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Banach: Fixpoint theorem (1922)

Stefan Banach (1892-1945)

Sur les opérations dans les ensembles abstraits et leur application
aux équations intégrales*
publié dans Fund. Math. 3 (1922), p. 133-181.

§ 2. THEOREME 6. Si

1° U(X) est une opération continue dans E, le contre-domaine de U (X)
étant contenu dans E;

2° Il existe un nombre 0 <M < 1 qui pour tout X' et X" remplit
Pinégalité

IUX)-UEXI < M- X'—X"],

il existe un élément X tel que X = U(X).

Démonstration. Y désignant un élément choisi d’'une fagon arbitraire,
soit {X,} une suite qui satisfait aux conditions:

X, =Y etpour tout n X,,; = U(X,).
Nous allons démontrer que la suite {X,} converge suivant la norme

vers un certain élément X.

* Thése présentée en juin 1920 & I'Université de Léopol pour obtenir le grade de
docteur en philosophie.



Banach: Fixpoint theorem (modern version)

Let (X, d) be a complete metric space.

Let f: X — X be a contraction: d(fz, fy) < k-d(z,y) for some 0 < k < 1.

(Note that f is a fortiori non-expansive.)

For any x € X,

- infer from contractivity that the sequence z, fxz, f%x, ... is Cauchy:
limd(f"z, f"z) =0

- infer from completeness that the sequence converges, say to z™:

limd(y, f"z) = d(y, z")

- infer from non-expansiveness that fz* = z™:
0 =d(z*,z*) = limd(z*, fz) > limd(fz*, f*'z) = d(fz*, z*)
Infer from contractivity that the fixpoint is unique:

fa* =a", fy" =y" = d(@",y") = d(fz", fy*) < k-d(z",y") = d(z",y") = 0.



Lawvere: Metric spaces are categories (1973)

METRIC SPACES, GENERALIZED LOGIC,
AND CLOSED CATEGORIES

(Conferenza tenuta il 30 marzo 1973)*

By taking account of a certain natural generalization of cate-
gory theory within itself, namely the consideration of strong cate-
gories whose hom-functors take their values in a given « closed
category » <V (not necessarily in the category S of abstract sets),
we will show below that it is possible to regard a metric space as a
(strong) category and that moreover by specializing the constructions
and theorems of general category theory we can deduce a large part
of general metric space theory.

¥\

Bill Lawvere (1937-2023)
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Quantale-enriched categories (1)
A quantale Q = (Q,\/,0,1) is a closed (= residuated) monoidal complete lattice.

Closedness is equivalent to
\/b \/aob) and (\/ai)ob:\/(aiob)

for all a,b, (a:)i, (b;): in Q, so Q is precisely a monoid in Sup.
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Q-categories and Q-functors form a category Cat(Q) in the obvious way.

Q-categories and Q-distributors form a (Sup-enriched) 2-category Dist(Q), in which
composition is “matrix-like” and local order is “element-wise”.



Bénabou: Distributors (1973)

LES DISTRIBUTEURS
d'aprés le cours de “Questions spéciales de mathamathue

par
J. BENABOU ntdige par Jean-Roger RITSIH

Rapport n® 33, janvier 1973
Séminaires de Mathématique Pure
Bitiment Sc. I, Avenue du Cyclotron,2 1348 Louvain-La-Neuve

Nous supposerons maintenant gque %6 est un cosmos c'est-a-dire une
catégorie multiplicative symétrique fermée compldte 3 gauche et

& droite.

Une fléche de & vers® , appelée un distributeur, est un
U -bifoncteur vers % , contravariant en® et coveriant en @.

4.3. Proposition.

D4ist(%) est une bicatigonie fermde.

Jean Bénabou (1932-2022)



Quantale-enriched categories (2)
Examples of Cat(Q):

For @ = ({0,1},V, A, 1): ordered sets and monotone maps.
Alz,y)=1ifz <y, 0ifx Ly.

For @ = ([0, 0], A\, +,0): (generalized) metric spaces and non-expansive maps.
A(z,y) = d(x,y) is the distance from z to y.
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Examples of Cat(Q):

For @ = ({0,1},V, A, 1): ordered sets and monotone maps.
Alz,y)=1ifz <y, 0ifx Ly.

For @ = ([0, 0], A\, +,0): (generalized) metric spaces and non-expansive maps.
A(z,y) = d(x,y) is the distance from z to y.

A left-continuous t-norm is a commutative, integral quantale ([0,1],\/,*,1),

e.g. x *y = max{xz +y — 1,0}, used in many-valued logic.

For Q = ([0,1],V, ,1): “fuzzy" orders and “fuzzy” monotone maps.
A(z,y) =[x < y] is the extent to which < y holds.

Compute A := ([0, 0], A, +,0) [1([0,1],V/, *,1) in CMon(Sup): its elements are
probability distributions w: [0, c0] — [0, 1], with convolution product:

0ift=0
(u*v)(t) = y_tu(r) sv(s) and e(t) = { Lift 20
For @ = (A, V, *, e): probabilistic metric spaces and probability-increasing maps.
A(z,y)(t) is the probability that the distance from z to y is less than t.
There are many more examples—in sheaf theory, non-commutative topology, monoidal
topology, domain theory, quantum computing, automata theory...



Quantale-enriched categories (3)
Any Q-functor F': A — B represents a left adjoint distributor (“the graph of F")
F,: A—o+B with elements F\(y,z) = B(y, Fz).

Not every left adjoint distributor is thusly representable; however, whenever it is
representable, then it is so by an essentially unique functor.

A Q-category C is Cauchy complete if any left adjoint distributor into C is representable.
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Any Q-functor F': A — B represents a left adjoint distributor (“the graph of F")
F,: A—o+B with elements F\(y,z) = B(y, Fz).

Not every left adjoint distributor is thusly representable; however, whenever it is
representable, then it is so by an essentially unique functor.

A Q-category C is Cauchy complete if any left adjoint distributor into C is representable.
Any sequence (Zn)nen in a Q-category C determines a pair of distributors

¢ —
1 C with elements { ¢(y) = Ven /\nzN C(y, xn)

erb* P(y) = VNEN /\nZN C(an,y)

A sequence (zn)nen in C is Cauchy if ¢ is left adjoint to .
Whence: in a Cauchy complete category C “all Cauchy sequences converge”.

(“Categorical” Cauchy-completeness is stronger than “sequential” Cauchy-completenes,
but under certain conditions on @ they coincide; see (Hofmann and Reis, 2013).)
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Fixpoint theorem (1)

Proposition
Suppose that F': C — C is a Q-functor on a Cauchy complete C. If there is an x € Co
such that (F"x)nen is Cauchy, then F has a fixpoint.

Indeed,
(¢(y) = VNeN /\nzN C(y, FTLI))
(1/)(2;) = VNeN /\nZN (F x y) yeCo

S \/ /\ (y, F"z) = C(y,z") for some z*

NeNn>N

(F"x)nen is Cauchy = v€Co 3re adjoint

and then

C(Fz*,z" \/ /\(CF:C F"z) \/ /\(C ST 2) =C(z*, 2%) > 1.

NeNn>N NENg n>N
Similarly (using 1) one gets C(z*, Fz*) > 1.
Having both 1 < C(z*, Fz*) and 1 < C(Fz*,z") means that Fz* = z” in C.

But can we provide (“contractivity”’) conditions on F' to ensure the existence of a
Cauchy sequence (F"z)nen? And what about the uniqueness of a fixpoint?
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The “Banach case” for metric spaces: for
p:[0,00] = [0,00]: t— k-t forsome0< k<1
it is easily verified (recalling that [0, co] comes with opposite order) that
k-t <t
k-t =t implies that either t = co or 0 > ¢,

so a function f: X — X on a (generalized) metric space (X, d) is a ¢-contraction if
d(fx, fy) < k-d(x,y) for any z,y € X.

There are other non-trivial examples, e.g. for probabilistic metric spaces:

(ut)+1) f0<t<oo

1
define : A — A by <P(U)(t):{ (2) ift=0
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Definition

Say that ¢: Q@ — @ is a control function and F': Cy — Cy is a ¢-contraction, if
pt) >tforallt e,
(t) =t implies that either t =0 or 1 < .

C(Fz, Fy) > ¢(C(z,y)) for any z,y € Co.

A p-contraction F' is always a Q-functor (so the previous Proposition applies).



Fixpoint theorem (2)

Definition
Say that ¢: Q@ — @ is a control function and F': Cy — Cy is a ¢-contraction, if

p(t) >tforall t €Q,
(t) =t implies that either t =0 or 1 < .
(C(Fl',Fy) Z @(C(m7y)) for any r,y € (CO-
A p-contraction F' is always a Q-functor (so the previous Proposition applies).
Now suppose that Fz* = z* and Fy* = y*, then
C(a",y") =C(Fa", Fy") = ¢(C(z",y")) = C(z",y")

so either C(z*,y*) =0 or 1 < C(z",y").



Fixpoint theorem (2)

Definition
Say that ¢: Q@ — @ is a control function and F': Cy — Cy is a ¢-contraction, if

p(t) >tforall t €Q,
(t) =t implies that either t =0 or 1 < .
(C(Fl',Fy) Z @(C(m7y)) for any r,y € (CO-

A p-contraction F' is always a Q-functor (so the previous Proposition applies).
Now suppose that Fz* = z* and Fy* = y*, then
C(a",y") =C(Fa", Fy") = ¢(C(z",y")) = C(z",y")
so either C(z*,y*) =0 or 1 < C(z*,y"). Permuting =™ and y*, one gets one of four
possibilities:

C(z*,y*)=0 C(z™,y*) > (C(:E*, ) =0 C(z*,y")>1
{ 0 ° { - or > 1 or Cly* 2 > 1



Fixpoint theorem (2)

Definition

Say that ¢: Q@ — @ is a control function and F': Cy — Cy is a ¢-contraction, if
p(t) >tforall t €Q,
(t) =t implies that either t =0 or 1 < .
C(Fz, Fy) > ¢(C(z,y)) for any z,y € Co.

A p-contraction F' is always a Q-functor (so the previous Proposition applies).

Now suppose that Fz* = z* and Fy* = y*, then
C(z™,y") =C(Fz", Fy") 2 ¢(C(z",y")) = C(z",y")

so either C(z*,y*) =0 or 1 < C(z*,y"). Permuting =™ and y*, one gets one of four
possibilities:
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Proposition
If C is symmetric, then any two fixpoints of a p-contraction are either isomorphic or in
different summands of C.

If C has no zero-homs, then any two fixpoints of a p-contraction are always isomorphic.



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x© € Co%puch that C(Fz,z) # 0 # C(z, Fx), the sequénce (F"x)nen is Cauchy.

It preserves
(order and)

Directed suprema ;
directed suprema.

commute with
arbitrary infima.
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Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x© € Co%puch that C(Fz,z) # 0 # C(z, Fx), the sequénce (F"x)nen is Cauchy.

It preserves
(order and)

Directed suprema ;
directed suprema.

commute with
arbitrary infima.

These conditions are met by the
previously mentioned examples,
in particular the “Banach” case.



Fixpoint theorem (3)
Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x© € Co%puch that C(Fz,z) # 0 # C(z, Fx), the sequénce (F"x)nen is Cauchy.

It preserves

Directed suprema ((_)rder and)
commute with directed suprema.

arbitrary infima.

These conditions are met by the
previously mentioned examples,
in particular the “Banach” case.

The result holds under weaker conditions,
but it makes the statement more technically
involved, so skipped here for convenience.



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a Q-category. Suppose that Q is a
continuous lattice and that ¢: Q@ — Q is a lower-semicontinuous function. Then, for
any x € Co such that C(Fxz,x) # 0 # C(z, Fx), the sequence (F"x)nen is Cauchy.
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Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.

Sketch of proof:
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Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.

Sketch of proof: If (F"2)nen is not Cauchy, then 1 L \/ vy A, > n C(F"z, F™z).



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.
Sketch of proof: If (F"x)nen is not Cauchy, then 1 L\ y A, sy COF 2, F™ ).

In the continuous lattice (), there must then be an € such that

e<1 and eﬁ\/ /\ C(F"z, F™z).

NeNmn>N
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Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.
Sketch of proof: If (F"x)nen is not Cauchy, then 1 L\ y A, sy COF 2, F™ ).

In the continuous lattice (), there must then be an € such that

e<1l and e¥ \/ /\ C(F"z, F™z).
NeNm,n>N
Thus 0 # € < 1 is such that

for all k € N there exist my,nr > k such that e £ C(F"*z, F™*x).



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.

Sketch of proof: If (F"2)nen is not Cauchy, then 1 L \/ vy A, > n C(F"z, F™z).

In the continuous lattice (), there must then be an € such that

e<1l and e¥ \/ /\ C(F"z, F™z).
NeNm,n>N
Thus 0 # € < 1 is such that
for all k € N there exist my,nr > k such that e £ C(F"*z, F™*x).
A “clever choice” of such indices my,nx > k can be made, say

dy := C(F™* x, F™* 1),

so that, with lower-semicontinuity of ¢, continuity of @, and C(Fz,x) # 0 # C(z, Fx),

90(\/ /\dk): \/ /\dk750~

NeNk>N NeNk>N



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.

Sketch of proof: If (F"x)nen is not Cauchy, then 1 £\ v A, >y C(F"z, F™z).
In the continuous lattice (), there must then be an € such that
e<1l and e¥ \/ /\ C(F"z, F™z).

NeNmn>N
Thus 0 # € < 1 is such that

for all k € N there exist my,nr > k such that e £ C(F"*z, F™*x).
A “clever choice” of such indices my,nx > k can be made, say
dy := C(F™* x, F™* 1),

so that, with lower-semicontinuity of ¢, continuity of @, and C(Fz,x) # 0 # C(z, Fx),
90(\/ /\ dr) = \/ /\ dy # 0.
NENk>N NENk>N

Thus, 1 < \/ /\ di, which leads to € < /\ dy for some Np.
NEN k>N k>No



Fixpoint theorem (3)

Proposition

Suppose that F': C — C is a p-contraction on a QQ-category. Suppose that Q) is a
continuous lattice and that ¢: QQ — Q is a lower-semicontinuous function. Then, for
any x € Cq such that C(Fz,z) # 0 # C(x, Fx), the sequence (F"x)nen is Cauchy.

Sketch of proof: If (F"x)nen is not Cauchy, then 1 £\ v A, >y C(F"z, F™z).
In the continuous lattice (), there must then be an € such that
e<1l and e¥ \/ /\ C(F"z, F™z).

NeNmn>N
Thus 0 # € < 1 is such that

for all k € N there exist my,nr > k such that e £ C(F"*z, F™*x).
A “clever choice” of such indices my,nx > k can be made, say
dy := C(F™* x, F™* 1),

so that, with lower-semicontinuity of ¢, continuity of @, and C(Fz,x) # 0 # C(z, Fx),
90(\/ /\ dr) = \/ /\ dy # 0.
NENk>N NENk>N

Thus, 1 < \/ /\ di, which leads to € < /\ dy for some Ny. Contradiction!
NEN k>N k>No



Fixpoint theorem (4)

Theorem

Suppose that F': C — C is a p-contraction on a Cauchy complete QQ-category. Suppose
that Q is a continuous lattice and that p: QQ — Q is a lower-semicontinuous morphism.
If there exists an © € Cq such that C(Fz,xz) # 0 # C(z, Fz), then F has a fixpoint.

If C is symmetric, then any two fixpoints of I are either isomorphic or in different
summands of C; if C has no zero-homs, then any two fixpoints of F' are isomorphic.



Fixpoint theorem (4)

Theorem

Suppose that F': C — C is a p-contraction on a Cauchy complete QQ-category. Suppose
that Q is a continuous lattice and that p: QQ — Q is a lower-semicontinuous morphism.
If there exists an © € Cq such that C(Fz,z) # 0 # C(z, F'z), then F has a fixpoint.

If C is symmetric, then any two fixpoints of I are either isomorphic or in different
summands of C; if C has no zero-homs, then any two fixpoints of F' are isomorphic.

Examples:
Q = ({0,1},V, A, 1): the theorem trivializes for ordered sets.
Q = ([0, 0], A\, +,0): (generalized) Banach fixpoint theorem for (generalized)
metric spaces, allowing for non-linear contractions (cf. (Boyd and Wong, 1969)).
Q = ([0,1],V,*,1): a new fixpoint theorem for fuzzy orders, to be compared with
e.g. (Coppola et al., 2008).

Q = (A,V,*,e): a new fixpoint theorem for probabilistic metric spaces,
encompassing certain known results (Hadzi¢ and Pap, 2001).



Take-away message: an equilibrum of three

To formulate a fixpoint theorem for a ¢-contraction F': C — C on a Q-category,

C must be F must be
sufficiently sufficiently
(co)complete contractive

Q@ must be

sufficiently

continuous

Our theorem captures known examples and produces new results. Yet, the literature
abounds with fixpoint theorems. Further study is necessary!

Challenge: find a fixpoint theorem for quantaloid-enriched categories, to understand the
situation for partial metric spaces (Hofmann and Stubbe, 2018).
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