
A logical analysis of Banach’s fixpoint theorem

Isar Stubbe
joint work with Arij Benkhadra (PhD student)

Université du Littoral, France

CT2023 in Louvain-la-Neuve, 3–10 June 2023



Banach: Fixpoint theorem (1922)

Stefan Banach (1892-1945)



Banach: Fixpoint theorem (modern version)

Let (X, d) be a complete metric space.

Let f : X → X be a contraction: d(fx, fy) ≤ k · d(x, y) for some 0 < k < 1.

(Note that f is a fortiori non-expansive.)

For any x ∈ X,

- infer from contractivity that the sequence x, fx, f2x, ... is Cauchy:

lim d(fnx, fmx) = 0

- infer from completeness that the sequence converges, say to x∗:

lim d(y, fnx) = d(y, x∗)

- infer from non-expansiveness that fx∗ = x∗:

0 = d(x∗, x∗) = lim d(x∗, fnx) ≥ lim d(fx∗, fn+1x) = d(fx∗, x∗)

Infer from contractivity that the fixpoint is unique:

fx∗ = x∗, fy∗ = y∗ =⇒ d(x∗, y∗) = d(fx∗, fy∗) ≤ k · d(x∗, y∗) =⇒ d(x∗, y∗) = 0.



Lawvere: Metric spaces are categories (1973)

Bill Lawvere (1937-2023)
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Quantale-enriched categories (1)

A quantale Q = (Q,
∨
, ◦, 1) is a closed (= residuated) monoidal complete lattice.

Closedness is equivalent to

a ◦ (
∨
i

bi) =
∨
i

(a ◦ bi) and (
∨
i

ai) ◦ b =
∨
i

(ai ◦ b)

for all a, b, (ai)i, (bi)i in Q, so Q is precisely a monoid in Sup.
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A Q-functor F : A → B is a function F : A0 → B0 such that

A(x, y) ≤ B(Fx, Fy) for any x, y.

A Q-distributor Φ: A c // B is a matrix Φ: B0 × A0 → Q : (y, x) 7→ Φ(y, x) such that

B(y′, y) ◦ Φ(y, x) ◦ A(x, x′) ≤ Φ(y′, x′) for any x, x′, y, y′.

Q-categories and Q-functors form a category Cat(Q) in the obvious way.

Q-categories and Q-distributors form a (Sup-enriched) 2-category Dist(Q), in which
composition is “matrix-like” and local order is “element-wise”.



Bénabou: Distributors (1973)

Jean Bénabou (1932-2022)



Quantale-enriched categories (2)

Examples of Cat(Q):

For Q = ({0, 1},∨,∧, 1): ordered sets and monotone maps.
A(x, y) = 1 if x ≤ y, 0 if x ̸≤ y.

For Q = ([0,∞],
∧
,+, 0): (generalized) metric spaces and non-expansive maps.

A(x, y) = d(x, y) is the distance from x to y.

A left-continuous t-norm is a commutative, integral quantale ([0, 1],
∨
, ∗, 1),

e.g. x ∗ y = max{x+ y − 1, 0}, used in many-valued logic.

For Q = ([0, 1],
∨
, ∗, 1): “fuzzy” orders and “fuzzy” monotone maps.

A(x, y) = Jx ≤ yK is the extent to which x ≤ y holds.

Compute ∆ := ([0,∞],
∧
,+, 0)

∐
([0, 1],

∨
, ∗, 1) in CMon(Sup): its elements are

probability distributions u : [0,∞] → [0, 1], with convolution product:

(u ∗ v)(t) =
∨

r+s=t

u(r) ∗ v(s) and e(t) =

{
0 if t = 0
1 if t ̸= 0

For Q = (∆,
∨
, ∗, e): probabilistic metric spaces and probability-increasing maps.

A(x, y)(t) is the probability that the distance from x to y is less than t.

There are many more examples—in sheaf theory, non-commutative topology, monoidal
topology, domain theory, quantum computing, automata theory...
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Quantale-enriched categories (3)

Any Q-functor F : A → B represents a left adjoint distributor (“the graph of F ”)

F∗ : A c // B with elements F∗(y, x) = B(y, Fx).

Not every left adjoint distributor is thusly representable; however, whenever it is
representable, then it is so by an essentially unique functor.

A Q-category C is Cauchy complete if any left adjoint distributor into C is representable.
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but under certain conditions on Q they coincide; see (Hofmann and Reis, 2013).)



Fixpoint theorem (1)
Proposition
Suppose that F : C → C is a Q-functor on a Cauchy complete C. If there is an x ∈ C0

such that (Fnx)n∈N is Cauchy, then F has a fixpoint.

Indeed,

(Fnx)n∈N is Cauchy =⇒


(
ϕ(y) =

∨
N∈N

∧
n≥N C(y, Fnx)

)
y∈C0(

ψ(y) =
∨

N∈N
∧

n≥N C(Fnx, y)
)
y∈C0

are adjoint

=⇒
∨
N∈N

∧
n≥N

C(y, Fnx) = C(y, x∗) for some x∗

and then

C(Fx∗, x∗) =
∨
N∈N

∧
n≥N

C(Fx∗, Fnx) ≥
∨

N∈N0

∧
n≥N

C(x∗, Fn−1x) = C(x∗, x∗) ≥ 1.

Similarly (using ψ) one gets C(x∗, Fx∗) ≥ 1.

Having both 1 ≤ C(x∗, Fx∗) and 1 ≤ C(Fx∗, x∗) means that Fx∗ ∼= x∗ in C.

But can we provide (“contractivity”) conditions on F to ensure the existence of a
Cauchy sequence (Fnx)n∈N? And what about the uniqueness of a fixpoint?
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Say that φ : Q→ Q is a control function and F : C0 → C0 is a φ-contraction, if

φ(t) ≥ t for all t ∈ Q,

φ(t) = t implies that either t = 0 or 1 ≤ t.

C(Fx, Fy) ≥ φ(C(x, y)) for any x, y ∈ C0.
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There are other non-trivial examples, e.g. for probabilistic metric spaces:
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1
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(u(t) + 1) if 0 < t ≤ ∞

0 if t = 0
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Proposition
If C is symmetric, then any two fixpoints of a φ-contraction are either isomorphic or in
different summands of C.

If C has no zero-homs, then any two fixpoints of a φ-contraction are always isomorphic.
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continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.
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Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Proof. Putting Cx,f :=
x
NœN

w
nØN

w
mØN C(fnx, fmx) œ Q, we recall from Subsection 1.2 that „x,f ‰ Âx,f if and only

if Cx,f Ø 1. We shall show that Cx,f ”Ø 1 leads to a contradiction.
(i) Picking an x œ C0 such that C(x, fx) ”= 0 ”= C(fx, x), we put cn := C(fnx, fn+1x) œ Q for all n œ N. By

assumption, 0 < c0 Æ 1 and the conditions on Ï imply that c0 Æ Ï(c0) Æ c1. Repeating the argument we find that
cn Æ Ï(cn) Æ cn+1, so the sequence is increasing and strictly above 0. Therefore we can compute, using the conditions
on Ï, that:

fl

NœN
cN =

fl

NœN
cN+1

=
fl

NœN

fi

nØN
cn+1

Ø
fl

NœN

fi

nØN
Ï(cn)

Ø Ï(
fl

NœN

fi

nØN
cn)

= Ï(
fl

NœN
cN )

Ø
fl

NœN
cN

We thus find a fixpoint of Ï which is not 0, so it must satisfy 1 Æ x
NœN cN .

(ii) Similarly, the sequence (an := C(fn+1x, fnx))nœN must also satisfy 1 Æ x
œN an.

(iii) Next, suppose that 1 ”Æ Cf,x; by continuity of the underlying complete lattice of Q, this means that there exists
an ‘ π 1 such that ‘ ”Æ Cf,x (and so in particular ‘ ”= 0). Using the definition of Cf,x as a sup-inf, we may infer:

‘ ”Æ
fl

kœN

Q
a fi

nØk

fi

mØk
C(fnx, fmx)

R
b =∆ ’k œ N : ‘ ”Æ

fi

nØk

fi

mØk
C(fnx, fmx)

=∆ ’k œ N,÷nk,mk Ø k : ‘ ”Æ C(fnkx, fmkx)

In the last line above, it cannot be the case that mk = nk, because otherwise C(fnkx, fnkx) Ø 1 (by the “identity” axiom
for the Q-category C), which would then also be above ‘ π 1. So suppose that nk < mk, then we can replace mk by

mÕ
k := min{m > nk | ‘ ”Æ C(fnkx, fmx)}

and so we still have ‘ ”Æ C(fnkx, fmÕ
kx), but now we know also that ‘ Æ C(fnkx, fmk≠1x). Similarly, if nk > mk then we

may replace nk by
nÕ
k := min{n > mk œ N | ‘ ”Æ C(fnx, fmkx)}

and we still have ‘ ”Æ C(fnÕ
kx, fmkx), but now we know also that ‘ Æ C(fnÕ

k≠1x, fmkx). That is to say, we can always
pick nk,mk Ø k to ensure that

‘ ”Æ C(fnkx, fmkx) and
;

either C(fnkx, fmk≠1x) Ø ‘ (A)
or C(fnk≠1x, fmkx) Ø ‘ (B)

Now denote, for each such pick of nk,mk Ø k œ N,

dk := C(fnkx, fmkx);

and let us insist that ‘ ”Æ dk for all k œ N. In case condition (A) holds for dk, then in particular mk > nk so mk Ø 1, and
we can use the “composition” axiom in C to get

‘ ¶ cmk≠1 Æ C(fnkx, fmk≠1x) ¶ C(fmk≠1x, fmkx)
Æ C(fnkx, fmkx)
= dk

In case condition (B) holds for dk we can similarly prove that

ank≠1 ¶ ‘ Æ dk.

Hence, using in (ú) that a continuous lattice is always meet-continuous, and that both sequences
1fi

{dk | k Ø N and (A) holds}
2
NœN

and
1fi

{dk | k Ø N and (B) holds}
2
NœN

are increasing, we may compute that
fl

NœN

fi

kØN
dk =

fl

NœN0

fi

kØN
dk

=
fl

NœN0

1fi
{dk | k Ø N and (A) holds} ·

fi
{dk | k Ø N and (B) holds}

2

(ú)=
A fl

NœN0

fi
{dk | k Ø N and (A) holds}

B

·
A fl

NœN0

fi
{dk | k Ø N and (B) holds}

B

Ø
A fl

NœN0

fi
{‘ ¶ cmk≠1 | k Ø N and (A) holds}

B

·
A fl

NœN0

fi
{ank≠1 ¶ ‘ | k Ø N and (B) holds}

B

Ø

Q
a fl

NœN

fi

mØN
‘ ¶ cm

R
b ·

Q
a fl

NœN

fi

mØN
an ¶ ‘

R
b

Ø

Q
a‘ ¶ (

fl

NœN

fi

mØN
cm)

R
b ·

Q
a(

fl

NœN

fi

mØN
an) ¶ ‘

R
b

=
A

‘ ¶ (
fl

NœN
cN )

B
·

A
(

fl

NœN
aN ) ¶ ‘

B

= (‘ ¶ 1) · (1 ¶ ‘)
= ‘

So, even though ‘ ”Æ dk (for all k œ N), we do have that 0 ”= ‘ Æ x
NœN

w
kØN dk.

(iv) Using the “composition” axiom in C, we have for every k Ø N œ N (recall that nk,mk Ø k too) that

dk Ø cnk ¶ C(fnk+1x, fmk+1x) ¶ amk
Ø cnk ¶ Ï(dk) ¶ amk

Ø cN ¶ Ï(dk) ¶ aN

and so we may compute that
fl

NœN

fi

kØN
dk Ø

fl

NœN

fi

kØN
(cN ¶ Ï(dk) ¶ aN )

Ø
fl

NœN

Q
acN ¶ (

fi

kØN
Ï(dk)) ¶ aN

R
b

(ú)=
A fl

NœN
cN

B
¶

Q
a fl

NœN

fi

nØN
Ï(dk)

R
b ¶

A fl

NœN
aN

B

= 1 ¶

Q
a fl

NœN

fi

kØN
Ï(dk)

R
b ¶ 1

Ø Ï(
fl

NœN

fi

nØN
dk)

Ø
fl

NœN

fi

nØN
dk

where in (ú) we used once more the argument involving increasing sequences (explained in a previous footnote), but now
for three sequences instead of two. This means that

x
NœN

w
kØN dk is a fixpoint of Ï which – as we showed earlier – is

not 0, so we must have 1 Æ x
NœN

w
kØN dk.

(v) Since ‘ π 1 Æ x
NœN

w
kØN dk, and the latter supremum is directed, there must exist an N0 œ N such that

‘ Æ w
kØN0

dk. Yet, we established earlier that ‘ ”Æ dk for all k œ N. This is the announced contradiction. 2



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof :



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof : If (Fnx)n∈N is not Cauchy, then 1 ̸≤ ∨
N∈N

∧
m,n≥N C(Fnx, Fmx).



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof : If (Fnx)n∈N is not Cauchy, then 1 ̸≤ ∨
N∈N

∧
m,n≥N C(Fnx, Fmx).

In the continuous lattice Q, there must then be an ϵ such that

ϵ≪ 1 and ϵ ̸≤
∨
N∈N

∧
m,n≥N

C(Fnx, Fmx).



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof : If (Fnx)n∈N is not Cauchy, then 1 ̸≤ ∨
N∈N

∧
m,n≥N C(Fnx, Fmx).

In the continuous lattice Q, there must then be an ϵ such that

ϵ≪ 1 and ϵ ̸≤
∨
N∈N

∧
m,n≥N

C(Fnx, Fmx).

Thus 0 ̸= ϵ≪ 1 is such that

for all k ∈ N there exist mk, nk ≥ k such that ϵ ̸≤ C(Fnkx, Fmkx).



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof : If (Fnx)n∈N is not Cauchy, then 1 ̸≤ ∨
N∈N

∧
m,n≥N C(Fnx, Fmx).

In the continuous lattice Q, there must then be an ϵ such that

ϵ≪ 1 and ϵ ̸≤
∨
N∈N

∧
m,n≥N

C(Fnx, Fmx).

Thus 0 ̸= ϵ≪ 1 is such that

for all k ∈ N there exist mk, nk ≥ k such that ϵ ̸≤ C(Fnkx, Fmkx).

A “clever choice” of such indices mk, nk ≥ k can be made, say

dk := C(Fnkx, Fmkx),

so that, with lower-semicontinuity of φ, continuity of Q, and C(Fx, x) ̸= 0 ̸= C(x, Fx),

φ(
∨
N∈N

∧
k≥N

dk) =
∨
N∈N

∧
k≥N

dk ̸= 0.



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof : If (Fnx)n∈N is not Cauchy, then 1 ̸≤ ∨
N∈N

∧
m,n≥N C(Fnx, Fmx).

In the continuous lattice Q, there must then be an ϵ such that

ϵ≪ 1 and ϵ ̸≤
∨
N∈N

∧
m,n≥N

C(Fnx, Fmx).

Thus 0 ̸= ϵ≪ 1 is such that

for all k ∈ N there exist mk, nk ≥ k such that ϵ ̸≤ C(Fnkx, Fmkx).

A “clever choice” of such indices mk, nk ≥ k can be made, say

dk := C(Fnkx, Fmkx),

so that, with lower-semicontinuity of φ, continuity of Q, and C(Fx, x) ̸= 0 ̸= C(x, Fx),

φ(
∨
N∈N

∧
k≥N

dk) =
∨
N∈N

∧
k≥N

dk ̸= 0.

Thus, 1 ≤
∨
N∈N

∧
k≥N

dk, which leads to ϵ ≤
∧

k≥N0

dk for some N0.



Fixpoint theorem (3)
Proposition
Suppose that F : C → C is a φ-contraction on a Q-category. Suppose that Q is a
continuous lattice and that φ : Q→ Q is a lower-semicontinuous function. Then, for
any x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), the sequence (Fnx)n∈N is Cauchy.

Sketch of proof : If (Fnx)n∈N is not Cauchy, then 1 ̸≤ ∨
N∈N

∧
m,n≥N C(Fnx, Fmx).

In the continuous lattice Q, there must then be an ϵ such that

ϵ≪ 1 and ϵ ̸≤
∨
N∈N

∧
m,n≥N

C(Fnx, Fmx).

Thus 0 ̸= ϵ≪ 1 is such that

for all k ∈ N there exist mk, nk ≥ k such that ϵ ̸≤ C(Fnkx, Fmkx).

A “clever choice” of such indices mk, nk ≥ k can be made, say

dk := C(Fnkx, Fmkx),

so that, with lower-semicontinuity of φ, continuity of Q, and C(Fx, x) ̸= 0 ̸= C(x, Fx),

φ(
∨
N∈N

∧
k≥N

dk) =
∨
N∈N

∧
k≥N

dk ̸= 0.

Thus, 1 ≤
∨
N∈N

∧
k≥N

dk, which leads to ϵ ≤
∧

k≥N0

dk for some N0. Contradiction!



Fixpoint theorem (4)
Theorem
Suppose that F : C → C is a φ-contraction on a Cauchy complete Q-category. Suppose
that Q is a continuous lattice and that φ : Q→ Q is a lower-semicontinuous morphism.
If there exists an x ∈ C0 such that C(Fx, x) ̸= 0 ̸= C(x, Fx), then F has a fixpoint.

If C is symmetric, then any two fixpoints of F are either isomorphic or in different
summands of C; if C has no zero-homs, then any two fixpoints of F are isomorphic.

Examples:

Q = ({0, 1},∨,∧, 1): the theorem trivializes for ordered sets.

Q = ([0,∞],
∧
,+, 0): (generalized) Banach fixpoint theorem for (generalized)

metric spaces, allowing for non-linear contractions (cf. (Boyd and Wong, 1969)).

Q = ([0, 1],
∨
, ∗, 1): a new fixpoint theorem for fuzzy orders, to be compared with

e.g. (Coppola et al., 2008).

Q = (∆,
∨
, ∗, e): a new fixpoint theorem for probabilistic metric spaces,

encompassing certain known results (Hadžić and Pap, 2001).
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e.g. (Coppola et al., 2008).

Q = (∆,
∨
, ∗, e): a new fixpoint theorem for probabilistic metric spaces,

encompassing certain known results (Hadžić and Pap, 2001).



Take-away message: an equilibrum of three

To formulate a fixpoint theorem for a φ-contraction F : C → C on a Q-category,

C must be
sufficiently
(co)complete

F must be
sufficiently
contractive

Q must be
sufficiently
continuous

Our theorem captures known examples and produces new results. Yet, the literature
abounds with fixpoint theorems. Further study is necessary!

Challenge: find a fixpoint theorem for quantaloid-enriched categories, to understand the
situation for partial metric spaces (Hofmann and Stubbe, 2018).
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