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About this lecture

Main goal
Show how statistics enable a rigorous analysis of machine
learning methods which leads to a better understanding and to
possible improvements of those methods

Outline

1. introduction to the formal model of statistical learning
2. empirical risk and capacity measures
3. capacity control
4. beyond empirical risk minimization
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Part I

Introduction and formalization
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Outline

Machine learning in a nutshell

Formalization
Data and algorithms
Consistency
Risk/Loss optimization
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Statistical Learning
Statistical Learning = Machine learning + Statistics

Machine learning in three steps:
1. record observations about a phenomenon
2. build a model of this phenomenon
3. predict the future behavior of the phenomenon

... all of this is done by the computer (no human intervention)

Statistics gives:
I a formal definition of machine learning
I some guarantees on its expected results
I some suggestions for new or improved modelling tools

Nothing is more practical than a good theory
Vladimir Vapnik (1998)
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Machine learning

I a phenomenon is recorded via observations⇒ (zi)1≤i≤n
with zi ∈ Z

I two generic situations:
1. unsupervised learning:

I no predefined structure in Z
I then the goal is to find some structures: clusters, association

rules, distribution, etc.
2. supervised learning:

I two non symmetric component in Z = X × Y
I z = (x, y) ∈ X × Y
I modelling: finding how x and y are related
I the goal is to make prediction: given x, find a reasonable

value for y such that z = (x, y) is compatible with the
phenomenon

I this course focuses on supervised learning
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Supervised learning

I several types of Y can be considered:
I Y = {1, . . . ,q}: classification in q classes, e.g., tell whether

a patient has hyper, hypo or normal thyroidal function
based on some clinical measures

I Y = Rq : regression, e.g., calculate the price of a house y
based on some characteristics x

I Y = “something complex but structured”, e.g., construct a
parse tree for a natural language sentence

I modelling difficulty increases with the complexity of Y
I Vapnik’s message: “don’t built a regression model to do

classification”
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Model quality

I given a dataset (xi ,yi)1≤i≤n, a machine learning method
builds a model g from X to Y

I a “good” model should be such that

∀1 ≤ i ≤ n, g(xi) ' yi

or not?
perfect interpolation is always possible

but is that what we are looking for?
I No! We want generalization:

I a good model must “learn” something “smart” from the
data, not simply memorize them

I on new data, it should be such that g(xi ) ' yi (for i > n)
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Machine learning objectives

I main goal: from a dataset (xi ,yi)1≤i≤n, build a model g
which generalizes in a satisfactory way on new data

I but also:
I request only as many data as needed
I do this efficiently (quickly with a low memory usage)
I gain knowledge on the underlying phenomenon (e.g.,

discard useless parts of x)
I etc.

I the statistical learning framework addresses some of those
goals:

I it provides asymptotic guarantees about learnability
I it gives non asymptotic confidence bounds around

performance estimates
I it suggests/validates best practices (hold out estimates,

regularization, etc.)
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Outline

Machine learning in a nutshell

Formalization
Data and algorithms
Consistency
Risk/Loss optimization
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Data

I the phenomenon is fully described by an unknown
probability distribution P on X × Y

I we are given n observations:
I Dn = (Xi ,Yi )

n
i=1

I each pair (Xi ,Yi ) is distributed according to P
I pairs are independent

I remarks:
I the phenomenon is stationary, i.e., P does not change: new

data will be distributed as learning data
I extensions to non stationary situations exist, see e.g.

covariate shift and concept drift
I the independence assumption says that each observation

brings new information
I extensions to dependent observation exists, e.g., Markovian

models for time series analysis
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Model quality (risk)
I quality is measured via a cost function c: Y × Y → R+ (a

low cost is good!)
I the risk of a model g: X → Y is

L(g) = E {c(g(X ),Y )}

This is the expected value of the cost on an observation
generated by the phenomenon (a low risk is good!)

I interpretation:
I the average value of c(g(x),y) over a lot of observations

generated by the phenomenon is L(g)
I this is a measure of generalization capabilities (if g has

been built from a dataset)
I remark: we need a probability space, c and g have to be

measurable functions, etc.

12 / 154 Fabrice Rossi Formalization

http://apiacoa.org/
http://apiacoa.org/
http://apiacoa.org/
http://apiacoa.org/


We are frequentists
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Cost functions
I Regression (Y = Rq):

I the quadratic cost is the standard one:
c(g(x),y) = ‖g(x)− y‖2

I other costs (Y = R):
I L1 (Laplacian) cost: c(g(x), y) = |g(x)− y|
I ε-insensitive: cε(g(x), y) = max(0, |g(x)− y| − ε)
I Huber’s loss: cδ(g(x), y) = (g(x)− y)2 when |g(x)− y| < δ

and cδ(g(x), y) = 2δ(|g(x)− y| − δ
2 ) otherwise

I Classification (Y = {1, . . . ,q}):
I 0/1 cost: c(g(x),y) = I{g(x) 6=y}
I then the risk is the probability of misclassification

I Remark:
I the cost is used to measure the quality of the model
I the machine learning algorithm may use a loss6=cost to

build the model
I e.g.: the hinge loss for support vector machines
I more on this in part IV
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Machine learning algorithm

I given Dn, a machine learning algorithm/method builds a
model gDn (= gn for simplicity)

I gn is a random variable with values in the set of
measurable functions from X to Y

I the associated (random) risk is

L(gn) = E {c(gn(X ),Y ) | Dn}

I statistical learning studies the behavior of L(gn) and
E {L(gn)} when n increases:

I keep in mind that L(gn) is a random variable
I if many datasets are generated from the phenomenon, the

mean risk of the classifiers produced by the algorithm for
those datasets is E {L(gn)}
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Consistency

I best risk:
L∗ = inf

g
L(g)

I the infimum is taken over all measurable functions from X
to Y

I a machine learning method is:
I strongly consistent: if L(gn)

p.s.−−→ L∗
I consistent: if E {L(gn)} → L∗
I universally (strongly) consistent: if the convergence holds

for any distribution of the data P
I remark: if c is bounded then limn→∞ E {L(gn)} = L∗ ⇔

L(gn)
P−→ L∗
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Interpretation
I universality: no assumption on the data distribution

(realistic)
I consistency: “perfect” generalization when given an infinite

learning set
I strong case:

I for (almost) any series of observations (xi , yi)i≥1
I and for any ε > 0
I there is N such that for n ≥ N

L(gn) ≤ L∗ + ε

where gn is built on (xi , yi)1≤i≤n
I N depends on ε and on the dataset (xi , yi)i≥1

I “weak” case:
I for any ε > 0
I there is N such that for n ≥ N

E {L(gn)} ≤ L∗ + ε

where gn is built on (xi , yi)1≤i≤n
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Interpretation (continued)
I We can be unlucky:

I strong case:
I L(gn) = E {c(gn(X ),Y ) | Dn} ≤ L∗ + ε
I but what about

1
p

n+pX
i=n+1

c(gn(xi), yi)

I weak case:
I E {L(gn)} ≤ L∗ + ε
I but what about L(gn) for a particular dataset?
I see also the strong case!

I Stronger result, Probably Approximately Optimal algorithm:
∀ε, δ, ∃n(ε, δ) such that ∀n ≥ n(ε, δ)

P {L (gn) > L∗ + ε} < δ

I Gives some convergence speed: especially interesting
when n(ε, δ) is independent of P (distribution free)
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From PAO to consistency

I if convergence happens fast enough, then the method is
(strongly) consistent

I “weak” consistency is easy (for c bounded):
I if the method is PAO, then for any fixed ε

P {L (gn) > L∗ + ε} −−−→
n→∞

0
I by definition (and also because L(gn) > L∗), this means

L(gn)
P−→ L∗

I then, if c is bounded E {L(gn)} −−−→
n→∞

L∗

I if convergence happens faster, then the method might be
strongly consistent

I we need a very sharp decrease of P {L (gn) > L∗ + ε} with
n, i.e., a slow increase of n(ε, δ) when δ decreases
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From PAO to strong consistency

I this is based on the Borel-Cantelli Lemma
I let (Ai )i≥1 be a series of events
I define [Ai i .o.] = ∩∞i=1 ∪∞j=i Ai (infinitely often)
I the lemma states that

if
∑

i

P {Ai} <∞ then P {[Ai i .o.]} = 0

I if
∑

n P {L (gn) > L∗ + ε} <∞, then
P {[{L (gn) > L∗ + ε} i .o.]} = 0

I we have {L(gn)→ L∗} = ∩∞j=1 ∩∞i=1 ∪∞n=i{L (gn) ≤ L∗ + 1
j }

I and therefore, L(gn)
p.s.−−→ L∗
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Summary

I from n i.i.d. observations Dn = (Xi ,Yi)
n
i=1, a ML algorithm

builds a model gn

I its risks is L(gn) = E {c(gn(X ),Y ) | Dn}
I statistical learning studies L(gn)− L∗ and E {L(gn)} − L∗

I the preferred approach is to show a fast decrease of
P {L (gn) > L∗ + ε} with n

I no hypothesis on the data (i.e., on P), a.k.a. distribution
free results
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Classical statistics
Even though we are fequentists...

I this program is quite different from classical statistics:
I no optimal parameters, no identifiability: intrinsically non

parametric
I no optimal model: only optimal performances
I no asymptotic distribution: focus on finite distance

inequalities
I no (or minimal) assumption on the data distribution

I minimal hypothesis
I are justified by our lack of knowledge on the studied

phenomenon
I have strong and annoying consequences linked to the

worst case scenario they imply
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Optimal model
I there is nevertheless an optimal model
I regression:

I for the quadratic cost c(g(x),y) = ‖g(x)− y‖2

I the minimum risk L∗ is reached by g(x) = E {Y | X = x}
I classification:

I we need the posterior probabilities: P {Y = k | X = x}
I the minimum risk L∗ (the Bayes risk) is reached by the

Bayes classifier: assign x to the most probable class
arg maxk P {Y = k | X = x}

I we only need to mimic the prediction of the model, not the
model itself:

I for optimal classification, we don’t need to compute the
posterior probabilities

I for the binary case, the decision is based on
P {Y = −1 | X = x} − P {Y = 1 | X = x}

I we only need to agree with the sign of E {Y | X = x}
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No free lunch
I unfortunately, making no hypothesis on P costs a lot
I no free lunch results for binary classification and

misclassification cost
I there is always a bad distribution:

I given a fixed machine learning method
I for all ε > 0 and all n, there is (X ,Y ) such that L∗ = 0 and

E {L(gn)} ≥ 1
2
− ε

I arbitrary slow convergence always happens:
I given a fixed machine learning method
I and a decreasing series (an) with limit 0 (and a1 ≤ 1/16)
I there is (X ,Y ) such that L∗ = 0 and

E {L(gn)} ≥ an
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Estimation difficulties
I in fact, estimating the Bayes risk L∗ (in binary

classification) is difficult:
I given a fixed estimation algorithm for L∗, denoted L̂n
I for all ε > 0 and all n, there is (X ,Y ) such that

E
{
|L̂n − L∗|

}
≥ 1

4
− ε

I regression is more difficult than classification:
I ηn estimator for η = E {Y |X} in a weak sense:

lim
n→∞

E
{

(ηn(X )− η(X ))2} = 0

I then for gn(x) = I{ηn(x)>1/2}, we have

lim
n→∞

E {L(gn)} − L∗√
E {(ηn(X )− η(X ))2}

= 0
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Consequences

I no free lunch results show that we cannot get uniform
convergence speed:

I they don’t rule out universal (strong) consistency!
I they don’t rule out PAO with hypothesis on P

I intuitive explanation:
I stationarity and independence are not sufficient
I if P is arbitrarily complex, then no generalization can occur

from a finite learning set
I e.g., Y = f (X ) + ε: interpolation needs regularity

assumptions on f , extrapolation needs even stronger
hypothesis

I but we don’t want hypothesis on P...
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Estimation and approximation

I solution: split the problem in two parts, estimation and
approximation

I estimation:
I restrict the class of acceptable models to G, a set of

measurable functions from X to Y
I study L(gn)− infg∈G L(g) when the ML algorithm must

choose gn in G
I statistics needed!
I hypotheses on G replace hypotheses on P and allow

uniform results!
I approximation:

I compare G to the set of all possible models
I in other words, study infg∈G L(g)− L∗
I function approximation results (density), no statistics!
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Back to machine learning algorithms
I many ad hoc algorithms:

I k nearest neighbors
I tree based algorithms
I Adaboost

I but most algorithms are based on the following scheme:
I fix a model class G
I choose gn in G by optimizing a quality measure defined via

Dn

I examples:
I linear regression (X is a Hilbert space, Y = R):

I G = {x 7→ 〈w , x〉}
I find wn by minimizing the mean squared error

wn = arg minw
1
n

Pn
i=1 (yi − 〈w , xi〉)2

I linear classification (X = Rp, Y = {1, . . . , c}):
I G = {x 7→ arg maxk (Wx)k}
I find W e.g., by minimizing a mean squared error for a

disjunctive coding of the classes
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Criterion
I the best solution would be to choose gn by minimizing

L(gn) over G, but:
I we cannot compute L(gn) (P is unknown!)
I even if we knew L(gn), optimization might be intractable (L

has no reason to be convex, for instance)
I partial solution, the empirical risk:

Ln(g) =
1
n

n∑
i=1

c(g(Xi),Yi)

I naive justification by the strong law of large numbers
(SLLN): when g is fixed, limn→∞ Ln(g) = L(g)

I the algorithmic issue is handled by replacing the empirical
risk by an empirical loss (see part IV)
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Empirical risk minimization
I generic machine learning method:

I fix a model class G
I choose g∗n in G by

g∗n = arg min
g∈G

Ln(g)

I denote L∗G = infg∈G L(g)

I does that work?
I E {L(g∗n )} → L∗G?
I E {L(g∗n )} → L∗?
I the SLLN does not help as g∗n depends on n

I we are looking for bounds:
I L(g∗n ) < Ln(g∗n ) + B (bound the risk using the empirical risk)
I L(g∗n ) < L∗G + C (guarantee that the risk is close to the best

possible one in the class)
I L∗G − L∗ is handled differently (approximation vs estimation)
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Complexity control
The overfitting issue

I controlling Ln(g∗n)− L(g∗n) is not possible in arbitrary
classes G

I a simple example:
I binary classification
I G: all piecewise functions on arbitrary partitions of X
I obviously Ln(g∗n ) = 0 if PX has a density (via the classifier

defined by the 1-nn rule)
I but L(g∗n ) > 0 when L∗ > 0!
I the 1-nn rule is overfitting

I the only solution is to reduce the “size” of G (see part II)
I this implies L∗G > L∗ (for arbitrary P)
I how to reach L∗? (will be studied in part III)
I in other words, how to balance estimation error and

approximation error
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Increasing complexity

I key idea: choose gn in Gn, i.e., in a class that depends on
the datasize

I estimation part:
I statistics
I make sure that Ln(g∗n )− L(g∗n ) is under control when

g∗n = arg ming∈Gn Ln(gn)

I approximation part:
I functional analysis
I make sure that limn→∞ L∗Gn

= L∗
I related to density arguments (universal approximation)

I this is the simplest approach but also the less realistic: Gn
depends only on the data size
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Structural risk minimization
I key idea: use again more and more powerful classes Gd

but also compare models between classes
I more precisely:

I compute g∗n,d by empirical risk minimization in Gd
I choose g∗n by minimizing over d

Ln(g∗n,d ) + r(n,d)

I r(n,d) is a penalty term:
I it decreases with n and increases with the “complexity” of
Gd to favor models for which the risk is correctly estimated
by the empirical risk

I it corresponds to a complexity measure for Gd

I more interesting than the increasing complexity solution,
but rather unrealistic on a practical point of view because
of the tremendous computational cost
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Regularization

I key idea: use a large class but optimize a penalized
version of the empirical risk (see part IV)

I more precisely:
I choose G such that L∗G = L∗
I define g∗n by

g∗n = arg min
g∈G

(Ln(g) + λnR(g))

I R(g) measures the complexity of the model
I the trade-off between the risk and the complexity, λn, must

be carefully chosen
I this is the (one of the) best solution(s)
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Summary
I from n i.i.d. observations Dn = (Xi ,Yi)

n
i=1, a ML algorithm

builds a model gn

I a good ML algorithm builds a universally strongly
consistent model, i.e. for all P,

L(gn)
p.s.−−→ L∗

I a very general class of ML algorithms is based on
empirical risk minimization, i.e.

g∗n = arg min
g∈G

1
n

n∑
i=1

c(g(Xi),Yi)

I consistency is obtained by controlling the estimation error
and the approximation error
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Outline

I part II: empirical risk and capacity measures
I part III: capacity control
I part IV: empirical loss and regularization
I not in this lecture (see the references):

I ad hoc methods such as k nearest neighbours and trees
I advanced topics such as noise conditions and data

dependent bounds
I clustering
I Bayesian point of view
I and many other things...
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Part II

Empirical risk and capacity measures

37 / 154 Fabrice Rossi

Outline

Concentration
Hoeffding inequality
Uniform bounds

Vapnik-Chervonenkis Dimension
Definition
Application to classification
Proof

Covering numbers
Definition and results
Computing covering numbers

Summary
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Empirical risk

I Empirical risk minimisation (ERM) relies on the link
between Ln(g) and L(g)

I the law of large numbers is too limited:
I asymptotic only
I g must be fixed

I we need:
1. quantitative finite distance results, i.e., PAO like bounds on

P {|Ln(g)− L(g)| > ε}

2. uniform results, i.e. bounds on

P

{
sup
g∈G
|Ln(g)− L(g)| > ε

}
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Concentration inequalities

I in essence, the goal is to evaluate the concentration of the
empirical mean of c(g(X ),Y ) around its expectation

Ln(g)− L(g) =
1
n

n∑
i=1

c(g(Xi),Yi)− E {c(g(X ),Y )}

I some standard bounds:
I Markov: P {|X | ≥ t} ≤ E{|X |}

t
I Bienaymé-Chebyshev: P {|X − E {X}| ≥ t} ≤ Var(X)

t2

I BC gives for n independent real valued random variables
Xi , denoting Sn =

∑n
i=1 Xi :

P {|Sn − E {Sn}| ≥ t} ≤
∑n

i=1 Var(Xi )

t2
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Hoeffding’s inequality
Hoeffding, 1963

hypothesis

I X1, . . . ,Xn, n independent r.v.
I Xi ∈ [ai ,bi ]

I Sn =
∑n

i=1 Xi

result

P {Sn − E {Sn} ≥ ε} ≤ e−2ε2/
Pn

i=1(bi−ai )
2

P {Sn − E {Sn} ≤ −ε} ≤ e−2ε2/
Pn

i=1(bi−ai )
2

Quantitative distribution free finite distance law of large
numbers!
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Direct application
I with a bounded cost c(u, v) ∈ [a,b] (for all (u, v)), such as

I a bounded Y in regression
I or the misclassification cost in binary classification

[a,b] = [0,1]

I Ui = 1
n c(g(Xi),Yi), Ui ∈ [ a

n ,
b
n ]

I Warning: g cannot depend on the (Xi ,Yi) (or the Ui are no
longer independent)

I
∑n

i=1(bi − ai)
2 = (b−a)2

n
I and therefore

P {|Ln(g)− L(g)| ≥ ε} ≤ 2e−2nε2/(b−a)2

I then Ln(g)
P−→ L(g) and Ln(g)

p.s.−−→ L(g) (Borel Cantelli)
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Limitations

I g cannot depend on the (Xi ,Yi) (independent test set)
I intuitively:

I δ = 2e−2nε2/(b−a)2

I for each g, the probability to draw from P a Dn on which

|Ln(g)− L(g)| ≤ (b − a)

√
log 2

δ

2n

is at least 1− δ
I but the sets of “correct” Dn differ for each g
I conversely for a fixed Dn, the bound is valid only for some of

the models
I this cannot be used to study g∗n = arg ming∈G Ln(g)
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The test set
I Hoeffding’s inequality justifies the test set approach (hold

out estimate)
I Given a dataset Dm:

I split the dataset into two disjoint sets: a learning set Dn and
a test set D′p (with p + n = m)

I use a ML algorithm to build gn using only Dn
I claim that L(gn) ' L′p(gn) = 1

p

∑m
i=n+1 c(gn(Xi ),Yi )

I In fact, with probability at least 1− δ

L(gn) ≤ L′p(gn) + (b − a)

√
log 1

δ

2p

I Example:
I classification (a = 0, b = 1), with a “good” classifier

L′p(gn) = 0.05
I to be 99% sure that L(gn) ≤ 0.06, we need p = 23000 (!!!)
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Proof of the Hoeffding’s inequality

I Chernoff’s bounding technique (an application of Markov’s
inequality):

P {X ≥ t} = P
{

esX ≥ est
}
≤

E
{

esX}
est

the bound is controlled via s
I lemma: if E {X} = 0 and X ∈ [a,b], the for all s,

E
{

esX} ≤ e
s2(b−a)2

8

I e is convex⇒ E
{

esX
}
≤ eφ(s(b−a))

I then we bound φ
I this is used for X = Sn − E {Sn}
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Proof of the Hoeffding’s inequality

P {Sn − E {Sn} ≥ ε} ≤ e−sεE
{

es
Pn

i=1(Xi−E{Xi})
}

= e−sε
n∏

i=1

E
{

es(Xi−E{Xi})
}

(independence)

≤ e−sε
n∏

i=1

e
s2(bi−ai )2

8 (lemma)

= e−sεe
s2Pn

i=1(bi−ai )2

8

= e−2ε2/
Pn

i=1(bi−ai )
2

(minimization)

with s = 4ε/
∑n

i=1(bi − ai)
2
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Remarks

I Hoeffding’s inequality is useful in many other contexts:
I Large-scale machine learning (e.g.,

[Domingos and Hulten, 2001]):
I enormous dataset (e.g., cannot be loaded in memory)
I process growing subsets until the model quality is known

with sufficient confidence
I monitor drifting via confidence bounds

I Regret in game theory (e.g.,
[Cesa-Bianchi and Lugosi, 2006]):

I define strategies by minimizing a regret measure
I get bounds on the regret estimations (e.g., trade-off between

exploration and exploitation in multi-arms bandits)
I Many improvements/complements are available, such as:

I Bernstein’s inequality
I McDiarmid’s bounded difference inequality
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Uniform bounds
I we deal with the estimation error:

I given the ERM choice: g∗n = arg ming∈G Ln(g)
I what about L(g∗n )− infg∈G L(g)?

I we need uniform bounds:

|Ln(g∗n)− L(g∗n)| ≤ sup
g∈G
|Ln(g)− L(g)|

L(g∗n)− inf
g∈G

L(g) = L(g∗n)− Ln(g∗n) + Ln(g∗n)− inf
g∈G

L(g)

≤ L(g∗n)− Ln(g∗n) + sup
g∈G
|Ln(g)− L(g)|

≤ 2 sup
g∈G
|Ln(g)− L(g)|

I therefore uniform bounds give an answer to both
questions: the quality of the empirical risk as an estimate
of the risk and the quality of the model select by ERM
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Finite model class

I union bound : P {A ou B} ≤ P {A}+ P {B} and therefore

P
{

max
1≤i≤m

Ui ≥ ε
}
≤

m∑
i=1

P {Ui ≥ ε}

I then when G is finite

P

{
sup
g∈G
|Ln(g)− L(g)| ≥ ε

}
≤ 2|G|e−2nε2/(b−a)2

so L(g∗n)
p.s.−−→ infg∈G L(g) (but in general infg∈G L(g) > L∗)

I quantitative distribution free uniform finite distance law of
large numbers!
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Bound versus size

with probability at least 1− δ

L(g∗n) ≤ inf
g∈G

L(g) + 2(b − a)

√
log |G|+ log 2

δ

2n

I infg∈G L(g) decreases with |G| (more models)
I but the bound increases with |G|: trade-off between

flexibility and estimation quality
I remark: log |G| is the number of bits needed to encode the

model choice; this is a capacity measure
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Infinite model class

I so far we have uniform bounds when G is finite:
I even simple classes such as Glin = {x 7→ arg maxk (Wx)k}

are infinite
I in addition infg∈Glin L(g) > 0 in general, even when L∗ = 0

(nonlinear problems)
I solution: evaluate the capacity of a class rather than its

size
I first step:

I binary classification (the simplest case)
I a model is then a measurable set A ⊂ X
I the capacity of G measures the variability of the available

shapes
I it is evaluated with respect to the data: if A ∩ Dn = B ∩ Dn,

then A and B are identical
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Growth function
I abstract setting: F is a set of measurable functions from

Rd to {0,1} (in other words a set of (indicator functions of)
measurable subsets of Rd )

I given z1 ∈ Rd , . . . , zn ∈ Rd , we define

Fz1,...,zn = {u ∈ {0,1}n | ∃f ∈ F , u = (f (z1), . . . , f (zn))}

I interpretation: each u describes a binary partition of
z1, . . . , zn and Fz1,...,zn is then the set of partitions
implemented by F

I Growth function

SF (n) = sup
z1∈Rd ,...,zn∈Rd

|Fz1,...,zn |

I interpretation: maximal number of binary partitions
implementable via F (distribution free⇒ worst case
analysis)
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Vapnik-Chervonenkis dimension

I SF (n) ≤ 2n

I vocabulary:
I SF (n) is the n-th shatter coefficient of F
I if |Fz1,...,zn | = 2n, F shatters z1, . . . , zn

I Vapnik-Chervonenkis dimension

VCdim (F) = sup{n ∈ N+ | SF (n) = 2n}

I interpretation:
I if SF (n) < 2n :

I for all z1, . . . , zn, there is a partition u ∈ {0, 1}n, such that
u 6∈ Fz1,...,zn

I for any dataset, F can fail to reach L∗ = 0
I if SF (n) = 2n: there is at least one set z1, . . . , zn shattered

by F
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Example

I points from R2

I F = {I{ax+by+c≥0}}

I SF (3) = 23

I even if we have
sometimes |Fz1,z2,z3 | < 23

I SF (4) < 24

I VCdim (F) = 3
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Linear models
result
if G is a p dimensional vector space of real valued functions
defined on Rd then

VCdim
({

f : Rd → {0,1} | ∃g ∈ G, f (z) = I{g(z)≥0}

})
≤ p

proof

I given z1, . . . , zp+1, let F from G to Rp+1 be
F (g) = (g(z1), . . . ,g(zp+1))

I as dim(F (G)) ≤ p, there is a non zero γ = (γ1, . . . , γp+1)

such that
∑p+1

i=1 γig(zi) = 0
I if z1, . . . , zp+1 is shattered, there is also gj such that

gj(zi) = δij and therefore γj = 0 for all j
I consequently no z1, . . . , zp+1 can be shattered
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VC dimension 6= parameter number

I in the linear case F = {f (z) = I{Pp
i=1 wiφi (z)≥0}}

VCdim (F) = p
I but in general:

I VCdim
(
{f (z) = I{sin(tz)≥0}}

)
=∞

I one hidden layer perceptron:

G =

g(z) = T

β0 +
h∑

k=1

βk T

αk0 +
d∑

j=1

αkjzj


I T (a) = I{a≥0}
I VCdim (G) ≥ W log2(h/4)/32 where W = dh + 2h + 1 is the

number of parameters
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Snake oil warning

I you might read here and there things like
the VC-dimension of the class of separating

hyperplanes with margin larger than 1
δ is bounded

by bla bla bla

I this is plain wrong!
I the class G is data independent
I shattering does not take into a margin
I asking for the “VC-dimension of the class of separating

hyperplanes with margin larger than 1
δ ” is a nonsense

I there is an extension of the VC dimension called the fat
shattering dimension for which this question as a sense,
but one cannot apply the VC bounds directly to it!
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Uniform bound
Vapnik and Chervonenkis (1971)

hypothesis

I n i.i.d. random variables Z1, . . . ,Zn with values in Rd

I F is a set of measurable functions from Rd to {0,1}
I Pf = E {f (Z1)} and Pnf = 1

n
∑n

i=1 f (Zi)

result

P
{

sup
f∈F
|Pf − Pnf | > ε

}
≤ 8SF (n)e−nε2/8

if SF (n) grows polynomially with n, then Pnf converges to Pf
uniformly on F (Borel Cantelli)
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Behavior of SF(n)
Sauer’s Lemma 1972 (also Vapnik and Chervonenkis, 1971)

result
If VCdim (F) <∞ then for all n

SF (n) ≤
VCdim(F)∑

i=0

(
n
i

)

bounds

SF (n) ≤ nVCdim(F) + 1

SF (n) ≤
(

en
VCdim (F)

)VCdim(F)

for n ≥ VCdim (F)
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Application to classification
I the simplest machine learning problem:

I binary classification (Y = {−1,1} and X = Rd )
I cost function: c(g(x),y) = I{g(x) 6=y}
I model class G (classifiers)

I loss class

F =
{

f : Rd → {0,1} | ∃g ∈ G, f (x,y) = I{g(x)6=y}

}
I for the pair f and g

Pf = L(g) Pnf = Ln(g)

P

{
sup
g∈G
|L(g)− Ln(g)| > ε

}
≤ 8SF (n)e−nε2/8

Warning: G is fixed!
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VC-dimension

I as g takes values in {−1,1}, we can define SG(n) and
VCdim (G)

I then VCdim (G) = VCdim (F)
I if z1 = (x1,y1), . . . , zn = (xn,yn) is shattered by F , then

xi , . . . ,xn is shattered by G :
I given v ∈ {−1, 1}n, we define ui = (vi/yi + 1)/2 ∈ {0, 1}
I ∃f ∈ F , f (zi) = ui
I f (zi) = ui ⇔ g(xi) = (2ui − 1)yi and therefore g(xi) = vi
I and then v ∈ Gxi ,...,xn

I conversely if xi , . . . ,xn is shattered by G, then there exists
z1, . . . , zn shattered by F

I therefore SF (n) = 2n ⇔ SG(n) = 2n and
SF (n) < 2n ⇔ SG(n) < 2n

I leading to VCdim (G) = VCdim (F)

I stronger result: SF (n) = SG(n)
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Risk bounds
I with probability at least 1− δ

|L(g)− Ln(g)| ≤ 2

√
2

logSF (n) + log 8
δ

n

≤ 2

√
2

VCdim (G) log n + log 8
δ

n

when 3 ≤ VCdim (G) ≤ n <∞
I in addition

L(g∗n) ≤ inf
g∈G

L(g) + 4

√
2

VCdim (G) log n + log 8
δ

n

Empirical risk minimization is therefore meaningful
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Discussion

I VC dimension provides a capacity measure for classes of
classifiers

I geometrical and combinatorial bound: no statistics...
I ...and therefore distribution free result!
I quite difficult to compute in general
I worst case analysis
I finite VC dim⇔ finite sampled inference is possible:

I only for the empirical risk minimization principle
I the VC theorem gives finite VC dim⇒ consistency
I we’ll see latter than consistent⇒ finite VC dim
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Back to risk bounds

I compare with the finite class bound:

L(g∗n) ≤ inf
g∈G

L(g)+4

√
2

VCdim (G) log n + log 8
δ

n

L(g∗n) ≤ inf
g∈G

L(g)+2

√
log |G|+ log 2

δ

2n

I the VC-dim of a finite set is bounded by log2 |G|
I additional log n term: we can get rid of it (with a lot of

efforts!)
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Extension

I a consequence of VC theorem is that there is a universal
constant c (independent of P) such that

E {L(g∗n)} − inf
g∈G

L(g) ≤ c

√
VCdim (G) log n

n

I refined analysis (e.g., chaining) leads to better bounds:

E {L(g∗n)} − inf
g∈G

L(g) ≤ c′
√

VCdim (G)

n

using bounds of the form

P
{

sup
f∈F
|Pf − Pnf | > ε

}
≤ γ

ε
√

n

(
γnε2

VCdim (F)

)VCdim(F)

e−2nε2
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Proof of the VC result (simplified case)

Fundamental symmetrization lemma

hypothesis

I n i.i.d. random variables Z1, . . . ,Zn with values in Rd

I an independent ghost sample Z ′1, . . . ,Z
′
n

I P ′nf = 1
n
∑n

i=1 f (Z ′i )

I nε2 ≥ 2

result

P
{

sup
f∈F
|Pf − Pnf | ≥ ε

}
≤ 2P

{
sup
f∈F
|P ′nf − Pnf | ≥ ε

2

}

67 / 154 Fabrice Rossi Vapnik-Chervonenkis Dimension

Proof of the lemma
I let f ∗ be the (random) function that maximizes |Pf ∗ − Pnf ∗|

I{|Pf∗−Pnf∗|>ε}I{|Pf∗−P′nf∗|<ε/2} = I{|Pf∗−Pnf∗|>ε∧|Pf∗−P′nf∗|<ε/2}

≤ I{|P′nf∗−Pnf∗|>ε/2}

I compute the expectation with respect to the ghost sample

I{|Pf∗−Pnf∗|>ε}P
{
|Pf ∗ − P ′nf ∗| < ε/2 | Z1, . . . ,Zn

}
≤ P

{
|P ′nf ∗ − Pnf ∗| > ε/2 | Z1, . . . ,Zn

}
I Bienaymé-Chebyshev:

P′
{
|Pf ∗ − P ′nf ∗| ≥ ε/2

}
≤ 4Varf ∗(Z1)

nε2
≤ 1

nε2

I{|Pf∗−Pnf∗|>ε}

(
1− 1

nε2

)
≤ P

{
|P ′nf ∗ − Pnf ∗| > ε/2 | Z1, . . . ,Zn

}
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Proof of the lemma

I use 1− 1
nε2 ≤

1
2 and take the expectation with respect to

the data

P {|Pf ∗ − Pnf ∗| > ε} ≤ 2P
{
|P ′nf ∗ − Pnf ∗| > ε/2

}
I bound the right term by 2P

{
supf∈F |P ′nf − Pnf | ≥ ε

2

}
and

remember that f ∗ maximizes |Pf ∗ − Pnf ∗|
I the practical interest is to replace a maximum over an

arbitrary set G by a maximum over a finite set of values for
P ′nf ∗ − Pnf ∗ (at most 22n values)

I these values are obtained via Fz1,...,zn,z′1,...,z
′
n

whose
cardinal is given by the growth function
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Back to the proof of the VC theorem
I for a fixed f , Hoeffding’s inequality applied to the

Ui = 1
n (f (Zi)− f (Z ′i )) gives

P
{
|P ′nf − Pnf | > ε

}
≤ 2e−nε2/2

I and therefore

P
{

sup
f∈F
|Pf − Pnf | > ε

}
≤ 2P

{
sup
f∈F
|P ′nf − Pnf | ≥ ε

2

}

= 2P

 sup
f∈Fz1,...,zn,z′1,...,z

′
n

|P ′nf − Pnf | ≥ ε

2


≤ 2SF (2n)P

{
|P ′nf − Pnf | ≥ ε

2

}
≤ 4SF (2n)e−nε2/8
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Summary
I the empirical risk minimization principle is based on the

inequality

L(g∗n)− inf
g∈G

L(g) ≤ 2 sup
g∈G
|Ln(g)− L(g)

I uniform distribution free bounds are needed to obtain
consistency

I in the binary classification case:
I we have

P

{
sup
g∈G
|L(g)− Ln(g)| > ε

}
≤ 8SG(n)e−nε2/8

I SG measures the geometrical and combinatorial complexity
of G

I consistency is equivalent to a finite VC-dimension, a
quantity that characterizes the behavior of SG
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What about regression?

I capacity measure:
I naive idea: count the distinct values of (f (z1), . . . , f (zn))

when f ∈ F
I but in regression f (x) ∈ [0,B] (rather than f (x) ∈ {0,1})
I therefore |Fz1,...,zn | =∞ (in general)

I however if f (x) ' h(x), I should count only one model
I Covering numbers:

I on Rd , define d(u, v) = 1
d

∑d
i=1 |ui − vi |

I A ⊂ Rd : an ε-covering of A is a finite set z1, . . . , zq such
that A ⊂

⋃q
i=1 B(zi , ε) with B(u, ε) = {v ∈ Rd | d(u, v) ≤ ε}

I Covering numbers N (ε,A): size of the smallest ε-covering
of A

I Remark: covering numbers depend on the metric in the
chosen space, we will see other metrics in Part IV
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Uniform convergence
[Pollard, 1984]

hypothesis

I Z1, . . . ,Zn n independent random variables
I F set of functions with values in [0,B]

I Pf = E {f (Z1)} and Pnf = 1
n
∑n

i=1 f (Zi)

result

P
{

sup
f∈F
|Pf − Pnf | > ε

}
≤ 8E

{
N
(
ε/8,FZ1,...,Zn

)}
e−nε2/(128B2)

with

FZ1,...,Zn = {u ∈ [0,B]n | ∃f ∈ F , u = (f (Z1), . . . , f (Zn))}
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Comments

I this is again a uniform quantitative finite distance result
I N

(
ε/8,FZ1,...,Zn

)
replaces the shatter coefficient

I the covering number corresponds to the intuition presented
before:

I if f1 and f2 differ not too much, then they count only for one
I in fact d(u, v) = 1

d

∑d
i=1 |ui − vi | exactly says that f1 and f2

are “equal” in the definition of N (ε,FZ1,...,Zn ) if

1
n

n∑
i=1

|f1(Zi )− f2(Zi )| < ε

I a major difference with the shatter coefficients:
I this is not distribution free
I we take the expectation over P
I more on this latter :-)
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Proof
is done by via a symmetrization lemma:

hypothesis

I Z1, . . . ,Zn n independent random variables with values in
Rd

I F set of functions with values in [0,B]

I n i.i.d. Rademacher random variables σ1, . . . , σn with
values in {−1,1}, with P {σi = 1} = 1/2

I nε2 ≥ 2B2

result

P
{

sup
f∈F
|Pf − Pnf | > ε

}
≤ 4P

{
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi f (Zi)

∣∣∣∣∣ > ε

4

}
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Proof of the lemma

I first step: standard symmetrization (by a ghost sample)

P
{

sup
f∈F
|Pf − Pnf | > ε

}
≤ 2P

{
sup
f∈F
|P ′nf − Pnf | > ε/2

}
I the condition nε2 ≥ 2B2 corresponds to Var(f (Zi)) ≤ B2/4
I second step: use the Rademacher random variables

P
{

sup
f∈F
|P ′nf − Pnf | > ε

2

}
= P

{
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi (f (Zi )− f (Z ′i ))

∣∣∣∣∣ > ε

2

}

sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi (f (Zi )− f (Z ′i ))

∣∣∣∣∣ ≤ sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi f (Zi )

∣∣∣∣∣+ sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi f (Z ′i )

∣∣∣∣∣
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Proof of the lemma

I therefore, by union bound

P

{
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi (f (Zi )− f (Z ′i ))

∣∣∣∣∣ > ε

2

}

≤ P

{
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi f (Zi )

∣∣∣∣∣ > ε

4

}
+ P

{
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi f (Z ′i )

∣∣∣∣∣ > ε

4

}

I and that’s all
I Remark: using the Rademacher variables is simply a way

to get rid of the ghost sample; we could proceed without
this trick using the standard VC symmetrisation lemma
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Proof of the main result
I let g1, . . . ,gM be a minimal ε/8-covering of FZ1,...,Zn

(M = N
(
ε/8,FZ1,...,Zn

)
)

I for f ∈ F , there is g∗ ∈ {g1, . . . ,gM} such that

1
n

n∑
i=1

|f (Zi)− g∗(Zi)| ≤
ε

8

I therefore

1
n

∣∣∣∣∣
n∑

i=1

σi f (Zi)

∣∣∣∣∣ ≤ 1
n

∣∣∣∣∣
n∑

i=1

σig∗(Zi)

∣∣∣∣∣+
1
n

∣∣∣∣∣
n∑

i=1

σi(f (Zi)− g∗(Zi))

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣
n∑

i=1

σig∗(Zi)

∣∣∣∣∣+
ε

8
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Proof of the main result
I and therefore

P

{
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi f (Zi)

∣∣∣∣∣ > ε

4
| Z1, . . . ,Zn

}

≤ P

{
max

1≤j≤M

1
n

∣∣∣∣∣
n∑

i=1

σigj(Zi)

∣∣∣∣∣ > ε

8
| Z1, . . . ,Zn

}
I we apply Hoeffding’s inequality to the Ui = 1

nσigj(Zi) (for
fixed values of the Z1, . . . ,Zn) which have zero expectation:

P

{
1
n

∣∣∣∣∣
n∑

i=1

σigj (Zi )

∣∣∣∣∣ > ε

8
| Z1, . . . ,Zn

}
≤ 2e−nε2/(128B2)

I then

P
(

sup
f∈F

1
n

˛̨̨̨
˛

nX
i=1

σi f (Zi )

˛̨̨̨
˛ > ε

4
| Z1, . . . ,Zn

)
≤ N

`
ε/8,FZ1,...,Zn

´
2e−nε2/(128B2)
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Application to regression
I a quite generic setting:

I Y = Rp

I bounded cost function c (B): for instance the quadratic cost
associated to a class of bounded models and for a bounded
Y

I model set G
I loss class

F =
{

f : Rd → [0,B] | ∃g ∈ G, f (x,y) = c(g(x),y)
}

I for the pair f g

Pf = L(g) Pnf = Ln(g)

P

{
sup
g∈G
|L(g)− Ln(g)| > ε

}
≤ 8E {N (ε/8,FZ1,...,Zn )}e−nε2/(128B2)
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In practice?

I as explained before, the result seems limited:
I E {N (ε/8,FZ1,...,Zn )} is distribution dependent
I seems quite difficult to compute

I in fact, VC results can be extended to show

P

{
sup
g∈G
|L(g)− Ln(g)| > ε

}
≤ 8E

{
|FZ1,...,Zn |

}
e−nε2/8

I could we bound E
{

N
(
ε/8,FZ1,...,Zn

)}
using only geometric

and combinatorial properties of F?
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Pseudo dimension

I associate to F = {f : Rd → [0,B]}

F+ =
{

f + : Rd × [0,B]→ {0,1} | ∃f ∈ F , f +(x , t) = I{t≤f (x)}
}

I then [Pollard, 1984]

N (ε,Fz1,...,zn ) ≤
(

4eB
ε

log
2eB
ε

)VCdim(F+)

I packing number: M(ε,F , µ) is the size of the largest
collection of functions f of F such that∫

Rd
|fi(x)− fj(x)|µ(dx) ≤ ε

M(2ε,Fz1,...,zn ,1/n) ≤ N (ε,Fz1,...,zn ) ≤ M(ε,Fz1,...,zn ,1/n)
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Fat shattering
However, VCdim (F+) <∞ is not always needed to get a good
behavior of E

{
N
(
ε/8,FZ1,...,Zn

)}
γ fat shattering
z1, . . . , zn γ-shattered by F if for all u ∈ {−1,1}n, there is
t ∈ [0,B]n and f ∈ F such that

(f (zi)− ti)ui ≥ γ

the γ fat-shattering dimension of F , fatγ(F), is the size of the
largest set γ-shattered by F
if d = fatγ(F) then [Alon et al., 1997]

N (ε,Fz1,...,zn ) < 2
(

4nB2

ε2

)d log2(4eBn/(dε))
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In practice
I the pseudo dimension is generally sufficient for real world

models
I some properties:

I if H = {h + f | f ∈ F} for a fixed h, then
VCdim (H+) = VCdim (F+)

I if h is a non decreasing function from [0,B] to R and if
H = {h ◦ f | f ∈ F}, then VCdim (H+) ≤ VCdim (F+)

I from k function classes F1, . . . ,Fk , we define the class
F = {f1 + . . .+ fk | fi ∈ Fi}, then

N (ε,Fz1,...,zn ) ≤
k∏

j=1

N (ε/k ,Fj,z1,...,zn )

I from two classes Fi (i = 1,2) with respective bounds
[−Bi ,Bi ], we define the class H = {f1f2 | fi ∈ Fi} and then

N
`
ε,Hz1,...,zn

´
≤ N

`
ε/(2B2),F1,z1,...,zn

´
N
`
ε/(2B1),F2,z1,...,zn

´
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Example

I a general framework from [Lugosi and Zegler, 1995]:
I |Y | ≤ L
I c(u, v) = |u − v |p

I G =
{∑k

j=1 wjφj ;
∑k

j=1 |wj | ≤ β
}

, β ≥ L, |φj | ≤ 1

I F =

{
f (x , y) =

∣∣∣∑k
j=1 wjφj(x)− y

∣∣∣p ;
∑k

j=1 |wj | ≤ β
}

I f (x , y) ≤ 2p max(βp,Lp) ≤ 2pβp

I as ||a|p − |b|p| ≤ p|a− b||max(a,b)|p−1,∫
|f1(x , y)− f2(x , y)|ν(dx ,dy) ≤ p(2β)p−1

∫
|g1(x)−g2(x)|µ(dx)

then with ν = 1/n, N (ε,Fz1,...,zn ) ≤ N
(

ε
p(2β)p−1 ,Gz1,...,zn

)
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Example

I as G is a subset of a k dimensional vector space,
VCdim (G+) ≤ k

I therefore

N
(

ε

p(2β)p−1 ,Gz1,...,zn

)
≤ 2

(
e2p+1βp

ε/(p(2β)p−1)
log

e2p+1βp

ε/(p(2β)p−1)

)k

≤ 2
(

ep22pβ2p−1

ε

)k
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Summary

I we have in general

P

{
sup
g∈G
|L(g)− Ln(g)| > ε

}
≤ C(n,G, ε)e−cnε2

I c is determined only by supg∈G ‖g‖∞
I C(n,G, ε) measures the capacity G:

I covering numbers or shatter coefficients
I Vapnik-Chervonenkis dimension
I pseudo-dimension and fat-shattering dimension
I distribution free uniform bounds

I the estimation problem is solved!
I ...in the case of empirical risk minimization
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Necessary conditions

I binary classification:
I N(F ,Z1, . . . ,Zn) = |FZ1,...,Zn |
I HF (n) = log E {N(F ,Z1, . . . ,Zn)} is the VC-entropy
I a necessary and sufficient condition (N.S.C.) for the uniform

convergence of the empirical risk to the risk is:

HF (n)

n
→ 0

I a distribution free N.S.C. is: VCdim (F) <∞
I for regression:

I similar results
I the γ fat-shattering dimension must be finite for all γ
I the target variable has to be bounded
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Limitations

I G must be fixed and must have limited capacity
I in general infg∈G L(g) > L∗
I the analysis does not apply to some techniques:

I mainly when G depends on X1, . . . ,Xn
I in general the union class over all possible datasets has a

too large capacity
I in addition, the risk must be bounded:

I this is a rather strong hypothesis in regression
I easy to check for G...
I ... but not for Y

I solutions:
I adapt the capacity to the data
I use data dependent bounds and/or clipping in regression
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Still no free lunch!
I binary classification case
I when VCdim (G) =∞, we are in trouble:

I consider a fixed ML algorithm that picks up a classifier in G
with infinite VC dimension (using whatever criterion)

I for all ε > 0 and all n, there is (X ,Y )such that L∗G = 0 and

E {L(gn)} ≥ 1
2e
− ε

I shattering an infinite dataset brings even more troubles:
I a fixed ML algorithm picks up a classifier in G
I there is an infinite set A such that for all B ⊂ A, there is

g ∈ G such that g(x) = 1 on B and g(x) = 0 on A \ B
I if (an) is a series with limit zero and such that a1 ≤ 1/16
I then there is (X ,Y ) such that L∗G = 0 and for all n

E {L(gn)} ≥ an
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Still no free lunch!
I VCdim (G) <∞ is a real capacity limit:

I VCdim (G) <∞
I for all ε > 0, there is (X ,Y ) such that

inf
g∈G

L(g)− L∗ >
1
2
− ε

I even increasing the capacity with n is not a perfect
solution:

I take a series of classes with increasing but finite capacities
VCdim

(
G(j)
)
<∞

I for any series (an) with limit zero, there is (X ,Y ) such that
after a rank k

inf
g∈G(k)

L(g)− L∗ > ak

I the set of all classifiers (measurable functions from X to
{−1,1}) cannot be represented exactly as a countable
union of classes with finite VC dimension

92 / 154 Fabrice Rossi Summary

http://apiacoa.org/
http://apiacoa.org/
http://apiacoa.org/
http://apiacoa.org/


Part III

Capacity control
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Estimation and approximation

I back to our program:

L(gn)− L∗ = L(gn)− inf
g∈G

L(g)︸ ︷︷ ︸
estimation

+ inf
g∈G

L(g)− L∗︸ ︷︷ ︸
approximation

I empirical risk minimization and capacity control give a
solution to the estimation part

I but they request a fixed G for which the approximation part
cannot be zero in a distribution free way

I how to fix this problem?
I central idea: allow G to depend on the data

I either in a generic way (i.e., Gn);
I or more ambitiously in more direct way GDn
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Increasing complexity/capacity
for binary classification

hypothesis

I (G(j))j with increasing finite VCdim
(
G(j)) <∞

I asymptotically perfect: limj→∞ infg∈G(j) L(g) = L∗

I kn →∞ et
VCdim(G(kn)) log n

n → 0

result
the classifier defined by g∗n = arg ming∈G(kn) Ln(g) is universally
strongly consistent

L(g∗n)
p.s.−−→ L∗

Remark: it’s impossible to get distribution free convergence
speed (no free lunch)
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In practice
I a central question: are those hypotheses realistic?
I a simple example:

I consider X = [0,1] and

G(j) =

{
g
∣∣∣g(x) = sign

(
a0 +

j∑
k=1

(ak cos 2kπx + bk sin 2kπx)

)}
I G(j) is a 2j + 1 dimensional vector space then

VCdim
(
G(j)
)
≤ 2j + 1

I as the G(j) correspond to truncated Fourier series, we have
limj→∞ infg∈G(j) L(g) = L∗ (by approximation of the
conditional expectation E {Y |X})

I for kn = nα with 0 < α < 1, the limit conditions are fulfilled
I more generally, those hypotheses are reasonable and

backed up by universal approximation results
I Warning: the classes G(j) are fixed a priori, they cannot

depend on the data
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Proof

I L(g∗n)−L∗ =
[
L(g∗n)− infg∈G(kn) L(g)

]
+
[
infg∈G(kn) L(g)− L∗

]
I the first term is under control:

L(g∗n)− infg∈G(kn) L(g) ≤ 2 supg∈G(kn) |Ln(g)− L(g)|

P
{

L(g∗n)− inf
g∈G(kn)

L(g) ≥ ε
}
≤ P

{
sup

g∈G(kn)

|L(g)− Ln(g)| > ε/2

}
≤ 8SF (kn)(n)e−nε2/32

≤ 8(nVCdim(G(kn)) + 1)e−nε2/32

I Borel Cantelli gives the almost sure convergence
I the second term is under control via the hypothesis
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Regression

I similar principle
I asymptotically optimal: limj→∞ infg∈G(j) L(g) = L∗
I increasing capacity, controlled via e.g. the

pseudo-dimension VCdim
(
G(j)+

)
I bounded function supg∈G(j) ‖g‖∞ <∞, but with growing

bounds
I bounded target |Y | <∞

I removing the bound constraint on the target is easy:
I [Lugosi and Zegler, 1995]
I for c(u, v) = |u − v |p and E {|Y |p} <∞
I central idea: clipped target YL = signe(Y ) min(|Y |,L) with

growing clipping value
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Neural networks
Multi-layer perceptrons [Lugosi and Zegler, 1995]

I sigmoid function σ from R to [0,1], non decreasing and
such that limx→−∞ σ(x) = 0 et limx→∞ σ(x) = 1

I for instance σ(x) = 1/(1 + e−x )

I model class

G(k , β) =

{
g(x) =

k∑
i=1

ciσ(〈ai ,x〉+ bi) + c0;
k∑

i=1

|ci | ≤ β

}

I if kn →∞ and βn →∞, then
⋃

n G(kn, βn) is dense in Lp(µ)
(for any probability distribution µ, [Hornik et al., 1989]) and
therefore limj→∞ infg∈G(kn,βn) L(g) = L∗ (c(u, v) = |u − v |p)

I capacity control: knβ
2p
n log(knβn)

n → 0
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Structural Risk Minimization

I in the previous solution, the capacity control is independent
from the data

I it would be nice to explicitly balance the estimation error
L(g∗n)− infg∈G L(g) and the approximation error
infg∈G L(g)− L∗

I central idea: add to Ln(g) a measure of the capacity of G
I Structural Risk Minimization (binary classification):

I asymptotically perfect: limj→∞ infg∈G(j) L(g) = L∗

I controlled capacity:
∑∞

j=1 e−VCdim(G(j)) <∞
I capacity measure: r(j ,n) =

√
8
n VCdim

(
G(j)
)

log(en)

I if g∗n minimizes L̃n(g) = Ln(g) + r(j(g),n), where
j(g) = inf{k | g ∈ G(k)}

I then L(g∗n )
p.s.−−→ L∗
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Comments

I the trade off between estimation error and approximation
error is handled via the capacity estimation

I basically, this corresponds to adding the confidence bound
induced by the VC results to the empirical risk

I beautiful result but not very practical:
I empirical risk minimization for binary classification is

intractable
I this has to be repeated for a large number of classes

I More important limitation: the classes G(j) cannot depend
on the data
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Proof
I gn,j = arg ming∈G(j) Ln(g) (and therefore

g∗n = arg minj L̃n(gn,j))
I decomposition

L(g∗n)− L∗ = (L(g∗n)− inf
j

L̃n(gn,j)) + (inf
j

L̃n(gn,j)− L∗)

I the first term equals L(g∗n)− L̃n(g∗n) and therefore

P
{

L(g∗n )− L̃n(g∗n ) > ε
}
≤ P

{
sup

j

(
L(gn,j )− L̃n(gn,j )

)
> ε

}

≤ P

{
sup

j
(L(gn,j )− Ln(gn,j )− r(j ,n)) > ε

}

≤
∞∑
j=1

P {|L(gn,j )− Ln(gn,j )| > ε+ r(j ,n)}

≤
∞∑
j=1

8nVCdim(G(j))e−n(ε+r(j,n))2/8
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Proof

I then
∞∑
j=1

8nVCdim(G(j))e−n(ε+r(j,n))2/8 ≤
∞∑
j=1

8nVCdim(G(j))e−nε2/8e−r(j,n)2/8

≤ 8e−nε2/8
∞∑
j=1

e−VCdim(G(j))

I Borel Cantelli gives almost sure convergence of L(g∗n) to
infj L̃n(gn,j)

I for ε > 0, we find k such that infg∈G(k) L(g)− L∗ ≤ ε
I then for n large enough r(k ,n) ≤ ε

2 (as r(k ,n) converges to
0 with n for any fixed k )
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Proof
I therefore

P
(

inf
j

L̃n(gn,j )− inf
g∈G(k)

L(g) > ε

)
≤ P

(
L̃n(gn,k )− inf

g∈G(k)
L(g) > ε

)

≤ P
(

Ln(gn,k ) + r(k , n)− inf
g∈G(k)

L(g) > ε

)

≤ P
(

Ln(gn,k )− inf
g∈G(k)

L(g) >
ε

2

)

≤ P
(

sup
g∈G(k)

|Ln(g)− L(g)| >
ε

4

)

≤ 8nVCdim
“
G(k)

”
e−nε2/128

I thus P
{

lim supn→∞ infj L̃n(gn,j)− infg∈G(k) L(g) = 0
}

= 1

I which gives the result
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Model selection via validation
I a more classical use of data driven capacity control is the

validation set method
I Dn is split in two disjoint subsets Dm = (Xi ,Yi)1≤i≤m and

Dl = (Xi ,Yi)m+1≤i≤n (l = n −m)
I Dm is used to build a class of models Gm

I then empirical risk minimisation is used:
gn = arg ming∈Gm

1
l
∑n

i=m+1 c(g(Xi),Yi)

I standard bounds apply to L(gn) chosen from Gm

I any trick can be used on Dm including data dependent
classes

I applications:
I choice of the parameters of a ML method (e.g., number of

neighbors)
I more generally, apply ERM for different classes on Dm and

choose the best model using Dl
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Regularization
I can be seen as a generalization of the structural risk

minimization
I base idea:

I choose gn by minimizing on G the quantity

An(g) + λR(g)

I An(g) is an empirical performance measure, a loss (this
might be something else than Ln)

I R(g) is a complexity measure for g
I if g∗ minimizes An(g) + λR(g) then with µ = R(g∗)

g∗ = arg min
g∈{g′∈G|R(g′)≤µ}

An(g)

I if An and R are convex, both optimization problems are
equivalent (duality): regularization corresponds to reduced
model classes!
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Examples

I Ridge approaches (a.k.a., weight decay):
I take any parametric model, i.e.,
G = {g(x) = F (x,w), w ∈ Rm}

I use a squared difference cost function for the loss (and the
risk)

I penalize with R(F (.,w)) = ‖w‖2

I Support vector machines:
I in the linear case, classifier of the form sign(〈w ,x〉+ b)
I obtained by minimizing over (w ,b)

1
n

n∑
i=1

max (0,1− yi (〈w ,xi〉+ b)) + λ‖w‖2

I this is a ridge penalty with the hinge loss (different from the
classification risk)
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Difficulties

I Two different difficulties:
I if An is not Ln, then we must prove that minimizing An leads

to a low value of L
I in general G has infinite VC dimension: we must show that

the reduced classes Gµ = {g ∈ G|R(g) ≤ µ} have finite
capacities

I In addition a practical difficulty is the choice of λ:
I data size driven solution: λn with a good behavior with n
I data driven solution: via validation like strategies
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Part IV
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Algorithmic difficulties

I for regression problems, optimizing Ln is “easy”
I for instance Ln(g) = 1

n

∑n
i=1 ‖g(xi )− yi‖2 leads to a least

square problem
I if G is parametric

G = {g(x) = F (x,w), w ∈W},

with e.g., gradient based descent techniques
I for classification problems, this is more difficult

I the risk is P {g(X ) 6= Y}
I therefore the empirical risk as a discrete aspect
I this leads to NP complete (or hard) problems in some cases
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Minimizing a loss
I standard solution: minimizing a loss rather than the risk
I for instance, a quadratic loss a(u, v) = (u − v)2, which

replaces Ln(g) = 1
n
∑n

i=1 I{g(Xi )6=Yi} by

An(g) =
1
n

n∑
i=1

a(g(Xi),Yi) =
1
n

n∑
i=1

(g(Xi)− Yi)
2

I in general, g takes values in R and the associated
classifier is defined by h(x) = sign(g(x))

I using regression related results gives bounds on
|An(g)− A(g)|, where

A(g) = E {a(g(X ),Y ))}

and convergence results to A∗G = infg∈G A(g)
I but we want information on L(g) (or L(h))!
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Squared error

I the easy case
I η(x) = E {Y | X = x}
I given a strongly consistent algorithm:

E
{

(gn(X )− Y )2|Dn
} p.s.−−→ E

{
(η(X )− Y )2} and then

E
{

(gn(X )− η(X ))2|Dn
} p.s.−−→ 0

I we have

P {hn(X ) 6= Y | Dn} − P {h∗(X ) 6= Y} ≤ E
{

(gn(X )− η(X ))2|Dn
}

where h∗ is the (optimal) Bayes classifier

I therefore L(hn)
p.s.−−→ L∗
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A more general case

I to extend the squared error case, we need to guarantee
that L(g)− L∗ converges to zero when A(g)− A∗ does

I [Steinwart, 2005]:
I a : R × {−1,1} → R
I C(t , α) = αa(t ,1) + (1− α)a(t ,−1)
I A(g) =

∫
C(P {Y = 1 | X = x} ,g(x))PX (dx)

I a is admissible if:
I a is continuous
I α < 1/2⇒ arg mint C(t , α) < 0
I α > 1/2⇒ arg mint C(t , α) > 0

I in essence, this means that to minimize A, g has to have
the same sign as the regression function!

I is this case, for all ε, there is δ such that A(g)− A∗ ≤ δ
implies L(g)− L∗ ≤ ε
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Example: the hinge loss

I hinge loss
a(x , y) = max(1− yx ,0)

I a(g(x),y)) ≥ I{g(x)6=y}
I C(t , α) = αmax(1− t ,0) + (1− α) max(1 + t ,0) :

I if t ≥ 1, then C(t , α) = (1− α)(1 + t) ≥ 2(1− α)
I if t ≤ −1, then C(t , α) = α(1− t) ≥ 2α
I if t ∈ [−1,1], then

C(t , α) = α(1− t) + (1− α)(1 + t) = 1 + (1− 2α)t
I if α < 1/2, the minimum on [−1,1] is reached in −1 and

equals 2α ≤ 2(1− α)
I symmetrically, when α > 1/2, the minimum is reached in 1

and equals 2(1− α) ≤ 2α
I therefore, the hinge loss is admissible
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Convex risk minimization
I Interesting particular case: a(u, v) = φ(uv) where φ is non

negative
I as in the general case, C(t , α) = αφ(t) + (1− α)φ(−t)
I H(α) = inft C(t , α) and H−(α) = inft(2α−1)≤0 C(t , α)
I φ is calibrated if H−(α) > H(α) for all α

I for all φ, there is a corresponding ψ such that

ψ(L(g)− L∗) ≤ A(g)− A∗

I φ is calibrated if and only if

lim
i→∞

ψ(αi) = 0⇔ lim
i→∞

αi = 0

I if φ is convex, then φ is calibrated if and only if φ has a
derivative in 0 and φ′(0) < 0
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Margin

I when h(x) = sign(g(x)), the binary classification cost
corresponds to I{sign(g(x)) 6=y} = I{g(x)y<0}

I intuitively:
I when g(x)y is large, g makes a robust decision (it is not

sensitive to noise on x)
I when −g(x)y is large, g makes a big mistake the label of x
I it seems interesting to try to optimize a function of g(x)y

I linear case:
I g(x) = 〈w ,x〉+ b
I the oriented distance between x and g(x) = 0 is |〈w,x〉+b|√

〈w,w〉

I keeping the target in mind: y(〈w,x〉+b)√
〈w,w〉

I with the standard normalization
√
〈w ,w〉 = 1, the distance

becomes yg(x): this is the margin
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Maximal margin

I linearly separable data:
many linear classifiers

I if some data are close to
the separator, the margin
is small⇒ low robustness

I choose the classifier by
maximizing the margin

I Support vector machines
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Examples of calibrated convex loss

I φ(a) = max(1− a,0) (a(x , y) = max(1− yx ,0))
I φ(a) = e−a (a(x , y) = e−yx )
I φ(a) = |1− a|p (a(x , y) = |1− yx |p)
I Crucial point: if φ is calibrated, there is γ such that

γφ(a) ≥ I{a≤0}

and therefore

γa(g(x), y) ≥ I{g(x)y≤0} = I{sign(g(x)) 6=y}
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Calibration

0

phi(g(x)y)

g(x)y

φ′(0) < 0 implies that
around g(x)y = 0, the
loss is higher for a
negative margin than
for a positive one
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Summary

I in classification, algorithmic considerations lead to
minimize a loss rather than the risk

I under some admissibility conditions, a minimal loss implies
a minimal cost

I margin:
I a particular case is the one of losses based on the margin

g(x)y
I for convex losses φ(g(x)y), admissibility (a.k.a., calibration)

is equivalent to φ′(0) < 0
I this (partially) justifies algorithms such as Support Vector

Machines and Adaboost
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Plan

Convex Loss minimization
Motivations
Convex loss

Regularization
Kernel Machines
SVM consistency
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Support Vector Machines
I linear SVM: g(x) = 〈w ,x〉 obtained by minimizing

1
n

n∑
i=1

max (0,1− yi(〈w ,xi〉)) + λ‖w‖2

I non linear version:
I kernel:

I K : X × X → R
I K is symmetric and semi definite

Pn
i

Pn
j αiαjK (xi , xj) ≥ 0

I e.g., K (xi , xj) = e−
‖xi−xj‖

2

2σ2

I then g(x) =
∑n

i=1 αiK (xi ,x) chosen by minimizing

1
n

n∑
i=1

max (0,1− yig(xi )) + λ
n∑
i,j

αiαjK (xi ,xj )

I Remark: we drop the b as it leads to technical
complications
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Reproducing Kernel Hilbert Space
I K generates a Reproducing Kernel Hilbert Space, H, the

completion of

H =

{
g(x) =

p∑
i=1

αiK (xi ,x); p ∈ N, αi ∈ R,xi ∈ X

}
with respect to the inner product〈 p∑

i=1

αiK (xi , .),
m∑

i=1

βiK (x′i , .)

〉
=

p∑
i=1

m∑
j=1

αiβjK (xi ,x′j)

I then if g(x) =
∑n

i=1 αiK (xi ,x)

‖g‖2H =
n∑
i,j

αiαjK (xi ,xj)
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Representer theorem

I central result in RKHS
I let’s consider the problem

min
g∈H

(
U(g(x1), . . . ,g(xn)) + Ω(‖g‖2H)

)
where U is any function from Rn to R and Ω is a non
decreasing function

I then there is α1, . . . , αn such that g =
∑n

i=1 αiK (xi , .)
reaches the minimum

I furthermore, if Ω is increasing, any solution of the problem
has this specific form
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Kernel methods
I the representer theorem leads to a family of kernel

methods:
I choose a loss function U and a regularization function Ω
I find g ∈ H that minimizes{

U(g(x1), . . . ,g(xn)) + Ω(‖g‖2
H)
}

by solving in Rn the following optimization problem

min
α∈Rn

8<:U

 nX
i=1

αi K (xi , x1), . . . ,
nX

i=1

αi K (xi , xn)

!
+ Ω

0@ nX
i,j

αiαj K (xi , xj )

1A9=;
I if U = 1

n
∑n

i=1 a(g(xi),yi)) with an admissible a this could
lead to a consistent classifier

I standard SVM corresponds to the hinge loss for a and to
Ω(u) = λnu
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SVM consistency
[Steinwart, 2005]

I two difficulties:
I H has generally an infinite VC dimension
I the optimized criterion is neither the empirical loss, nor an

empirical convex loss
I Steinwart approach:

I show that when λ goes to 0 the influence of regularization
vanishes: asymptotically, we are optimizing An

I use the convex loss results to show that optimizing A leads
to an optimal L

I show that the regularization term allows to control An − A
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Some hypothesis

I Xi take values in X a compact metric space
I the kernel K is such that:

I φ(x) = K (x, .) (from X to H) is continuous
I {g ∈ C(X ) | g(.) = K (w , φ(.)); w ∈ H} is dense in C(X )

(the kernel is universal)

I e.g., the Gaussian kernel K (xi ,xj ) = e−
‖xi−xj‖

2

2σ2 for X a
bounded and closed subset of Rd

I Steinwart studies any admissible a and very general
regularization functions Ω (as well as regression problems
in [Christmann and Steinwart, 2007])

I is this lecture:
I a is the hinge loss
I Ω(λn, ‖g‖H) = λn‖g‖2

H
I no b term
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Regularization
I let’s define:

Aλ(g) = E {max (0,−Y (g(X )))}+ λ‖g‖2H

Aλ,n(g) =
1
n

n∑
i=1

max (0,−yi(g(xi) + b)) + λ‖g‖2H

I any minimizer of Aλ on H is such that ‖g‖2H ≤
2
λ

I similarly, any minimizer of Aλ,n is such that ‖g‖2H ≤
2
λ

I as a consequence, regularization allows to control
|A(g)− An(g)|

I but it vanishes asymptotically as with
gλ = arg ming∈H Aλ(g), we have

lim
λ→0

Aλ(gλ) = inf
g

A(g)
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Concentration

I |A(g)− An(g)| is controlled via covering numbers
I for a class F of functions with values in [0,B]

P
{

sup
f∈F
|Pf − Pnf | ≥ ε

}
≤ 2N∞

( ε
3
,F
)

e−2nε2/(9B2)

I Remark: we use here covering numbers with respect to the
sup norm

I elementary proof via a ε/3-covering of F , f1, . . . , fm :
I |Pf−Pnf | = |Pf−Pfi +Pfi−Pnfi +Pnfi−Pnf | ≤ 2

3ε+|Pfi−Pnfi |
I P

{
supf∈F |Pf − Pnf | ≥ ε

}
≤ P

{
sup1≤i≤m |Pfi − Pnfi | ≥ ε

3

}
I Hoeffding’s inequality gives

P
{
|Pfi − Pnfi | ≥ ε

3

}
≤ 2e−2nε2/(9B2)
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Concentration
I let’s denote ‖K‖∞ = supx∈X

√
K (x,x)

I ‖g‖H ≤ δ implies ‖g‖∞ ≤ δ‖K‖∞ :
I reproducing property: g(x) = 〈g,K (x, .)〉H
I | 〈g,K (x, .)〉H | ≤ ‖g‖H‖K (x, .)‖H
I ‖K (x, .)‖H =

√
K (x,x) ≤ ‖K‖∞

I given the class

Fδ = {a(g(.), .); ‖g‖H ≤ δ}

with a(u, v) = max(0,1− uv)

I then for all f ∈ Fδ, f (x,y) ∈ [0, δ‖K‖∞] and therefore

P

{
sup
f∈Fδ
|Pf − Pnf | ≥ ε

}
≤ 2N∞

( ε
3
,Fδ
)

e−2nε2/(9δ2‖K‖2
∞)
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Concentration

I let g1, . . . ,gm be a minimal ε-covering of
Hδ = {g ∈ H | ‖g‖H ≤ δ}

I ‖gi − gj‖∞ ≤ ε implies
∥∥a(gi(.), .)− a(gj(.), .)

∥∥
∞ ≤ ε

I this (a(gi(.), .))1≤i≤m is a ε-covering of Fδ
I then N∞ (ε,Fδ) ≤ N∞ (ε,Hδ)
I and therefore

P

{
sup

g∈Hδ

|A(g)− An(g)| ≥ ε

}
≤ 2N∞

( ε
3
,Hδ

)
e−2nε2/(9δ2‖K‖2

∞)

I if gn,λ = arg ming∈H Aλ,n(g) then

P {|A(gn,λ)− An(gn,λ)| ≥ ε} ≤ 2N∞
( ε

3
,H√ 2

λ

)
e−nε2λ/(9‖K‖2

∞)
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Recapitulation
I gn = arg ming∈H Aλn,n(g) (when λn → 0)
I g∗n = arg ming∈H Aλn (g)
I given ε > 0 :

I there is δ < 0 such that A(g) ≤ A∗ + δ implies L(g) ≤ L∗ + ε
(admissibility)

I for n ≥ n0, |Aλn (g∗n )− A∗| ≤ δ/3
I if |A(gn)− An(gn)| < δ/3 and |A(g∗n )− An(g∗n )| < δ/3 then

A(gn) ≤ A(gn) + λn‖gn‖2
H

≤ An(gn) + λn‖gn‖2
H + δ/3

≤ An(g∗n ) + λn‖g∗n‖2
H + δ/3

≤ A(g∗n ) + λn‖g∗n‖2
H + 2δ/3

≤ A∗ + δ

I therefore for n ≥ n0, P {L(g) ≥ L∗ + ε} ≤
P {|A(gn)− An(gn)| ≥ δ/3}+ P {|A(g∗n )− An(g∗n )| ≥ δ/3}
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Covering numbers
I to conclude, we need a bound on N∞ (ε,Hδ)
I this can be obtained using operator approximation theory
I when K is a regular kernel, we have in general

ln N∞ (ε,H1) ≤ cε−γ

for some constants c > 0 and γ > 0, and therefore

ln N∞ (ε,Hδ) ≤ c
(
δ

ε

)γ
I better results can be obtained for some specific kernels,

such as the Gaussian one on Rd

ln N∞ (ε,H1) ≤ c
(

log
1
ε

)d+1
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Consistency

I finally, we just need to control

2N∞

(
ε
3 ,Hq 2

λn

)
e−nε2λn/(9‖K‖2

∞)

I for instance ‖K‖
2
∞

nλn
ln N∞

(
ε,Hq 2

λn

)
→ 0 lead to strong

consistency
I for a regular kernel, consistency is obtained via, e.g.,

nλ1+γ/2
n →∞
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Summary

I regularization in a Reproducing Kernel Hilbert Space H:
I corresponds to searching for the classifier in a ball
Hδ = {g ∈ H | ‖g‖H ≤ δ}

I which allows to bound the difference between the empirical
loss and the loss with a covering number

I which is in turn controlled via regularity assumptions on the
kernel K

I admissibility conditions on the loss a and hypothesis on the
regularization function Ω lead to strong (almost) universal
consistency for kernel machines

I similar results are available for regularized boosting
I the crucial point is the regularization: it circumvents the

infinite VC of H
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Extensions
Rademacher averages (a.k.a. data dependent bounds)

I remember the Rademacher variables σi?
I given a bounded set of vectors A ∈ Rp, we define

Rp(A) = E

{
sup
a∈A

1
p

∣∣∣∣∣
p∑

i=1

σiai

∣∣∣∣∣
}

I using McDiarmind bounded differences concentration
inequality, we can obtain data dependent bounds, that is
with probability at least 1− δ

sup
f∈F
|Pf − Pnf | ≤ 2Rn(FZ1,...,Zn ) +

√
2 log 2

δ

n

I easier way to get VC bounds
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Extensions
Rademacher averages

I the bound can be evaluated from the data
I can also be used to derive margin based bounds in binary

classification
I in essence L(g) can be bounded by some classical terms

(capacity, etc.) added to a margin based empirical loss: to
the empirical loss, we add “label errors” when the value of
g(xi)yi is too small

I this justifies somehow the idea of minimizing the margin
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Extensions
Taking into account the variance

I Hoeffding’s like inequalities do not take into account the
variance of the considered variables

I in binary classification, the variance is under control
I taking this into account leads to the following bound: with

probability at least 1− δ (where V = VCdim (G))

L(g∗n )− inf
g∈G

L(g) ≤ C

√ inf
g∈G

L(g)
V log n + 1

δ

n
+

V log n + 1
δ

n


I when infg∈G L(g) = 0, this gives a very fast rate of

convergence
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Extensions
Noise conditions

I fast rate is obtained with infg∈G L(g) = 0
I can we do better?

I the complexity of binary classification is strongly related to
the behavior of the regression function
η(x) = E {Y | X = x} around 1

2
I if |2η(x)− 1| > h for all x, the convergence can be even

better
I but this is a strong condition, that can be relaxed into a

Mammen-Tsybakov noise condition given by

∃α ∈ [0,1[, B > 0, ∀t ≥ 0, P {|2η(X )− 1| > t} ≤ Bt
α

1−α

I all of this can be extended to the case when the Bayes
classifier is not in G
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Extensions

I Other supervised algorithms:
I k -nn and trees
I boosting
I randomized methods (e.g., Random Forests)

I Clustering consistency
I Open questions:

I resampling methods: can we obtain non asymptotic
distribution free bounds for leave-one-out, k -fold
cross-validation and bootstrap?

I optimization aspects: what happens if we can’t reach
infg∈G An(g)?

I and so on...
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Wrapping up
What have we learned?

I statistical learning framework:
I based on stationarity: future data will generated by the

same process as old data
I with maximal information coming from each observation:

independence
I consistency: a good machine learning algorithm should

eventually give the best possible performances on the data
I consistency mixes two different problems:

I estimation problems: can we trust the empirical risk/loss?
I approximation problems: given the chosen method, is it

even possible to reach the best performances?
I for a fixed class of models, learnability is equivalent to finite

capacity: the capacity is measured via a dimension (or a
set of dimensions)
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Wrapping up
What have we learned?

I the only way to have universal consistent models is to
balance estimation problems and approximation problems

I this can be done via some form of regularization:
I at minimum the capacity is adapted to the size of the

dataset
I preferably, it is adapted to the data themselves

I by products:
I concentration inequalities can be applied to other problems,

especially now that we have (very) large datasets
I margin seems to be an interesting concept
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Part V

Appendix
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Researchers

This a non exhaustive and very personal list of homepages that
one should monitor for interesting papers and/or advances in
statistical learning 1

I Peter Bartlett: http://www.stat.berkeley.edu/~bartlett/

I Luc Devroye: http://cg.scs.carleton.ca/~luc/

I Gábor Lugosi: http://www.econ.upf.edu/~lugosi/

I David Pollard: http://www.stat.yale.edu/~pollard/

I Ingo Steinwart: http://www.c3.lanl.gov/~ingo/

1
Please, don’t be annoyed if you are not in this list
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