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1 On–line perceptron training

The perceptron

single layer feed-forward neural network:

ξ N -dim. inputs

J adaptive weights

binary output
(threshold unit)

SH = sign(J · ξ)

J implements a
linearly separable
classification
of inputs

milestones:

Perceptron Convergence Theorem, Rosenblatt (1958)

Capacity, Winder (1963), Cover (1965), Schläfli (1852)

Perceptrons, Minsky and Papert (1969)

Statistical physics of perceptron weights, Gardner (1988)



Learning a linearly separable rule

from reliable examples

• unknownrule SR(ξ) = sign(B · ξ) = ±1

defines the correct classification, parametrized through

a teacherperceptron with weights

B ∈ IRN , (B2 = 1)

• only available information:example data

ID = { ξµ, Sµ
R = SR(ξµ) }, µ = 1, 2, . . . , P

(correct labelsSµ
R provided by the teacher)

• training: choice of student weightsJ

− J parametrizes ahypothesis SH(ξ) = sign(J · ξ)

− supervised learningbased on the student

performance with respect to the training dataID

− here:binary error measure

εµ(J) = ε [ SH(ξµ), Sµ
R ] =





0 if SH(ξµ) = Sµ
R

1 if SH(ξµ) 6= Sµ
R

compares student output and rule classification



• Off–line training:
(Seung et al., 1992)

(Watkin et al., 1993)

(Opper and Kinzel, 1996)

− guided by the minimization of a cost functionH(J) ,

e.g. the training error

H(J) ∝ εt(J) =
1

P

P∑

µ=1
εµ

(empirical mean of the error measure w.r.t.ID )

− Equilibrium Statistical Mechanics treatment:

– energy H of N degrees of freedom

– ensemble of systems in thermal equilibrium

at formal temperature1/β

– disorder average over random training set (repli-

cas),

assume distributionP (ξ) of inputs

– macroscopic description, order parameters

– typical properties of large systems,P = αN

− training strategies

learnable rule: error free trainingεt = 0

J insideversion space

– typicalGibbsstudent (β → ∞ )

– maximum stability

– Bayes optimal student, c.m. of version space,

. . .



On–line training e.g. (Saad, 1998)

• single presentationof uncorrelated (new) { ξµ, Sµ
R }

• update of student weights:

J(µ) = J(µ–1) + ∆J [ J(µ–1), ξµ, Sµ
R) ]

disregards student performance on other examples

• learning dynamics in discrete time

• Statistical Physics approach:

− consider sequence of independent, randomξµ

− thermodynamic limitN → ∞ , P = αN

− recursion relation for order parameters

− disorder average over latest example

self–averaging properties

− continuous time limitα = µ/N

ordinary differential equations for evolution of

order parameters

. . .

• ∆J defines the actuallearning algorithm

− Hebbian learning

− error correction, perceptron algorithm

− optimaltraining prescription ?

. . .



Generalization

performance of the student (after training) with

respect to arbitrary,newinputs ξ ∈/ID

• in practice: empirical mean of error measure

over a set of test inputs { ξτ ∈/ID }τ=1,2,...T

εtest =
1

T

T∑

τ=1
ε [ SH(ξτ), SR(ξτ) ]

• in the theoretical analysis: average〈 . . . 〉 over the

(assumed) probability densityP (ξ) of inputs,

generalization error εg = 〈 ε [ SH(ξ), SR(ξ) ] 〉

(here: ε ∈ { 0, 1 },→ εg is the errorprobability)

the simplest model distribution:

isotropic density P (ξ) , ξ uncorrelated withB andJ

consider vectors of independent, identically

distributed (i.i.d.) components ξj with

〈 ξj 〉 = 0, 〈 ξj ξk 〉 = δjk

e.g. independent Gaussian variablesξj , zero mean / unit variance



Geometric argument

projection of data into(J, B) –plane yields

isotropic (radially symmetric) density of inputs

H SR=

=
J

B

S

φ

probability for disagreement:

εg = φ/π

=
1

π
arccos




J · B
| J | |B |




for |B | = 1: εg =
1

π
arccos




R√
Q




overlap parameters R = J · B, Q = J · J

sufficient to quantify the success of training

R = 0 , εg = 1/2 random guessing

R =
√
Q , εg = 0 perfect generalization

(actual value of student normQ ≥ R2 is irrelevant)



Derivation for large N

given: B, J, uncorrelated random inputξ with

〈 ξj 〉 = 0, 〈 ξj ξk 〉 = δjk

consider student/teacherfields:

x = J · ξ =
∑

j
Jj ξj, y = B · ξ =

∑

j
Bj ξj

sums of (many) independent random quantities

Central Limit Theorem (CLT):

joint density of (x, y) is, for N → ∞ , a two–dimensional

Gaussian, fully specified by the first and second moments

〈 x 〉 =
∑

j
Jj 〈 ξj 〉 = 0, 〈 y 〉 =

∑

j
Bj 〈 ξj 〉 = 0

〈
x2

〉
=

∑

j,k
JjJk 〈 ξjξk 〉 =

∑

j
J2

j = Q

〈
y2

〉
=

∑

j,k
BjBk 〈 ξjξk 〉 =

∑

j
B2

j = 1

〈 xy 〉 =
∑

j,k
JjBk 〈 ξjξk 〉 =

∑

j
JjBj = R

covariance matrixC =




Q R

R 1




PQ,R(x, y) =
1

2π
√

Det C exp


−

1

2
(x, y) C−1




x

y









P (x, y) =
1

2π
√

Q − R2
exp


−1

2

x2 + Qy2 − 2 R xy

Q − R2




Note:

details of the input distribution are largely irrelevant

e.g. independent, binaryξj = ±1 with equal prob.

or independent, uniformξj ∈ [−a, a] with
〈
ξ2
j

〉
= 1

generalization error:

εg =




∞∫

0
dx

0∫

−∞
dy +

0∫

−∞
dx

∞∫

0
dy


 P (x, y)

= . . . (exercise)

=
1

π
arccos




R√
Q




In the following, the isotropic distribution is also assumed

to describe the statistics of example data inputs, i.e.

vectors ξµ ∈ ID consist of i.i.d. components with
〈
ξµ
j

〉
= 0,

〈
ξµ
j ξν

k

〉
= δjk δνµ



properties:

– nospatial correlations,
〈
ξµ
j ξν

k

〉
= 0 if j 6= k

– no distinguished directions in input space

– notemporalcorrelations,
〈
ξµ
j ξν

j

〉
= 0 if µ 6= ν

– no correlations with the rule,P (ξµ, B) = P (ξµ) P (B)

– single presentationwithout repetition:

no correlation ofξµ with J(µ − 1) , i.e. the student

after training with examplesν = 1, 2, . . . , µ–1

consequences:

– average over data can be performedstep by step

– actual choice ofB is irrelevant,

it is not necessary to average over the teacher



Hebbian Learning revisited (Hebb,1949)

off–line interpretation (Vallet, 1989)

choice of student weights givenID = { ξµ, Sµ
R }P

µ=1

J(P ) =
1

N

P∑

µ=1
ξµ Sµ

R

equivalenton–line interpretation

dynamics upon single presentation of examples:

J(µ) = J(µ–1) +
1

N
ξµ Sµ

R

• from microscopics to macroscopics:recursions for

overlaps R(µ) = J(µ) · B, Q(µ) = J(µ) · J(µ)

R(µ) = R(µ–1) +
1

N
(B · ξµ)
︸ ︷︷ ︸

Sµ
R︸ ︷︷ ︸

yµ sign(yµ)

Q(µ) = Q(µ–1) +
2

N
(J(µ–1) · ξµ)
︸ ︷︷ ︸

Sµ
R︸ ︷︷ ︸

+
1

N 2
( ξµ )2
︸ ︷︷ ︸

xµ sign(yµ) N



•) average over latest example 〈 . . . 〉µ
random inputξµ enters only through thefields

xµ = J(µ–1) · ξµ, yµ = B · ξµ

ξµ and J(µ–1), B are statistically independent! By the

same argument as on page 8, the CLT applies and one ob-

tains the joint density

P (xµ, yµ) =
(2π)−1

√
Q − R2

exp


−1

2

xµ2 + Q yµ2 − 2 R xµ yµ

Q − R2




with Q = Q(µ–1) and R = R(µ–1) on the r.h.s.

here we need: (exercise)

〈 | yµ | 〉µ =
√
2/π

〈 xµ sign(yµ) 〉µ =
√
2/π R(µ–1)

〈R(µ) 〉µ = R(µ–1) +
1

N

√√√√√√
2

π

〈Q(µ) 〉µ = Q(µ–1) +
1

N


 2

√√√√√√
2

π
R(µ–1) + 1






• average over all previous examples: [ . . . ]µ–1

〈

[ R(µ) ]µ–1

〉

µ
= [ R(µ) ]µ = [ R(µ–1) ]µ–1 +

1

N

√√√√√√
2

π

define Rν = [ R(ν) ]ν mean overlap afterν examples

Rµ = Rµ–1 +
1

N

√√√√√√
2

π
Qµ = Qµ–1 +

1

N


 2

√√√√√√
2

π
Rµ–1 + 1




(exercise: explicit summation)

• continuous time limit, N → ∞, α = µ/N, dα = 1/N

dR

dα
=

√√√√√√
2

π

dQ

dα
= 2

√√√√√√
2

π
R(α) + 1

initial conditions (tabular rasa) R(0) = Q(0) = 0

meanvalues after training with(α N) examples

R(α) =

√√√√√√
2

π
α Q(α) =

2

π
α2 + α

typical behavior? magnitude of fluctuations?



• self–averaging propertiesof order parameters

simulations: finiteN, J(0) = 0, α = 1.0

50 independent sequences of random examples:

mean value ofQ(α = 1) standard deviation

0.02 0.04 0.06 0.08 0.1 0.12

1

1.2

1.4

1.6

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1

0.2

0.3

0.4

0.5(N →∞)

1/N 1/
√

N

(for our purposes:)

A quantity A(J) is called self–averaging if

– the width of its probability distribution vanishes

– the observation of a valueA different from its mean

occurs with vanishing probability

in the limit N → ∞

For a rigorous discussion see (Reents,Urbanczik, 1998)

Exercise

calculate
[
R2(µ)

]

µ
and show that

[
R2(µ)

]

µ
− [ R(µ) ]2µ ∝ 1/N

for Hebbian learning. Hint: use the off–line interpretation and ex-

ploit the independence of examples.



• deterministic differential equations

describe the actual values of order parameters

explicit average over history is not necessary

• learning curve

α –dependence of order parameters(R, Q)

of (well–behaved) functions thereof, e.g.

normalized overlap ρ =
J · B

| J | |B | =
R√
Q




R(µ)
√
Q(µ)




µ

=
[ R(µ) ]µ√
[ Q(µ) ]µ

=
R(α)
√
Q(α)

=

 1 +

π

2α



−1/2

generalization error

εg(α) =
1

π
arccos





 1 +

π

2α



−1/2




0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

εg

α = P/N



small α –behavior (≈ random guessing):

ρ(α) =
R(α)
√
Q(α)

≈
√√√√√√

2

π

√
α εg ≈ 1

2
−

√
2

π3/2

√
α

asymptotic behavior (α→∞) :

ρ(α) ≈ 1 − π

4α
εg ≈ 1√

2π
α−1/2 → 0

perfect generalizationfor P = α N, α → ∞

Note:

R, Q → ∞ with α → ∞ , but ρ = R/
√
Q → 1

only thedirection of B is found!



Modified Hebbian Learning

∆ J ( J(µ–1), ξµ, sign[B · ξµ] ) =
1

N
f ( . . . ) ξµ sign[B · ξµ]

modulation function f defines training algorithm

simplification: samefj = f in all componentsJj

restriction: f may depend onavailable quantities

in principle: f ( J(µ–1), ξµ, sign yµ )

simplified : f ( Q(µ–1), xµ, sign yµ )

J(µ) = J(µ–1) +
1

N
ξµ sign[yµ]

〈R(µ) 〉 = R(µ–1) +
1

N
〈 f | yµ | 〉µ

〈Q(µ) 〉 = Q(µ–1) +
1

N

〈
2 f xµ sign(yµ) + f 2

〉

µ

single example averageson r.h.s. overP (xµ, yµ)

yield functions of R(µ–1), Q(µ–1)



assume and exploitself–averagingproperties:

Rµ = Rµ–1 +
1

N
FR(Rµ–1, Qµ–1)

Qµ = Qµ–1 +
1

N
FQ(Rµ–1, Qµ–1)

continuous time limit:

dR

dα
= FR(R, Q) = 〈 f y SR 〉

dQ

dα
= FQ(R, Q) =

〈
2 f x SR + f 2

〉

alternatively:

dρ

dα
= Fρ(ρ, Q) =

〈

f SR




y√
Q

− ρx

Q


− ρ

2Q
f 2

〉

“Plug in and play”

• choosef to define the actual algorithm

• calculate r.h.s. of differential equations

(perform Gaussian integrals overP (x, y)

• integrate (numerically) to obtainR(α), Q(α), εg(α)

• investigate (α → ∞) –asymptotics



Learning from mistakes

(Rosenblatt perceptron algorithm, 1959)

base training on the performance w.r.t. the new example:

J(µ) =





J(µ–1) if sign(J(µ–1) · ξµ) = Sµ
R

J(µ–1) + 1
N ξµSµ

R else

modulation function

f(xµ, sign yµ) = Θ (−xµ Sµ
R ) = Θ (−xµ yµ) )

corresponding on–line dynamics: (Biehl and Riegler, 1994)

dρ

dα
=

〈

Θ(−xy) SR




y√
Q

− ρx

Q


 − ρ

2Q
Θ(−xy)

〉

= . . .

=

√√√√√√
1

2π




1 − ρ2

√
Q

− ρ

Q
arccos(ρ)




dQ

dα
= 〈 2 Θ(−xy) x SR + Θ(−xy) 〉 = . . .

=

√√√√√√
2

π
(ρ − 1)

√
Q +

1

π
arccos(ρ)



Numerical integration → ρ(α), Q(α), εg(α)

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

εg

α = P/N

Perceptron

Hebb

ρ(0) = 0

Q(0) = 1

Perceptron algorithm realizes perfect generalization:

dρ

dα
= 0 for ρ = 1 but Q, R → ∞ as α → ∞

asymptotics:

εg = 1
π

(
2
3

)1/3
α−1/3

Q = 1√
2π

(
3
2

)1/3
α+1/3





for α → ∞

α−1/3 >> α−1/2 !

why is simple minded Hebbian trainingbetter than so-

phisticated perceptron training ? (resolved later)



Necessary condition for perfect generalization

stationary, normalized overlap forρ = 1 (x =
√
Qy)

dρ

dα

∣∣∣∣∣∣∣ρ=1
=

〈

f SR




y√
Q

− ρx

Q


 − ρ

2Q
f 2

〉
∣∣∣∣∣∣∣∣ρ=1

=
−1

2Q

〈
f 2(Q, x, sign(x))

〉

=
−1

2Q

∞∫

−∞
Dt f 2(Q, x, sign(x)) != 0

average over

lim
ρ→1

P (x, y) =
1√
2π

exp


−1

2
y2


 δ(x −

√
Qy)

Gaussian measureDt =
dt e−t2/2

√
2π

Successfullfine–tuningfor ρ → 1, α → ∞ , i.e. J ≈ B ,

requires small angularchanges. Two possibilities:

• lim
ρ→1

Q → ∞ , diverging student length

• lim
ρ→1

f(Q, x, sign(x)) = 0

– learning from mistakes only

– explicitannealing f = η(α) ˜f with lim
α→∞ η(α) = 0



Optimal on–line training

Off–line perceptron (error–free training withεt = 0 )

realizes εg ∝ α−1 for large α

(e.g. repeatedpresentation of all examples)

• which is the best performance available within the

limitations of modified Hebbian training?

• is it possible to achieve an asymptotic behaviorεg ∝ α−1

on–line?

Variational approach: (Kinouchi and Caticha, 1992)

choose modulation functionf (within the framework of

modified Hebbian learning)

such that the




decrease of εg

increase of ρ





per example is maximized

(equivalent for the perceptron)



increase ofρ upon presentation of a single example:

∆ρ

1/N
= f SR




y√
Q

− ρ x

Q


 − ρ

2 Q
f 2 (before averaging)

necessary condition, (functional) derivative:

δ

δf
(N∆ρ) = SR




y√
Q

ρ x

Q


 − ρ

Q
f != 0

formally: ⇒ f∗ = SR




√
Qy

ρ
− x




(Note: second (sufficient) condition for maximum isρ > 0 )

Problem (1):

f∗ depends explicitly on teacher fieldy ,

only SR = sign(y) is available from the training data

Solution:

average over unavailable information, i.e. over the

conditional density P (y|x, SR) =
P (x, y) Θ(y SR)

∞∫

−∞
dyP (x, y) Θ(y SR)



One obtains:

fopt = SR




√
Q

ρ
〈 y 〉y|(x,SR) − x




(for general input distributions)

=

√
Q√
2π

√
1 − ρ2

ρ

exp
[

−1
2

ρ2

1−ρ2
x2

Q

]

Φ

 ρ√

1−ρ2

x SR√
Q




(for isotropic, independent data)

Problem (2):

fopt is of the modified Hebbian form,

but containsρ as a parameter

fopt requires information about the actual

performance(ρ, εg) of the student

Any realistic algorithm can at the very bestestimateρ ,

→ analysis ofoptimal on–line trainingprovides

• lower bounds forεg(α)

• insights in the general features offopt which allow

for successful learning

• suggestions for how to construct practical algorithms



Featuresof fopt

-2 -1 0 1 2

1

2

3

4

5

fopt√
Q

xSR/
√
Q

ρ = 0.2

ρ = 0.4

ρ = 0.8ρ → 1

• Learning from mistakes

most weight is given to examples withxSR < 0

• Adaptive embedding

fopt increases with−xSR

• Performance dependent training

initially ρ ≈ 0 : fopt ≈ const.

asymptotically ρ → 1 : fopt = −(xSR)Θ(−xSR)

Hebbian learning→ adaptive perceptron(AdaTron)

training



Optimal on–line learning curve

Note: we can re–write differential equation for anyf which does

not depend ony explicitly:

dρ

dα
=

ρ

Q

〈

f SR

fopt︷ ︸︸ ︷


√
Q

ρ
〈 y 〉y|(x,SR) − x


−1

2
f 2

〉

(x,SR)

=
ρ

Q

〈

f fopt −
1

2
f 2

〉

(x,SR)

dρ

dα
=

ρ

Q

〈 1

2
f 2

opt

〉

=
1

2π

(1 − ρ2)3/2

ρ

∞∫

−∞

dx√
2π

exp
[
−1

2
(1 + ρ2)x2

]

Φ(ρx)

independent ofQ –equation!

Exercise

obtain the optimal learning curvesρ(α) ( εg(α) )

by means of numerical integration, e.g. withMathematica

Why is it difficult to use the initial conditionρ(0) = 0 ?



2.5 5 7.5 10 12.5 15 17.5 20

0.1

0.2

0.3

0.4

0.5

εg

α = P/N

fopt
Hebb f = 1

ρ(0) ≈ 0

asymptotics

obviously
dρ

dα

∣∣∣∣∣∣∣ρ=1
= 0 (perfect generalization)

def. z = πεg = arccos(ρ) , substitutey = ρx

dz

dα
= − 1

2π
tan2 z

∞∫

−∞

dy√
π

exp
[

−1
2

1+cos2 z
cos2 z

]

Φ(y)

= − 1

2π
z2

∞∫

−∞

dy√
2π

e−y2

Φ(y)
+ O(z4) for z ≈ 0

εg(α → ∞) = 2




+∞∫

−∞

dy√
2π

e−y2

Φ(y)




−1

α−1 ≈ 0.88

α



Optimal on–line asymptotics differs from optimal

off–line result (*) by a factor 2 (exact)

(*) [Bayes optimal, c.m. in version space, opt. potential]

requires repeated presentation of all examples

here: single presentation(εt > 0) , yet (almost) the same

student performance as a function ofα !

Practical algorithms with εg ∝ α−1 ?

a) obtain a good estimate ofρ (εg) while learning

Note that here (ideal situation):
1√
Q

d
√

Q

dα
=

1

ρ

dρ

dα
, ⇒

√
Q(0) = ρ(0) guarantees

√
Q(α) = ρ(α)

available, perfect estimate
√
Q = ρ

b) use a simplified version of optimal modulation, e.g.

lim
ρ→1

fopt = (−x SR) Θ(−x SR) (parameter free)

(relaxation algorithm or AdaTron)

incorporates • learning from mistakes

• adaptive embedding



presentation ofξµ :

J(µ) = J(µ–1) +
1

N
(−xµ Sµ

R) Θ(−xµSµ
R) ξµ Sµ

R

field before/after training

unchanged if xµ = J(µ–1) · ξµ SR > 0 already,

else: J(µ) · ξµ = xµ − 1

N
xµ ξµ · ξµ = 0

misclassification is corrected by minimal change ofJ

(identical with the zero temperature limit ofOn–line

Gibbslearning(Kim and Sompolinksy, 1996))

Exercise

Show that the relaxation algorithm solves the following optimization

problem:

minimize | J(µ) − J(µ–1) |2 under the constraintJ(µ) · ξµ ≥ 0

. . . diff. eqs. . . . asymptotics (Biehl and Riegler, 1994)

εg(α → ∞) =
3

2 α

(coincides with theworst student in version space(Engel))



c) time–dep. learning rate (Barkai, Seung, Sompolinsky 1995)

normalized modified Hebbian learning: (J(µ–1)2 = 1)

J(µ) =
J(µ–1) + η

N
f ξµ Sµ

R√

1 + η
N

fxµSµ
R + η2

N
f 2

= J(µ–1)


 1 − 1

N

(
ηfxµSµ

R + η2f 2/2
) 


+
1

N
η f ξµSµ

R + O(N−2)

dρ

dα
= −ρ

〈
ηfxSR + η2f 2/2

〉
+ 〈 η fySR 〉

For f = Θ(−xSR) one obtains (exercise)

dρ

dα
=

η√
2π

(
1 − ρ2

)
− η2

2 π
ρ arccos(ρ)

• constantη

εg(α → ∞) =
η√
2π3

= const.

• (optimized) power law annealing:η(α) = 2
√

2π
/

α

εg(α → ∞) ≈ 1.27

α



Learning a linearly separable rule

from reliable examples

• exact description of on–line learning dynamics:

− sequence of indep. random (isotropic) data

− thermodynamic limitN → ∞ :

typical behavior of large networks

continuous time limit

• Plug in and Play !

− Hebbian Learning(f = 1) , εg(α → ∞) ∝ α−1/2

− Rosenblatt perceptronΘ(−xSR) , εg ∝ α−1/3

• variational approach→ optimal modulation function

− lower bound for typicalεg(α)

− asymptotics: εg(α → ∞) ≈ 0.88 / α

• successful practical algorithms:

− performance estimation

− relaxation algorithm lim
ρ→1

fopt

− normalization, time dependent learning rate



Learning from noisy data (Biehl, Riegler, Stechert, 1995)

linearly separable rule SR = sign(B · ξ)

example data { ξµ, Sµ
T }

where theSµ
T = ±1 arenoisy(stochastically corrupted)

versions of Sµ
R = sign yµ

• modified Hebbian training:

J(µ) = J(µ − 1) +
1

N
f(Q(µ–1), xµ, Sµ

T ) ξµ Sµ
T

on–line dynamics:

dR

dα
= 〈 f y ST 〉(x,y,ST )

dQ

dα
=

〈
2 f xST + f 2

〉

(x,y,ST )

dρ

dα
=

〈

f SR




y√
Q

− ρx

Q


 − ρ

2Q
f 2

〉

(x,y,ST )

analogous to previous case (reliable data)

〈 . . . 〉(x,y,ST ) is the average over

(x, y) andthe randomness inST (to be specified)



• two performance measures(inconsistent defs. in the literature!)

generalization error εg = 〈Θ(−xSR) 〉(x,y) =
1

π
arccos(ρ)

compares student output with the true (learnable) rule

prediction error εp = 〈Θ(−xST ) 〉(x,y,ST )

compares with corrupted label of a new example

εg = 0

εp > 0





for J ∝ B (unpredictable noise inST )

• optimal modulation function

fopt = ST




√
Q

ρ
〈 y 〉y|(x,ST ) − x




average overP (y|x, ST )

depends on the nature and strength of the considered noise

which is assumed to be known within the optimization

scheme



Two examples of stochastic corruption

(multiplicative)output noise

(additive)weight noise (input noise)

Output noise

Sµ
T =





+Sµ
R with prob. 1 − λ

−Sµ
R with prob. λ < 1/2 (inversion rate)

random flip for each example, independent of inputξµ

single example averages

〈 g(x, y, ST ) 〉(x,y,ST ) =

λ 〈 g(x, y,−SR) 〉 + (1 − λ) 〈 g(x, y, +SR) 〉

prediction error: (0 ≤ λ ≤ 1/2, 0 ≤ εg ≤ 1/2)

εp = λ (1 − εg) + (1 − λ) εg

= λ + (1 − 2λ)εg ≥




λ

εg



Hebbian training (f = 1)

dR

dα
= 〈 y ST 〉(x,y,ST ) = 〈 | y | ( (1 − λ)SR − λSR ) 〉(x,y)

=

√√√√√√
2

π
( 1 − 2λ )

dQ

dα
= 2 〈 xST 〉(x,y,ST ) + 1 = 2

√√√√√√
2

π
(1 − 2λ) R + 1

analytically solvable as forλ = 0 . . .

εg(α) =
1

π
arccos





 1 +

π

2(1 − 2λ)2α




−1/2



=




1√
2π (1 − 2λ)2


 α−1/2 for α → ∞

perfect generalization still achieved

modified prefactor, diverges forλ → 1/2 (random ST = ±1 )



Optimal modulation function

fopt =
√
Q

1−2λ√
2π

√
1 − ρ2

ρ

exp


−1

2

ρ2

1 − ρ2

x2

Q




(1−2λ) Φ

 ρ√

1−ρ2

xST√
Q


 + λ

makes use of unavailable/unknown

ρ performance estimation

λ noise level estimation (see below)

asymptoticsεg(α) =
Co(λ)

α

with Co(λ) = 2
1

(1 − 2λ)2




+∞∫

−∞
Dx

1

(1 − 2λ)Φ(x) + λ




−1

2× (optimal off–line result) !

0.1 0.2 0.3 0.4 0.5
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Co(λ)

λ

0.88



optimal features

-2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1

1.2

1.4

fopt√
Q

xST/
√
Q

ρ = 0.8

ρ = 0.9

ρ = 0.99

λ = 0.01

• performance dependence

• learning from mistakes

• confidence

large |x | indicate that a misclassificationsign(x) = −ST

is most likely due to the presence of noise

Effective cut–off at negativex ≈ −c ,

roughly given by the width of the Gaussian factor infopt

c =

√
1 − ρ2

ρ
= tan(πεg) (performance dependent)

∝ 1/α (explicitly α –dependent)

suggests a simplified algorithm:see (Kim,Sompolinsky, 1996)

fopt = (−xST ) Θ(−x ST ) Θ(x + c)



(Mis–) Estimation of the noise level (Copelli et al., 1997)

suboptimal modulation functionfΛ :

functional form of fopt but true λ replaced withΛ

fΛ =
√
Q

1−2Λ√
2π

√
1 − ρ2

ρ

exp


−1

2

ρ

1 − ρ2

x2

Q




(1−2Λ) Φ

 ρ√

1−ρ2

xST√
Q


 + Λ

over–estimationΛ > λ : εg(α → ∞) =
C(λ, Λ)

α
(perfect generalization !)

under–estimationΛ < λ :

Noise robustness diagram

0.00 0.10 0.20 0.30 0.40 0.50
λo

0.00

0.10

0.20

0.30

0.40

0.50

Λ
o

a)

I)

II)

III)

I) robust region

εg(α → ∞) = 0

II) imperfect generalization

0 < εg(α → ∞) < 1/2

III) stable fixed point ρ = 0

εg(α → ∞) = 1/2

(also valid for thetree committee machinewith K h.u.)



On–line estimation of “hyper–parameter” Λ

Λ(µ) = Λ(µ–1)+
1

2N
[ (1 − Λ(µ–1))Θ(−xµSµ

T ) − Λ(µ–1)Θ(+xµSµ
T ) ]

simple minded scheme:

– increases/decreases estimate if example is wrong/right

– obeys 0 ≤ Λ ≤ 1

– disregards confidence in student output

average over(x, y, ST ) , continuous time limitN → ∞ ,

self–averaging properties ofΛ(α)

system described by 3 coupled ODEs forρ, Q and

dΛ

dα
=

1

2
( εp − Λ )) (i.e. Λ → εp → λ)

example:
noise level λ(α)

estimateΛ(α)

simulations
(N = 1000)

εg(α)



Weight noise

Sµ
T determined according to a noisy version of the teacher

Sµ
T = sign



˜Bµ · ξµ
︸ ︷︷ ︸

ỹµ


 where (˜Bµ

)2 = 1 and ˜Bµ · B = ω

(otherwise random and uncorrelated)

B
B
~µ e.g. ˜Bµ vector of i.i.d. components

with ˜Bµ
j = ω Bj

(˜Bµ
j )2 − ω2B2

j = 1 − ω2

effect of the noise depends on teacher fieldyµ = B · ξµ

B



formally: (suppress(. . .) for average over˜B )

〈 y 〉 = 〈 ỹ 〉 = 0
〈
y2

〉
=

〈
ỹ2

〉
= 1 〈 yỹ 〉 = ω

joint density:

P (ỹ, y) =

P (ỹ|y)
︷ ︸︸ ︷

1√
2π

1√
1 − ω2

exp


−1

2

(ỹ − ωy)2

1 − ω2




1√
2π

e−y2/2

inversion probability for (Sµ
T = −Sµ

R)

conditional

〈Θ(−ỹy) 〉(ỹ|y) = Φ



−ω | y |√
1 − ω2


 =





1/2 for | y | = 0

0 for | y | → ∞

over–all rate 〈Θ(−ỹy) 〉(ỹ,y) =
1

π
arccos(ω)

full description by means of joint Gaussian densityP (x, y, ỹ)

〈 x 〉 = 〈 y 〉 = 〈 ỹ 〉 = 0
〈
y2

〉
=

〈
ỹ2

〉
= 1,

〈
x2

〉
= Q 〈 xy 〉 = R 〈 ỹy 〉 = ω

〈 xỹ 〉 =
∑

j,k
Jj

˜Bk 〈 ξjξk 〉 =
∑

j
Jj

˜Bj = ω R



Equivalent interpretation: input noise

noisy input ˜ξ
µ

with (˜ξ
µ
)2 = N, ˜ξ

µ · ξµ/N = ω

e.g. (i.i.d.) P ( ˜ξµ
j ) =

1√
2π

1√
1 − ω2

exp


−1

2

( ˜ξµ
j − ω ξµ

j )2

(1 − ω2)




• ˜ξ
µ

presented to theteacher

J(µ) = J(µ–1) +
1

N
f ξµ Sµ

T with Sµ
T = sign(B · ˜ξµ

)

ỹµ = B · ˜ξµ
same moments as above, e.g.

〈 ỹµy 〉 =
∑

jk
BjBk

〈

ξj
˜ξk

〉

=
∑

jk
BjBkω 〈 ξjξk 〉 = ω

• ˜ξ
µ

presented to thestudent

J(µ) = J(µ–1) +
1

N
f ˜ξ

µ
Sµ

R with Sµ
R = sign(B · ξµ)

fields x̃ = J(µ–1) · ˜ξµ
, y = B · ξµ , and ỹ = B · ˜ξµ

with the same statistics as(x, ỹ, y) from above

• student weight noiseJ(µ) → ˜J(µ) is not equivalent

as it changes the student/teacher overlap explicitly



Hebbian training f = 1

dR

dα
= 〈 y sign(ỹ) 〉(y,ỹ) =

√√√√√√
2

π
ω

dQ

dα
= 〈 x sign(ỹ) 〉(x,ỹ) + 1 =

√√√√√√
2

π
ω R + 1

formally identical with learning in the presence of output

noise, replace(1 − 2λ) with ω

εg(α) =
1

π
arccos





 1 +

π

2 ω2 α



−1/2




comparison at equal inversion rates, i.e. forλ =
1

π
arccos(ω)

2 λ = 0.1

△ ω = cos(0.1π)

sim., N = 1000

} f = 1

} fopt



generalization vs. prediction error :

εp =
1

π
arccos ( ω cos(πεg) ) =

1

π
arccos(ωρ)

Asymptotical behavior forεg → 0 :

εp =
1

π
arccos(ω) +

ωπ

2
√

1 − ω2
ε2
g = εp(∞) + O(α−1)

Weight noise as a simple model of unlearnable rules

assumeSR(ξ) is not linearly separable, but a more com-

plicated function ofy = B · ξ , SR = g̃(y)

B

resembles the effect
of weight noise

interpretation: generalization errorεp

( εp(α) − εp(∞) ) ∝ α−1



Optimal modulation function

fopt =

√
Q√
2π

ω
√

1 − ρ2

ρ
√

1 − ω2ρ2

exp


−1

2

ω2 ρ2

1 − ω2 ρ2

x2

Q




Φ

 ω ρ√

1−ρ2

xST√
Q




asymptotics: in the limit α → ∞ :

εg =
(1 − ω2)1/4

(ωπ)1/2




+∞∫

−∞

dt√
2π

exp
(

−1
2

1+ω2

ω2 t2
)

Φ(t)




−1/2

α−1/2

(coincides exactly with optimal off–line learning result!)

• small α, ρ ≈ 0

very weak effect of weight noise:

learning B or ˜B is not much different

• large α, ρ ≈ 1

very pronounced effect of weight noise:

fine tuning requires disagreement between student and

teacher, i.e. | y | ≈ 0 with very probable inversion



Features:
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ω = 0.90

• learning from mistakes

• adaptive behavior forx ST < 0

• no cut–off, but fopt → 0 with ρ → 1

student confidence is not helpful, because examples

with large | x | are corrupted by noise with very lit-

tle probability

Note: the dependence offopt on the (unknown) noise

level ω is only through εp :

fopt =

√
Q√
2π

tan2(πεg)

tan(πεp)

exp

−1

2
1

tan2(πεp)
x2

Q




Φ

 1

tan(πεp)
xST√

Q





 tan(πεg) =

ρ√
1 − ρ2

, tan(πεp) =

√
1 − ω2ρ2

ωρ






Exercise:the limit of small prediction error (ρ, ω → 1)

lim
εp→0

fopt =
tan2(πεg)

tan2(πεp)
Θ(−xST ) (−x ST )
︸ ︷︷ ︸

(relaxation alg. )

effective learning rate

η(ρ, ω) =
tan2[arccos(ρ)]

tan2[arccos(ωρ)]
(performance dependent)

η(α) = c(ω)/
√

α (explicitly α –dep.)

Summary

• output noisecorrupts all examples equally efficient

encouragesconfidencein the student if |x | is large

cut–off at x = −c

c ∝ εg ∝ α−1

On–line Gibbs algorithm

• weight noiseaffects mainly examples with| y | ≈ 0

hindersfine–tuningfor J ≈ B

decaying learning rateη
η ∝ εg ∝ α−1/2



Remarks and Questions

• In more realistic situations bothnature andstrength

of the noise are unknown; requires on–line estimation

of performance, and assignment of theblameto the

different possible sources (according to|xµ | )

• In the presence of weight andoutput noise the more

drastic effect of weight noise dominates, i.e.

→ εg ∝ α−1/2 asymptotically

• Why is Hebbian learning already optimal in the pres-

ence of weight noise? (apart from pre–factors)

General resultsw.r.t. “on–line vs. off–line learning”:

Opper, 1995

Kinouchi and Caticha, 1995

van den Broeck, Reimann, 1996

optimal on–line is identical with optimal off–line asymp-

totics forsmoothprocesses, e.g. weight noise

optimal on–line coincides with optimal off–line asymp-

totics apart from a prefactor (2) fornon–smoothprocesses,

e.g. output noise



Learning from clustered input data

(Meir (1995), Barkai et al (1993), Riegler et al (1996))

expect in realistic situations that the density of observed

inputs reflects features which are relevant for the classi-

fication

examples: hand written digits “3” and “7”

medical data for diagnosis

a simple model:

P (ξ) with a single symmetry breaking direction

C ∈ IRN with C2 = 1 , e.g.all Cj = 1/
√

N

P (ξ) = 1/2
∑

σ=±1
P (ξ|σ)

P (ξ |σ) = =
N∏

j=1

1√
2π

exp

−1

2
(ξj − mσCj)

2



two overlapping clusters of data centered at±mC

dummy variableσ denotes the cluster membership

conditional averages〈 (. . .) 〉σ over P (ξ|σ)

〈 ξj 〉σ = mσ Cj = O(1/
√

N)
〈
ξ2
j

〉

σ
− m2 C2

j = 1 (ξ2 = N)

〈 ξj ξk 〉σ − m2 Cj Ck = 0 for j 6= k



C

overlap z = C · ξ :

〈 z 〉σ =
∑

j
Cj 〈 ξj 〉σ = mσ


 but: 〈 z 〉 =

〈 z 〉
+1

+ 〈 z 〉−1

2
= 0




〈
z2

〉

σ
=

∑

j,k
CjCk 〈 ξj ξk 〉σ

=
∑

j
(1 + m2 C2

j )C2
j +

∑

j,k(j 6=k)
C2

j C
2
k m2 = . . . = 1 + m2

i.e.
〈
z2

〉

σ
− 〈 z 〉2σ = 1 , but

〈
z2

〉
− 〈 z 〉2 = 1 + m2

vector J with J · C = D , x = J · ξ

〈 x 〉σ = mD σ
〈
x2

〉

σ
= Q + m2D2

〈 x z 〉σ = D (1 + m2)

P (x, y|σ) =
(2π)−1

√
1 − D2

exp


−1

2

(x − Dy)2

1 − D2
− 1

2
(y − mσ)2




for D = 0 double Gaussian structure is notvisible, and

P (x, y|σ) factorizes



Linearly separable classification of clustered data

C
B

symmetry breaking dir.C
teacher vectorB

SR(ξ) = sign(B · ξ)

parameter χ = B · C

χ quantifies the alignment of the rule with the under-

lying structure in input space, i.e. its relevance for the

classification

expectation:

any χ > 0 should be helpful in learning the conceptB

x = J · ξ, y = B · ξ, z = C · ξ
R = J · B, D = J · C, χ = B · C

P (x, y, z) =
1

2

∑

σ=±1
P (x, y, z|σ) with conditional moments

〈 y 〉c = m χ σ,
〈
y2

〉

c
= 1 + m2 χ2

〈 xy 〉c = R + m2 χ D, 〈 yz 〉c = χ(1 + m2)

(others given above)



generalization error:

εg = 〈Θ(−xSR) 〉(x,y)

= Φ(χ m) − Φ



mD√

Q


 + 2

mD/
√

Q∫

−∞
Dt Φ



tR/

√
Q − χm

√
1 − R2/Q




differential equations for modified Hebbian learning:

(averages over fullP (x, y, z) )

dR

dα
= 〈 f y SR 〉, dD

dα
= 〈 f z SR 〉, dQ

dα
=

〈
2f x SR + f 2

〉

Hebbian Learning (f = 1) (analytically solvable)

R(α) =




√√√√√√
2

π
e−

1
2χ2m2

+ χm erf


χm√

2





α

D(α) =


χ

√√√√√√
2

π
e−

1
2χ2m2

+ m erf


χm√

2





α

Q(α) =


 1 + m erf



χm

2


D +

√
2

π
e−

1
2m2χ2

R


α + 1



Hebb

Perceptron
Relaxation

Hebbian trainingfails to learn the l.s. rule (in general)

asymptotically: linear combination of teacher andC

J →
√√√√√√

2

π
e−χ2m2/2 B + m erf



χ m√

2


C

successful learningεg → 0 is only possible if

m = 0 (irrelevant structure vector)

χ = 1 (perfect alignment with the rule)

χ = 0 (learning in the space orthogonal toC )

One can show more generally:

Hebb student can only generalize perfectly forα → ∞ when B

is an eigenvector of the covariance matrixM =
〈
ξξ⊤ 〉

P (ξ)
with

elementsMjk = 〈 ξjξk 〉 . Here: eitherB||C or B ⊥ C



Hebbian perfect generalization withεg ∝ α−1/2 is an

artefact of assuming an isotropic data distribution!

Learning from mistakes

• Rosenblatt Perceptron (f = Θ(−xSR)

. . . asymptotics:

εg(α → ∞) =
1

π




2

3
e−χ2m2




1/3

α−1/3

The perceptron algorithm is fast for non–malicious

input distributions (E.B. Baum, 1990)

(Exercise:suggest a candidate for a “malicious” input distribution )

• AdaTron, Relaxation (f = (−xSR) Θ(−xSR)

. . . asymptotics:

εg(α → ∞) =
3

2α

independent of the structure (gain for smallα )



2 Learning by on–line gradient descent
(Amari, 1967,1995)

Commonly used in practical applications:

multilayered neural networks with continuous activation
functions, where output is a differentiable function of the
adaptive parameters

learning based on the gradient of a continuous cost fct.

popular: backpropagation of error

see for instance (Chauvin and Rumelhart, 1995)

Exercise: The “linear perceptron”

student: SH = x = J · ξ ∈ IR

teacher: SR = y = B · ξ ∈ IR with B2 = 1

training and performance evaluation are based on the quadratic error

ε(ξ) =
1

2
(x − y)2 calculate εg = 〈 ε(ξ) 〉

consider the training dynamics

J(µ) = J(µ–1) − η

N
∇Jε(ξµ)

analyse on–line learning from random examples{ ξµ, yµ }
in analogy to the simplest case considered for the sign–perceptron

Show that
dεg

dα
= (η2 − 2η) εg

and investigate the role of the learning rateη



Multilayered, feed–forward neural networks

example architecture: the “soft–committee machine”

 S

ξ  N –dim. inputs

K weight vectorsJk

K hidden units

K weights wj

single (linear) output unit

hidden unitactivation:

g(xi) with argumentxi = Ji · ξ

transfer function: sigmoidal g(x) , e.g. g(x) = tanh(x)

here: (for analytical reasons)

g(x) = erf



x√
2


 =

2√
π

x/
√

2∫

0
e−t2 dt, g′(x) =

e−x2/2

√
2π

total output:

S(ξ) =
K∑

i=1
wi g(xi) =

K∑

i=1
wi erf




xi√
2






Note: (Cybenko, 1989)

a network with the slightly more complicated output

S(ξ) =
K∑

i=1
wi g(Ji · ξ − ϑi)

is auniversal approximatorif

– g continuous, sigmoidal

– { Ji, ϑi, wi } adaptive parameters

– K unrestricted (might need very largeK )

Student teacher scenario

assume the same architecture in student and teacher, but

K h.u. in the student vs.M h.u. in the teacher

K = M perfectly learnable rules

K > M overlearnablerules

K < M unlearnable rules

We will focus on matching architecture(K = M) in the

following



The error measure

one (obvious) choice for continuous outputs is

ε(ξ) =
1

2
( SH(ξ) − SR(ξ) )2

=
1

2




K∑

i=1
wig(xi) − M∑

n=1
vn g(yn)




2

where xi = Ji · ξ, yi = Bi · ξ

popular off–line training energy:

H =
P∑

µ=1
ε(ξµ) for a given ID = { ξµ, SR(ξµ) }µ=1,...P

On–line gradient descent (Biehl, Schwarze, 1995)

sequence of examples in discrete timeµ

Ji(µ) = Ji(µ–1) − η

N
∇Ji

ε(ξµ)
∣∣∣∣∣∣
(µ–1)

wi(µ) = wi(µ–1)
η

N
∇wi

ε(ξµ)
∣∣∣∣∣∣
(µ–1)

learning rateη = O(1) for(J2
i = O(1))

here: the sameη everywhere in the network



isotropic, uncorrelated input data:

〈
ξµ
j

〉
= 0,

〈
ξµ
j ξν

k

〉
= δµν δjk, (ξµ)2 = N

CLT ⇒ { xi }i=1,2...,K and { ym }m=1,2,...,M are

K + M correlated Gaussians with zero mean and

〈xi xk 〉 = Qik = Ji · Jk = Qki

〈 xi yn 〉 = Rin = Ji · Bn

〈 yn ym 〉 = Tmn = Bm · Bn = Tnm

teacher–teacher overlapsTnm and weightsvn

specify properties of the rule

order parameters and weights: {Rin, Qik, wi }

are sufficient to describe large(N → ∞) students

microscopics: K N + N degrees of freedom

macroscipics: K(K − 1)/2 + KM + K quantities



Generalization error: εg = 〈 ε(ξ) 〉
P (ξ)

average over the Gaussian densityP ( { xi, yn })
can be performed analytically (forg(x) = erf(x/

√
2) )

(Saad and Solla, 1995)

εg =
1

π




K∑

i,k=1
wi wk arcsin




Qik√
1 + Qii

√
1 + Qkk




+
M∑

n,m=1
vn vm arcsin




Tnm√
1 + Tnn

√
1 + Tmm




−2
K∑

i=1

M∑

n=1
wi vn arcsin




Rin√
1 + Qii

√
1 + Tnn







The error measure and hence the generalization error re-

flect symmetries of the soft–committee machine

most important:permutation symmetry

invariance under permutation ofbranches { Ji, wi }



A simple case:

• hidden–to–output weights: vn = 1

• a priori knowledge of vn , fixed wi = vi = 1

weight vector update:

Ji(µ) = Ji(µ–1) − η

N
[ SH(ξµ) − SR(ξµ) ] g′(xµ

i ) ξµ

where xµ
i = Ji(µ–1) · ξµ

Recursion relations e.g. for Rin = Ji · Bn

Rin(µ) = Rin(µ–1) − η

N
δµ
i yµ

n

with δµ
i = g′(xµ

i ) ∆µ

and ∆µ = Sµ
H − Sµ

R =



K∑

i=1
g(xµ

i ) − M∑

n=1
g(yµ

i )



• average over latest example

• self–averaging assumption for all order parameters

• continuous time limiteα = µ/N



dRin

dα
= −η 〈 δi yn 〉

dQik

dα
= −η 〈 δi xi + δj xi 〉 + η2 〈 δi δj 〉

All averages on the r.h.s. can be performed analytically,

(for arbitrary K, M ) (Saad,Solla,1995)

one obtains a system of first order ODE’s

for the order parameters{Rin(α), Qij(α) }

numerical integration yieldslearning curve εg(α)

specify: K, M, matrix Tnm, learning rateη

initial conditions

Example: K = M = 2, Tnm = δnm

branch symmetric subspace:

Rii = R for i = 1, 2 Rij = S for i 6= j

Qii = Q for i = 1, 2 Q12 = C

branch symmetry

is preserved under the dynamics if satisfied initially

is approached from quite general initial conditions



generic learning curves:
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εg ∝ e−λα

Observations:

• perfect generalization is achieved

• exponential asymptotics:εg ∝ e−λα

for finite learning ratesη < ηc

• learning process is dominated by

quasi–stationaryplateau stateswith

Rij, Qij, εg ≈ const.



Asymptotics

here: R → 1, S → 0, Q → 1, C → 0

def. V(4) = (R − 1, S,Q − 1, C)⊤

The dynamics equations can be linearized forV(4) → 0 ,

one obtains the form

dV(4)

dα
= m(4) V(4)

where the matrix m(4) is given by derivatives of the

eqs. of motion w.r.t. the order parameters (in the limit

V(4) → 0 )

The decrease of the components ofV(4) is ∝ e−λα ,

where λ is the largest eigenvalue ofm(4)

the two relevant eigenvalues:

ηc

λ1

λ2

successful learning only for subcritical learning rateη ≤ ηc

(solid straight line: λ2 for the system with adjustablewi )



Plateau states

simplest (and most important) plateaus correspond to sym-

metric,unspecializedstudent configurations

Ji ≈ J ∝ K∑

n=1
Bn for all i = 1, 2 . . . , K

exact equalityJi = J would be preserved by the

learning algorithm, independent of the actual scenario!

As a consequence, a fixed point of the form

Rin = R = S, Qik = Q = C

always exists

weak repulsion from the fixed point (small enoughη )

eventually allows forstudent specialization

(additional, less symmetric plateaus can be present!)

Plateau length

determined by





properties of the fixed point,

i.e. escape timeτesc ∝ λ−1
esc

(characteristic eigenvalue of linearization)

initial deviation from the symmetry of

the fixed point



K = M = 2, η = 1.5

0
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α

ε g

R11(0) = R22(0) = R0 ≈ 0

R12(0) = R0 + XR

R21(0) = R0 − XR

XR = 10−6, 10−8, 10−10, 10−12

deviation X(α) ∼ |R12 − R11 | ∝ eτescα

plateau length for different values ofXR :

(

αp(X
(1)
R − αp(X

(2)
R

)

= τesc ln




X
(2)
R

X
(1)
R




What does this imply for realistic situations ?

(with no control of initial student/teacher overlaps)



Realistic initial conditions

e.g. random, uncorrelated studentsJi(0)

typical overlaps:

Qii(0) = ˜Q Qik(0) = O



1√
N




Rin = = O



1√
N




expect also deviations XR ∼ |Rin − Rii | = O



1√
N




plateau lengths αp ∝ ln(N)

diverges in the thermodynamic limit!
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perfect learning is a finite size effect



Further topics

• overlearnable/unlearnable scenarios

• adaptive second layer weights

• learning from noisy examples

• second order methods,natural gradient descent

• globally/locally optimal learning algorithms

• finite–size effects

• on–line learning from limited training sets

• relation on–line / off–line learning

“master references:”

D. Saad (ed.),On–line learning in Neural Networks, 1998

covers many of these topics and gives up to date refs.
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