, decic
to create a computer program that will accurately predict the winner c
horse race.

m Strategy 1 ask a highly successful expert gambler to explain his betti
strategy. Not surprisingly, the expert is unable to articulate a large set
rules for selecting a horse.

m Strategy 2 But, when presented with the data for a specific set of rac
he is able to express some rules such as:

m h;: “Bet on the horse that has recently won the
most races”

m hy: “Bet on the horse with the most favored
odds”

CUrien
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Boosting
Boosting

In order to use these rules to maximum advantage, there are two problem
faced by the gambler:

How to choose the collections of races presented to the expert so as
extract rules that will be the most useful?

Once we have collected many rules, how to combine them into a sing
highly accurate prediction rule?

Solutions:

If the combination is not weighted and the learning examples are
randomly selected- Bagging

If the combination is weighted and the selection of the learning examy
is driven by a “hard” examples> Boosting
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Boosting

Strong vs Weak Learnability

Definition
Boosting is a general method for improving (under some constraints) the
accuracy of any given learning algorithm.

Boosting combinegveakhypothesesi . just better than a random guessing]
into astronghypothesis.
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Boosting

Strong vs Weak Learnability

Boosting has its roots in the theoretical PAC learning model.

Definition
A learning algorithmL is strong PAGf:

= with a polynomial number of learning examplgs

m V distributionD overS,

= with a high probability 1— 6 (6 > 0),

m L is able to induce a hypothedisvith a generalization errof € (e > 0).1
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Boosting

Strong vs Weak Learnability

Definition
A learning algorithnL is weak PAJKearns, M. & Valiant, L.G. 1988iff:

m Same definition astrong PACexcept the fact that the generalization
error just has to be slightly better than a random guessing.

Can a weak learning algorithm which performs just slightly better than
random guessing in the PAC model be “boosted” into an arbitrarily acteir
“strong” learning algorithm?
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Boosting

First boosting algorithm (1/4)

Step 1: Extract fromSa learning sampl&;. Use a learning algorithra to
produce a first hypothesks.

CUrien

Marc Sebban (BHC) Boosting: theoretical foundations and algorith december 2009 46/ 11



Boosting

First boosting algorithm (2/4)

Step 2: Generate a second learning sam@lein which an instance has a
roughly equal chance of being correctly or incorrectly classifietiiby. is
used again to infer a new hypothehis
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First boosting algorithm (3/4)

Step 3: Generate a third learning sam@@gby removing fromSthe
instances on which; andh, agree. Once agaih,is used to induce a third
hypothesids.
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First boosting algorithm (4/4)

The final hypothesis takes the "majority vote” of hy, hy and hs.
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Boosting = ADABOOST

ADABOOST J
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Boosting | ADABOOST

ADABOOST ([Freund & Schapire 1996a))

Input: A learning sample S, a number of iterations T, a weak leatner
Output: A global hypothesis i
for all i from 1to mdo

Di(xi) = 1/m;

forall tfrom1to T do
&= D tg yithx) D)
ar = 3In 4,
for all i from 1to mdo
Dir1(Xi) = De(xi) exp(—auyihe(Xi)) /Zt;
/* Z is a normalization coefficient*/

f(x) = X adw(x);
Return Ht such that
Hr(x) = sign(f(x))
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Boosting | ADABOOST

Toy example (1

Learning sampl&

DistributionD1

CUrien

Weak Hypotheseslinear separators parallel to the axis
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Boosting | ADABOOST

Toy example (2/5)

Step 1
hy Distribution D,

@ @ + 4

é¢1 = 0.30
a1 = 0.42
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Boosting

Toy example (3/5)

ADABOOST

Step 2
hy Distribution D3
+ + | +
T L —|— _|_ + +
+ | - + 90 -
F + -
. @ _
€2 =0.21
as = 0.65

Marc Sebban (BHC)
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ADABOOST

Toy example (4/5) |

Step 3
&= - S
= - ©
4 T 4+ h + 4
+ | - + - ® @ -
+ - + - @
é3=0.14
a3z = 0.92

Marc Sebban (BHC)
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Boosting | ADABOOST

y example (

Final Classifier

+ ++ - +++ ) + ++ °
Hiinal = sign(0.42x |+ [~ - +0.65x | + ~ - +092x @ ~ - )
+ - + - ®
L
o+
= e |- -
o _
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Boosting = Theoretical Results

Theoretical results on the
empirical risk
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Boosting | Theoretical Results

Theoretical results on the empirical risk

Upper bound on the empirical error of{H

frr = S 1I/HOG #0) < = 5 ex(yf () = [] Z

t

This theorem means that to minimize the empirical error, we have to
minimize the product of th&;.
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Boosting | Theoretical Results
Theoretical results on the empirical risk

The previous theorem is proven in two steps.
Step Lién, < 1 57 exp(—vif (xi))

R 1
Hr = § :ﬂHT(Xi#Yi
i

= %Z Tyt (x)<o0
2 SRR )

IA

Ol

v

v
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Boosting | Theoretical Results

Theoretical results on the empirical risk

Step 2: 2 5 exp(—vif (%)) = []; Z. To simplify, let us replace; by i.

Dr(i)exp—atyihr(i))

Drya(i) =

Z7
Da(i)exp(>_ —aryihe(i))
i1 Z
1 exp( Y1 —aryihi(i))
0 [ Z

1 exp(—yif (i)
LI
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Boosting | Theoretical Results

Theoretical results on the empirical risk

Proof.
since) ; D741(i) = 1 because it is a statistical distribution, we get

i
[[2= = > ex-vif (i)
t=1 i
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Boosting | Theoretical Results

ADABOOST ([Freund & Schapire 1996a))

Input: A learning sample S, a number of iterations T, a weak leatner
Output: A global hypothesis i
for all i from 1to mdo

Di(xi) = 1/m;

forall tfrom1to T do
&= D tg yithx) D)
ar = 3In 4,
forall i = 1from1to mdo
Dir1(Xi) = De(xi) exp(—asyihe(Xi)) /Zt;
[* Z; is a normalization coefficient*/

f(x) = X ad(x);
Return Ht such that
Hr(x) = sign(f(x))
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Boosting | Theoretical Results

Theoretical results on the empirical risk

To minimize £ «; must be equal to:

Marc Sebban (BHC) Boosting: theoretical foundations and algorith
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Boosting | Theoretical Results
Theoretical results on the empirical risk

Let us assume that the outputshpaire—1 or +1. LetW—! andW*! be two

sums such that

W= 3} Dx)

xeLSy(x)hy(x)=b
Z Dt — ity X)ht(X)
XeLS

=> Di(x)e = W-te + WHle e
b

a—}ln wr —}In LG
T2 \wt) T2 é
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Boosting | Theoretical Results

Theoretical results on the empirical risk

Information
Freund and Schapire have proposed another valuexfpsuch that:

1, (W4 Iwe
Oét = = In 71

2 \W-ly43WO0

where W corresponds to the density of the learning examples that can not
classified by h(e.g.: points on the separator).
Assuming that half of Wis correctly classified, and half is misclassified, wi
get this new value fou; calling on the same proof.

D

v
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Boosting | Theoretical Results

ADABOOST ([Freund & Schapire 1996a))

Input: A learning sample S, a number of iterations T, a weak leatner
Output: A global hypothesis i
for all i from 1to mdo

Di(xi) = 1/m;

forall tfrom1to T do
hy = L(S, Dy);
&= ZX. t.d. yi£h(x) De(xi);
ar = 5 In = 61
for aII i = 1from1to mdo
Dir1(Xi) = De(xi) exp(—auyibe(Xi)) /Zt;
/* Z+ is a normalization coefficient*/

f(x) = Sy aehi(x);

Return Ht such that
Hr(x) = sign(f(x))
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Boosting | Theoretical Results
Theoretical results on the empirical risk

Exponential decrease of the empirical risk

[T@ =]evad-a) =[] y1- 42 <exp(-2> )
t t

t t

whereé; = % — v (weak hypothesis)

v

m This theorem means that the empirical risk exponentially decreases
towards 0 with the numbér of iterations.
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Theoretical results on the empirical risk

Z =) Dy(x)exp MM = wite ot 4 wlen
X

1—ét

= (1— ét)e_%'”( & ) + éte% |n(l;€1> =2 ét(l— ét)

Then,
1 1
z)=Tleval-¢&) = \/4— 1—=+7)=]T1-4%
H( 1) H( &(l-&) H (2 Y)( 5+ 1:[ oli
— eln(nt Vv 1-4+2) — e% Ztln(l—‘htz) < e—ZZt V2
2 3 n
becausdn(1—x) = —x— %5 — % — ... — X 4 0(x")
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Expected behavior of boosting

error

generalization

learning

Iterations

Expected behavior

m ¢y, decreases towards (eventually) O.
m ey, first decreases; thentbecomes too complex overfitting
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Overfitting

Definition
Overfitting : artificially good agreement with the learning data.

Real risk

e

overfitting

Empirical risk \

capacity of the model
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Observed behavior of boosting

error

generalisation

learning

Iterations

Observed behavior

m ¢y, decreases towards (eventually) O.
m ey, drops and continues to decrease even wehas reached 0!
T
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Experimental proof

Experimental proof with J
ADABOOST
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Explanation in terms of margins of the training example

m ¢y, only takes into account the fact that the classification of an examp
is correct or not correct.

® ¢4, Should also take into account the confidence into the classificatior
each example.

Definition
The margin of an example is defined to be

t
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Marc Sebban (BHC) Boosting: theoretical foundations and algorith december 2009 7411



Boosting | Theoretical Results

Explanation in terms of margins of the training example

high conf. low high conf.
incorrect conf. correct
-~ — —h —
Ht Ht
-1 incorrect 0 correct +1
Curien
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Empirical observation

error

generalisation

learning

5 100 1000 Iterations

1000

100

Cumulative distribution

10
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Intuition

m Larger margins on the training set translate into a superior upper boul
on the generalization error.

m Boosting tends to increase the margins of the learning examples

m Despite the increase of its complexity, the final performing classifier i
becoming easier and easier to build because of the increase of the
margins.
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Theoretical results in
generalization
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Theoretical results in generalization

Theorem ([Schapire, Freund, Bartlett & Lee 1997])

LetH be a class of classifiers with VC didp (i.e. the capacity o¥). For any
0 > 0and# > 0O, with probabilityl — §, any classifier ensemblér built from

m learning examples satisfies:

en; < Pr(margin(x) < 6) + O <\/dmhlogz(9M + |09(1/5)>

= This bound depends on:

m constant parameters, dy, 8 and.
m the distribution of the margins of the learning exam?es

Pr(margin(x) < 6) exponentially decreases towar@svith T.
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Margin maximization

Formally,[Schapire, Freund, Bartlett & Lee 199Fioved the following
theorem:

Theorem
Let marginx) = yf(x) the margin of an example:

P(yf(x) < 6) <2T[] /& " (1 - &)1+?
t

If & < 3 — 7, thenV# < +, this bound exponentially with T.
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Margin maximization

If yf(x) < 6theny)  athi(X) < 0> o

= exp_y21 athi(x)+6 > o > 1

Pr(yf(x) <) < Pr(expYZr@n()+03 o)

— M Z exp Yi Zt athe(x;)

_ exf T H Z
t
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Margin maximization

By replacinga; andZ; by their expressions wité, we get:

exgteém(l;ﬁ)z-rl—‘[ /gt(l _ ét)
t

1—&)0e(l—é o .
= 2TH\/( t)ét@t( t)=2TH el0(1 — &)1+

t

Considering that; < % — =, this upper bound can be rewritten such that:

(Va—zyoa+ 2~y>1+9>T

If & < ~ then we can prove that the expression between bracketd iand so
the probability to have a small margin decreases With

[
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First conclusions

m ADABOOSTWoOrks in practice...
m and is theoretically well-founded!

What has been the impact of boosting in the machine learning communi
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Impact of boosting in Machine Learning

Number of articles presented at important ML conferences such as JCML
ECML, COLT, ALT from 1996 to 2008 whose title contained the word

“boosting”.

Nb of Articles

R ‘ ‘ ‘ ‘ ‘
1996 1998 2000 2002 2004 2006 2008
Year CuriEn
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Impact of boosting in Machine Learning

About R.Schapire... (Google Scholar)

m h-index (h-number) of R. Schapire: 39

= Nb of citations: 13953

m Maximal nb of citations for an article: 2126

m Most cited article: Experiments with a new boosting algorithm

www.boosting.org (Gunnar Ratsch)
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Some platforms for testing boosting

Some platforms:

= Yoav Freund’s home page
http://www.cs.ucsd.edu/ ~ yfreund/adaboost

m Ran El-Yaniv's home page
http://www.cs.technion.ac.il/ ~ rani/LocBoost/

m WEKA (University of Waikato)
http://www.cs.waikato.ac.nz/ml/weka/
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SVM versus Boosting
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SVM versus Boosting [Freund & Schapire 1999]

SVM vs Boosting
SVMs andADABOOST search for a linear separator in a high dimensional
space.
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SVM versus Boosting [Freund & Schapire 1999]

SVM vs Boosting
Overfitting is avoided thanks to the margin maximization.

m Leth(x) be the vector of weak hypothesg@s (x), ho(x), ..., hr(x)). We
aim at selecting the vector of coefficienis= (aq, a, ..., ar).

m Boosting chooses the coefficientssuch that the bound
Pr(margin(x) < ) + O(y/ &) is minimized.

m Freund and Schapire have shown that to deal with this problem, we h
to increase the margin of each learning example.

m Therefore, boosting also aims at maximizing the minimal margin of th
learning examples.
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SVM versus Boosting [Freund & Schapire 1999]

= marginx) = yzz‘:a‘s:(’() :

m The shared goal is to maximize the minimal margin:

(a-h(xi))yi

maxmln e
[l |-1h x|

where

m for boosting, the norms of the denominator are defined as follows:
[leef[1 = >4 |at| and][h(x)||oc = max|he(x)]
(NB: if hy(x) € {—1, 41} then||h(X)||cc = 1)

m for SVMs, |||z = /> o and|[h(X)|]2 = /> he(X)2.
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SVM versus Boosting [Freund & Schapire 1999]

Despite these resemblances...

The norms are different. The difference between the L1-norm,
L2-norm and is not significant when one considers low dimensional
space. However, this is not the case with boosting and overall with
SVMs.

The computational constraints are different

m SVMs correspond to a quadratic programming problem.
m Boosting is a matter for linear programming.
The management of large spaces is different

m SVM exploitkernelsthat allow to perform calculations in small spaces
that are equivalent to inner products in potential verydaspaces.

m Boosting uses a greedy strategy. Each new weak hypothes{g s
correlated with the class to predict
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Boosting and Game Theory
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Edge versus Margin

In a boosting algorithm, we optimize two sets of weights:
m a distributionD; over the learning examples.
m a distributiona; over the weak hypotheses.
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Edge versus Margin

The Edgeof a hypothesis for a given distributidd on the examples is

ZMht x Dy(%)

Definition

TheMargin of a learning examplg, for a current distributiory; on the
learned hypotheses is

| \

-
Z Ynht(xn) X o

t=1
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Edge versus Margin

The objectives of boosting:

m Edge
m Edges of past hypotheses should be small after update. énwtirds, the
new hypothesis must learn something new.
m Therefore,we aim aninimizing the maximum edgeof past hypotheses.

= Margin
m Choose a convex combination of weak hypothesestiaaimizes the
minimum margin .

Connection between objectives?
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Edge versus Margin

Linear Programming Duality

min maxEdge= max minMargin

m T-1
minomax—1,_ 11 ¥ih()De(%) = max,min_1__m > yil(4)x
i=1 t=1

— Adaboost and Game Theory
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Game Theory

[Freund & Schapire 1996b]

Definition

m A game between two players is defined by a maltftix
m The first player is called “row playeRP.
m The second player is called “column play&P.

m To play,RP chooses a rowof M andsimultaneously CPplays a
columnj.

m The cellM(i,]) that is played is the loss &P.
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Game Theory

The game Rock-Paper-Scissors

M | rock paper scissors
rock 0 1 -1
paper | -1 0 1
scissors| 1 -1 0

= RP’s goal: minimize loss M, j).
m CP’s goal: maximize this loss.
m Zero sum game
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Game Theory

Definition
Randomized play: players choose distributi®esndQ over rows and

columns.
The learner’s (expected) loss is:

> P(HM(i,))Q() = PTMQ
i

For the sake of simplicity, this quantity if often writtém(P, Q).

CUrien
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Sequential game

MinMax Strategy
If CP chooses his strategy Q aftP

= CP will choose Q to maximize (P, Q).

m Knowing it,RP chooses his strategy P to minimize his maximal loss, |i.
minemaxgM (P, Q).
m Such strategy Pis called minmax strategy.

MaxMin Strategy

If CP plays at first RP can use this knowledge in his strategy.
m CP aims at maximizing the minimal lossiRP.
m Therefore, the loss is mgmineM(P, Q).
m This strategy Qis called maxmin strategy.
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The MinMax Theorem (MVon Neumann)

m We expect the player who chooses its strategy last to have the advan
since it plays knowing its opponent’s strategy exactly. Thus, we expec
maxomineM (P, Q) < minpmaxoM (P, Q)

m Surprisingly, it turns out not to matter which player plays first. Von

Neumann’s well-known minmax theorem states that the outcome is tt
same in either case so that

Theorem (Mon Neuman)

maxomineM (P, Q) = minemaxxM (P, Q), VM.
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The MinMax Theorem (MVon Neumann)

Theorem (Mon Neuman)

maxomineM (P, Q) = minemaxxM (P, Q), VM.

The common valug of the two sides of the equality is called thalue of the
game Mand can be found by linear programming.
m TheRP has a (min-max) stratedy* such that regardless of the strategy
Q played byCP, the loss suffere (P*, Q) < v.

m Symmetrically, it means th&P has a (max-min) strated* such that
regardless of the strate@played byRP the lossM (P, Q*) > v.
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The boosting game

m Letq,...,gn be the space of all weak classifiers.

m CPis the weak learner, anBRP is the booster.

= Matrix M is defined as follows:
m arow is a learning example, a column is weak classifier

(1 if yi = g(xi)
n M(I,J){ —1 otherwise
Weak Learner
gl gJ gN
— X1y1 |
0
3 ‘
8 |
<D( lel """""""""""""""" M(I7J) 7777777777777777777
< H
XmYm
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The Boosting Game

If V distributionsP over the examplesig; satisfying the weak hypothesis,
then:

= miremaxoM (P, j) > 1 + v
= and then (by minmax theoremaxyminM(i, Q) > 1 +~

Applying Von Neuman'’s theorem, it exists a weighted majority of classifier
which correctly classifies all examples with positive margin.

m Optimal margin— “value” of the game.

m Distribution over examples converges to (approximatgmaxstrategy
for boosting game.

m Weights on weak classifiers converge to (approximatgxminstrategy.
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Advantages -Caveats of
ADABOOST
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Some experimental results...

Advantages -Caveats ofhBOOST

Behavior of ADABOOST 0N a sample of 25 databases from the UCI
Machine Learning Repository
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Practical advantages ofbBOOST

m Fast.

m Simple and easy to program.

m No parameters to tune (except

m Flexible - can combine with any learning algorithm.
m Provably effective.
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Caveats

m Performances of BABOOST depends on data and weak learner:
m consistent with theory, BABOOST can fall if:
m weak classifiers too compler.g.kNN, ID3) — overfitting.
m weak classifier too weaky{ — 0 too quickly)— underfitting or low
margins + overfitting.
m empirically, ADABOOST seems especially susceptible to the presence
noise:
m Presence of outliers> exponential increase of their weights overfitting.
m Presence of large bayesian errerslows down the convergence.
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Impact of outliers on AABOOST behavior

Example: let us run ADABOOST 0N a linearly separable problem containing
5% of noise (by swapping the original label).

succes rate
0.945

"Adaboost”

0.94

0.935

0.925

0.92

0.915

0.905

09

0.895 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

Iterations curien
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Hard predictions can slow learning

Example: let us run ADABOOST 0on an artificial sample whose bayesian errc
is about 20%.

0.795 B

0.785 ~

0.775 ~

0.765 ‘\ B

076 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500 CUriien
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Demo with WEKA J
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