A logical analysis of Banach's fixpoint theorem

Isar Stubbe
joint work with Arij Benkhadra (PhD student)
Université du Littoral, France

CT2023 in Louvain-la-Neuve, 3-10 June 2023

Banach: Fixpoint theorem (1922)

Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales* publié dans Fund. Math. 3 (1922), p. 133-181.

[^0]
Banach: Fixpoint theorem (modern version)

Let (X, d) be a complete metric space.
Let $f: X \rightarrow X$ be a contraction: $d(f x, f y) \leq k \cdot d(x, y)$ for some $0<k<1$.
(Note that f is a fortiori non-expansive.)
For any $x \in X$,

- infer from contractivity that the sequence $x, f x, f^{2} x, \ldots$ is Cauchy:

$$
\lim d\left(f^{n} x, f^{m} x\right)=0
$$

- infer from completeness that the sequence converges, say to x^{*} :

$$
\lim d\left(y, f^{n} x\right)=d\left(y, x^{*}\right)
$$

- infer from non-expansiveness that $f x^{*}=x^{*}$:

$$
0=d\left(x^{*}, x^{*}\right)=\lim d\left(x^{*}, f^{n} x\right) \geq \lim d\left(f x^{*}, f^{n+1} x\right)=d\left(f x^{*}, x^{*}\right)
$$

Infer from contractivity that the fixpoint is unique:

$$
f x^{*}=x^{*}, f y^{*}=y^{*} \Longrightarrow d\left(x^{*}, y^{*}\right)=d\left(f x^{*}, f y^{*}\right) \leq k \cdot d\left(x^{*}, y^{*}\right) \Longrightarrow d\left(x^{*}, y^{*}\right)=0 .
$$

METRIC SPACES, GENERALIZED LOGIC, AND CLOSED CATEGORIES

(Conferenza tenuta il 30 marzo 1973) \%

By taking account of a certain natural generalization of category theory within itself, namely the consideration of strong categories whose hom-functors take their values in a given «closed category» \mathcal{V} (not necessarily in the category \mathcal{S} of abstract sets), we will show below that it is possible to regard a metric space as a (strong) category and that moreover by specializing the constructions and theorems of general category theory we can deduce a large part of general metric space theory.

Banach: Fixpoint theorem (modern version)

Let (X, d) be a complete metriespace. ${ }^{\text {category }}$
Let $f: X \rightarrow X$ be a contraction: $d(f x, f y) \leq k \cdot d(x, y)$ for some $0<k<1$.
(Note that f is a fortiori non-expansive.)
For any $x \in X$,

- infer from contractivity that $x, f x, f^{2} x, \ldots$ is a Cauchy sequence:

$$
\lim d\left(f^{n} x, f^{m} x\right)=0
$$

- infer from completeness that the sequence converges, say to x^{*} :

$$
\lim d\left(y, f^{n} x\right)=d\left(y, x^{*}\right)
$$

- infer from non-expansiveness that $f x^{*}=x^{*}$:

$$
0=d\left(x^{*}, x^{*}\right)=\lim d\left(x^{*}, f^{n} x\right) \geq \lim d\left(f x^{*}, f^{n+1} x\right)=d\left(f x^{*}, x^{*}\right)
$$

Infer from contractivity that the fixpoint is unique:

$$
f x^{*}=x^{*}, f y^{*}=y^{*} \Longrightarrow d\left(x^{*}, y^{*}\right)=d\left(f x^{*}, f y^{*}\right) \leq k \cdot d\left(x^{*}, y^{*}\right) \Longrightarrow d\left(x^{*}, y^{*}\right)=0 .
$$

Banach: Fixpoint theorem (modern version)

Let (X, d) be a complete metrie space. ${ }^{\text {category }}$
Let $f: X \rightarrow X$ be a contraction: $d(f x, f y) \leq k \cdot d(x, y)$ for some $0<k<1$.
(Note that f is a fortiori non-expansive.)
For any $x \in X$,

- infer from contractivity that $x, f x, f^{2} x, \ldots$ is a Cauchy sequence:

$$
\lim d\left(f^{n} x, f^{m} x\right)=0
$$

- infer from completeness that the sequence converges, say to x^{*} :

$$
\lim d\left(y, f^{n} x\right)=d\left(y, x^{*}\right)
$$

- infer from non-expansiveness that $f x^{*}=x^{*}$:

$$
0=d\left(x^{*}, x^{*}\right)=\lim d\left(x^{*}, f^{n} x\right) \geq \lim d\left(f x^{*}, f^{n+1} x\right)=d\left(f x^{*}, x^{*}\right)
$$

Infer from contractivity that the fixpoint is unique:

$$
f x^{*}=x^{*}, f y^{*}=y^{*} \Longrightarrow d\left(x^{*}, y^{*}\right)=d\left(f x^{*}, f y^{*}\right) \leq k \cdot d\left(x^{*}, y^{*}\right) \Longrightarrow d\left(x^{*}, y^{*}\right)=0 .
$$

Banach: Fixpoint theorem (modern version)

Let (X, d) be a complete metrie space. category
Let $f: X \rightarrow X$ be a contraction $d(f x, f y) \leq k \cdot d(x, y)$ for some $0<k<1$.
(Note that f is a fortiori non-expansive.)
For any $x \in X$,

- infer from contractivity that $x, f x, f^{2} x, \ldots$ is a Cauchy sequence:

$$
\lim d\left(f^{n} x, f^{m} x\right)=0
$$

- infer from completeness that the sequence converges, say to x^{*} :

$$
\lim d\left(y, f^{n} x\right)=d\left(y, x^{*}\right)
$$

- infer from non-expansiveness that $f x^{*}=x^{*}$:

$$
0=d\left(x^{*}, x^{*}\right)=\lim d\left(x^{*}, f^{n} x\right) \geq \lim d\left(f x^{*}, f^{n+1} x\right)=d\left(f x^{*}, x^{*}\right)
$$

Infer from contractivity that the fixpoint is unique:

$$
f x^{*}=x^{*}, f y^{*}=y^{*} \Longrightarrow d\left(x^{*}, y^{*}\right)=d\left(f x^{*}, f y^{*}\right) \leq k \cdot d\left(x^{*}, y^{*}\right) \Longrightarrow d\left(x^{*}, y^{*}\right)=0 .
$$

Quantale-enriched categories (1)

A quantale $Q=(Q, \bigvee, \circ, 1)$ is a closed (= residuated) monoidal complete lattice.
Closedness is equivalent to

$$
a \circ\left(\bigvee_{i} b_{i}\right)=\bigvee_{i}\left(a \circ b_{i}\right) \quad \text { and } \quad\left(\bigvee_{i} a_{i}\right) \circ b=\bigvee_{i}\left(a_{i} \circ b\right)
$$

for all $a, b,\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ in Q, so Q is precisely a monoid in Sup.

Quantale-enriched categories (1)

A quantale $Q=(Q, \bigvee, \circ, 1)$ is a closed ($=$ residuated) monoidal complete lattice.
Closedness is equivalent to

$$
a \circ\left(\bigvee_{i} b_{i}\right)=\bigvee_{i}\left(a \circ b_{i}\right) \quad \text { and } \quad\left(\bigvee_{i} a_{i}\right) \circ b=\bigvee_{i}\left(a_{i} \circ b\right)
$$

for all $a, b,\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ in Q, so Q is precisely a monoid in Sup.
A Q-category \mathbb{A} is a "hom"-function $\mathbb{A}: \mathbb{A}_{0} \times \mathbb{A}_{0} \rightarrow Q:(x, y) \mapsto \mathbb{A}(x, y)$ such that $\mathbb{A}(x, y) \circ \mathbb{A}(y, z) \leq \mathbb{A}(x, z)$ for any x, y, z,
$1 \leq \mathbb{A}(x, x)$ for any x.

Quantale-enriched categories (1)

A quantale $Q=(Q, \bigvee, \circ, 1)$ is a closed ($=$ residuated) monoidal complete lattice.
Closedness is equivalent to

$$
a \circ\left(\bigvee_{i} b_{i}\right)=\bigvee_{i}\left(a \circ b_{i}\right) \quad \text { and } \quad\left(\bigvee_{i} a_{i}\right) \circ b=\bigvee_{i}\left(a_{i} \circ b\right)
$$

for all $a, b,\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ in Q, so Q is precisely a monoid in Sup.
A Q-category \mathbb{A} is a "hom"-function $\mathbb{A}: \mathbb{A}_{0} \times \mathbb{A}_{0} \rightarrow Q:(x, y) \mapsto \mathbb{A}(x, y)$ such that $\mathbb{A}(x, y) \circ \mathbb{A}(y, z) \leq \mathbb{A}(x, z)$ for any x, y, z, $1 \leq \mathbb{A}(x, x)$ for any x.

A Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ is a function $F: \mathbb{A}_{0} \rightarrow \mathbb{B}_{0}$ such that

$$
\mathbb{A}(x, y) \leq \mathbb{B}(F x, F y) \text { for any } x, y
$$

Quantale-enriched categories (1)

A quantale $Q=(Q, \bigvee, \circ, 1)$ is a closed (= residuated) monoidal complete lattice.
Closedness is equivalent to

$$
a \circ\left(\bigvee_{i} b_{i}\right)=\bigvee_{i}\left(a \circ b_{i}\right) \quad \text { and } \quad\left(\bigvee_{i} a_{i}\right) \circ b=\bigvee_{i}\left(a_{i} \circ b\right)
$$

for all $a, b,\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ in Q, so Q is precisely a monoid in Sup.
A Q-category \mathbb{A} is a "hom"-function $\mathbb{A}: \mathbb{A}_{0} \times \mathbb{A}_{0} \rightarrow Q:(x, y) \mapsto \mathbb{A}(x, y)$ such that $\mathbb{A}(x, y) \circ \mathbb{A}(y, z) \leq \mathbb{A}(x, z)$ for any x, y, z, $1 \leq \mathbb{A}(x, x)$ for any x.

A Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ is a function $F: \mathbb{A}_{0} \rightarrow \mathbb{B}_{0}$ such that $\mathbb{A}(x, y) \leq \mathbb{B}(F x, F y)$ for any x, y.

A Q-distributor $\Phi: \mathbb{A} \longrightarrow \mathbb{B}$ is a matrix $\Phi: \mathbb{B}_{0} \times \mathbb{A}_{0} \rightarrow Q:(y, x) \mapsto \Phi(y, x)$ such that $\mathbb{B}\left(y^{\prime}, y\right) \circ \Phi(y, x) \circ \mathbb{A}\left(x, x^{\prime}\right) \leq \Phi\left(y^{\prime}, x^{\prime}\right)$ for any $x, x^{\prime}, y, y^{\prime}$.

Quantale-enriched categories (1)

A quantale $Q=(Q, \bigvee, \circ, 1)$ is a closed ($=$ residuated) monoidal complete lattice.
Closedness is equivalent to

$$
a \circ\left(\bigvee_{i} b_{i}\right)=\bigvee_{i}\left(a \circ b_{i}\right) \quad \text { and } \quad\left(\bigvee_{i} a_{i}\right) \circ b=\bigvee_{i}\left(a_{i} \circ b\right)
$$

for all $a, b,\left(a_{i}\right)_{i},\left(b_{i}\right)_{i}$ in Q, so Q is precisely a monoid in Sup.
A Q-category \mathbb{A} is a "hom"-function $\mathbb{A}: \mathbb{A}_{0} \times \mathbb{A}_{0} \rightarrow Q:(x, y) \mapsto \mathbb{A}(x, y)$ such that $\mathbb{A}(x, y) \circ \mathbb{A}(y, z) \leq \mathbb{A}(x, z)$ for any x, y, z, $1 \leq \mathbb{A}(x, x)$ for any x.

A Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ is a function $F: \mathbb{A}_{0} \rightarrow \mathbb{B}_{0}$ such that

$$
\mathbb{A}(x, y) \leq \mathbb{B}(F x, F y) \text { for any } x, y
$$

A Q-distributor $\Phi: \mathbb{A} \longrightarrow \mathbb{B}$ is a matrix $\Phi: \mathbb{B}_{0} \times \mathbb{A}_{0} \rightarrow Q:(y, x) \mapsto \Phi(y, x)$ such that

$$
\mathbb{B}\left(y^{\prime}, y\right) \circ \Phi(y, x) \circ \mathbb{A}\left(x, x^{\prime}\right) \leq \Phi\left(y^{\prime}, x^{\prime}\right) \text { for any } x, x^{\prime}, y, y^{\prime}
$$

Q-categories and Q-functors form a category $\operatorname{Cat}(Q)$ in the obvious way.
Q-categories and Q-distributors form a (Sup-enriched) 2-category $\operatorname{Dist}(Q)$, in which composition is "matrix-like" and local order is "element-wise".

Bénabou: Distributors (1973)

LES DISTRIBUTEURS

d'après le cours de "Questions spéciales de mathématique"
par
J. BENABOU redige par Jean-Roger RoISIN

Rapport $\mathrm{n}^{\mathrm{o}} \mathbf{3 3}$, janvier 1973
Séminaires de Mathématique Pure
Bâtiment Sc. I, Avenue du Cyclotron, 21348 Louvain-La-Neuve
Nous supposerons maintenant que 26 est un cosmos c'est-à-dire une catégorie multiplicative symétrique fermée complète à gauche et
à droite.
Une flèche de Q vers \mathfrak{B}, appelée un distributeur, est un
\mathcal{U}-bifoncteur vers \mathcal{U}, contravariant en $\mathbb{3}$ et covariant en \mathbb{Q}.
4.3. Proposition.

Dist(26) est une bicatēgorie bermée.

Quantale-enriched categories (2)

Examples of $\operatorname{Cat}(Q)$:

For $Q=(\{0,1\}, \vee, \wedge, 1)$: ordered sets and monotone maps.
$\mathbb{A}(x, y)=1$ if $x \leq y, 0$ if $x \not \leq y$.
For $Q=([0, \infty], \bigwedge,+, 0)$: (generalized) metric spaces and non-expansive maps.
$\mathbb{A}(x, y)=d(x, y)$ is the distance from x to y.

Quantale-enriched categories (2)

Examples of $\operatorname{Cat}(Q)$:

For $Q=(\{0,1\}, \vee, \wedge, 1)$: ordered sets and monotone maps. $\mathbb{A}(x, y)=1$ if $x \leq y, 0$ if $x \not \leq y$.

For $Q=([0, \infty], \bigwedge,+, 0)$: (generalized) metric spaces and non-expansive maps. $\mathbb{A}(x, y)=d(x, y)$ is the distance from x to y.

A left-continuous t-norm is a commutative, integral quantale $([0,1], \bigvee, *, 1)$, e.g. $x * y=\max \{x+y-1,0\}$, used in many-valued logic.

For $Q=([0,1], \bigvee, *, 1)$: "fuzzy" orders and "fuzzy" monotone maps.
$\mathbb{A}(x, y)=\llbracket x \leq y \rrbracket$ is the extent to which $x \leq y$ holds.

Quantale-enriched categories (2)

Examples of $\operatorname{Cat}(Q)$:

For $Q=(\{0,1\}, \vee, \wedge, 1)$: ordered sets and monotone maps.

$$
\mathbb{A}(x, y)=1 \text { if } x \leq y, 0 \text { if } x \not \leq y
$$

For $Q=([0, \infty], \bigwedge,+, 0)$: (generalized) metric spaces and non-expansive maps.
$\mathbb{A}(x, y)=d(x, y)$ is the distance from x to y.
A left-continuous t-norm is a commutative, integral quantale $([0,1], \bigvee, *, 1)$, e.g. $x * y=\max \{x+y-1,0\}$, used in many-valued logic.

For $Q=([0,1], \bigvee, *, 1)$: "fuzzy" orders and "fuzzy" monotone maps.
$\mathbb{A}(x, y)=\llbracket x \leq y \rrbracket$ is the extent to which $x \leq y$ holds.
Compute $\Delta:=([0, \infty], \bigwedge,+, 0) \coprod([0,1], \bigvee, *, 1)$ in CMon(Sup): its elements are probability distributions $u:[0, \infty] \rightarrow[0,1]$, with convolution product:

$$
(u * v)(t)=\bigvee_{r+s=t} u(r) * v(s) \quad \text { and } \quad e(t)=\left\{\begin{array}{l}
0 \text { if } t=0 \\
1 \text { if } t \neq 0
\end{array}\right.
$$

For $Q=(\Delta, \bigvee, *, e)$: probabilistic metric spaces and probability-increasing maps. $\mathbb{A}(x, y)(t)$ is the probability that the distance from x to y is less than t.

Quantale-enriched categories (2)

Examples of $\operatorname{Cat}(Q)$:

For $Q=(\{0,1\}, \vee, \wedge, 1)$: ordered sets and monotone maps.

$$
\mathbb{A}(x, y)=1 \text { if } x \leq y, 0 \text { if } x \not \leq y
$$

For $Q=([0, \infty], \wedge,+, 0)$: (generalized) metric spaces and non-expansive maps.
$\mathbb{A}(x, y)=d(x, y)$ is the distance from x to y.
A left-continuous t-norm is a commutative, integral quantale $([0,1], \bigvee, *, 1)$, e.g. $x * y=\max \{x+y-1,0\}$, used in many-valued logic.

For $Q=([0,1], \mathrm{V}, *, 1)$: "fuzzy" orders and "fuzzy" monotone maps.
$\mathbb{A}(x, y)=\llbracket x \leq y \rrbracket$ is the extent to which $x \leq y$ holds.
Compute $\Delta:=([0, \infty], \wedge,+, 0) \amalg([0,1], \bigvee, *, 1)$ in CMon(Sup): its elements are probability distributions $u:[0, \infty] \rightarrow[0,1]$, with convolution product:

$$
(u * v)(t)=\bigvee_{r+s=t} u(r) * v(s) \quad \text { and } \quad e(t)=\left\{\begin{array}{l}
0 \text { if } t=0 \\
1 \text { if } t \neq 0
\end{array}\right.
$$

For $Q=(\Delta, \bigvee, *, e)$: probabilistic metric spaces and probability-increasing maps. $\mathbb{A}(x, y)(t)$ is the probability that the distance from x to y is less than t.
There are many more examples-in sheaf theory, non-commutative topology, monoidal topology, domain theory, quantum computing, automata theory...

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \longrightarrow \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \longrightarrow \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.
A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \multimap \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.
A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

These are adjoint if and only if

$$
\bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(x_{n}, x_{m}\right) \geq 1 \quad \text { in } \quad(Q, \bigvee, \circ, 1)
$$

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \multimap \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

These are adjoint if and only if

$$
\bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(x_{n}, x_{m}\right) \geq 1 \quad \text { in } \quad(Q, \bigvee, \circ, 1)
$$

This is exactly the formula for Cauchy sequences in a metric space:

$$
\lim d\left(x_{n}, x_{m}\right) \leq 0 \quad \text { in } \quad([0, \infty], \bigwedge,+, 0)
$$

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \multimap \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

These are adjoint if and only if

$$
\bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(x_{n}, x_{m}\right) \geq 1 \quad \text { in } \quad(Q, \bigvee, \circ, 1)
$$

This is exactly the formula for Cauchy sequences in a metric space:

$$
\lim d\left(x_{n}, x_{m}\right) \leq 0 \quad \text { in } \quad([0, \infty], \bigwedge,+, 0)
$$

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} is Cauchy if ϕ is left adjoint to ψ.

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \multimap \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.
A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} is Cauchy if ϕ is left adjoint to ψ.

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \multimap \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} is Cauchy if ϕ is left adjoint to ψ.
The distributor $\phi: \mathbb{1} \longrightarrow \mathbb{C}$ is representable, say by $F: \mathbb{1} \rightarrow \mathbb{C}: * \mapsto x^{*}$, if and only if

$$
\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, x_{n}\right)=\mathbb{C}\left(y, x^{*}\right) \text { for all } y \in \mathbb{C}_{0}
$$

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \longrightarrow \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} is Cauchy if ϕ is left adjoint to ψ.
The distributor $\phi: \mathbb{1} \longrightarrow \mathbb{C}$ is representable, say by $F: \mathbb{1} \rightarrow \mathbb{C}: * \mapsto x^{*}$, if and only if

$$
\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, x_{n}\right)=\mathbb{C}\left(y, x^{*}\right) \text { for all } y \in \mathbb{C}_{0}
$$

This is exactly the formula for convergence in a metric space:

$$
\lim d\left(y, x_{n}\right)=d\left(y, x^{*}\right) \text { for all } y \in X
$$

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \longrightarrow \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} is Cauchy if ϕ is left adjoint to ψ.
Whence: in a Cauchy complete category \mathbb{C} "all Cauchy sequences converge".

Quantale-enriched categories (3)

Any Q-functor $F: \mathbb{A} \rightarrow \mathbb{B}$ represents a left adjoint distributor ("the graph of F ")

$$
F_{*}: \mathbb{A} \longrightarrow \mathbb{B} \text { with elements } F_{*}(y, x)=\mathbb{B}(y, F x)
$$

Not every left adjoint distributor is thusly representable; however, whenever it is representable, then it is so by an essentially unique functor.

A Q-category \mathbb{C} is Cauchy complete if any left adjoint distributor into \mathbb{C} is representable.
Any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a Q-category \mathbb{C} determines a pair of distributors

A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C} is Cauchy if ϕ is left adjoint to ψ.
Whence: in a Cauchy complete category \mathbb{C} "all Cauchy sequences converge".
("Categorical" Cauchy-completeness is stronger than "sequential" Cauchy-completenes, but under certain conditions on Q they coincide; see (Hofmann and Reis, 2013).)

Fixpoint theorem (1)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a Q-functor on a Cauchy complete \mathbb{C}. If there is an $x \in \mathbb{C}_{0}$ such that $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy, then F has a fixpoint.

Fixpoint theorem (1)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a Q-functor on a Cauchy complete \mathbb{C}. If there is an $x \in \mathbb{C}_{0}$ such that $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy, then F has a fixpoint.
Indeed,

$$
\begin{aligned}
\left(F^{n} x\right)_{n \in \mathbb{N}} \text { is Cauchy } & \Longrightarrow\left\{\begin{array}{l}
\left(\phi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)\right)_{y \in \mathbb{C}_{0}} \text { are adjoint } \\
\left(\psi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F^{n} x, y\right)\right)_{y \in \mathbb{C}_{0}}
\end{array}\right. \\
& \Longrightarrow \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)=\mathbb{C}\left(y, x^{*}\right) \text { for some } x^{*}
\end{aligned}
$$

Fixpoint theorem (1)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a Q-functor on a Cauchy complete \mathbb{C}. If there is an $x \in \mathbb{C}_{0}$ such that $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy, then F has a fixpoint.
Indeed,

$$
\begin{aligned}
\left(F^{n} x\right)_{n \in \mathbb{N}} \text { is Cauchy } & \Longrightarrow\left\{\begin{array}{l}
\left(\phi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)\right)_{y \in \mathbb{C}_{0}} \text { are adjoint } \\
\left(\psi(y)=\bigvee_{N \in \mathbb{N}} \wedge_{n \geq N} \mathbb{C}\left(F^{n} x, y\right)\right)_{y \in \mathbb{C}_{0}}
\end{array}\right. \\
& \Longrightarrow \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)=\mathbb{C}\left(y, x^{*}\right) \text { for some } x^{*}
\end{aligned}
$$

and then

$$
\mathbb{C}\left(F x^{*}, x^{*}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F x^{*}, F^{n} x\right) \geq \bigvee_{N \in \mathbb{N}_{0}} \bigwedge_{n \geq N} \mathbb{C}\left(x^{*}, F^{n-1} x\right)=\mathbb{C}\left(x^{*}, x^{*}\right) \geq 1
$$

Fixpoint theorem (1)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a Q-functor on a Cauchy complete \mathbb{C}. If there is an $x \in \mathbb{C}_{0}$ such that $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy, then F has a fixpoint.
Indeed,

$$
\begin{aligned}
\left(F^{n} x\right)_{n \in \mathbb{N}} \text { is Cauchy } & \Longrightarrow\left\{\begin{array}{l}
\left(\phi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)\right)_{y \in \mathbb{C}_{0}} \text { are adjoint } \\
\left(\psi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F^{n} x, y\right)\right)_{y \in \mathbb{C}_{0}}
\end{array}\right. \\
& \Longrightarrow \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)=\mathbb{C}\left(y, x^{*}\right) \text { for some } x^{*}
\end{aligned}
$$

and then

$$
\mathbb{C}\left(F x^{*}, x^{*}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F x^{*}, F^{n} x\right) \geq \bigvee_{N \in \mathbb{N}_{0}} \bigwedge_{n \geq N} \mathbb{C}\left(x^{*}, F^{n-1} x\right)=\mathbb{C}\left(x^{*}, x^{*}\right) \geq 1
$$

Similarly (using ψ) one gets $\mathbb{C}\left(x^{*}, F x^{*}\right) \geq 1$.

Fixpoint theorem (1)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a Q-functor on a Cauchy complete \mathbb{C}. If there is an $x \in \mathbb{C}_{0}$ such that $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy, then F has a fixpoint.
Indeed,

$$
\begin{aligned}
\left(F^{n} x\right)_{n \in \mathbb{N}} \text { is Cauchy } & \Longrightarrow\left\{\begin{array}{l}
\left(\phi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)\right)_{y \in \mathbb{C}_{0}} \text { are adjoint } \\
\left(\psi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F^{n} x, y\right)\right)_{y \in \mathbb{C}_{0}}
\end{array}\right. \\
& \Longrightarrow \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)=\mathbb{C}\left(y, x^{*}\right) \text { for some } x^{*}
\end{aligned}
$$

and then

$$
\mathbb{C}\left(F x^{*}, x^{*}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F x^{*}, F^{n} x\right) \geq \bigvee_{N \in \mathbb{N}_{0}} \bigwedge_{n \geq N} \mathbb{C}\left(x^{*}, F^{n-1} x\right)=\mathbb{C}\left(x^{*}, x^{*}\right) \geq 1
$$

Similarly (using ψ) one gets $\mathbb{C}\left(x^{*}, F x^{*}\right) \geq 1$.
Having both $1 \leq \mathbb{C}\left(x^{*}, F x^{*}\right)$ and $1 \leq \mathbb{C}\left(F x^{*}, x^{*}\right)$ means that $F x^{*} \cong x^{*}$ in \mathbb{C}.

Fixpoint theorem (1)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a Q-functor on a Cauchy complete \mathbb{C}. If there is an $x \in \mathbb{C}_{0}$ such that $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy, then F has a fixpoint.
Indeed,

$$
\begin{aligned}
\left(F^{n} x\right)_{n \in \mathbb{N}} \text { is Cauchy } & \Longrightarrow\left\{\begin{array}{l}
\left(\phi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)\right)_{y \in \mathbb{C}_{0}} \text { are adjoint } \\
\left(\psi(y)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F^{n} x, y\right)\right)_{y \in \mathbb{C}_{0}}
\end{array}\right. \\
& \Longrightarrow \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(y, F^{n} x\right)=\mathbb{C}\left(y, x^{*}\right) \text { for some } x^{*}
\end{aligned}
$$

and then

$$
\mathbb{C}\left(F x^{*}, x^{*}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} \mathbb{C}\left(F x^{*}, F^{n} x\right) \geq \bigvee_{N \in \mathbb{N}_{0}} \bigwedge_{n \geq N} \mathbb{C}\left(x^{*}, F^{n-1} x\right)=\mathbb{C}\left(x^{*}, x^{*}\right) \geq 1
$$

Similarly (using ψ) one gets $\mathbb{C}\left(x^{*}, F x^{*}\right) \geq 1$.
Having both $1 \leq \mathbb{C}\left(x^{*}, F x^{*}\right)$ and $1 \leq \mathbb{C}\left(F x^{*}, x^{*}\right)$ means that $F x^{*} \cong x^{*}$ in \mathbb{C}.
But can we provide ("contractivity") conditions on F to ensure the existence of a Cauchy sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$? And what about the uniqueness of a fixpoint?

Fixpoint theorem (2)
Definition
Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if $\varphi(t) \geq t$ for all $t \in Q$,
$\varphi(t)=t$ implies that either $t=0$ or $1 \leq t$.
$\mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y))$ for any $x, y \in \mathbb{C}_{0}$.

Fixpoint theorem (2)

Definition

Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if $\varphi(t) \geq t$ for all $t \in Q$,
$\varphi(t)=t$ implies that either $t=0$ or $1 \leq t$.
$\mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y))$ for any $x, y \in \mathbb{C}_{0}$.
The "Banach case" for metric spaces: for

$$
\varphi:[0, \infty] \rightarrow[0, \infty]: t \mapsto k \cdot t \quad \text { for some } 0<k<1
$$

it is easily verified (recalling that $[0, \infty]$ comes with opposite order) that

$$
k \cdot t \leq t
$$

$$
k \cdot t=t \text { implies that either } t=\infty \text { or } 0 \geq t
$$

so a function $f: X \rightarrow X$ on a (generalized) metric space (X, d) is a φ-contraction if

$$
d(f x, f y) \leq k \cdot d(x, y) \text { for any } x, y \in X
$$

Fixpoint theorem (2)

Definition

Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if

$$
\begin{aligned}
& \varphi(t) \geq t \text { for all } t \in Q \\
& \varphi(t)=t \text { implies that either } t=0 \text { or } 1 \leq t \\
& \mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y)) \text { for any } x, y \in \mathbb{C}_{0} .
\end{aligned}
$$

The "Banach case" for metric spaces: for

$$
\varphi:[0, \infty] \rightarrow[0, \infty]: t \mapsto k \cdot t \quad \text { for some } 0<k<1
$$

it is easily verified (recalling that $[0, \infty]$ comes with opposite order) that

$$
\begin{aligned}
& k \cdot t \leq t \\
& k \cdot t=t \text { implies that either } t=\infty \text { or } 0 \geq t
\end{aligned}
$$

so a function $f: X \rightarrow X$ on a (generalized) metric space (X, d) is a φ-contraction if

$$
d(f x, f y) \leq k \cdot d(x, y) \text { for any } x, y \in X
$$

There are other non-trivial examples, e.g. for probabilistic metric spaces:

$$
\text { define } \varphi: \Delta \rightarrow \Delta \text { by } \varphi(u)(t)= \begin{cases}\frac{1}{2}(u(t)+1) & \text { if } 0<t \leq \infty \\ 0 & \text { if } t=0\end{cases}
$$

Fixpoint theorem (2)

Definition

Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if $\varphi(t) \geq t$ for all $t \in Q$,
$\varphi(t)=t$ implies that either $t=0$ or $1 \leq t$.
$\mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y))$ for any $x, y \in \mathbb{C}_{0}$.
A φ-contraction F is always a Q-functor (so the previous Proposition applies).

Fixpoint theorem (2)

Definition

Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if

$$
\begin{aligned}
& \varphi(t) \geq t \text { for all } t \in Q \\
& \varphi(t)=t \text { implies that either } t=0 \text { or } 1 \leq t \\
& \mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y)) \text { for any } x, y \in \mathbb{C}_{0} .
\end{aligned}
$$

A φ-contraction F is always a Q-functor (so the previous Proposition applies). Now suppose that $F x^{*} \cong x^{*}$ and $F y^{*} \cong y^{*}$, then

$$
\mathbb{C}\left(x^{*}, y^{*}\right)=\mathbb{C}\left(F x^{*}, F y^{*}\right) \geq \varphi\left(\mathbb{C}\left(x^{*}, y^{*}\right)\right) \geq \mathbb{C}\left(x^{*}, y^{*}\right)
$$

so either $\mathbb{C}\left(x^{*}, y^{*}\right)=0$ or $1 \leq \mathbb{C}\left(x^{*}, y^{*}\right)$.

Fixpoint theorem (2)

Definition

Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if

$$
\begin{aligned}
& \varphi(t) \geq t \text { for all } t \in Q \\
& \varphi(t)=t \text { implies that either } t=0 \text { or } 1 \leq t \\
& \mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y)) \text { for any } x, y \in \mathbb{C}_{0} .
\end{aligned}
$$

A φ-contraction F is always a Q-functor (so the previous Proposition applies).
Now suppose that $F x^{*} \cong x^{*}$ and $F y^{*} \cong y^{*}$, then

$$
\mathbb{C}\left(x^{*}, y^{*}\right)=\mathbb{C}\left(F x^{*}, F y^{*}\right) \geq \varphi\left(\mathbb{C}\left(x^{*}, y^{*}\right)\right) \geq \mathbb{C}\left(x^{*}, y^{*}\right)
$$

so either $\mathbb{C}\left(x^{*}, y^{*}\right)=0$ or $1 \leq \mathbb{C}\left(x^{*}, y^{*}\right)$. Permuting x^{*} and y^{*}, one gets one of four possibilities:

$$
\left\{\begin{array} { l }
{ \mathbb { C } (x ^ { * } , y ^ { * }) = 0 } \\
{ \mathbb { C } (y ^ { * } , x ^ { * }) = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ \mathbb { C } (x ^ { * } , y ^ { * }) \geq 1 } \\
{ \mathbb { C } (y ^ { * } , x ^ { * }) = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ \mathbb { C } (x ^ { * } , y ^ { * }) = 0 } \\
{ \mathbb { C } (y ^ { * } , x ^ { * }) \geq 1 }
\end{array} \text { or } \left\{\begin{array}{l}
\mathbb{C}\left(x^{*}, y^{*}\right) \geq 1 \\
\mathbb{C}\left(y^{*}, x^{*}\right) \geq 1
\end{array}\right.\right.\right.\right.
$$

Fixpoint theorem (2)

Definition

Say that $\varphi: Q \rightarrow Q$ is a control function and $F: \mathbb{C}_{0} \rightarrow \mathbb{C}_{0}$ is a φ-contraction, if

$$
\begin{aligned}
& \varphi(t) \geq t \text { for all } t \in Q \\
& \varphi(t)=t \text { implies that either } t=0 \text { or } 1 \leq t \\
& \mathbb{C}(F x, F y) \geq \varphi(\mathbb{C}(x, y)) \text { for any } x, y \in \mathbb{C}_{0}
\end{aligned}
$$

A φ-contraction F is always a Q-functor (so the previous Proposition applies).
Now suppose that $F x^{*} \cong x^{*}$ and $F y^{*} \cong y^{*}$, then

$$
\mathbb{C}\left(x^{*}, y^{*}\right)=\mathbb{C}\left(F x^{*}, F y^{*}\right) \geq \varphi\left(\mathbb{C}\left(x^{*}, y^{*}\right)\right) \geq \mathbb{C}\left(x^{*}, y^{*}\right)
$$

so either $\mathbb{C}\left(x^{*}, y^{*}\right)=0$ or $1 \leq \mathbb{C}\left(x^{*}, y^{*}\right)$. Permuting x^{*} and y^{*}, one gets one of four possibilities:

$$
\left\{\begin{array} { l }
{ \mathbb { C } (x ^ { * } , y ^ { * }) = 0 } \\
{ \mathbb { C } (y ^ { * } , x ^ { * }) = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ \mathbb { C } (x ^ { * } , y ^ { * }) \geq 1 } \\
{ \mathbb { C } (y ^ { * } , x ^ { * }) = 0 }
\end{array} \text { or } \left\{\begin{array} { l }
{ \mathbb { C } (x ^ { * } , y ^ { * }) = 0 } \\
{ \mathbb { C } (y ^ { * } , x ^ { * }) \geq 1 }
\end{array} \text { or } \left\{\begin{array}{l}
\mathbb{C}\left(x^{*}, y^{*}\right) \geq 1 \\
\mathbb{C}\left(y^{*}, x^{*}\right) \geq 1
\end{array}\right.\right.\right.\right.
$$

Proposition

If \mathbb{C} is symmetric, then any two fixpoints of a φ-contraction are either isomorphic or in different summands of \mathbb{C}.

If \mathbb{C} has no zero-homs, then any two fixpoints of a φ-contraction are always isomorphic.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ 今uch that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the seqưnce $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy.

Directed suprema commute with It preserves arbitrary infima.
(order and) directed suprema.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ 今uch that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the seqựnce $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy.

Directed suprema
commute with

It preserves
(order and)
directed suprema. arbitrary infima.

These conditions are met by the previously mentioned examples, in particular the "Banach" case.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ 今uch that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequ $\widehat{\sim} n c e\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy.

Directed suprema commute with

It preserves
(order and)
directed suprema. arbitrary infima.

These conditions are met by the previously mentioned examples, in particular the "Banach" case.

The result holds under weaker conditions, but it makes the statement more technically involved, so skipped here for convenience.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy.


```
on 4, that:
    \Mex - Vecs+i
```



```
    |& V ( 
```



```
may replase mi, by
```



```
wakk n}\mp@subsup{n}{2}{},\mp@subsup{m}{A}{}\geqk\mathrm{ to staure thu
```



```
Now denote, for cach sach pidk of nk, m
                        \mp@subsup{u}{k}{}}=C=C(\mp@subsup{f}{}{m+x
and bet us insta that c& didfor all }k\inN\mathrm{ . In cose conditinu( (A) holds foe d
wo can use the "mompxaition" uxiom in C to g"
        comm-1}\leq\textrm{C}(\mp@subsup{f}{}{2+}x,\mp@subsup{f}{}{m+1}x)\circ\textrm{C}(\mp@subsup{f}{}{m+-1}x,\mp@subsup{f}{}{m+}x
                -d
Tose conditine (B) holis tor d& we can smmilurly prone that
```


Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof:

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof: If $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is not Cauchy, then $1 \not \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)$.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof: If $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is not Cauchy, then $1 \nsubseteq \bigvee_{N \in \mathbb{N}} \wedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)$. In the continuous lattice Q, there must then be an ϵ such that

$$
\epsilon \ll 1 \quad \text { and } \quad \epsilon \not \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)
$$

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof: If $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is not Cauchy, then $1 \not \subset \bigvee_{N \in \mathbb{N}} \wedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)$. In the continuous lattice Q, there must then be an ϵ such that

$$
\epsilon \ll 1 \quad \text { and } \quad \epsilon \not \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)
$$

Thus $0 \neq \epsilon \ll 1$ is such that
for all $k \in \mathbb{N}$ there exist $m_{k}, n_{k} \geq k$ such that $\epsilon \not \mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right)$.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof: If $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is not Cauchy, then $1 \not \subset \bigvee_{N \in \mathbb{N}} \wedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)$. In the continuous lattice Q, there must then be an ϵ such that

$$
\epsilon \ll 1 \quad \text { and } \quad \epsilon \not \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)
$$

Thus $0 \neq \epsilon \ll 1$ is such that
for all $k \in \mathbb{N}$ there exist $m_{k}, n_{k} \geq k$ such that $\epsilon \not \mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right)$.
A "clever choice" of such indices $m_{k}, n_{k} \geq k$ can be made, say

$$
d_{k}:=\mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right),
$$

so that, with lower-semicontinuity of φ, continuity of Q, and $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$,

$$
\varphi\left(\bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k} \neq 0
$$

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof: If $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is not Cauchy, then $1 \not \subset \bigvee_{N \in \mathbb{N}} \wedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)$. In the continuous lattice Q, there must then be an ϵ such that

$$
\epsilon \ll 1 \quad \text { and } \quad \epsilon \not \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)
$$

Thus $0 \neq \epsilon \ll 1$ is such that
for all $k \in \mathbb{N}$ there exist $m_{k}, n_{k} \geq k$ such that $\epsilon \not \mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right)$.
A "clever choice" of such indices $m_{k}, n_{k} \geq k$ can be made, say

$$
d_{k}:=\mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right),
$$

so that, with lower-semicontinuity of φ, continuity of Q, and $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$,

$$
\varphi\left(\bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k} \neq 0
$$

Thus, $1 \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k}$, which leads to $\epsilon \leq \bigwedge_{k \geq N_{0}} d_{k}$ for some N_{0}.

Fixpoint theorem (3)

Proposition

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous function. Then, for any $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, the sequence $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is Cauchy. Sketch of proof: If $\left(F^{n} x\right)_{n \in \mathbb{N}}$ is not Cauchy, then $1 \nsucceq \bigvee_{N \in \mathbb{N}} \wedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)$. In the continuous lattice Q, there must then be an ϵ such that

$$
\epsilon \ll 1 \quad \text { and } \quad \epsilon \not \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{m, n \geq N} \mathbb{C}\left(F^{n} x, F^{m} x\right)
$$

Thus $0 \neq \epsilon \ll 1$ is such that
for all $k \in \mathbb{N}$ there exist $m_{k}, n_{k} \geq k$ such that $\epsilon \not \mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right)$.
A "clever choice" of such indices $m_{k}, n_{k} \geq k$ can be made, say

$$
d_{k}:=\mathbb{C}\left(F^{n_{k}} x, F^{m_{k}} x\right),
$$

so that, with lower-semicontinuity of φ, continuity of Q, and $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$,

$$
\varphi\left(\bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k}\right)=\bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k} \neq 0
$$

Thus, $1 \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{k \geq N} d_{k}$, which leads to $\epsilon \leq \bigwedge_{k \geq N_{0}} d_{k}$ for some N_{0}. Contradiction!

Fixpoint theorem (4)

Theorem

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Cauchy complete Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous morphism. If there exists an $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, then F has a fixpoint.

If \mathbb{C} is symmetric, then any two fixpoints of F are either isomorphic or in different summands of \mathbb{C}; if \mathbb{C} has no zero-homs, then any two fixpoints of F are isomorphic.

Fixpoint theorem (4)

Theorem

Suppose that $F: \mathbb{C} \rightarrow \mathbb{C}$ is a φ-contraction on a Cauchy complete Q-category. Suppose that Q is a continuous lattice and that $\varphi: Q \rightarrow Q$ is a lower-semicontinuous morphism. If there exists an $x \in \mathbb{C}_{0}$ such that $\mathbb{C}(F x, x) \neq 0 \neq \mathbb{C}(x, F x)$, then F has a fixpoint.
If \mathbb{C} is symmetric, then any two fixpoints of F are either isomorphic or in different summands of \mathbb{C}; if \mathbb{C} has no zero-homs, then any two fixpoints of F are isomorphic.

Examples:
$Q=(\{0,1\}, \bigvee, \wedge, 1)$: the theorem trivializes for ordered sets.
$Q=([0, \infty], \bigwedge,+, 0):$ (generalized) Banach fixpoint theorem for (generalized) metric spaces, allowing for non-linear contractions (cf. (Boyd and Wong, 1969)).
$Q=([0,1], \bigvee, *, 1)$: a new fixpoint theorem for fuzzy orders, to be compared with e.g. (Coppola et al., 2008).
$Q=(\Delta, \bigvee, *, e)$: a new fixpoint theorem for probabilistic metric spaces, encompassing certain known results (Hadžić and Pap, 2001).

Take-away message: an equilibrum of three

To formulate a fixpoint theorem for a φ-contraction $F: \mathbb{C} \rightarrow \mathbb{C}$ on a Q-category,

Our theorem captures known examples and produces new results. Yet, the literature abounds with fixpoint theorems. Further study is necessary!
Challenge: find a fixpoint theorem for quantaloid-enriched categories, to understand the situation for partial metric spaces (Hofmann and Stubbe, 2018).

References

In this talk:
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae 3 (1922), 133-181.
A. Benkhadra and I. Stubbe, A logical analysis of fixpoint theorems, Cahiers de toplogie et géométrie différentielle catégoriques 64 (2023), 97-121.
D. W. Boyd, and J. S. W. Wong, On nonlinear contractions, Proceedings of the American Mathematical Society 20 (1969), 458-464.
C. Coppola, G. Giangiacomo and P. Tiziana, Convergence and fixed points by fuzzy orders, Fuzzy Sets and Systems 159 (2008), 1178-1190.
P. Eklund, J. Gutiérrez García, U. Höhle and J. Kortelainen, Semigroups in complete lattices: quantales, modules and related topics, Dev. Math. 54, Springer (2018).
O. Hadžić and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, Dordrecht (2001).
D. Hofmann and C. Reis, Probabilistic metric spaces as enriched categories, Fuzzy Sets and Systems 210 (2013), 1-21.
D. Hofmann and I. Stubbe, Topology from enrichment: the curious case of partial metrics, Cahiers de toplogie et géométrie différentielle catégoriques 59 (2018), 307-353.
F. W. Lawvere, Metric spaces, generalized logic and closed categories, Rendiconti del

Seminario Matematico e Fisico di Milano, XLIII (1973), 135-166.
D. Scott, Continuous lattices, Springer Lecture Notes in Mathematics 274 (1972), 97-136.
(More references in our paper.)

[^0]: Stefan Banach (1892-1945)

